{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Playfair analysis" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Importation de la librairie et chargement des données." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "playfair = pd.read_csv(\"https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/master/csv/HistData/Wheat.csv\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On regarde le début et la fin du dataframe pour avoir un premier sentiment sur les données" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
YearWheatWages
0156541.05.00
1157045.05.05
2157542.05.08
3158049.05.12
4158541.55.15
\n", "
" ], "text/plain": [ " Year Wheat Wages\n", "0 1565 41.0 5.00\n", "1 1570 45.0 5.05\n", "2 1575 42.0 5.08\n", "3 1580 49.0 5.12\n", "4 1585 41.5 5.15" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "playfair.head()\n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Unnamed: 0YearWheatWages
4849180581.029.5
4950181099.030.0
5051181578.0NaN
5152182054.0NaN
5253182154.0NaN
\n", "
" ], "text/plain": [ " Unnamed: 0 Year Wheat Wages\n", "48 49 1805 81.0 29.5\n", "49 50 1810 99.0 30.0\n", "50 51 1815 78.0 NaN\n", "51 52 1820 54.0 NaN\n", "52 53 1821 54.0 NaN" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "playfair.tail()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Comme il n'y a pas beaucoup de données on peut vérifier la qualité par de simples graphiques.\n", "\n", "On importe matplotlib et on visualise les deux variables principales; on ne constate pas de valeurs anormales. La variabilité du prix du blé est plus grande que celle des salaires. Cela parait normal. " ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xd0W9eV6P/vBljAArCIVZRkNarblmy5xJYSN9lOs53uZDLRpIxTnEkyM5kZ5828yeT9Vt5z3sukzJpJcZqVZjvFshxn4kRW3LtkUrYKJaqzF7ETbADO7w/gQiwACRIgcQnuz1paIC8B8FyK3DjYd599xBiDUkqp1OVI9gCUUkrNLg30SimV4jTQK6VUitNAr5RSKU4DvVJKpTgN9EopleI00CulVIrTQK+UUilOA71SSqW4tGQPAKCoqMgsX7482cNQSql55cCBA+3GmOKp7meLQL98+XL279+f7GEopdS8IiJnY7mfpm6UUirFaaBXSqkUN2WgF5Efi0iriBwadaxQRPaKSG3otmDU174kIidE5JiI3DJbA1dKKRWbWGb09wO3jjt2D7DPGFMJ7At9johsAO4ENoYe8x0RcSZstEoppaZtykBvjHkG6Bh3+HZgV+jjXcAdo44/aIwZMsacBk4AVyZorEoppWZgpjn6UmNME0DotiR0vAKoG3W/+tAxpZRSSZLoi7ES4VjELaxE5C4R2S8i+9va2hI8DKWUUpaZBvoWESkHCN22ho7XA0tH3W8J0BjpCYwx9xljthpjthYXT1nvr5RSttE9MMIjVQ3JHkbMZhroHwV2hj7eCewZdfxOEckUkRVAJfBKfENUSil7+c2Ber7wUDX1nd5kDyUmsZRXPgC8CKwVkXoR+ThwL7BDRGqBHaHPMcYcBn4FHAEeB+42xvhna/BKKZUMVoBv7h5M8khiM2ULBGPMB6N86cYo9/8q8NV4BqWUUnbW0DkAQEvPUJJHEhtdGauUUtPU0GUF+vkxo9dAr5RS06SBXimlUlj/kI8u7wiggV4ppVJSY2g2D5qjV0qplFQfCvRlHpfO6JVSKhVZM/rLLsrXQK+UUqmooXOANIewqSKP/mE/fUO+ZA9pShrolVJqGhq6BijLc7E4LwuYH4umNNArpdQ0NHQOUJGfRanHBUDrPEjfaKBXSqlpaOwaoKIgi1JPJgDNGuiVUip1jPgDNPcMsmTUjH4+lFhqoFdKqRg1dw8SMLA4P4uczDTcmWnzovJGA71SSsXIan1QURC8EFviydRAr5RSqcSqoa/IDwb60nmyaEoDvVJKxchqT7w4FOiDq2M1R6+UUimjoWuAotwMXOlOAEo8Llp7BwkEIm6NbRsa6JVSKkYNXQPhtA1AqSeTEb+h0zucxFFNTQO9UkrFqCFUQ28pmycllnEFehH5vIgcEpHDIvKF0LFCEdkrIrWh24LEDFUppZLHGENj10C49QEEUzdg/770Mw70IrIJ+GvgSuBS4B0iUgncA+wzxlQC+0KfK6XUvHa+f5jBkcCYGb21OjZlAz2wHnjJGOM1xviAp4F3AbcDu0L32QXcEd8QlVIq+ayKm9E5+hJ36qduDgFvFpFFIpINvA1YCpQaY5oAQrcl8Q9TKaWSq3HcYimAjDQHi3IybN/vJm2mDzTGHBWRrwF7gT7gIBBzY2YRuQu4C2DZsmUzHYZSSs2Jhq6JM3oILpqyewfLuC7GGmN+ZIy5zBjzZqADqAVaRKQcIHTbGuWx9xljthpjthYXF8czDKWUmnX1nQPkZDjJy0ofc7zUk0lLbwoHehEpCd0uA94NPAA8CuwM3WUnsCee76GUUnZglVaKyJjjpR4Xzd32ztHPOHUT8lsRWQSMAHcbYzpF5F7gVyLyceAc8L54B6mUUsnWOG6xlKXU4+J8/xAj/gDpTnsuTYor0Btjtkc4dh64MZ7nVUopu2noGmDz0vwJx0s9LoyB9r4hyvMmvhDYgT1ffpRSykb6h3x0eUfGVNxYwjtN2XjvWA30Sik1hWgVN8C82GlKA71SSk3BCvRLIs7oQ5uE27jyRgO9UkpNYXwf+tEW5WSQ5hBN3Sil1HzW0DVAmkPCLQ9GcziEEnempm6UUmo+a+gcoDzfhdMhEb9ubUBiVxrolVJqCtFq6C2lnkxN3Sil1HzW0DUQMT9vKbP5JuEa6JVSahIj/gAtPYMsmSTQl3hc9Az6GBj2z+HIYqeBXimlJtHcPUjAEHGxlKXU5jtNaaBXSqlJXFgslR31PmUa6JVSav66UEM/sbTSEt5SsNeeJZYa6JVSahLWjH6yi7HhTcJtWnmjgV4ppSbR2DVAUW4mrnRn1Pt4XGlkpTs1daOUUvORteHIZEQktNOUpm6UUmreaegcoGKS/Lyl1OPS1I1SSs03xpjgjH6S/Lyl1OOy7d6xGuiVUiqK8/3DDPkCMQb6TFp6BjHGzMHIpifezcH/VkQOi8ghEXlARFwiUigie0WkNnRbkKjBKqXUXDrS2ANMXnFjKfW4GBwJ0DPgm+1hTduMA72IVACfA7YaYzYBTuBO4B5gnzGmEtgX+lwppeaVV053cPcvX6M8z8UVywunvH94dawN0zfxpm7SgCwRSQOygUbgdmBX6Ou7gDvi/B5KKTWn/lzTwl/+6GWK3Zn85tPXUJCTMeVjrEBvxy6WMw70xpgG4OvAOaAJ6DbG/AkoNcY0he7TBJQkYqBKKTUXHqlq4K6fHmBNqZtff/JNMeXnwd5tEOJJ3RQQnL2vABYDOSLy4Wk8/i4R2S8i+9va2mY6DKWUSphdL5zhCw9Vs3V5Ab/866tYlJsZ82NLQm0QWm1YSx9P6uYm4LQxps0YMwI8DFwDtIhIOUDotjXSg40x9xljthpjthYXF8cxDKWUit9/7Kvly48eZseGUu7/6JW4XenTerwr3UleVnpqpW4IpmyuFpFsERHgRuAo8CiwM3SfncCe+IaolFKza3dVPd/Ye5z3XLaE7/7FZZO2O5iMXTcgSZvpA40xL4vIb4DXAB9QBdwH5AK/EpGPE3wxeF8iBqqUUrPh7Pl+/ucjh7lieQFfe8/FpDlnPv8tsWkbhBkHegBjzJeBL487PERwdq+UUrY24g/wuQerEYFv3bklriAPwcqb2pb2BI0ucXRlrFJqwfrWE8c5WNfFve++JObqmsmUuDNp6xsiELDX6lgN9EqpBemFk+1856mTfGDrUt5+SXlCnrMoNxN/wNA1MJKQ50sUDfRKqQWns3+Yv3voICsW5fCv79yQsOctdgdLLNv77JWn10CvlFpQjDHc8/DrnO8f4j8+uIWczLguVY5RFKq7b7fZBVkN9EqpBeWXr5zjj4db+Mdb1rGpIi+hz13sDrZKaNMZvVJKJYcxhq/9oYZrVi3i49tWJPz5wzP6vuGEP3c8NNArpRaMgRE/PYM+tlcW43BIwp8/LyuddKdojl4ppZKl0xushinInl57g1iJCItyMjVHr5RSydLZH0ypxNJ2eKaK3Bk6o1dKqWTp9IYCffYsBvrcTM3RK6VUslipm8Kc2UndgBXodUavlFJJYaVu8md5Rn++b9hWm4RroFdKLRhW6iY/azZn9BkM++21SbgGeqXUgtHZP4zHlRZ3l8rJWG0Q7LRoSgO9UmrB6PSOzGrFDVxYNNVmoxJLDfRKqQWj0zs8qxU3MHp1rAZ6pZSac8FAP3v5eQjm6EEDvVJKJUVn/8isz+gLsjNwOuzVBmHGgV5E1opI9ah/PSLyBREpFJG9IlIbui1I5ICVUmqmOr3Ds56jdziERTkZtPfaZ9HUjAO9MeaYMWazMWYzcDngBXYD9wD7jDGVwL7Q50oplVSDI368w/5ZT92A/RZNJSp1cyNw0hhzFrgd2BU6vgu4I0HfQymlZqzLamg2yzN6gCJ3agb6O4EHQh+XGmOaAEK3JQn6HkopNWNz0efGUpSbYat+N3EHehHJAG4Dfj3Nx90lIvtFZH9bW1u8w1BKqUnNZaAvzs2krW/INm0QEjGjfyvwmjGmJfR5i4iUA4RuWyM9yBhznzFmqzFma3FxcQKGoZRS0XX2W6mbucnRD/sC9A7Zow1CIgL9B7mQtgF4FNgZ+ngnsCcB30MppeIyp6mb0N6xdtmAJK5ALyLZwA7g4VGH7wV2iEht6Gv3xvM9lFIqES50rpybGT3YZ+/YtHgebIzxAovGHTtPsApHKaVso9M7Qk6Gk8w056x/L7u1QdCVsUqpBWEuFktZNNArpVQSzEVDM0thTgYOSZEcvVJKzRed3pE5yc8DOB1CYU4GbTbJ0WugV0otCJ39wxTOUeoG7NUGQQO9UmpBmMvUDQR3mrLL5iMa6JVSKW/EH6B30DengV5n9EopNYcuNDSbmxw9WP1u7NEGQQO9UirldXmtxVJzO6MfHAnQP+yfs+8ZjQZ6pVTK6witii2c40AP9iix1ECvlEp5naHUzVyVV0KwJz3YY9GUBvoE8QcMX95ziFNtfckeilJqHKuh2dyWV9pnk/C4et2oC06397HrxbMsLcxmZXFusoejlBplLjtXWopDqRs7LJrSGX2C1HUOANA7aI/+00qpC7q8I7jSHWRlzH5DM0thTgZikzYIGugTpL7DC2igV8qOOvrndrEUQJrTQUF2hi1SNxroE6Q+PKMfSfJIlFLjdXmH57S00mLV0iebBvoEqevUGb1SdtXRP0zhHC6WsgRXx2qOPmWEZ/RDOqNXym66vCNJmtHbow2CBvoEqdMcvVK21eEdntPFUpai3Mz5fzFWRPJF5DciUiMiR0XkTSJSKCJ7RaQ2dFuQqMHaVd+QL7wgQwO9UvbiDxi6B0YomMPFUpYidwb9w34GktwGId4Z/beBx40x64BLgaPAPcA+Y0wlsC/0eUqrD+XnPa40vRirlM30DIxgzNz2ubEU22RLwRkHehHxAG8GfgRgjBk2xnQBtwO7QnfbBdwR7yDtrr4jmJ9fX+7RGb1SNtORhFWxFqsNQtt8DfTASqAN+ImIVInID0UkByg1xjQBhG5LEjBOW7MqbjYs9jDkCzDsCyR5REopy4XOlXOfugmvjk1ynj6eQJ8GXAZ81xizBehnGmkaEblLRPaLyP62trY4hpF8dR0DZKU7Wb4oB9BaeqXspKM/+PeYlBn9fE/dAPVAvTHm5dDnvyEY+FtEpBwgdNsa6cHGmPuMMVuNMVuLi4vjGEby1Xd6WVKQhdsVbB2k6Rul7CMZfW4si6zGZr3JraWfcaA3xjQDdSKyNnToRuAI8CiwM3RsJ7AnrhHOA3WdAywtzMbtCr411ECvlH0kM3WT7nSQn52e9Bl9vN0r/wb4hYhkAKeAjxJ88fiViHwcOAe8L87vYXv1nV6uWF4wakavqRul7KKjf4R0p5CbmZxmvXZYNBXXmRtjqoGtEb50YzzPO590e0foHfSxtCA7HOh7dEavlG1YfW5EJCnf3w79bnRlbJysipslBVl4wqkbndErZRcd/clZFWuxQ78bDfRxshZLBXP0ejFWKbsJ9rmZ+/y8xQ5tEDTQx8lqZrakICucA9RAr5R9dHiHk1JaaSl2Z9I75GNwJHltEDTQx6muw4s7M428rHTSnA6yM5yaulHKRpLVi95ih71jNdDHqb5zgCWF2eELPW5Xms7olbIJYwyd3uQ0NLNcWDSVvDy9Bvo41YUWS1ncrnTtSa+UTfQM+vAHTFJTN+FAn8Q8vQb6OBhjqO8cYGlBdviYzuiVso8Li6WSGOjdyW+DoIE+Dh39w3iH/RNm9FpHr5Q9dPRbnSuTmbrRHP28VhequFlaOH5Gr6kbpeygK7QhUDJn9JlpTjyuNM3Rz1f1oxZLWTyaulHKNpLZ0Gy0IndmUnvSJ6f5Q4qo67hQQ2/JzdQZvVJ2EU7dJDvQ52by8qkO/uaBqglfu2xZPh+9dsWsfn8N9HGo7/SSn50e7loJwRz94EiAEX+AdKe+YVIqmbq8IziE8Kr1ZLl1Yxk/f+kshxu6J3zN2pxkNmmgj0PduIobYEwbhGSWdCmlgqtiC7IzcDiS09DM8rFtK/jYttmdtU9Gp5xxqB9XQw+M6kmfuumb3xyo569+8kqyh6HUlIKrYpNXcWMXGuhnKBAI1dAXRp/Rp6onjrTw1LE2WnsGkz0UpSbV2T+i76zRQD9j7X1DDPsCLJ0wo7d60qfujP5Uex8Ahxt7kjwSpSbXmeQ+N3ahgX6GLvShHzuj96T4doL+gOFMe/DcD0W4sKSUnXR6h5Pa58YuNNDPUH14sVTkGX1figb6+k4vw/4AAG9ooFc2Zoyhs3+EAk3dxFd1IyJngF7AD/iMMVtFpBB4CFgOnAHeb4zpjG+Y9lPXEZzVVuSPz9Gn9sXYk23BtE1FfpambpSteYf9DPsDSV8sZQeJmNFfb4zZbIyx9o69B9hnjKkE9oU+Tzl1HQMU5WaSleEcczzVL8aeausH4LbNi2noGggvSFHKbuyyWMoOZiN1czuwK/TxLuCOWfgeSVffNbG0EiDd6cCV7qB3KDUD/cm2PgpzMti+ugjQPL2yrwt9bjRHH2+gN8CfROSAiNwVOlZqjGkCCN2WxPk9bKmuY2JppcXtSk/h1E0/q4pz2Lg4D4BDjakb6AMBw+cfrOKV0x3JHoqagXCfG83Rxx3orzXGXAa8FbhbRN4c6wNF5C4R2S8i+9va2uIcxtzyBwyNXQMRZ/QQTN+kaqviU219rCzKJS87nWWF2RxuSN08/Ym2PvZUN7LvaEuyh6JmwC4NzewgrkBvjGkM3bYCu4ErgRYRKQcI3bZGeex9xpitxpitxcXF8Qwjbv6AYdgXiPn+zT2D+AJmQvsDS3BGn3qBvts7QnvfMKtKcgDYVOFJ6cqbqnPBGoJmXRg2L3X2W4FeUzczDvQikiMibutj4GbgEPAosDN0t53AnngHOdv+555DvPd7L8R8//qOie2JR/OkaE/6k6GFUiuLcgHYuDiPcx1eur2pd64A1XVdADR1a6Cfjzq8I4hAXpYG+nhm9KXAcyJyEHgF+L0x5nHgXmCHiNQCO0Kf29aIP8BjBxt5vb6bc+e9MT0m0oYjo6XqdoInW4OBflVJMNBfXBHM0x9uSs1ZfdW5YKBv1kA/L3V5h/G40knTLrIzr6M3xpwCLo1w/DxwYzyDmkuvnO4I59OfOt7KR960fMrH1Hd6EYHF+a6IX3dnpubF2FPt/aQ7Jdz2YeNiDwCHG3q4ZlVRMoeWcP1DPo639JLmEJp7BjHGIJLcDohqejq9I5q2CVnwL3V7j7SQmeagIj+LJ2siXk6YoK5jgFK3i8w0Z8Svp/KM/qJFOeEZ0qLcTBbnuVIyT/96fTcBA9euLmLYF6AzRdNTqayzf1grbkIWdKA3xrD3SAvbK4vYsaGUF06eZ3DEP+Xj6ju9E1ofjOZ2peMd9uPzx36Bdz441d7PyqKcMcc2VeSlZImllZ+/dVMZAE3dA8kcjpqBpu4BXSwVsqAD/ZGmHhq6BtixoZTr15Uw5Avw4qnzUz6uvnNgQjOz0cL9blJo0ZTPH+Ds+f5wft6yqSKP0+39KXWuANV1nSxflM26MjcALVp5k3Cd/cN85XeHZ+VF9FBDNyfb+tlemVopxZla0IF+75EWROCGdaVctaIQV7qDp6ZI39Q0B18cLlmSF/U+uSnYBqGuc4ARv4kwo/dgDByZQd+bw43dtryWYYyh6lwXW5YVUJ4XfOemlTeJ960njvOT58/w+Qeq8QdMQp/7oVfryEhz8K4tSxL6vPPVgg/0ly0roNidiSvdyTWrinjyWBvGRP+le/CVOjKcDu7YXBH1Pp4U7Ek/vuLGsilUeTPdVgitPYPc/p/P84NnTydmgAnU1D1Ia+8Qm5fmU5SbgUO08ibRzp7v5xcvn2NdmZtXznTwX0+eSNhzDwz7eaS6gbdtKiNPL8YCCzjQN3QNcLixh5s3lIaPXb+2mHMdXk6390d8zOCIn91VDdyyqWzSizzuFOxJb202sqpobKAvcbsocWdOO0//6MFGfAFDbUtvwsaYKFZ+fvPSfNKcDkrcLp3RJ9j/++Mx0p0OfvqxK7lj82K+va+WA2ejt5rwBwz/9uhh3vbtZ/EOT/539fs3mugd9HHnlcsSPex5a8EG+ieOBJe17xgV6K9bG2zL8+SxyC0ZHj/UTPfACB+8Yumkz52KHSxPtvZTlJsRcYa0qSJv2q0QHqluAC50w7STqnOdZKQ5WF8eLB8ty3Npjj6BXq/v4rHXm/jE9hWUeFz8f3dsYnG+i88/WB3xXfCwL8DnHqzi/hfOcKSphx8/N/m7wIdePceKohyuWlE4W6cw76RkoDfGRJ2VW/YeaWFVcQ4riy/MUJcWZrO6JJenjkXO0z/46jmWFWZz9cpFkz63nXvSn2jtnVE+9FR735if1WibKvKobe1lYHjqiiWA2pZeDjX0kJeVzunz/QQSnJ+NV3VdF5sWe8hIC/55lHl0Rp8oxhju/UMNhTkZ3PXmlUDw7+Xbd26hqXuQf959aEzq1Dvs4+O7XuX3rzfxP962jh0bSvne06eitsc+0drLq2c6+cAVS3XdwygpGei/+/RJrv/6U+wJzRrH6x4Y4aVT59mxoWzC165bU8zLpzomvD083d7PS6c6+MAVS3E4Jv8FsuuMvr7Ty83ffIbdVZF/LpOxulZGsmmxh4CBo82xzep3VzXgdAgf37aCYV+ARhuVLo74A7zR0M3mpQXhY2V5Ls3RJ8gzte28cPI8f3PD6vCECOCyZQX87U2V/O5gI799Lfj72eUd5sM/fJnnT7Tzf99zCXe9eRX/dOtavMM+/vPPkXP6D75SR5pDeM9lehF2tJQL9B39w3z3yZOIwL/sPhTeCWq0p4614guYMWkby/XrShj2B3jhxNgyy4dercPpEN53+dS/QBcCvb1m9IcaegiY4Fvn6ejsH6ajf5hVk8zoAQ7HcEE2EDDsqW5k2+oirlgefGs91buvuXSsuZfBkQBbluWHj5Xnuegb8tnu/3O+CQSCs/mlhVl86KqJ+fNPX7eaq1YU8q97DvHK6Q4+8P2XONTQw3f+4nLeH0qXri5x8/6tS/nZS2cm/G0P+fw8XNXATetLKXZnzsk5zRcpF+j/68kT9A/7+PHOKwD4/INVExYu/elIC0W5mWxZmj/h8VuXF5CT4eTJUembEX+A3xyo54Z1JZR4Irc9GC0zzUlGmsN2M/qa0Iy7pml6F0CtC7Ero8zoy/NcLMrJiGmF7KtnOmjoGuDdl1WEn89Ogb5q1IVYS1le8P98pnn6+k4vv3j5bPyDm+f2HGzgaFMPX7x5bcRV5U6H8M0PbCbd6eD933+R+k4v93/0ivCiNcsXblqD0yH8+5+OjTm+90gLHf3D3Hnl5NfQFqKUCvR1HV5+9uJZ3nf5Uq5fV8JX330xr53r4j9Gvc0b8vl5+lgbN60viZiCyUxzcu3qIp4aVWa572gL7X1DfHAav0AeG/aktwL80eaeSUtIxzvZGgzE0Wb0IsLGijwOxXBB9pHqBrIznOzYUEqJO5OcDKetLshWn+uiKDdjTGfSstCL+0zz9D978Sz/vPsQjV32SVHNtSGfn6//8TgbF3t45yWLo95vcX4W33j/pawv9/DLv76aa1ZPXPBUlufiY9eu4JHqxjFlvQ+9WkdFfhbbK5Pb9tyOUirQf2PvcUTgCzsqAbjt0sW857Il/Oefa8O7BL10qoO+IV/EtI3lurUlNHQNUBuqHX/w1TrKPC7esib2zbLsuMvU0eYenA6hd9BHwzSCzsn2PjKcjklXA29a7OF4Sy9DvugXZAdH/Dz2ehO3biwjOyMNEWFFcQ6nbDWj72Tz0vwxF/KsRVMzzdMfbQ6+wC7kbRd/9uJZGroGuOet66a8xnXj+lL+8PntXBrhHbflk29ZRX52Ol97vAYITvKerW3nfVuX4Jzi+ReilAn0hxu7eaS6gY9tWxH+wwT4yu0bWVaYzRcerKLbO8LeI81kpQdn7dFctzY4I3jqWCsNXQM8fbyN90/zF8jtSrNVW4D+IR9nz3vZFjrv6aRvTrb2s7woe9Lzv7giD1/AcLy5L+p9nqxppXfQxx1bLiw2W1GUy+n26I+Zygsn2/nLH7086QtMrLq9I5xq62fLsoIxx0s8wXzvTAN9TVPwnc6hGaweTgWDI37+68kTbK8sSthsOy8rnc9ev5pna9t5rradh16tQwTev1XTNpGkTKD/2uPH8LjS+dRbVo05npuZxrfv3EJr7xBf2v06Txxp5c1rinClR+48CcG3j+vK3DxZ08av99cBhC8GxcpuHSyPhRYm3bEl+La5JsYKGQiVVhZFTttYrAuyk+Xpd1c1UOzOHPMiu6Ioh/rOgRkH6vueOcWzte0cONs5o8ePdrB+Yn4ewJXupDAng6YZ5OjP9w3R2jsExHaxOhUda+6l0zvChxK8gOkv33QRFflZ3Pv4UX59oI63rClmcX70ZoMLWUoE+udPtPPM8TY+e/3qiLvJXLo0ny/espb/fqOZ5p7BiGWV4123toRXz3TwwCvn2F5ZPGnaIhK79aS3ZvBbLypkWWF2OJ0wlRF/gHPnveHtA6NZUpBFXlZ61BWyXd5hnjzWyu2XLh7zzmBlUQ7GEPOmL6O19Q7xbG07AM+FbuNRda4LESL2MSrzuGiZwYz+WOjnXOZxpWSXz1hYkwprAVqiZKY5+fub13CooYeWniHuvEJXwkYz7wO9VbJVkZ/FX77poqj3u2v7Sq5ZtYg0h3DDuqlz7detLcYXMKFfoOm/HbTbjL6muYfczDSWFATfrVjphKmc6/DiC5gpZ/QiwqVL83nsYCOPH2qe8PXHXm9ixG/GpG0gOKMHZpSnf+z1RvwBw+I8Vzjgx6O6rpPKktwx9d2WsryZLZqyXlDffVkFLT1DtPYuvHr8o029ZGc4WRZlR7Z43L65gnVlbordmdy4PvZraAvNvA/0v3+jiTcauvm7HWsmTcc4HML3//JyHv7MNRTGsBnB5RcV4M5MY1FOBjetj37hNhq7bRBe09TLujI3IsK6cg+n2/tj6r0frZlZJF+5bSPLFmXzqZ8f4B9+fXDMO5pHqhqoLMkN70plWRFHieUjVQ1sXOzhziuXcaixO7wZ9EwYY6iu65qQtrGU5blmtEl4TVNLf9CZAAAbPUlEQVQPRbmZ4fYa020VkQpqmntYW+ae8iLsTDgdwq6PXclDd11Num4ZGFXcPxkRcYpIlYg8Fvq8UET2ikht6LZgqueYqWFfgK//6RjrytwTZoqRuF3pXLIk+pX80dKdDv757ev5t9s2hpfCT4d1MTbR7VdnwhjD0eYe1pUHe6uvL3MTMFDbMvVFUGumHa2GfrQVRTk8/Olr+ez1q/nta/W89dvP8vKp85w772X/2U7u2FIxYVm6x5VOUW4mp9qmd0H2ZFsfB+u7edeWCrZVFmEMPH9y5rP6s+e9dHpHxqyIHa3c46KjfzimF8fRapp7WV/uZkPoBW6hVd4YYzja1Mu6ssSmbUYr9biitudQQYl4Cfw8cHTU5/cA+4wxlcC+0Oez4sDZTuo7B/inW9fNSknVnVcu452XRq/5nYydNh9p7B6kd9AX/mNbF8qVHo0hfXOytY9idyaeCOmMSDLSHHzxlrX8+lPX4HQId/7gJT79iwMAUV+MVxblTHtG/0hVAw4JltBeUpGH25UWV57e6lg5ekXsaKWhRVOtPUMxP6fPH+BYSy/ryz3kZqaxsignJbddnExzzyDdAyOsD00yVHLEFehFZAnwduCHow7fDuwKfbwLuCOe7zGZN61axNP/cF24HNJOPDZqbGbl460/tmWF2WSlO2PqTRNp+8BYXH5RAf/9ue188MplHG7s4aoVhVREqYhYMc1Ab4xhd1UD164uosTjIs3p4JpVi3i2tn1aC8FGq67rIjvDyZrSyAGpPM9aNBX7+oMz5/sZ9gXCu1Rtqsjj8AIrsbSKAGZzRq+mFu+M/lvAPwKjewyUGmOaAEK3s3qFZElBti271NmpsZk1c7eCmNMhrClzT1lLb4zhRGtfTPn5SHIy0/jf77qYhz9zDd/4wOao91tRnEN73zDdA7G9KFrv5N416h3CtspiGroGODOD6h0Itia+uCIv6jtDK9BPJ09/dFyQ21ThoaFrIGrnxVRkTSbWlumMPplmHOhF5B1AqzHmwAwff5eI7BeR/W1tkfu/z2d22k7waHMvSwuzxlSTbCh3UzNFK4SO/mDwncmMfrTLlhVEnc3DhcqbMzHO6ndXNZCV7uSWjRfKZLeHavOfrZ3+75I/YKhp7uXiiujbQ5aG2iBMZ9FUTXMPaQ4Jl6ZuWjyz3bjms5qmXirysyKWPau5E8+M/lrgNhE5AzwI3CAiPwdaRKQcIHQbsbm7MeY+Y8xWY8zW4mL7pV7iZaee9DVNPRPeOq8r89DpHQkv5onEuhA70xl9rKwXkljSN0O+YBuFmzeWkpOZFj5+0aJslhZmzajMsr7Ty5AvEDVtA8H/z9zMtGmVWNY09bKqODfcwGujte3iAqqnr2nuCaeuVPLMONAbY75kjFlijFkO3An82RjzYeBRYGfobjuBPXGPch6yS+pmcMTP6fZ+1o/7Y7P++Ca7IGvl9sdvH5hoyxZl45DYaumfOtZG98DImLQNBOv4t60u5qWT5yd0K53K8VD10erSyc9zujtN1TT3hiudILhsf1lh9oxLLN/9nef57lMnZ/TYZBjy+TnZ1j/mZ6CSYzYKT+8FdohILbAj9PmCY5ee9LUtfQTMxFWJ1gy/ZpIVsv/9RjMrinJYWji7y8oz05wsKciOqcTykaoGinIzwj17RtteWUTvkC/cyiBWta3Bn0HlFO9cprPTVPfACA1dAxPeSW2q8Myo8qa1Z5DXznXx3In5k+Y80dqHP2ASviJWTV9CAr0x5iljzDtCH583xtxojKkM3Ubf8TeFWVU3yW5VbF0MWzfujy0vO53Fea6oM/rGrgFeOn2eOzZPrH2fDbFU3nQPjLDvaCvvvHQxaREWx1yzahEiTDt9U9vSR3meK+KK2NGms9OU1fpg/Gx2U0Ue5zq8dHunNwGw+uTHsvbBLrTixj50KdksyUxzkO6UpKduapp6yUqPvPx8XbknauXNnupGjLnQBG22WYF+sovDf3ijiWF/YELaxpKfncElFXnTDvTHW3qpnCQ/bynPc9HWNxRTasjq77Jh3AusdUH2cNP0ZvVV54KBvrV3aNovEslS09xDZpqD5YsS3/pATY8G+lkiIrboSV/T3MOaMnfEssF1ZW5OtvVN6BwZrFOv57Jl+Vy0KL6Km1itLM7BO+yf9OLww1UNrCrOmbQ6ZltlEdV1XfTE+HP3B4IlpGtiuOBclufCHzC0901dHnm0qYeC7HRKxm1pt3GGK2Sr6zrD/4dWqsnujjb1sqbUHfHdl5pb+j8wi5Ld2Cy4/LxnwoVYy/pyD76ACe8gZTna1Mvxlr6oM+fZEG5uFmW3qfpOL6+c7uBdEdoojLZtdTH+gOGlk+ej3mf88w75AlROcSEWRu80NfWiKWvZ//ixLsrNZHGeK6bduCz+gOH1+m6uDy0MPD5P0jdacWMfGuhnUTDQJ29G39Y7RKd3JOofm7VSdnxv+keqG0hzCO+YZMu3RLN6lUTL0z/wyjkcEr2NguWyi/LJznDy3InY0jdWzjuW1E2se8cGAoZj4ypuRttUkTetEsvjLb14h/287eJysjOc82JG39Y7RHvf8IRrQyo5NNDPomBP+uTN6I80Rb4Qa1m+KIeMNMeYyht/wLCnuoHr1pZQEEOXz0Qp97jITHNErLwZHPHzy5fPcdP60in3BchMc3LVisKY+94cDwXN1TGkbqydy6aqvDnX4WVgxM/6KBchN1Xkcbq9P+Y+SFYfnsuWFbC6JHdeXJAN96DXGb0taKCfRclO3VgBPNqMPs3pYE1p7pjKmxdPnqelZ2hO0zYQbCMdrfLm0epGOr0jfPTaFTE917bKYk6191PfOXU7BKviJpambQXZ6WSkOaasvKkJVzpFm9F7MAaOxNj3pvpcFwXZ6Vy0KJvKEjfHW+w/o7cu8mvrA3vQQD+Lkn0xtqaph/I8F/nZ0Wfm68o84Z4sEGwv4M5MS8omDpECvTGGHz9/mnVlbq5eWRjT82yvDNbYxzKrr22NreIGghfYY6mlP9rUi0OgsiR66gZivyBbVdfJpaENyytLc21RefPnmhZemCQ9drS5hxJ3JotyM6PeR80dDfSzaC5m9N3eEbzDkb9HTXPvlBfD1pW5ae8boq13iIFhP48fauJtF5dPuonLbFlRlMO5Di8jo8oXXzrVQU1zLx+9dnnM9fyVJbmUejJ5doo8fSBUcTPVQqnRYtmApKa5h+VFOWRlRP4ZlrhdlLgzY8rT9w6OUNvax5ZQn/w1oYvGyczTd/YP89lfVvG5B6ui9uevaerVhVI2ooF+FnlcafQN+wjM0uYj1XVdvOXrT/LWbz9LXcfYNMWwL8CJ1r4p/9isrx9r7mXv0Rb6h/0xbeIyG1YU5eALGOo7L1S13P/CaQqy07l9c+xjEhGuXV3E8yfaJ/3Z13cOMDgSCAfPWJR5pl40FdxsZPKf+6aKvJhm9G/Ud2MMbA71ybfeJdS2Ji9P/5MXzuAd9tPeN8yDr5yb8PURf/B3T1sf2IcG+lnkdqVjDPRFmXHH4/kT7XzoBy+Rm5lGl3eE937vhfBqTAjuwOQLmCmrHqwZf01zD49UNbA4z8VVK2JLkSTahcqbYBCr6/Cy90gLH7pq2bTfYWyvLKLLOzJp/3cr1706SoolkvLQjD7awq7+IR9nz3unvAi5qSKPE619DAxPvmOVtSJ2c2hntIr8LLLSnUnL0/cOjnD/86e5eUMpWy8q4PvPnGLYN3YB2en2fob9gagXo9Xc00A/i8K7TCU4ffP4oSY++pNXWVqQzW8/fQ2/+uSbMAbe//0Xee1cJxB71cOi3ExK3Jk8d6Kdp4+3cfuWilnZ2zMWK8fV0v/0xTOICB++Ovqm79Fca7UtnqQ3jDUrjqWG3lKW52LYF6AzSo78wgXwKWb0iz0EDFNu/lJ1rouVxTnkZQcvFjscwTz9iSTN6H/+0jl6Bn189obV3H3Dapq6B3mkqmHMfY42TX4xWs09DfSz6EKr4sQF+odePcdnfvEamyo8/OqTb6LU42JtmZvffvoaCrLT+YsfvMwzx9uoaeolw+kIL0SazLpyD08da8MfMHNebTNaQU4G+dnpnGrvp3/Ix4Ov1vHWTWXhssbpKHG7WFfm5tnj0fP0tS29lHliq7ixTLVoaqqKG0ssF2SjbVi+uiQ3KTP6wRE/P3ruFNsri7hkST7XrSlmU4WH7z59cszeyEebekl3Citnueupip0G+lmU6A6W33/6JP/02zfYVlnMzz9xVXiWB7C0MJtff+oalhfl8PFdr/K7g41UlubGtPzcmvVvKPdM2pN9LqwoyuF0Wz8PVzXQO+iLuaQyku2VRRw42xk1PXK8tXdas3m4sGgqWp6+pqkXd2bapButQDAFtCgnY9JA39A1QHvfEFvGBfo1pW5aeoZi3pErUR585RztfcPcff1qIHgt5O7rVnO6vZ/fv9EUvl9Ncw+rinPJSNPwYhf6PzGLJutJX9Pcw8fvf5VHDzZO2STrVFsff/erav7PH2p4xyXl/PAjW8nOSJtwv2J3Jg/edTWbl+bT2D0Yc9dAa/aZzNm8ZUVRDifb+rj/+dNcsiSPy6Js1h2LbZXFDPsDvHx6YjsEq+Jmui9s1ruLaJU3Nc09rCt3T1khJCJsrMijuq4rar7famS2ZVnBmONWldCJOay8GfYF+P4zp9h6UcGYazi3bCxjdUku33nyRPjCt1bc2I8G+lnkDrcqnjjz+sEzp9lX08rnHqji+n9/ip++eGbCzLPqXCef+tkBbvzG0zz2ehOfessqvn3nlklnSnlZ6fz0Y1fxybes5CNvii23ff3aEj545VLet3VJ7Cc3S1YW5dDaO8TJtv5plVRGcuXyQjKcjoj19FbFzXRKKwGKcjNwSOQZvTGGmlCPm1jctL6E4y19PBOl3r+6rovMNMeERUfWi9Nc9rzZXVVPU/cgd9+wesz/icMhfOa6VdQ097KvppXO/mGaewa1x43NTJwWqoSJNqO36tXfd/kSdmwo5XtPn+Rf9xzmW0/UsvNNy1lX7ubHz53m5dMdeFxp3H3danZes5xid2yLT7IynHzpretjHmd+dgb/592XxH5is8iqvCl2Z/L2i+PrtZOV4WTr8oKIfW/Cm41Mc0af5nRQ4o68aKqha4DeIV/MFyHvvGIZP3j2FPf+oYbtq4smXASvruvi4oo80sel36zKm6laIfj8gYR0jvT5A3z3qZNsqvBw3ZqJ237edulivvnEcf7zyRP8061rgehtN1Ry6Ix+FkUL9Fa9+rsvW8LNG8vClTNblubzzSeO88mfHeBch5d/eft6XvjSjXzxlrUxB/n5zuo58xdXLUtIjnd7ZTE1zb20jku1hLcPnMF+uJG2FDTG8POXgjXl43vQR5OR5uCLN6/laFMPew6OrVwZ9gV4o6GbLRFSVw6HBHveTJK6Od7Sy8Yv/zHmnj+T+f0bTZw57+Xu61ZHfIeV5nTwqbes4mBdFz9+7jRwoWGesgcN9LMoK92J0yETLsaOr1cXEa5cUciP/uoK/vS3b+aHH9nKM/94PZ/YvpLczIX1pmtNqZsffmQrn3rLqoQ8X7gdwrhZvVVxk5cVe8WNZXwbhEDA8JXfHeF7T5/kvZcvmVAlM5l3XrKYTRUevv7H42NWmdY09zDsC7B5aUHEx1WWTt7c7Fev1jHkC/D9Z+LbYzYQMHznyZOsLsnllo1lUe/33suXUOrJ5ImjrSzKyaBYWx/YyowDvYi4ROQVETkoIodF5Cuh44UisldEakO3kX9TF4Dg5iNj2yC09w1NWq++ptTNTRtKJ7xdX0hu2lCasBYMG8o9FOZkTJjZ1rb2TbvixjJ6S8ERf4C///VB7n/hDJ/YtoL/+55LpnVdweEQ7rl1PQ1dA/z8pbPh41bHys1RLkZXlrhp7hmMWHnjDxj2HGwkI83Bs7Xt1MZRivnE0RaOtfTymetWTbq+IjPNyV9vXwkQ08VoNbfiiSZDwA3GmEuBzcCtInI1cA+wzxhTCewLfb5gje9J/9jBxqTXqy8kDodwzapFPHeiPVzdcqHHzczSC+V5LvqGfLT3DfGpnx1gd1UD/3DLWv757etntNhsW2UR2yuL+M8nT4Qv3Fed66LYHdykJBKrbUOkypsXTrbT1jvEv75jAxlpDu5/4cy0xwTB9NH/++MxlhVmc9ulU18v+dBVyyjPc3HF8uSsrFbRzTjQmyDrvWN66J8Bbgd2hY7vAu6Ia4Tz3Pie9LurG21Rr76QbK8sorV3KJyXb+gaYGDEP60eN6NZtfQf+P6L/PlYK1991ybuvj5y/jpW/3TrOrq8I3zvqWCqpbquiy2hjpWRhHveREjf7K5qwO1K472XL+GOzYt5+LWGGXW7/OFzp6ht7ePfbtsQ00Xd7Iw0nvzidXzuhsppfy81u+LKD4iIU0SqgVZgrzHmZaDUGNMEELqd+363NjI6dXOqrY+DdV06m59j2yqDlSLP1gbbIVirSmecugmtjj3X4eU/7tzCX1w1/RYN422qyOP2zYv58fOnOdbcy+n2/qhpG4AlBVm40h0TSiy9wz4eP9TM20MdSP/qmhUMjPh58NWJzccmU9fh5T/21XLrxjJuWFca8+Nc6c6ktdBQ0cUV6I0xfmPMZmAJcKWIbIr1sSJyl4jsF5H9bW3R+5HMd25Xevjt+CNVDTgEbts8d1v0qWA54srinPAFWavHzXSamY22frGHa1cv4oc7r+CdMaQ0YvXFm9fiDxg+84sDAJNe1I1WebP3SAveUR1INyz2cNWKQn764tkpF+ZZjDH8655DOEX48m0bZng2yk4ScsXPGNMFPAXcCrSISDlA6LY1ymPuM8ZsNcZsLS6eWJubKjyhGb0xht3VDVy7uohST+S8q5o921cX8fKpDoZ8fo639FLqyZxRxQ2Ax5XOLz5xNW+JUFMej6WF2Xz46os42daPQ+CSJZNX76wpcU9I3eyuaqAiP4srR+XJP3rtChq6BnjiaEtM4/jj4WaePNbG3+5YM6M+Q8p+4qm6KRaR/NDHWcBNQA3wKLAzdLedwJ54BzmfWRdjXzvXSV3HAHdMo6+6SpxtlcUMjPg5cLaT2pbptz6YK39zQyW5mWmsKXVPWVpbWRqsvLHeMbb1DvFsbTu3b148Jn2yY0MpFflZ/Pj5M1N+/74hH//26BHWl3v4q2uWx3MqykbimdGXA0+KyOvAqwRz9I8B9wI7RKQW2BH6fMFyu9LpG/Lx8GsNuNId3LIpei2ymj1XryzE6RCerW3nRGvfjBZKzYXCnAy+9+HL+cptG6e8r9W+wZrV/y5KRZfTIey85iJeOd3B4Sl2tfrm3uO09A7yv9+1KSGrapU9xFN187oxZosx5hJjzCZjzP8KHT9vjLnRGFMZuu1I3HDnH7crjYCBPdWN3LyhbMEtgLILtyudLUvz+e2B+lDFjT1n9BAst7xq5aIp72edg1Un/0h1AxsXeyK2dfjA1mVkpTu5f5JZ/aGGbn7y/Gk+dOWyCY3U1PymL9mzzGps1jfk02qbJNsWKrMEZlxaaSdW5U1tax8nWvt4vb476u9YXnY6776sgj0HGznfNzTh6/6A4Z93v0FhTgb/eMu62R66mmMa6GeZ1e9mUU5GeDm+So7tlRcuns604sZOrMqb4y297KkOVXRNUgX00WuXM+wL8EBon9eewRGeOtbKv//pGO///oscrO/mX96+Ycw+Byo1aB5hllmB/p2XLtacZ5JduiQPtyuN7AznjCtu7GZNiZvnT7Zzur2fa1cXUTJJRdfqEjfbK4v44XOneez1Jo619GJMMIe/vtzN3+9Yw+1a+puSNNDPsjWlblYW5fChq5YleygLXprTwQe2LsUXiLzRx3y0ujSXh0N7tv7djjVT3v/u61fzuQeqKHZn8tZN5WxdXsDmpfnk6LWjlCbRdreZS1u3bjX79+9P9jCUmneeONLCJ366n6x0J/v/5SYN2AuMiBwwxmyd6n6aS1BqHrPaONy8sVSDvIpKfzOUmseWFWbzNzes5nZdiKcmoYFeqXlMRPj7m9cmexjK5jR1o5RSKU4DvVJKpTgN9EopleI00CulVIrTQK+UUilOA71SSqU4DfRKKZXiNNArpVSKs0WvGxFpA87G8RRFQHuChmNnC+U8YeGc60I5T1g45zqX53mRMWbKzYttEejjJSL7Y2nsM98tlPOEhXOuC+U8YeGcqx3PU1M3SimV4jTQK6VUikuVQH9fsgcwRxbKecLCOdeFcp6wcM7VdueZEjl6pZRS0aXKjF4ppVQU8zrQi8itInJMRE6IyD3JHk8iiciPRaRVRA6NOlYoIntFpDZ0W5DMMSaCiCwVkSdF5KiIHBaRz4eOp9S5iohLRF4RkYOh8/xK6HhKnedoIuIUkSoReSz0eUqeq4icEZE3RKRaRPaHjtnqXOdtoBcRJ/BfwFuBDcAHRWRDckeVUPcDt447dg+wzxhTCewLfT7f+YC/N8asB64G7g79P6bauQ4BNxhjLgU2A7eKyNWk3nmO9nng6KjPU/lcrzfGbB5VVmmrc523gR64EjhhjDlljBkGHgRuT/KYEsYY8wzQMe7w7cCu0Me7gDvmdFCzwBjTZIx5LfRxL8HAUEGKnasJ6gt9mh76Z0ix87SIyBLg7cAPRx1OyXONwlbnOp8DfQVQN+rz+tCxVFZqjGmCYIAESpI8noQSkeXAFuBlUvBcQ6mMaqAV2GuMScnzDPkW8I9AYNSxVD1XA/xJRA6IyF2hY7Y61/m8Z6xEOKYlRPOUiOQCvwW+YIzpEYn03zu/GWP8wGYRyQd2i8imZI9pNojIO4BWY8wBEbku2eOZA9caYxpFpATYKyI1yR7QePN5Rl8PLB31+RKgMUljmSstIlIOELptTfJ4EkJE0gkG+V8YYx4OHU7JcwUwxnQBTxG8BpOK53ktcJuInCGYUr1BRH5Oap4rxpjG0G0rsJtgWtlW5zqfA/2rQKWIrBCRDOBO4NEkj2m2PQrsDH28E9iTxLEkhASn7j8CjhpjvjHqSyl1riJSHJrJIyJZwE1ADSl2ngDGmC8ZY5YYY5YT/Lv8szHmw6TguYpIjoi4rY+Bm4FD2Oxc5/WCKRF5G8FcoBP4sTHmq0keUsKIyAPAdQQ74bUAXwYeAX4FLAPOAe8zxoy/YDuviMg24FngDS7kc/8HwTx9ypyriFxC8KKck+AE61fGmP8lIotIofMcL5S6+aIx5h2peK4ispLgLB6CqfBfGmO+ardzndeBXiml1NTmc+pGKaVUDDTQK6VUitNAr5RSKU4DvVJKpTgN9EopleI00CulVIrTQK+UUilOA71SSqW4/x/FQ3y6FT+LvwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(playfair['Wheat'])" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHtRJREFUeJzt3Xl8VOXd9/HPL8lkJQskISwJO7IjKCJudVe0ttCqVarevPqoaGur3rW2Wu/nrq3tU6vW9m771NYWW+qCYl3rClrrVguGPYBsoiQhZGHJRva57j8yWkQwIczkzJz5vl+vvGbmZCbzvZB8OV5znXPMOYeIiMS+BK8DiIhIeKjQRUR8QoUuIuITKnQREZ9QoYuI+IQKXUTEJ1ToIiI+oUIXEfEJFbqIiE8k9eab5eXluWHDhvXmW4qIxLzly5fXOOfyu3perxb6sGHDKC4u7s23FBGJeWb2YXeepykXERGfUKGLiPiECl1ExCdU6CIiPqFCFxHxiS4L3cxSzWyZma02s3Vm9sPQ9n5mtsTMNodu+0Y+roiIHEp39tBbgDOcc0cDU4CZZjYDuAV41Tk3Gng19FhERDzSZaG7Tg2hh4HQlwNmAQtC2xcAsyOSUEQkhu1ubOX2Z9dR19wW8ffq1hy6mSWa2SqgCljinFsKFDjnKgBCt/0P8dp5ZlZsZsXV1dXhyi0iEtWcczy1soyz7n2dh/71Icve3x3x9+zWkaLOuQ5gipnlAE+Z2cTuvoFz7n7gfoBp06bpitQi4nulu/dx29MlvLGpmilFOdx54STGDsiK+Pse1qH/zrm9ZvYPYCZQaWYDnXMVZjaQzr13EZG41d4R5E9vf8C9SzaRYHD7F8ZzxQnDSEywXnn/LgvdzPKBtlCZpwFnAT8DngXmAneGbp+JZFARkWi2fdc+rntkBWvLazlzbH/umD2RQTlpvZqhO3voA4EFZpZI55z7Iufcc2b2DrDIzK4EtgMXRzCniEjUamxp58oF71JV38JvvjqVz08aiFnv7JXvr8tCd86tAaYeZPsu4MxIhBIRiRXOOb77xBq2Vjfwl/9zPCePzvMsi44UFRE5AvPf2sbzayq4+dyxnpY5qNBFRHrsna27+OmL7zFzwgCuPXWE13FU6CIiPVFR28S3Fq5gWG46d1882ZM58wP16hWLRET8oKW9g288vIKm1g4enTeDzNSA15EAFbqIyGH70d/Ws3L7Xn572TGM6p/pdZyPacpFROQwPF5cysNLt3PNqSM4f9JAr+N8ggpdRKSbSsprue3pEk4cmcvN54zxOs6nqNBFRLphT2Mr1zy4nLyMZH49ZypJidFXn5pDFxHpQkfQcf2jK6mub+Hxa08gt0+K15EOSoUuItKFXyzZxJuba/jplydxdFGO13EOKfr+n0FEJIosXreT37y2hUumFTFn+hCv43wmFbqIyCG8X93ATYtWM7kwmx/OmuB1nC6p0EVEDqKxpZ1rH1pOICmB+y4/ltRAoteRuqRCFxE5iP/7TAlbqhr49ZypDO7l85r3lApdROQAO/Y28dTKcq4+ZQQnjfL2DIqHQ4UuInKARcWlAFw+Y6jHSQ6PCl1EZD8dQceid0s5eVQeRf3SvY5zWFToIiL7eXNzNTtqm7n0uOheongwKnQRkf08uqyUfhnJnD2+wOsoh02FLiISUl3fwisbKrnwmMEkJ8VePcZeYhGRCHliRRntQcclMTjdAip0EREAnHM89m4pxw3ry6j+fbyO0yMqdBERYOm23WyraYzJD0M/okIXEQEeXbadzNSkqLsK0eFQoYtI3Kvd18YLJTuZPWUwacnRf86WQ1Ghi0jce2plGa3tQS45rsjrKEdEhS4icc05x6PvljJpcDYTB2d7HeeIqNBFJK6tLqvlvZ31Mb93Dip0EYlzjy7bTlogkVlTBnkd5Yip0EUkbu1rbedvq3dwweSBZKYGvI5zxLosdDMrMrPXzGyDma0zsxtC2283s3IzWxX6Oj/ycUVEwueNTTU0tnYwe+pgr6OERVI3ntMO3OScW2FmmcByM1sS+t4vnHP3RC6eiEjkLF63k+y0ANOH9/M6Slh0WejOuQqgInS/3sw2AP7450xE4lZbR5BX36vizLH9CST6Y/b5sEZhZsOAqcDS0KZvmtkaM3vAzPqGOZuISMS8u203tU1tnDNhgNdRwqbbhW5mfYAngBudc3XAfcBIYAqde/A/P8Tr5plZsZkVV1dXhyGyiMiRe3ndTlKSEvjcUbFzzdCudKvQzSxAZ5k/7Jx7EsA5V+mc63DOBYE/ANMP9lrn3P3OuWnOuWn5+fnhyi0i0mPOORavr+RzR+WTntydjxJjQ3dWuRgwH9jgnLt3v+37n8HmS0BJ+OOJiITf2vJaKmqbOScGr0r0WbrzT9NJwBXAWjNbFdr2fWCOmU0BHPABcE1EEoqIhNnidZUkGJw1Ls4K3Tn3FmAH+dYL4Y8jIhJ5L6/byfTh/eibkex1lLDyx1odEZFuer+6gc1VDZwz3j+rWz6iQheRuLJkfSUA50zw13QLqNBFJM68vG4nEwZlUdg33esoYadCF5G4UVXXzMrSvZzro4OJ9qdCF5G4sWRDJc75c7oFVOgiEkcWr6tkaG46YwoyvY4SESp0EYkLdc1t/HNrDeeML6DzeEn/UaGLSFz4x8Zq2jqcr07GdSAVuojEhcXrdpLXJ5ljhvj3xLAqdBHxvZb2Dv6xsZqzxhWQmODP6RZQoYtIHHhjUw0NLe2+Xd3yERW6iPjeY++WktcnhVNG+/sU3ip0EfG1yrpmXttYxUXHFvrmUnOH4u/RiUjc++vyMjqCjkuOK/I6SsSp0EXEt4JBx6PvbmfGiH4Mz8vwOk7EqdBFxLfeeX8XpbubmDN9iNdReoUKXUR8a+Gy7WSnBXx7Mq4DqdBFxJd2N7ayeF0lX5o6mNRAotdxeoUKXUR86ckVZbR2BLl0uv8/DP2ICl1EfMc5x6PvljKlKIexA7K8jtNrVOgi4jsrtu9hS1UDc+Jo7xxU6CLiQwuXlZKRnMgFkwd5HaVXqdBFxFfqmtt4fk0FX5wyiIyUJK/j9CoVuoj4yrOrdtDU1sElx8XH2vP9qdBFxFcee7eUsQMyObow2+sovU6FLiK+UVJey9ryWuZMH+Lby8x9FhW6iPjG/Le2kRpIYPaUwV5H8YQKXUR8YePOep5eVc7cE4eRnR7wOo4nVOgi4gs/X7yRPslJfP3UkV5H8YwKXURi3qrSvSxeX8m8z40gJz3Z6zieUaGLSMy75+WN5GYk87WTh3sdxVNdFrqZFZnZa2a2wczWmdkNoe39zGyJmW0O3faNfFwRkU/655Ya3tpSwzdOH0WfODuQ6EDd2UNvB25yzo0DZgDXmdl44BbgVefcaODV0GMRkV7jnOPuxRsZmJ3KZcfH34FEB+qy0J1zFc65FaH79cAGYDAwC1gQetoCYHakQoqIHMwrG6pYuX0vN5w5Om7Oef5ZDmsO3cyGAVOBpUCBc64COksf6H+I18wzs2IzK66urj6ytCIiIcGg456XNzI8L4MLjy30Ok5U6Hahm1kf4AngRudcXXdf55y73zk3zTk3LT8/vycZRUQ+5W9rdrCxsp7/PPsoAola3wHdLHQzC9BZ5g87554Mba40s4Gh7w8EqiITUUTkk9o6gty7ZBNjB2RywaSBXseJGt1Z5WLAfGCDc+7e/b71LDA3dH8u8Ez444mIfNqi4lI+3LWPm88dQ0JC/J2z5VC6s8bnJOAKYK2ZrQpt+z5wJ7DIzK4EtgMXRyaiiMi/ba1u4KcvvMdxw/pyxtiDfnQXt7osdOfcW8Ch/gk8M7xxREQOrbGlnWsfXE5yUgK/vHRqXJ5R8bPokwQRiQnOOb771zVsrW7g13OmMjgnzetIUUeFLiIx4Y9vbuP5tRXcfO5YThqV53WcqKRCF5Go987WXdz50nvMnDCAa08d4XWcqKVCF5GoVlHbxDcfWcGw3HTuvniy5s0/gwpdRKJWS3sHX39oBc1tHfz+imPJTI3PC1d0V3yfmkxEopZzjh/+bT2rSvfy28uOYVT/TK8jRT3toYtIVJr/1jYeWbqda04dwfk6GrRbVOgiEnVeWFvBT17YwHkTB/C9c8d6HSdmqNBFJKos/3A3Nz62iqlFOfzikik6tP8wqNBFJGpsq2nkqgXFDMpO5Y9zj9M5zg+TCl1EosKuhha+9qdlmBl//tp0+mXE78Wee0qFLiKea27r4Kq/FFNR28wf/mMaw/IyvI4Uk7RsUUQ8FQw6/vOxVawq3ct9lx3DsUN1vfme0h66iHjqgbe38WLJTm47fxwzJ2p54pFQoYuIZ9btqOWulzZy9vgCrjx5uNdxYp4KXUQ80dTawfULV5KTHuBnF+ocLeGgOXQR8cSPn1/P1upGHrryeK1oCRPtoYtIr1u8bicPL93OvM+N4OTROrd5uKjQRaRXVdY1870n1jBhUBbfOWeM13F8RYUuIr0mGHTctGg1TW0d/M+lU0lOUgWFk/40RaTXPPD2Nt7aUsN/XzCBUf37eB3Hd1ToItIrVmzf8/ESxTnTi7yO40sqdBGJuNWle5k7fxkDc1K1RDGCVOgiElEl5bVcMX8pORkBFl49Q0sUI0iFLiIRs35HHZfPX0pmaoBHrprBoJw0ryP5mgpdRCJi4856Lp+/lLRAIguvnkFRv3SvI/meCl1Ewm5LVT2X/fFfBBKNhVfPYEiuyrw3qNBFJKy2Vjcw5w9LMTMeuXqGzm3ei1ToIhI2K7bv4aL7/olzjkeuOp6R+Vpr3ptU6CISFq+sr+Srf/gXWWkB/nrtiYwuyPQ6UtzpstDN7AEzqzKzkv223W5m5Wa2KvR1fmRjikg0e2TpduY9WMxRBZk88fUTNc3ike7sof8ZmHmQ7b9wzk0Jfb0Q3lgiEgucc9y7ZBPff2otnzsqn4VXzyCvT4rXseJWl+dDd869YWbDIh9FRGJJW0eQ255ay6LiMr4yrZCffGkSgUTN4nrpSP70v2lma0JTMrqqq0gc+XBXI/8xfxmLisu4/oxR/OzCySrzKNDT/wL3ASOBKUAF8PNDPdHM5plZsZkVV1dX9/DtRCQatHcE+d3rWzn3l2+wtryWuy+azLfPGaNzs0SJHl2CzjlX+dF9M/sD8NxnPPd+4H6AadOmuZ68n4h4b21ZLd97Yg3rK+o4e3wBP5o1gYHZOpQ/mvSo0M1soHOuIvTwS0DJZz1fRGLXvtZ27l28iQfe3kZenxR+d/kxnDthgPbKo1CXhW5mC4HTgDwzKwN+AJxmZlMAB3wAXBPBjCLikdc3VXPbU2sp29PEV48fwvdmjiU7LeB1LDmE7qxymXOQzfMjkEVEosSuhhbueG49T6/awcj8DBZdcwLTh/fzOpZ0oUdTLiLiT845nlxRzo+fX09DSzvXnzma604fSUpSotfRpBtU6CICwPZd+7jt6bW8ubmGY4f25adfnsRROnw/pqjQReLcroYWfvf6Vv7yzocEEhO4Y9YELjt+KAkJ+tAz1qjQReLUnsZW7n/zfRb88wOa2zqYPWUwN88co6WIMUyFLhJnave1Mf+t93ng7Q9obG3nC5MHccNZo3WqWx9QoYvEiQ0VdTxeXMbjy0upb27n/EkDuPGsozRP7iMqdBEfq93XxrOry1lUXMba8lqSExM4e0IB1502ivGDsryOJ2GmQhfxmWDQ8fbWGh4vLuOldTtpbQ8yfmAWt39hPLOmDKZvRrLXESVCVOgiPlG6ex+PLy/jieVllO9tIjstwFenD+GiYwuZODjb63jSC1ToIjGsqbWDl9ZVsOjdMt55fxdmcMrofG49fyxnjSsgNaADguKJCl0kRr1UspMfPFtCZV0LQ/ql851zjuLLxxQyKEfLDuOVCl0kxuysbea/nylh8fpKxg3M4hdfmcKMEbk6EEhU6CKxIhh0PLxsO3e9+B6tHUFuOW8sV548XFcKko+p0EViwObKem59ci3FH+7hpFG5/L8vTWJobobXsSTKqNBFotxrG6u49sHlpCUncvdFk7no2EJdXEIOSoUuEsVeKqngWwtXclRBJn/62nH0z0z1OpJEMRW6SJR6amUZ33l8DUcXZvOnr03XlYKkSyp0kSj0yNLt3Pb0WmYMz+WPc6eRkaJfVema/paIRJn5b23jjufWc/qYfO67/FgdHCTdpkIXiSK/+ftm7lm8ifMmDuB/Lp1KcpKWJEr3qdBFooBzjrte3sh9/9jKl6cO5q6LJpOk9eVymFToIh4LBh0/em49f/7nB1x2/BDumDVRR31Kj6jQRTzUEXTc+uQaFhWXcfUpw/n++eO0xlx6TIUu4pG2jiDfXrSav63ewQ1njubGs0arzOWIqNBFPNDc1sE3H1nJKxsqufW8sVxz6kivI4kPqNBFellTawfzHizmzc013DFrAlecMMzrSOITKnSRXuSc49uLVvH2lhruvmgyF08r8jqS+IjWRYn0ot+/8T4vluzk1vPGqcwl7FToIr3k7S013PXSe3x+8kCuOmW413HEh1ToIr2gfG8T31q4kpH5fbjrwslazSIRoUIXibDmtg6+/tByWtuD/O6KY3WiLYmYLgvdzB4wsyozK9lvWz8zW2Jmm0O3fSMbUyR23f7sOtaU1fLzrxzNyPw+XscRH+vOHvqfgZkHbLsFeNU5Nxp4NfRYRA7w6LLtPPpuKdedPpJzJwzwOo74XJeF7px7A9h9wOZZwILQ/QXA7DDnEol5q0v38t/PrOOU0Xl8++wxXseRONDTOfQC51wFQOi2/6GeaGbzzKzYzIqrq6t7+HYisWVXQwtff2g5+Zkp/OrSqSTqZFvSCyL+oahz7n7n3DTn3LT8/PxIv52I59o7glz/6EpqGlv5/RXH0jcj2etIEid6WuiVZjYQIHRbFb5IIrHtnsWbeHvLLn48eyITB2d7HUfiSE8L/Vlgbuj+XOCZ8MQRiW0vlVTwu9e38tXjh/AVHQkqvaw7yxYXAu8AY8yszMyuBO4EzjazzcDZoccicW1LVQM3LVrNlKIcfvCF8V7HkTjU5REOzrk5h/jWmWHOIhKzGlrauebBYlIDidx3+TGkJOnCztL7dMiayBFyznHz46vZVtPIQ1cdz8DsNK8jSZzSof8iR8A5x2/+voUXS3Zyy3ljOXFknteRJI5pD12kh7bv2sdtT6/lzc01XDB5IFefMsLrSBLnVOgih6m9I8gDb2/j3iWbSEpI4EezJnD58UN1BkXxnApd5DCUlNdyy5NrKCmv46xxBdwxe4LmzCVqqNBFumFfazu/fGUz89/aRr+MZH572TGcN3GA9solqqjQRbrwxqZqbnt6LaW7m5gzvYhbzhtHdlrA61gin6JCFzmEXQ0t/Pj5DTy1spwReRk8Nm8Gx4/I9TqWyCGp0EUO4JzjqZXl3PHceuqb2/nWGaO47vRRpAZ0sJBENxW6yH427qznx8+v583NNUwdksOdX57MmAGZXscS6RYVugid52H55SubeH5tBRnJSfzwixO4fMZQncdcYooKXeLatppGfvXqZp5ZVU5qIJFvnDaSq08ZQU66zmEusUeFLnFpc2U997/xPk+uLCeQaFx9ygjmfW4EuX1SvI4m0mMqdIkbdc1tPLe6gkXFpawq3UtyUgJzTxjGtaeNoH9mqtfxRI6YCl18LRh0/GvbLh4vLuPFkgqa24IcVdCH//r8OGZPHUye9sjFR1To4kvle5t4YnkZjy8vpXR3E5mpSVx4TCFfmVbE5MJsHeEpvqRCF99obutg8fpKHi8u5a0tNTgHJ43K5aazxzBz4gCtIxffU6FLzAkGHVX1LZTu2UfZnn2U7m7ig5pGXtlQSV1zO4Nz0rj+jNFcdGwhRf3SvY4r0mtU6BJ12juC7NnX1lnWe5o+Lu2yPfso29NE+Z4mWjuCn3hN/8wUThvTn0uOK+KEEbkkaP24xCEVuvSq9o4gW6obWL+jjnU76vhwVyN1Te3UNbdR29RGXVMbja0dn3pdbkYyhX3TGD8wi3MmFFDUN53CvmkU9UtncE6aplNEUKFLhDS0tFO6ex+luzv3qjdX1bNuRx3v7ayntb1z7zo1kMCw3Axy0gMMzU0nKzVAVlqA7LQAOekBBuekURgq7owU/VUV6Yp+S6RbOoKOXQ0tVNa1UFXf/PHedG1o77rzfhsVtc2U7tnH3n1tn3h9dlqACYOymHvCUCYMymbCoCyG52WQlKjL2oqEiwo9jjnnaGhpp6q+hZr6FmoaWqlpaGFXQwvVDa1U13eWd2VdM9X1LQTdwX9OenIi2WkBslIDFGSnMqkwm6K+6RT169zDLuqbRr+MZC0VFIkwFbqP1Te3ffxhYumeJnbWNlFZ10JlXTNV9Z23+w4yX20G/dKTyeuTQkF2KmMKMinISqUgK4X+Wan0z0yhb3oyWWkBMlOTCGgvWyQqqNBjWDDo2FnXzIe79vHhrkY+CN2WhlaF1DZ9ctojJSmBAdmpFGSmMmFQFmeM7d9Z0pmp5PVJIbdPZ4n3y0jWWQZFYpAKPUo55yjb08SWqgaqG1qoaWihpr5zSqSmoYWq+ha279738QeMAIFEC011pHN0YQ5F/dI/sRqkb3pA0x4iPqZCjwLOOSrrWlhTtpe15bWsKatlbXktuxtbP/G8jORE8jJTyOuTwsj8DE4fk8/Q3AyG5WYwNDedQTlp2rMWiWMq9Aj76IPHyroWquqa2VHbTMXeJnbUNrFjbzMVoduGlnYAEhOMowoyOXtcAZMKsxk3MPPjKZG0ZK21FpFDU6EfgZ21nStAdjV2TodUN7SwK7RSpKsPHnMzkhmYk8qw3AxOHJnHsNx0JhXmMH5glopbRHpEhX6YqutbeGZVOU+sKGdDRd2nvv/RtMiBHzwWZKWSn5nCoOw0BmSn6shGEQm7Iyp0M/sAqAc6gHbn3LRwhIo2zW0dvLKhkidXlPP6pmo6go7Jhdn81+fHMTQ3g7zQ6hBNi4iIl8Kxh366c64mDD/HU8Ggo6axhbI9TZTtafr4kPWyPftYXbqXuuZ2BmSlcvUpI7jwmMGMLtCV4EUkusTclItzjsbWDuqa2qhrbqO+uZ2m1g6a2jpoDn11Pg7S2NJOQ0s7jS3tNLa209DSQWNLO/ta//285vbO25b24KfeKzcjmcJ+6Zw7YQBfnDKIE0fmaRWJiEStIy10Byw2Mwf83jl3fxgyfcqvXt3MEyvKQiXeTsehjkE/QIJBRkoSfVKSyPjoKzmRvunJpCUnkhZIIDWQSFogkdRAIn3TA51rt/t1rt1OT465f+9EJI4daWOd5JzbYWb9gSVm9p5z7o39n2Bm84B5AEOGDOnRmxRkpTClKIes1M4z8WWlJX18Zr7M1CTSkxM/Lua05ERSkzpvU5ISdCCNiMQNc657e7td/iCz24EG59w9h3rOtGnTXHFxcVjeT0QkXpjZ8u4sOunxWZXMLMPMMj+6D5wDlPT054mIyJE5kimXAuCp0JRGEvCIc+6lsKQSEZHD1uNCd869DxwdxiwiInIEdCJrERGfUKGLiPiECl1ExCdU6CIiPqFCFxHxibAdWNStNzOrBj7s4cvzgJg/CVgPaNzxJ17HrnEf2lDnXH5XP6hXC/1ImFmxX0/P+1k07vgTr2PXuI+cplxERHxChS4i4hOxVOgROTVvDNC440+8jl3jPkIxM4cuIiKfLZb20EVE5DPERKGb2Uwz22hmW8zsFq/zRIqZPWBmVWZWst+2fma2xMw2h277epkxEsysyMxeM7MNZrbOzG4Ibff12M0s1cyWmdnq0Lh/GNru63F/xMwSzWylmT0Xeuz7cZvZB2a21sxWmVlxaFvYxh31hW5micD/B84DxgNzzGy8t6ki5s/AzAO23QK86pwbDbwaeuw37cBNzrlxwAzgutB/Y7+PvQU4wzl3NDAFmGlmM/D/uD9yA7Bhv8fxMu7TnXNT9luqGLZxR32hA9OBLc65951zrcCjwCyPM0VE6PJ9uw/YPAtYELq/AJjdq6F6gXOuwjm3InS/ns5f8sH4fOyuU0PoYSD05fD5uAHMrBD4PPDH/Tb7ftyHELZxx0KhDwZK93tcFtoWLwqccxXQWXxAf4/zRJSZDQOmAkuJg7GHph1WAVXAEudcXIwb+CXwXSC437Z4GLcDFpvZ8tD1liGM446Fy9of7CrPWprjQ2bWB3gCuNE5VxcPF/h2znUAU8wsh84rgE30OlOkmdkFQJVzbrmZneZ1nl52knNuh5n1B5aY2Xvh/OGxsIdeBhTt97gQ2OFRFi9UmtlAgNBtlcd5IsLMAnSW+cPOuSdDm+Ni7ADOub3AP+j8DMXv4z4J+KKZfUDnFOoZZvYQ/h83zrkdodsq4Ck6p5TDNu5YKPR3gdFmNtzMkoFLgWc9ztSbngXmhu7PBZ7xMEtEWOeu+Hxgg3Pu3v2+5euxm1l+aM8cM0sDzgLew+fjds7d6pwrdM4No/P3+e/Oucvx+bjNLMPMMj+6D5wDlBDGccfEgUVmdj6dc26JwAPOuZ94HCkizGwhcBqdZ1+rBH4APA0sAoYA24GLnXMHfnAa08zsZOBNYC3/nlP9Pp3z6L4du5lNpvNDsEQ6d64WOed+ZGa5+Hjc+wtNuXzHOXeB38dtZiPo3CuHzunuR5xzPwnnuGOi0EVEpGuxMOUiIiLdoEIXEfEJFbqIiE+o0EVEfEKFLiLiEyp0ERGfUKGLiPiECl1ExCf+F7bHNRfH/fnVAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(playfair['Wages'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On prend l'année comme index. Cela permettra que l'année figure comme abscice dans les graphiques" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Unnamed: 0WheatWages
Year
1565141.05.00
1570245.05.05
1575342.05.08
1580449.05.12
1585541.55.15
1590647.05.25
1595764.05.54
1600827.05.61
1605933.05.69
16101032.05.78
16151133.05.94
16201235.06.01
16251333.06.12
16301445.06.22
16351533.06.30
16401639.06.37
16451753.06.45
16501842.06.50
16551940.56.60
16602046.56.75
16652132.06.80
16702237.06.90
16752343.07.00
16802435.07.30
16852527.07.60
16902640.08.00
16952750.08.50
17002830.09.00
17052932.010.00
17103044.011.00
17153133.011.75
17203229.012.50
17253339.013.00
17303426.013.30
17353532.013.60
17403627.014.00
17453727.514.50
17503831.015.00
17553935.515.70
17604031.016.50
17654143.017.60
17704247.018.50
17754344.019.50
17804446.021.00
17854542.023.00
17904647.525.50
17954776.027.50
18004879.028.50
18054981.029.50
18105099.030.00
18155178.0NaN
18205254.0NaN
18215354.0NaN
\n", "
" ], "text/plain": [ " Unnamed: 0 Wheat Wages\n", "Year \n", "1565 1 41.0 5.00\n", "1570 2 45.0 5.05\n", "1575 3 42.0 5.08\n", "1580 4 49.0 5.12\n", "1585 5 41.5 5.15\n", "1590 6 47.0 5.25\n", "1595 7 64.0 5.54\n", "1600 8 27.0 5.61\n", "1605 9 33.0 5.69\n", "1610 10 32.0 5.78\n", "1615 11 33.0 5.94\n", "1620 12 35.0 6.01\n", "1625 13 33.0 6.12\n", "1630 14 45.0 6.22\n", "1635 15 33.0 6.30\n", "1640 16 39.0 6.37\n", "1645 17 53.0 6.45\n", "1650 18 42.0 6.50\n", "1655 19 40.5 6.60\n", "1660 20 46.5 6.75\n", "1665 21 32.0 6.80\n", "1670 22 37.0 6.90\n", "1675 23 43.0 7.00\n", "1680 24 35.0 7.30\n", "1685 25 27.0 7.60\n", "1690 26 40.0 8.00\n", "1695 27 50.0 8.50\n", "1700 28 30.0 9.00\n", "1705 29 32.0 10.00\n", "1710 30 44.0 11.00\n", "1715 31 33.0 11.75\n", "1720 32 29.0 12.50\n", "1725 33 39.0 13.00\n", "1730 34 26.0 13.30\n", "1735 35 32.0 13.60\n", "1740 36 27.0 14.00\n", "1745 37 27.5 14.50\n", "1750 38 31.0 15.00\n", "1755 39 35.5 15.70\n", "1760 40 31.0 16.50\n", "1765 41 43.0 17.60\n", "1770 42 47.0 18.50\n", "1775 43 44.0 19.50\n", "1780 44 46.0 21.00\n", "1785 45 42.0 23.00\n", "1790 46 47.5 25.50\n", "1795 47 76.0 27.50\n", "1800 48 79.0 28.50\n", "1805 49 81.0 29.50\n", "1810 50 99.0 30.00\n", "1815 51 78.0 NaN\n", "1820 52 54.0 NaN\n", "1821 53 54.0 NaN" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "playfair.set_index('Year')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On n'a plus besoin de la colonne qui numérote les observations" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "playfair=playfair.drop(columns='Unnamed: 0')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On vérifie le type des variables et le nombre de variables non nulles. Les 3 NaN du salaire correspondent aux trois dernières observations." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "RangeIndex: 53 entries, 0 to 52\n", "Data columns (total 3 columns):\n", "Year 53 non-null int64\n", "Wheat 53 non-null float64\n", "Wages 50 non-null float64\n", "dtypes: float64(2), int64(1)\n", "memory usage: 1.3 KB\n" ] } ], "source": [ "playfair.info()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Les années vont de 5 en 5 sauf la dernière qui a les mêmes valeurs que l'avant dernière. On élimine donc la dernière observation qui n'apporte rien. " ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "RangeIndex: 52 entries, 0 to 51\n", "Data columns (total 3 columns):\n", "Year 52 non-null int64\n", "Wheat 52 non-null float64\n", "Wages 50 non-null float64\n", "dtypes: float64(2), int64(1)\n", "memory usage: 1.3 KB\n" ] } ], "source": [ "playfair=playfair[:-1]\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## TODO vérifier que les années vont de 5 en 5" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD/CAYAAAD/qh1PAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGLBJREFUeJzt3X2YHVWd4PHvzwSMSAgkaSAhYFgWSYCYIJGXRAYEY9gxAo/CiqNufIHs7LJBgXEIIzsyj7qbWQYeZp5xZh4UNCqjvIwTGMYXMMCuQzNIYpAkNBreDB0CaSIvAQwGOPtHVTe3m9tv997u233y/TxPPbfqVJ2qc+rW/dW5VefWjZQSkqR8vaXZBZAkDS0DvSRlzkAvSZkz0EtS5gz0kpQ5A70kZc5AL0mZM9BLUuYM9JKUOQO9JGVubLMLADB58uQ0ffr0ZhdDkkaVNWvWPJNSaulvuRER6KdPn87q1aubXQxJGlUi4jcDWc5LN5KUOQO9JGWu30AfEddGxNaIWF+RNjEibo+IjeXrPhXzLomIhyPiVxGxcKgKLkkamIFco/8W8LfAtyvSlgGrUkrLI2JZOX1xRBwOnA0cAUwFfhoR70wpvTbYgu3cuZP29nZ27Ngx2KxZGjduHNOmTWO33XZrdlEkjTL9BvqU0v+LiOk9kk8HTirHVwB3AReX6d9PKb0CPBYRDwPHAPcMtmDt7e2MHz+e6dOnExGDzZ6VlBLbtm2jvb2dgw8+uNnFkTTK1HqNfr+U0haA8nXfMv0A4ImK5drLtEHbsWMHkyZN2uWDPEBEMGnSJL/dSKpJo2/GVovKVf+rMCKWRMTqiFjd0dFRfWUG+S7uC0m1qjXQPx0RUwDK161lejtwYMVy04Anq60gpXR1SmluSmluS0u//f2b4oILLuCqq67qml64cCHnnHNO1/RFF13ElVdeyaJFixqyvZUrV/Lggw82ZF2S1KnWH0zdAiwGlpevN1ek/2NEXElxM/ZQ4Of1FhJg+rJ/bcRqujy+/IP9LjNv3jxuvPFGPv/5z/P666/zzDPP8MILL3TNb21t5YwzzmhYmVauXMmiRYs4/PDDG7ZOSSPPFR/t3ji86Ppbh3R7A+le+T2Km6mHRUR7RHyWIsAviIiNwIJympTSBuAG4EHgx8B5tfS4GSnmz59Pa2srABs2bODII49k/PjxPPvss7zyyiu0tbVx1FFH8eKLL3LmmWcyY8YMPv7xj5NScbVqzZo1nHjiiRx99NEsXLiQLVu2APD1r3+d97znPcyePZuPfOQjvPzyy7S2tnLLLbfwhS98gTlz5vDII480rd6S8jKQXjcf62XWKb0s/1Xgq/UUaqSYOnUqY8eOZdOmTbS2tnL88cezefNm7rnnHiZMmMC73vUudt99d9auXcuGDRuYOnUq8+fP5+677+bYY49l6dKl3HzzzbS0tHD99dfzxS9+kWuvvZYPf/jDnHvuuQBceumlXHPNNSxdupTTTjuNRYsWceaZZza55pJyMiKedTOSdbbqW1tbufDCC9m8eTOtra1MmDCBefPmAXDMMccwbdo0AObMmcPjjz/O3nvvzfr161mwYAEAr732GlOmTAFg/fr1XHrppTz33HO8+OKLLFzo78okDR0DfT/mzZtHa2sr69at48gjj+TAAw/kiiuuYK+99uIzn/kMAG9961u7lh8zZgyvvvoqKSWOOOII7rnnzT8h+NSnPsXKlSuZPXs23/rWt7jrrruGqzqSdkE+66Yf8+fP59Zbb2XixImMGTOGiRMn8txzz3HPPfdw/PHH95rvsMMOo6OjoyvQ79y5kw0bNgCwfft2pkyZws6dO7nuuuu68owfP57t27cPbYUk7XIM9P2YNWsWzzzzDMcdd1y3tAkTJjB58uRe8+2+++7cdNNNXHzxxcyePZs5c+Z03dj98pe/zLHHHsuCBQuYMWNGV56zzz6byy+/nKOOOsqbsZIaJjp7iDTT3LlzU8/n0be1tTFz5swmlWhkcp9IeWhU98qIWJNSmtvfcrboJSlzBnpJypyBXpIyN6ID/Ui4fzBSuC8k1WrEBvpx48axbds2AxxvPI9+3LhxzS6KpFFoxP5gatq0abS3t9PbI4x3NZ3/MCVJgzViA/1uu+3mvylJUgOM2Es3kqTGMNBLUuYM9JKUOQO9JGXOQC9JmTPQS1LmDPSSlDkDvSRlzkAvSZkz0EtS5gz0kpQ5A70kZc5AL0mZM9BLUuYM9JKUOQO9JGXOQC9JmTPQS1LmDPSSlDkDvSRlzkAvSZmrK9BHxAURsSEi1kfE9yJiXERMjIjbI2Jj+bpPoworSRq8mgN9RBwAnA/MTSkdCYwBzgaWAatSSocCq8ppSVKTjG1A/rdFxE5gD+BJ4BLgpHL+CuAu4OI6tyNJo87X/viOrvHz/uHkppWj5hZ9Smkz8FfAJmAL8HxK6TZgv5TSlnKZLcC+jSioJKk29Vy62Qc4HTgYmAq8PSI+MYj8SyJidUSs7ujoqLUYkqR+1HMz9v3AYymljpTSTuAHwDzg6YiYAlC+bq2WOaV0dUppbkppbktLSx3FkCT1pZ5r9JuA4yJiD+B3wCnAauAlYDGwvHy9ud5CStJI1jZjZtf4zIfamliS6moO9CmleyPiJuAXwKvAWuBqYE/ghoj4LMXJ4KxGFFSSVJu6et2klL4EfKlH8isUrXtJ0iC1L/tZ1/i05Sc0ZJ3+MlaSMmegl6TMGeglKXP1/jJWknYJs1bM6hpft3hdE0syeLboJSlzBnpJypyBXpIyZ6CXpMwZ6CUpcwZ6ScqcgV6SMmegl6TMGeglKXMGeknKnIFekjJnoJekzBnoJSlzBnpJypyBXpIyZ6CXpMwZ6CUpcwZ6ScqcgV6SMmegl6TMGeglKXMGeknKnIFekjJnoJekzI1tdgFGi/ZlP+san7b8hCaWRJIGxxa9JGXOQC9JmTPQS1LmDPSSlLm6An1E7B0RN0XEQxHRFhHHR8TEiLg9IjaWr/s0qrCSpMGrt0X/18CPU0ozgNlAG7AMWJVSOhRYVU5Lkpqk5kAfEXsBfwBcA5BS+n1K6TngdGBFudgK4Ix6CylJql09Lfr/AHQA34yItRHxjYh4O7BfSmkLQPm6bwPKKUmqUT2BfizwbuDvU0pHAS8xiMs0EbEkIlZHxOqOjo46iiFJ6ks9gb4daE8p3VtO30QR+J+OiCkA5evWaplTSlenlOamlOa2tLTUUQxJUl9qDvQppaeAJyLisDLpFOBB4BZgcZm2GLi5rhJKkupS77NulgLXRcTuwKPApylOHjdExGeBTcBZdW5DklSHugJ9Sul+YG6VWafUs15JUuP4y1hJypyBXpIyZ6CXpMwZ6CUpcwZ6ScqcgV6SMmegl6TM+efgkjQKXHbZZX1O98UWvSRlzha9BuSKjy7qGr/o+lubWBJJg2WLXpIyZ6CXpMwZ6CUpcwZ6ScqcgV6SMmevG2kAvvbHd3SbPu8fTm5SSaTBs0UvSZkz0EtS5rK9dNM2Y2bX+MyH2ppYEklqLlv0kpQ5A70kZS7bSzeSVJPLJlSMP9+8cjSQgb6CD+6SRq5VdxzSNX7KyY80sSSjj4Few84PrDS8DPSSsjV92b92jT++/INNLElzeTNWkjI3Olr0lTdHIJsbJENt1opZXePrFq9rYkkkNZMteknK3Oho0UuZqfxj58H8ybPebP877+82/dT75jSpJCOXLXpJypwteo169qzIR89vN37baQxb9JKUubpb9BExBlgNbE4pLYqIicD1wHTgceA/p5SerXc7vbFnSXO1L/tZt+lpy09oUkmkgdvVvgU24tLN54A2YK9yehmwKqW0PCKWldMXN2A7DVP5b0H+U5Ck3NUV6CNiGvBB4KvAhWXy6cBJ5fgK4C4GGOh3tbOsJA2Helv0VwF/CoyvSNsvpbQFIKW0JSL2rXMbGqXsQiiNDDUH+ohYBGxNKa2JiJNqyL8EWAJw0EEH1VoMqaH8ZzLlqJ5eN/OB0yLiceD7wMkR8V3g6YiYAlC+bq2WOaV0dUppbkppbktLSx3FkCT1peYWfUrpEuASgLJF/ycppU9ExOXAYmB5+XpzA8qpYeKN6tHHe1vqz1D0o18OLIiIjcCCclqS1CQN+WVsSukuit41pJS2Aac0Yr2SpPr5y1hJypyBXpIy50PNNCp4w1GqnS16ScqcgV6SMuelG0lD5oqPLuoav+j6W5tYkl2bgX6U8Bp1DSr/VN4/lNcuzEs3kpQ5A70kZc5AL0mZ8xr9EFl1xyHdpk85+ZF+81Reh4cBXouv4Tq0j+IduSqPm4EcM9JA2KKXpMzZom+C/e+8v2v8qffNaWJJRp6c9k3lH6ePuD9Nt0fSLsUWvSRlzha9pLrU8mc1I/rbToZs0UtS5mzRS3XyZ/4a6WzRS1LmbNFLo0ROPZI0vGzRS1LmDPSSlDkDvSRlzmv0kgbEZySNXgb6Ol122WVVxzVyzVoxq9v0usXrmlSSkcd9kycv3UhS5mzRS5mq6bHXypIteknKnIFekjJnoJekzBnoJSlzBnpJypyBXpIyZ6CXpMzVHOgj4sCIuDMi2iJiQ0R8rkyfGBG3R8TG8nWfxhVXkjRY9bToXwUuSinNBI4DzouIw4FlwKqU0qHAqnJaktQkNQf6lNKWlNIvyvHtQBtwAHA6sKJcbAVwRr2FlCTVriHX6CNiOnAUcC+wX0ppCxQnA2DfRmxDklSbugN9ROwJ/BPw+ZTSC4PItyQiVkfE6o6OjnqLIUnqRV2BPiJ2owjy16WUflAmPx0RU8r5U4Ct1fKmlK5OKc1NKc1taWmppxiSpD7U0+smgGuAtpTSlRWzbgEWl+OLgZtrL54kqV71PKZ4PvBJYF1EdP49/Z8By4EbIuKzwCbgrPqKKEmqR82BPqX0b0D0MvuUWtcrSWosfxkrSZkz0EtS5gz0kpQ5A70kZc5AL0mZM9BLUuYM9JKUOQO9JGXOQC9JmTPQS1LmDPSSlDkDvSRlzkAvSZkz0EtS5gz0kpQ5A70kZc5AL0mZM9BLUuYM9JKUOQO9JGXOQC9JmTPQS1LmDPSSlDkDvSRlzkAvSZkz0EtS5gz0kpQ5A70kZc5AL0mZM9BLUuYM9JKUOQO9JGXOQC9JmRuyQB8Rp0bEryLi4YhYNlTbkST1bUgCfUSMAb4G/CfgcOBjEXH4UGxLktS3oWrRHwM8nFJ6NKX0e+D7wOlDtC1JUh+GKtAfADxRMd1epkmShlmklBq/0oizgIUppXPK6U8Cx6SUllYsswRYUk4eBvyqYhWTgWeqrHqw6SM5T7O3P1x5mr394crT7O3XkqfZ2x+uPM3efi15Brqud6SUWnpZ7g0ppYYPwPHATyqmLwEuGUT+1Y1IH8l5mr1962k9m71969nYdfU1DNWlm/uAQyPi4IjYHTgbuGWItiVJ6sPYoVhpSunViPgfwE+AMcC1KaUNQ7EtSVLfhiTQA6SUfgj8sMbsVzcofSTnafb2hytPs7c/XHmavf1a8jR7+8OVp9nbryVPLevq1ZDcjJUkjRw+AkGSMmegl6TMGeglKXNDdjN2oCJiBsXjEQ4AEvAkcEtKqa2fPAcA96aUXqxIPxX4LZBSSveVz9c5FXiovDlcuY5vp5T+S5V1v5fiEQ47gRUppRci4m3AMuDdwNuA81NKD1bJ29mV9MmU0k8j4o+AeUAb8FPgQ8CBwKvARuB7KaXnB7Kf1HgRsW9Kaesg80xKKW0bqjINJ+u/C9V/sB3vGzkAFwP3UwTRT5TDss60XvKcD2wBVgKPA6dXzHsS+HdgNfC/gTuAPwe2UQTbW8rhX4AXy/FnK/KfW277S8DLwJ+V6VcDVwHvBXYAvwN+Bvx3oKUi/3XA9eX6vwP8M/BJ4N6ybJcCrcDfAV8FHgROauL+37eGPJMaXIYJwHLgofJ96nyvlgN795JnL+CRch//UUX6/sB6igfqTQIuA9YBNwAzgYkVw6Ty+DkTmFhRlmuAB4B/BP4GmFzOmws8CjwMvAJ8AzikStnmAncC36U4qd8OPA+sKY+jDeV0R3ms/rdG1b+c903g76vsg5U99kFn/fcBzuzxfnTugw3AzCr1/w3w6/J4PqTO+n9qsMfArl7/im39aMCfs2YFmbKgvwZ2q5K+O7CxlzzrgCfK8ekUQf1z5fTvKPrt7wG8AOxVpq8FngVOAk4sX7eU4xsr1n0fZeAud/q6cvwXFcuspTgZfKA8IDqAHwOLgfXlMmOBp4ExFWV+oBzfA7irHD8I+OVg32TgNooTWQ6Bbh3FCX//HvW4uJz/7irDKooT9RkUJ+t/At5avg9PUDQWHijXcRCwlOLb4mM9hp1lXR4tt/sN4CvAO4ALgOcrynQn8J5y/AngKWAT8PNy2anlvJ9TPLX1Y+VyZ5bpd5f7bhpwIfA/gUOBzRQNkrrrX+Z9vqxvz33wOvBSlfo/BrxSse3KffAksLJK/d9Z7re/6rkPaqj/Corjqtox8Ne97INdpf59HQNHA1tGS6B/iOJZDT3T30HRcn6gyrCjxxuzJ8UH/Erg5cqAXDH+FooP1O3AnDKt88P9S4qz+iQqfloM3Aj8phz/JjC3HN8A3Fex3G7AacD3KC7J7F6ubztvBND1FJePKOetqci/vZc3ubeD/GiKE9py8gh0zwP/q5fjI1EEwTt7DNuB31Us98Vy/Q9QnpSBTT3WtbncP7Mq0h6j+0n8/h55dgBjy/F/r0j/BW80Ak6g+Ib2VFm2TRXLVY7/ku7H5H3l6686j40G1H8S3T8Dldv/E4rGT7f6d9an2j6g+Hze37P+5XTl9iv3wXZgySDq/xYqPs89tvEaRXDeJevfzzFwZ2UZ+huaHehPpfjw/4iitXc1xYfxYYoW+ByKoFM5tAJbe6xnLPDtcqfs0bkDK+ZPoPhwTqMI4H/b+SZQtGofpfjQP0oZcCnOzr+l+Ip4L0VQfLR8I2f3Up8/LZf5DcUlplXA1ylaBk+V9XsI+HS5fEvlgTnAg/xO4PUey47mQHcbsBXYr2LefhQnqReBQ6vsmzbKb3UVaYvL8naenL/SY/66ivf/SmB8+V61U5x4Liqno8c+uw04meLb0VXAH1B8G/xOj/WPoTiet1J82zurPA7OKOdXnuw/RPksqAbXfwPw+4q0nvugrWf9y/Sq+4CigbC9Sv3/AthWpVxjym38ZKD1L6dfovjs9NwHTwF378L17/UYKJd5olp61WUHuuBQDRRntOOAj1BcRjiu3GHXAO+tsvw04Ae9rOukXtIn0z3AfZBeWpEVy+wBHFweELMpWtL7Ae/sJ99U3mjd7l3W6RjgiHJ8Ro/lbxvMQV7O30nFiaziQB+NgW4fistVD1Gc3H9bflj+kuL65WFV6v9/gD+vkn4dxf8g9Ez/j8BNFdMfovi29BTF/ZjKofPS3f4UjYeTKO67rC334Q8pLvG96ZJjmW82xQf9R8AMim9mz1E0Xh4sx/+ts15l2X7aoPqfWu7LPfvaB5X1L6f72gc/qVL/JcD1g6j/s1Xq/85y+RaKgPaXFfvg2XIfrKR46m2j639anfX/r33Uf04/9X++x/tfrf79HgNl3jP6ikXdlh3ogg5DM1AEus43+bcVb/JKykslVfL8AHh/lfThDHRjeynbQANd5Qf9K8D7e35Ayw/uDOCUKvPO6SX93F7Su62LovfUkf2sq5btn0pxP6S3slWr5/m8cVnsCIqT7h+W08dUzDuc4qT8h72lDyLPLIqbiYPJM9CyHVstT4/0bmWuchx9p5f0bw8mvbd55ft/42Dy1LKdGutyQrnPPlBl3nvL/fameX0NPgJhBIuIT6eUvjnQ9MHkKbuMHpJSWj+U2+lvXkScT/EY63spWkOfSyndXM57gqL3U1vlvIhYClxOcSmq3/Ra1lVnnpcoTtyVec6naIn2LPOXKL7RtVHcQzoG+L8UJ4TfU5yUxpbzjgXuAj5D8U14a4/0weSpZTv15OmrzC0U3Y0rnUxx2QKK+z4AAbyvj/Q7yu11pveVp3Mb1fL0tv2+8vS3nb7WdUJKaR+AiDgHOI+iofcB4KCU0oHlvHPLef9czvuXlNJyBmIwZwWH4R3ocZ29v/TRmIf+e1Ht2XNemeeXA02vZV3DladMX8ube4q9jd57ka2nuB8zmvL0t67v8uZecRspLh0ONP3Ecl61df16mPLUVOaKz0Nlz7+30/2mb8956wYcS5odzHb1geo9ix4oD/7Xq6Sv6yV9tObpqxfVjh77qnPeNrr3jugvvZZ1DVeerbzRs2Ntj7y99SJbO9ry9LOu+yl6bnXrFUfxDWDA6eXriMzTz7qq9vwr5/2uj3nd9mOfcabZgW5XHyj621frXdRBEQR6pk+n6JGTS57+elHNqTJvC/DaINJrWddw5enoTOfNPcVeonovstWdH/JRlKevdXX2FHtTr7ha0kdynmrp9N7zb0+KS2S9zevWS67PONPsQLerD/Teu+ga4PZe8jySSx767kV1BhW/L+iR50MDTa9lXcOVh+L3D/OrpE8G3t3LNqZS0YtslOTpa12zeqRV7RU32PSRnKevdVUsswdw8GDnVRu8GStJmfPplZKUOQO9JGXOQC9JmTPQS1LmDPSSlLn/Dw7Enm5GOro4AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "playfair.plot.bar(y='Wheat')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }