version provisoire

parent 3d899fbb
......@@ -7,6 +7,13 @@
"# Playfair analysis"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Importation de la librairie et chargement des données."
]
},
{
"cell_type": "code",
"execution_count": 1,
......@@ -17,9 +24,16 @@
"playfair = pd.read_csv(\"https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/master/csv/HistData/Wheat.csv\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On regarde le début et la fin du dataframe pour avoir un premier sentiment sur les données"
]
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 20,
"metadata": {},
"outputs": [
{
......@@ -43,7 +57,6 @@
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Unnamed: 0</th>\n",
" <th>Year</th>\n",
" <th>Wheat</th>\n",
" <th>Wages</th>\n",
......@@ -51,54 +64,49 @@
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>48</th>\n",
" <td>49</td>\n",
" <td>1805</td>\n",
" <td>81.0</td>\n",
" <td>29.5</td>\n",
" <th>0</th>\n",
" <td>1565</td>\n",
" <td>41.0</td>\n",
" <td>5.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>49</th>\n",
" <td>50</td>\n",
" <td>1810</td>\n",
" <td>99.0</td>\n",
" <td>30.0</td>\n",
" <th>1</th>\n",
" <td>1570</td>\n",
" <td>45.0</td>\n",
" <td>5.05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50</th>\n",
" <td>51</td>\n",
" <td>1815</td>\n",
" <td>78.0</td>\n",
" <td>NaN</td>\n",
" <th>2</th>\n",
" <td>1575</td>\n",
" <td>42.0</td>\n",
" <td>5.08</td>\n",
" </tr>\n",
" <tr>\n",
" <th>51</th>\n",
" <td>52</td>\n",
" <td>1820</td>\n",
" <td>54.0</td>\n",
" <td>NaN</td>\n",
" <th>3</th>\n",
" <td>1580</td>\n",
" <td>49.0</td>\n",
" <td>5.12</td>\n",
" </tr>\n",
" <tr>\n",
" <th>52</th>\n",
" <td>53</td>\n",
" <td>1821</td>\n",
" <td>54.0</td>\n",
" <td>NaN</td>\n",
" <th>4</th>\n",
" <td>1585</td>\n",
" <td>41.5</td>\n",
" <td>5.15</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Unnamed: 0 Year Wheat Wages\n",
"48 49 1805 81.0 29.5\n",
"49 50 1810 99.0 30.0\n",
"50 51 1815 78.0 NaN\n",
"51 52 1820 54.0 NaN\n",
"52 53 1821 54.0 NaN"
" Year Wheat Wages\n",
"0 1565 41.0 5.00\n",
"1 1570 45.0 5.05\n",
"2 1575 42.0 5.08\n",
"3 1580 49.0 5.12\n",
"4 1585 41.5 5.15"
]
},
"execution_count": 5,
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
......@@ -197,6 +205,15 @@
"playfair.tail()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Comme il n'y a pas beaucoup de données on peut vérifier la qualité par de simples graphiques.\n",
"\n",
"On importe matplotlib et on visualise les deux variables principales; on ne constate pas de valeurs anormales. La variabilité du prix du blé est plus grande que celle des salaires. Cela parait normal. "
]
},
{
"cell_type": "code",
"execution_count": 7,
......@@ -270,6 +287,557 @@
"plt.plot(playfair['Wages'])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On prend l'année comme index. Cela permettra que l'année figure comme abscice dans les graphiques"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Unnamed: 0</th>\n",
" <th>Wheat</th>\n",
" <th>Wages</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Year</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1565</th>\n",
" <td>1</td>\n",
" <td>41.0</td>\n",
" <td>5.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1570</th>\n",
" <td>2</td>\n",
" <td>45.0</td>\n",
" <td>5.05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1575</th>\n",
" <td>3</td>\n",
" <td>42.0</td>\n",
" <td>5.08</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1580</th>\n",
" <td>4</td>\n",
" <td>49.0</td>\n",
" <td>5.12</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1585</th>\n",
" <td>5</td>\n",
" <td>41.5</td>\n",
" <td>5.15</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1590</th>\n",
" <td>6</td>\n",
" <td>47.0</td>\n",
" <td>5.25</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1595</th>\n",
" <td>7</td>\n",
" <td>64.0</td>\n",
" <td>5.54</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1600</th>\n",
" <td>8</td>\n",
" <td>27.0</td>\n",
" <td>5.61</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1605</th>\n",
" <td>9</td>\n",
" <td>33.0</td>\n",
" <td>5.69</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1610</th>\n",
" <td>10</td>\n",
" <td>32.0</td>\n",
" <td>5.78</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1615</th>\n",
" <td>11</td>\n",
" <td>33.0</td>\n",
" <td>5.94</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1620</th>\n",
" <td>12</td>\n",
" <td>35.0</td>\n",
" <td>6.01</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1625</th>\n",
" <td>13</td>\n",
" <td>33.0</td>\n",
" <td>6.12</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1630</th>\n",
" <td>14</td>\n",
" <td>45.0</td>\n",
" <td>6.22</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1635</th>\n",
" <td>15</td>\n",
" <td>33.0</td>\n",
" <td>6.30</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1640</th>\n",
" <td>16</td>\n",
" <td>39.0</td>\n",
" <td>6.37</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1645</th>\n",
" <td>17</td>\n",
" <td>53.0</td>\n",
" <td>6.45</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1650</th>\n",
" <td>18</td>\n",
" <td>42.0</td>\n",
" <td>6.50</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1655</th>\n",
" <td>19</td>\n",
" <td>40.5</td>\n",
" <td>6.60</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1660</th>\n",
" <td>20</td>\n",
" <td>46.5</td>\n",
" <td>6.75</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1665</th>\n",
" <td>21</td>\n",
" <td>32.0</td>\n",
" <td>6.80</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1670</th>\n",
" <td>22</td>\n",
" <td>37.0</td>\n",
" <td>6.90</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1675</th>\n",
" <td>23</td>\n",
" <td>43.0</td>\n",
" <td>7.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1680</th>\n",
" <td>24</td>\n",
" <td>35.0</td>\n",
" <td>7.30</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1685</th>\n",
" <td>25</td>\n",
" <td>27.0</td>\n",
" <td>7.60</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1690</th>\n",
" <td>26</td>\n",
" <td>40.0</td>\n",
" <td>8.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1695</th>\n",
" <td>27</td>\n",
" <td>50.0</td>\n",
" <td>8.50</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1700</th>\n",
" <td>28</td>\n",
" <td>30.0</td>\n",
" <td>9.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1705</th>\n",
" <td>29</td>\n",
" <td>32.0</td>\n",
" <td>10.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1710</th>\n",
" <td>30</td>\n",
" <td>44.0</td>\n",
" <td>11.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1715</th>\n",
" <td>31</td>\n",
" <td>33.0</td>\n",
" <td>11.75</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1720</th>\n",
" <td>32</td>\n",
" <td>29.0</td>\n",
" <td>12.50</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1725</th>\n",
" <td>33</td>\n",
" <td>39.0</td>\n",
" <td>13.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1730</th>\n",
" <td>34</td>\n",
" <td>26.0</td>\n",
" <td>13.30</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1735</th>\n",
" <td>35</td>\n",
" <td>32.0</td>\n",
" <td>13.60</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1740</th>\n",
" <td>36</td>\n",
" <td>27.0</td>\n",
" <td>14.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1745</th>\n",
" <td>37</td>\n",
" <td>27.5</td>\n",
" <td>14.50</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1750</th>\n",
" <td>38</td>\n",
" <td>31.0</td>\n",
" <td>15.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1755</th>\n",
" <td>39</td>\n",
" <td>35.5</td>\n",
" <td>15.70</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1760</th>\n",
" <td>40</td>\n",
" <td>31.0</td>\n",
" <td>16.50</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1765</th>\n",
" <td>41</td>\n",
" <td>43.0</td>\n",
" <td>17.60</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1770</th>\n",
" <td>42</td>\n",
" <td>47.0</td>\n",
" <td>18.50</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1775</th>\n",
" <td>43</td>\n",
" <td>44.0</td>\n",
" <td>19.50</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1780</th>\n",
" <td>44</td>\n",
" <td>46.0</td>\n",
" <td>21.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1785</th>\n",
" <td>45</td>\n",
" <td>42.0</td>\n",
" <td>23.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1790</th>\n",
" <td>46</td>\n",
" <td>47.5</td>\n",
" <td>25.50</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1795</th>\n",
" <td>47</td>\n",
" <td>76.0</td>\n",
" <td>27.50</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1800</th>\n",
" <td>48</td>\n",
" <td>79.0</td>\n",
" <td>28.50</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1805</th>\n",
" <td>49</td>\n",
" <td>81.0</td>\n",
" <td>29.50</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1810</th>\n",
" <td>50</td>\n",
" <td>99.0</td>\n",
" <td>30.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1815</th>\n",
" <td>51</td>\n",
" <td>78.0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1820</th>\n",
" <td>52</td>\n",
" <td>54.0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1821</th>\n",
" <td>53</td>\n",
" <td>54.0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Unnamed: 0 Wheat Wages\n",
"Year \n",
"1565 1 41.0 5.00\n",
"1570 2 45.0 5.05\n",
"1575 3 42.0 5.08\n",
"1580 4 49.0 5.12\n",
"1585 5 41.5 5.15\n",
"1590 6 47.0 5.25\n",
"1595 7 64.0 5.54\n",
"1600 8 27.0 5.61\n",
"1605 9 33.0 5.69\n",
"1610 10 32.0 5.78\n",
"1615 11 33.0 5.94\n",
"1620 12 35.0 6.01\n",
"1625 13 33.0 6.12\n",
"1630 14 45.0 6.22\n",
"1635 15 33.0 6.30\n",
"1640 16 39.0 6.37\n",
"1645 17 53.0 6.45\n",
"1650 18 42.0 6.50\n",
"1655 19 40.5 6.60\n",
"1660 20 46.5 6.75\n",
"1665 21 32.0 6.80\n",
"1670 22 37.0 6.90\n",
"1675 23 43.0 7.00\n",
"1680 24 35.0 7.30\n",
"1685 25 27.0 7.60\n",
"1690 26 40.0 8.00\n",
"1695 27 50.0 8.50\n",
"1700 28 30.0 9.00\n",
"1705 29 32.0 10.00\n",
"1710 30 44.0 11.00\n",
"1715 31 33.0 11.75\n",
"1720 32 29.0 12.50\n",
"1725 33 39.0 13.00\n",
"1730 34 26.0 13.30\n",
"1735 35 32.0 13.60\n",
"1740 36 27.0 14.00\n",
"1745 37 27.5 14.50\n",
"1750 38 31.0 15.00\n",
"1755 39 35.5 15.70\n",
"1760 40 31.0 16.50\n",
"1765 41 43.0 17.60\n",
"1770 42 47.0 18.50\n",
"1775 43 44.0 19.50\n",
"1780 44 46.0 21.00\n",
"1785 45 42.0 23.00\n",
"1790 46 47.5 25.50\n",
"1795 47 76.0 27.50\n",
"1800 48 79.0 28.50\n",
"1805 49 81.0 29.50\n",
"1810 50 99.0 30.00\n",
"1815 51 78.0 NaN\n",
"1820 52 54.0 NaN\n",
"1821 53 54.0 NaN"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"playfair.set_index('Year')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On n'a plus besoin de la colonne qui numérote les observations"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"playfair=playfair.drop(columns='Unnamed: 0')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On vérifie le type des variables et le nombre de variables non nulles. Les 3 NaN du salaire correspondent aux trois dernières observations."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 53 entries, 0 to 52\n",
"Data columns (total 3 columns):\n",
"Year 53 non-null int64\n",
"Wheat 53 non-null float64\n",
"Wages 50 non-null float64\n",
"dtypes: float64(2), int64(1)\n",
"memory usage: 1.3 KB\n"
]
}
],
"source": [
"playfair.info()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Les années vont de 5 en 5 sauf la dernière qui a les mêmes valeurs que l'avant dernière. On élimine donc la dernière observation qui n'apporte rien. "
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 52 entries, 0 to 51\n",
"Data columns (total 3 columns):\n",
"Year 52 non-null int64\n",
"Wheat 52 non-null float64\n",
"Wages 50 non-null float64\n",
"dtypes: float64(2), int64(1)\n",
"memory usage: 1.3 KB\n"
]
}
],
"source": [
"playfair=playfair[:-1]\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## TODO vérifier que les années vont de 5 en 5"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f55414ac048>"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD/CAYAAAD/qh1PAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGLBJREFUeJzt3X2YHVWd4PHvzwSMSAgkaSAhYFgWSYCYIJGXRAYEY9gxAo/CiqNufIHs7LJBgXEIIzsyj7qbWQYeZp5xZh4UNCqjvIwTGMYXMMCuQzNIYpAkNBreDB0CaSIvAQwGOPtHVTe3m9tv997u233y/TxPPbfqVJ2qc+rW/dW5VefWjZQSkqR8vaXZBZAkDS0DvSRlzkAvSZkz0EtS5gz0kpQ5A70kZc5AL0mZM9BLUuYM9JKUOQO9JGVubLMLADB58uQ0ffr0ZhdDkkaVNWvWPJNSaulvuRER6KdPn87q1aubXQxJGlUi4jcDWc5LN5KUOQO9JGWu30AfEddGxNaIWF+RNjEibo+IjeXrPhXzLomIhyPiVxGxcKgKLkkamIFco/8W8LfAtyvSlgGrUkrLI2JZOX1xRBwOnA0cAUwFfhoR70wpvTbYgu3cuZP29nZ27Ngx2KxZGjduHNOmTWO33XZrdlEkjTL9BvqU0v+LiOk9kk8HTirHVwB3AReX6d9PKb0CPBYRDwPHAPcMtmDt7e2MHz+e6dOnExGDzZ6VlBLbtm2jvb2dgw8+uNnFkTTK1HqNfr+U0haA8nXfMv0A4ImK5drLtEHbsWMHkyZN2uWDPEBEMGnSJL/dSKpJo2/GVovKVf+rMCKWRMTqiFjd0dFRfWUG+S7uC0m1qjXQPx0RUwDK161lejtwYMVy04Anq60gpXR1SmluSmluS0u//f2b4oILLuCqq67qml64cCHnnHNO1/RFF13ElVdeyaJFixqyvZUrV/Lggw82ZF2S1KnWH0zdAiwGlpevN1ek/2NEXElxM/ZQ4Of1FhJg+rJ/bcRqujy+/IP9LjNv3jxuvPFGPv/5z/P666/zzDPP8MILL3TNb21t5YwzzmhYmVauXMmiRYs4/PDDG7ZOSSPPFR/t3ji86Ppbh3R7A+le+T2Km6mHRUR7RHyWIsAviIiNwIJympTSBuAG4EHgx8B5tfS4GSnmz59Pa2srABs2bODII49k/PjxPPvss7zyyiu0tbVx1FFH8eKLL3LmmWcyY8YMPv7xj5NScbVqzZo1nHjiiRx99NEsXLiQLVu2APD1r3+d97znPcyePZuPfOQjvPzyy7S2tnLLLbfwhS98gTlz5vDII480rd6S8jKQXjcf62XWKb0s/1Xgq/UUaqSYOnUqY8eOZdOmTbS2tnL88cezefNm7rnnHiZMmMC73vUudt99d9auXcuGDRuYOnUq8+fP5+677+bYY49l6dKl3HzzzbS0tHD99dfzxS9+kWuvvZYPf/jDnHvuuQBceumlXHPNNSxdupTTTjuNRYsWceaZZza55pJyMiKedTOSdbbqW1tbufDCC9m8eTOtra1MmDCBefPmAXDMMccwbdo0AObMmcPjjz/O3nvvzfr161mwYAEAr732GlOmTAFg/fr1XHrppTz33HO8+OKLLFzo78okDR0DfT/mzZtHa2sr69at48gjj+TAAw/kiiuuYK+99uIzn/kMAG9961u7lh8zZgyvvvoqKSWOOOII7rnnzT8h+NSnPsXKlSuZPXs23/rWt7jrrruGqzqSdkE+66Yf8+fP59Zbb2XixImMGTOGiRMn8txzz3HPPfdw/PHH95rvsMMOo6OjoyvQ79y5kw0bNgCwfft2pkyZws6dO7nuuuu68owfP57t27cPbYUk7XIM9P2YNWsWzzzzDMcdd1y3tAkTJjB58uRe8+2+++7cdNNNXHzxxcyePZs5c+Z03dj98pe/zLHHHsuCBQuYMWNGV56zzz6byy+/nKOOOsqbsZIaJjp7iDTT3LlzU8/n0be1tTFz5swmlWhkcp9IeWhU98qIWJNSmtvfcrboJSlzBnpJypyBXpIyN6ID/Ui4fzBSuC8k1WrEBvpx48axbds2AxxvPI9+3LhxzS6KpFFoxP5gatq0abS3t9PbI4x3NZ3/MCVJgzViA/1uu+3mvylJUgOM2Es3kqTGMNBLUuYM9JKUOQO9JGXOQC9JmTPQS1LmDPSSlDkDvSRlzkAvSZkz0EtS5gz0kpQ5A70kZc5AL0mZM9BLUuYM9JKUOQO9JGXOQC9JmTPQS1LmDPSSlDkDvSRlzkAvSZmrK9BHxAURsSEi1kfE9yJiXERMjIjbI2Jj+bpPoworSRq8mgN9RBwAnA/MTSkdCYwBzgaWAatSSocCq8ppSVKTjG1A/rdFxE5gD+BJ4BLgpHL+CuAu4OI6tyNJo87X/viOrvHz/uHkppWj5hZ9Smkz8FfAJmAL8HxK6TZgv5TSlnKZLcC+jSioJKk29Vy62Qc4HTgYmAq8PSI+MYj8SyJidUSs7ujoqLUYkqR+1HMz9v3AYymljpTSTuAHwDzg6YiYAlC+bq2WOaV0dUppbkppbktLSx3FkCT1pZ5r9JuA4yJiD+B3wCnAauAlYDGwvHy9ud5CStJI1jZjZtf4zIfamliS6moO9CmleyPiJuAXwKvAWuBqYE/ghoj4LMXJ4KxGFFSSVJu6et2klL4EfKlH8isUrXtJ0iC1L/tZ1/i05Sc0ZJ3+MlaSMmegl6TMGeglKXP1/jJWknYJs1bM6hpft3hdE0syeLboJSlzBnpJypyBXpIyZ6CXpMwZ6CUpcwZ6ScqcgV6SMmegl6TMGeglKXMGeknKnIFekjJnoJekzBnoJSlzBnpJypyBXpIyZ6CXpMwZ6CUpcwZ6ScqcgV6SMmegl6TMGeglKXMGeknKnIFekjJnoJekzI1tdgFGi/ZlP+san7b8hCaWRJIGxxa9JGXOQC9JmTPQS1LmDPSSlLm6An1E7B0RN0XEQxHRFhHHR8TEiLg9IjaWr/s0qrCSpMGrt0X/18CPU0ozgNlAG7AMWJVSOhRYVU5Lkpqk5kAfEXsBfwBcA5BS+n1K6TngdGBFudgK4Ix6CylJql09Lfr/AHQA34yItRHxjYh4O7BfSmkLQPm6bwPKKUmqUT2BfizwbuDvU0pHAS8xiMs0EbEkIlZHxOqOjo46iiFJ6ks9gb4daE8p3VtO30QR+J+OiCkA5evWaplTSlenlOamlOa2tLTUUQxJUl9qDvQppaeAJyLisDLpFOBB4BZgcZm2GLi5rhJKkupS77NulgLXRcTuwKPApylOHjdExGeBTcBZdW5DklSHugJ9Sul+YG6VWafUs15JUuP4y1hJypyBXpIyZ6CXpMwZ6CUpcwZ6ScqcgV6SMmegl6TM+efgkjQKXHbZZX1O98UWvSRlzha9BuSKjy7qGr/o+lubWBJJg2WLXpIyZ6CXpMwZ6CUpcwZ6ScqcgV6SMmevG2kAvvbHd3SbPu8fTm5SSaTBs0UvSZkz0EtS5rK9dNM2Y2bX+MyH2ppYEklqLlv0kpQ5A70kZS7bSzeSVJPLJlSMP9+8cjSQgb6CD+6SRq5VdxzSNX7KyY80sSSjj4Few84PrDS8DPSSsjV92b92jT++/INNLElzeTNWkjI3Olr0lTdHIJsbJENt1opZXePrFq9rYkkkNZMteknK3Oho0UuZqfxj58H8ybPebP877+82/dT75jSpJCOXLXpJypwteo169qzIR89vN37baQxb9JKUubpb9BExBlgNbE4pLYqIicD1wHTgceA/p5SerXc7vbFnSXO1L/tZt+lpy09oUkmkgdvVvgU24tLN54A2YK9yehmwKqW0PCKWldMXN2A7DVP5b0H+U5Ck3NUV6CNiGvBB4KvAhWXy6cBJ5fgK4C4GGOh3tbOsJA2Helv0VwF/CoyvSNsvpbQFIKW0JSL2rXMbGqXsQiiNDDUH+ohYBGxNKa2JiJNqyL8EWAJw0EEH1VoMqaH8ZzLlqJ5eN/OB0yLiceD7wMkR8V3g6YiYAlC+bq2WOaV0dUppbkppbktLSx3FkCT1peYWfUrpEuASgLJF/ycppU9ExOXAYmB5+XpzA8qpYeKN6tHHe1vqz1D0o18OLIiIjcCCclqS1CQN+WVsSukuit41pJS2Aac0Yr2SpPr5y1hJypyBXpIy50PNNCp4w1GqnS16ScqcgV6SMuelG0lD5oqPLuoav+j6W5tYkl2bgX6U8Bp1DSr/VN4/lNcuzEs3kpQ5A70kZc5AL0mZ8xr9EFl1xyHdpk85+ZF+81Reh4cBXouv4Tq0j+IduSqPm4EcM9JA2KKXpMzZom+C/e+8v2v8qffNaWJJRp6c9k3lH6ePuD9Nt0fSLsUWvSRlzha9pLrU8mc1I/rbToZs0UtS5mzRS3XyZ/4a6WzRS1LmbNFLo0ROPZI0vGzRS1LmDPSSlDkDvSRlzmv0kgbEZySNXgb6Ol122WVVxzVyzVoxq9v0usXrmlSSkcd9kycv3UhS5mzRS5mq6bHXypIteknKnIFekjJnoJekzBnoJSlzBnpJypyBXpIyZ6CXpMzVHOgj4sCIuDMi2iJiQ0R8rkyfGBG3R8TG8nWfxhVXkjRY9bToXwUuSinNBI4DzouIw4FlwKqU0qHAqnJaktQkNQf6lNKWlNIvyvHtQBtwAHA6sKJcbAVwRr2FlCTVriHX6CNiOnAUcC+wX0ppCxQnA2DfRmxDklSbugN9ROwJ/BPw+ZTSC4PItyQiVkfE6o6OjnqLIUnqRV2BPiJ2owjy16WUflAmPx0RU8r5U4Ct1fKmlK5OKc1NKc1taWmppxiSpD7U0+smgGuAtpTSlRWzbgEWl+OLgZtrL54kqV71PKZ4PvBJYF1EdP49/Z8By4EbIuKzwCbgrPqKKEmqR82BPqX0b0D0MvuUWtcrSWosfxkrSZkz0EtS5gz0kpQ5A70kZc5AL0mZM9BLUuYM9JKUOQO9JGXOQC9JmTPQS1LmDPSSlDkDvSRlzkAvSZkz0EtS5gz0kpQ5A70kZc5AL0mZM9BLUuYM9JKUOQO9JGXOQC9JmTPQS1LmDPSSlDkDvSRlzkAvSZkz0EtS5gz0kpQ5A70kZc5AL0mZM9BLUuYM9JKUOQO9JGXOQC9JmRuyQB8Rp0bEryLi4YhYNlTbkST1bUgCfUSMAb4G/CfgcOBjEXH4UGxLktS3oWrRHwM8nFJ6NKX0e+D7wOlDtC1JUh+GKtAfADxRMd1epkmShlmklBq/0oizgIUppXPK6U8Cx6SUllYsswRYUk4eBvyqYhWTgWeqrHqw6SM5T7O3P1x5mr394crT7O3XkqfZ2x+uPM3efi15Brqud6SUWnpZ7g0ppYYPwPHATyqmLwEuGUT+1Y1IH8l5mr1962k9m71969nYdfU1DNWlm/uAQyPi4IjYHTgbuGWItiVJ6sPYoVhpSunViPgfwE+AMcC1KaUNQ7EtSVLfhiTQA6SUfgj8sMbsVzcofSTnafb2hytPs7c/XHmavf1a8jR7+8OVp9nbryVPLevq1ZDcjJUkjRw+AkGSMmegl6TMGeglKXNDdjN2oCJiBsXjEQ4AEvAkcEtKqa2fPAcA96aUXqxIPxX4LZBSSveVz9c5FXiovDlcuY5vp5T+S5V1v5fiEQ47gRUppRci4m3AMuDdwNuA81NKD1bJ29mV9MmU0k8j4o+AeUAb8FPgQ8CBwKvARuB7KaXnB7Kf1HgRsW9Kaesg80xKKW0bqjINJ+u/C9V/sB3vGzkAFwP3UwTRT5TDss60XvKcD2wBVgKPA6dXzHsS+HdgNfC/gTuAPwe2UQTbW8rhX4AXy/FnK/KfW277S8DLwJ+V6VcDVwHvBXYAvwN+Bvx3oKUi/3XA9eX6vwP8M/BJ4N6ybJcCrcDfAV8FHgROauL+37eGPJMaXIYJwHLgofJ96nyvlgN795JnL+CRch//UUX6/sB6igfqTQIuA9YBNwAzgYkVw6Ty+DkTmFhRlmuAB4B/BP4GmFzOmws8CjwMvAJ8AzikStnmAncC36U4qd8OPA+sKY+jDeV0R3ms/rdG1b+c903g76vsg5U99kFn/fcBzuzxfnTugw3AzCr1/w3w6/J4PqTO+n9qsMfArl7/im39aMCfs2YFmbKgvwZ2q5K+O7CxlzzrgCfK8ekUQf1z5fTvKPrt7wG8AOxVpq8FngVOAk4sX7eU4xsr1n0fZeAud/q6cvwXFcuspTgZfKA8IDqAHwOLgfXlMmOBp4ExFWV+oBzfA7irHD8I+OVg32TgNooTWQ6Bbh3FCX//HvW4uJz/7irDKooT9RkUJ+t/At5avg9PUDQWHijXcRCwlOLb4mM9hp1lXR4tt/sN4CvAO4ALgOcrynQn8J5y/AngKWAT8PNy2anlvJ9TPLX1Y+VyZ5bpd5f7bhpwIfA/gUOBzRQNkrrrX+Z9vqxvz33wOvBSlfo/BrxSse3KffAksLJK/d9Z7re/6rkPaqj/Corjqtox8Ne97INdpf59HQNHA1tGS6B/iOJZDT3T30HRcn6gyrCjxxuzJ8UH/Erg5cqAXDH+FooP1O3AnDKt88P9S4qz+iQqfloM3Aj8phz/JjC3HN8A3Fex3G7AacD3KC7J7F6ubztvBND1FJePKOetqci/vZc3ubeD/GiKE9py8gh0zwP/q5fjI1EEwTt7DNuB31Us98Vy/Q9QnpSBTT3WtbncP7Mq0h6j+0n8/h55dgBjy/F/r0j/BW80Ak6g+Ib2VFm2TRXLVY7/ku7H5H3l6686j40G1H8S3T8Dldv/E4rGT7f6d9an2j6g+Hze37P+5XTl9iv3wXZgySDq/xYqPs89tvEaRXDeJevfzzFwZ2UZ+huaHehPpfjw/4iitXc1xYfxYYoW+ByKoFM5tAJbe6xnLPDtcqfs0bkDK+ZPoPhwTqMI4H/b+SZQtGofpfjQP0oZcCnOzr+l+Ip4L0VQfLR8I2f3Up8/LZf5DcUlplXA1ylaBk+V9XsI+HS5fEvlgTnAg/xO4PUey47mQHcbsBXYr2LefhQnqReBQ6vsmzbKb3UVaYvL8naenL/SY/66ivf/SmB8+V61U5x4Liqno8c+uw04meLb0VXAH1B8G/xOj/WPoTiet1J82zurPA7OKOdXnuw/RPksqAbXfwPw+4q0nvugrWf9y/Sq+4CigbC9Sv3/AthWpVxjym38ZKD1L6dfovjs9NwHTwF378L17/UYKJd5olp61WUHuuBQDRRntOOAj1BcRjiu3GHXAO+tsvw04Ae9rOukXtIn0z3AfZBeWpEVy+wBHFweELMpWtL7Ae/sJ99U3mjd7l3W6RjgiHJ8Ro/lbxvMQV7O30nFiaziQB+NgW4fistVD1Gc3H9bflj+kuL65WFV6v9/gD+vkn4dxf8g9Ez/j8BNFdMfovi29BTF/ZjKofPS3f4UjYeTKO67rC334Q8pLvG96ZJjmW82xQf9R8AMim9mz1E0Xh4sx/+ts15l2X7aoPqfWu7LPfvaB5X1L6f72gc/qVL/JcD1g6j/s1Xq/85y+RaKgPaXFfvg2XIfrKR46m2j639anfX/r33Uf04/9X++x/tfrf79HgNl3jP6ikXdlh3ogg5DM1AEus43+bcVb/JKykslVfL8AHh/lfThDHRjeynbQANd5Qf9K8D7e35Ayw/uDOCUKvPO6SX93F7Su62LovfUkf2sq5btn0pxP6S3slWr5/m8cVnsCIqT7h+W08dUzDuc4qT8h72lDyLPLIqbiYPJM9CyHVstT4/0bmWuchx9p5f0bw8mvbd55ft/42Dy1LKdGutyQrnPPlBl3nvL/fameX0NPgJhBIuIT6eUvjnQ9MHkKbuMHpJSWj+U2+lvXkScT/EY63spWkOfSyndXM57gqL3U1vlvIhYClxOcSmq3/Ra1lVnnpcoTtyVec6naIn2LPOXKL7RtVHcQzoG+L8UJ4TfU5yUxpbzjgXuAj5D8U14a4/0weSpZTv15OmrzC0U3Y0rnUxx2QKK+z4AAbyvj/Q7yu11pveVp3Mb1fL0tv2+8vS3nb7WdUJKaR+AiDgHOI+iofcB4KCU0oHlvHPLef9czvuXlNJyBmIwZwWH4R3ocZ29v/TRmIf+e1Ht2XNemeeXA02vZV3DladMX8ube4q9jd57ka2nuB8zmvL0t67v8uZecRspLh0ONP3Ecl61df16mPLUVOaKz0Nlz7+30/2mb8956wYcS5odzHb1geo9ix4oD/7Xq6Sv6yV9tObpqxfVjh77qnPeNrr3jugvvZZ1DVeerbzRs2Ntj7y99SJbO9ry9LOu+yl6bnXrFUfxDWDA6eXriMzTz7qq9vwr5/2uj3nd9mOfcabZgW5XHyj621frXdRBEQR6pk+n6JGTS57+elHNqTJvC/DaINJrWddw5enoTOfNPcVeonovstWdH/JRlKevdXX2FHtTr7ha0kdynmrp9N7zb0+KS2S9zevWS67PONPsQLerD/Teu+ga4PZe8jySSx767kV1BhW/L+iR50MDTa9lXcOVh+L3D/OrpE8G3t3LNqZS0YtslOTpa12zeqRV7RU32PSRnKevdVUsswdw8GDnVRu8GStJmfPplZKUOQO9JGXOQC9JmTPQS1LmDPSSlLn/Dw7Enm5GOro4AAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"playfair.plot.bar(y='Wheat')"
]
},
{
"cell_type": "code",
"execution_count": null,
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment