{ "cells": [ { "cell_type": "markdown", "metadata": { "hideCode": false, "hidePrompt": false }, "source": [ "# Analyse de la varicelle" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "hideCode": false, "hidePrompt": false }, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import isoweek" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "hideCode": false, "hidePrompt": false }, "outputs": [], "source": [ "data_url = 'http://www.sentiweb.fr/datasets/incidence-PAY-7.csv'" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "hideCode": false, "hidePrompt": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
02020187912471777102FRFrance
120201772720658001FRFrance
22020167758781438102FRFrance
3202015719186753161315FRFrance
42020147387922275531639FRFrance
5202013773265236941611814FRFrance
62020127812357901045612816FRFrance
7202011710198756812828151119FRFrance
820201079011669111331141018FRFrance
92020097136311054416718211626FRFrance
10202008710424770813140161220FRFrance
1120200778959657411344141018FRFrance
1220200679264692511603141018FRFrance
1320200578505631410696131016FRFrance
142020047799158311015112915FRFrance
1520200375968410078369612FRFrance
16202002765344530853810713FRFrance
1720200179835701912651151119FRFrance
182019527794152461063612816FRFrance
1920195175823367579719612FRFrance
20201950764244276857210713FRFrance
21201949766214540870210713FRFrance
2220194875542338377018511FRFrance
232019477753650581001411715FRFrance
242019467263813163960426FRFrance
2520194574492261563697410FRFrance
2620194475728362778299612FRFrance
2720194374834275169177410FRFrance
28201942762793989856910713FRFrance
292019417413020306230639FRFrance
.................................
15051991267176081130423912312042FRFrance
15061991257161691070021638281838FRFrance
15071991247161711007122271281739FRFrance
1508199123711947767116223211329FRFrance
1509199122715452995320951271737FRFrance
1510199121714903897520831261636FRFrance
15111991207190531274225364342345FRFrance
15121991197167391124622232291939FRFrance
15131991187213851388228888382551FRFrance
1514199117713462887718047241632FRFrance
15151991167148571006819646261834FRFrance
1516199115713975978118169251832FRFrance
1517199114712265768416846221430FRFrance
151819911379567604113093171123FRFrance
1519199112710864733114397191325FRFrance
15201991117155741118419964271935FRFrance
15211991107166431137221914292038FRFrance
1522199109713741878018702241533FRFrance
1523199108713289881317765231531FRFrance
1524199107712337807716597221529FRFrance
1525199106710877701314741191226FRFrance
1526199105710442654414340181125FRFrance
15271991047791345631126314820FRFrance
15281991037153871048420290271836FRFrance
15291991027162771104621508292038FRFrance
15301991017155651027120859271836FRFrance
15311990527193751329525455342345FRFrance
15321990517190801380724353342543FRFrance
1533199050711079666015498201228FRFrance
15341990497114302610205FRFrance
\n", "

1535 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202018 7 912 47 1777 1 0 \n", "1 202017 7 272 0 658 0 0 \n", "2 202016 7 758 78 1438 1 0 \n", "3 202015 7 1918 675 3161 3 1 \n", "4 202014 7 3879 2227 5531 6 3 \n", "5 202013 7 7326 5236 9416 11 8 \n", "6 202012 7 8123 5790 10456 12 8 \n", "7 202011 7 10198 7568 12828 15 11 \n", "8 202010 7 9011 6691 11331 14 10 \n", "9 202009 7 13631 10544 16718 21 16 \n", "10 202008 7 10424 7708 13140 16 12 \n", "11 202007 7 8959 6574 11344 14 10 \n", "12 202006 7 9264 6925 11603 14 10 \n", "13 202005 7 8505 6314 10696 13 10 \n", "14 202004 7 7991 5831 10151 12 9 \n", "15 202003 7 5968 4100 7836 9 6 \n", "16 202002 7 6534 4530 8538 10 7 \n", "17 202001 7 9835 7019 12651 15 11 \n", "18 201952 7 7941 5246 10636 12 8 \n", "19 201951 7 5823 3675 7971 9 6 \n", "20 201950 7 6424 4276 8572 10 7 \n", "21 201949 7 6621 4540 8702 10 7 \n", "22 201948 7 5542 3383 7701 8 5 \n", "23 201947 7 7536 5058 10014 11 7 \n", "24 201946 7 2638 1316 3960 4 2 \n", "25 201945 7 4492 2615 6369 7 4 \n", "26 201944 7 5728 3627 7829 9 6 \n", "27 201943 7 4834 2751 6917 7 4 \n", "28 201942 7 6279 3989 8569 10 7 \n", "29 201941 7 4130 2030 6230 6 3 \n", "... ... ... ... ... ... ... ... \n", "1505 199126 7 17608 11304 23912 31 20 \n", "1506 199125 7 16169 10700 21638 28 18 \n", "1507 199124 7 16171 10071 22271 28 17 \n", "1508 199123 7 11947 7671 16223 21 13 \n", "1509 199122 7 15452 9953 20951 27 17 \n", "1510 199121 7 14903 8975 20831 26 16 \n", "1511 199120 7 19053 12742 25364 34 23 \n", "1512 199119 7 16739 11246 22232 29 19 \n", "1513 199118 7 21385 13882 28888 38 25 \n", "1514 199117 7 13462 8877 18047 24 16 \n", "1515 199116 7 14857 10068 19646 26 18 \n", "1516 199115 7 13975 9781 18169 25 18 \n", "1517 199114 7 12265 7684 16846 22 14 \n", "1518 199113 7 9567 6041 13093 17 11 \n", "1519 199112 7 10864 7331 14397 19 13 \n", "1520 199111 7 15574 11184 19964 27 19 \n", "1521 199110 7 16643 11372 21914 29 20 \n", "1522 199109 7 13741 8780 18702 24 15 \n", "1523 199108 7 13289 8813 17765 23 15 \n", "1524 199107 7 12337 8077 16597 22 15 \n", "1525 199106 7 10877 7013 14741 19 12 \n", "1526 199105 7 10442 6544 14340 18 11 \n", "1527 199104 7 7913 4563 11263 14 8 \n", "1528 199103 7 15387 10484 20290 27 18 \n", "1529 199102 7 16277 11046 21508 29 20 \n", "1530 199101 7 15565 10271 20859 27 18 \n", "1531 199052 7 19375 13295 25455 34 23 \n", "1532 199051 7 19080 13807 24353 34 25 \n", "1533 199050 7 11079 6660 15498 20 12 \n", "1534 199049 7 1143 0 2610 2 0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 2 FR France \n", "1 1 FR France \n", "2 2 FR France \n", "3 5 FR France \n", "4 9 FR France \n", "5 14 FR France \n", "6 16 FR France \n", "7 19 FR France \n", "8 18 FR France \n", "9 26 FR France \n", "10 20 FR France \n", "11 18 FR France \n", "12 18 FR France \n", "13 16 FR France \n", "14 15 FR France \n", "15 12 FR France \n", "16 13 FR France \n", "17 19 FR France \n", "18 16 FR France \n", "19 12 FR France \n", "20 13 FR France \n", "21 13 FR France \n", "22 11 FR France \n", "23 15 FR France \n", "24 6 FR France \n", "25 10 FR France \n", "26 12 FR France \n", "27 10 FR France \n", "28 13 FR France \n", "29 9 FR France \n", "... ... ... ... \n", "1505 42 FR France \n", "1506 38 FR France \n", "1507 39 FR France \n", "1508 29 FR France \n", "1509 37 FR France \n", "1510 36 FR France \n", "1511 45 FR France \n", "1512 39 FR France \n", "1513 51 FR France \n", "1514 32 FR France \n", "1515 34 FR France \n", "1516 32 FR France \n", "1517 30 FR France \n", "1518 23 FR France \n", "1519 25 FR France \n", "1520 35 FR France \n", "1521 38 FR France \n", "1522 33 FR France \n", "1523 31 FR France \n", "1524 29 FR France \n", "1525 26 FR France \n", "1526 25 FR France \n", "1527 20 FR France \n", "1528 36 FR France \n", "1529 38 FR France \n", "1530 36 FR France \n", "1531 45 FR France \n", "1532 43 FR France \n", "1533 28 FR France \n", "1534 5 FR France \n", "\n", "[1535 rows x 10 columns]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data = pd.read_csv(data_url, skiprows=1)\n", "raw_data" ] }, { "cell_type": "markdown", "metadata": { "hideCode": false, "hidePrompt": false }, "source": [ "Analyse des points manquants" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "hideCode": false, "hidePrompt": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
\n", "
" ], "text/plain": [ "Empty DataFrame\n", "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n", "Index: []" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Comme toutes les données sont correctes, on les prend toutes. On garde le terme data." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "hideCode": false, "hidePrompt": false }, "outputs": [], "source": [ "data = raw_data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On fait la conversion des semaines comme pour l'analyse du syndrome grippal" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "hideCode": false, "hidePrompt": false }, "outputs": [], "source": [ "def convert_week(year_and_week_int):\n", " year_and_week_str = str(year_and_week_int)\n", " year = int(year_and_week_str[:4])\n", " week = int(year_and_week_str[4:])\n", " w = isoweek.Week(year, week)\n", " return pd.Period(w.day(0), 'W')\n", "\n", "data['period'] = [convert_week(yw) for yw in data['week']]" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "hideCode": false, "hidePrompt": false }, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
period
1990-12-03/1990-12-091990497114302610205FRFrance
1990-12-10/1990-12-16199050711079666015498201228FRFrance
1990-12-17/1990-12-231990517190801380724353342543FRFrance
1990-12-24/1990-12-301990527193751329525455342345FRFrance
1990-12-31/1991-01-061991017155651027120859271836FRFrance
1991-01-07/1991-01-131991027162771104621508292038FRFrance
1991-01-14/1991-01-201991037153871048420290271836FRFrance
1991-01-21/1991-01-271991047791345631126314820FRFrance
1991-01-28/1991-02-03199105710442654414340181125FRFrance
1991-02-04/1991-02-10199106710877701314741191226FRFrance
1991-02-11/1991-02-17199107712337807716597221529FRFrance
1991-02-18/1991-02-24199108713289881317765231531FRFrance
1991-02-25/1991-03-03199109713741878018702241533FRFrance
1991-03-04/1991-03-101991107166431137221914292038FRFrance
1991-03-11/1991-03-171991117155741118419964271935FRFrance
1991-03-18/1991-03-24199112710864733114397191325FRFrance
1991-03-25/1991-03-3119911379567604113093171123FRFrance
1991-04-01/1991-04-07199114712265768416846221430FRFrance
1991-04-08/1991-04-14199115713975978118169251832FRFrance
1991-04-15/1991-04-211991167148571006819646261834FRFrance
1991-04-22/1991-04-28199117713462887718047241632FRFrance
1991-04-29/1991-05-051991187213851388228888382551FRFrance
1991-05-06/1991-05-121991197167391124622232291939FRFrance
1991-05-13/1991-05-191991207190531274225364342345FRFrance
1991-05-20/1991-05-26199121714903897520831261636FRFrance
1991-05-27/1991-06-02199122715452995320951271737FRFrance
1991-06-03/1991-06-09199123711947767116223211329FRFrance
1991-06-10/1991-06-161991247161711007122271281739FRFrance
1991-06-17/1991-06-231991257161691070021638281838FRFrance
1991-06-24/1991-06-301991267176081130423912312042FRFrance
.................................
2019-10-07/2019-10-132019417413020306230639FRFrance
2019-10-14/2019-10-20201942762793989856910713FRFrance
2019-10-21/2019-10-2720194374834275169177410FRFrance
2019-10-28/2019-11-0320194475728362778299612FRFrance
2019-11-04/2019-11-1020194574492261563697410FRFrance
2019-11-11/2019-11-172019467263813163960426FRFrance
2019-11-18/2019-11-242019477753650581001411715FRFrance
2019-11-25/2019-12-0120194875542338377018511FRFrance
2019-12-02/2019-12-08201949766214540870210713FRFrance
2019-12-09/2019-12-15201950764244276857210713FRFrance
2019-12-16/2019-12-2220195175823367579719612FRFrance
2019-12-23/2019-12-292019527794152461063612816FRFrance
2019-12-30/2020-01-0520200179835701912651151119FRFrance
2020-01-06/2020-01-12202002765344530853810713FRFrance
2020-01-13/2020-01-1920200375968410078369612FRFrance
2020-01-20/2020-01-262020047799158311015112915FRFrance
2020-01-27/2020-02-0220200578505631410696131016FRFrance
2020-02-03/2020-02-0920200679264692511603141018FRFrance
2020-02-10/2020-02-1620200778959657411344141018FRFrance
2020-02-17/2020-02-23202008710424770813140161220FRFrance
2020-02-24/2020-03-012020097136311054416718211626FRFrance
2020-03-02/2020-03-0820201079011669111331141018FRFrance
2020-03-09/2020-03-15202011710198756812828151119FRFrance
2020-03-16/2020-03-222020127812357901045612816FRFrance
2020-03-23/2020-03-29202013773265236941611814FRFrance
2020-03-30/2020-04-052020147387922275531639FRFrance
2020-04-06/2020-04-12202015719186753161315FRFrance
2020-04-13/2020-04-192020167758781438102FRFrance
2020-04-20/2020-04-2620201772720658001FRFrance
2020-04-27/2020-05-032020187912471777102FRFrance
\n", "

1535 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 \\\n", "period \n", "1990-12-03/1990-12-09 199049 7 1143 0 2610 2 \n", "1990-12-10/1990-12-16 199050 7 11079 6660 15498 20 \n", "1990-12-17/1990-12-23 199051 7 19080 13807 24353 34 \n", "1990-12-24/1990-12-30 199052 7 19375 13295 25455 34 \n", "1990-12-31/1991-01-06 199101 7 15565 10271 20859 27 \n", "1991-01-07/1991-01-13 199102 7 16277 11046 21508 29 \n", "1991-01-14/1991-01-20 199103 7 15387 10484 20290 27 \n", "1991-01-21/1991-01-27 199104 7 7913 4563 11263 14 \n", "1991-01-28/1991-02-03 199105 7 10442 6544 14340 18 \n", "1991-02-04/1991-02-10 199106 7 10877 7013 14741 19 \n", "1991-02-11/1991-02-17 199107 7 12337 8077 16597 22 \n", "1991-02-18/1991-02-24 199108 7 13289 8813 17765 23 \n", "1991-02-25/1991-03-03 199109 7 13741 8780 18702 24 \n", "1991-03-04/1991-03-10 199110 7 16643 11372 21914 29 \n", "1991-03-11/1991-03-17 199111 7 15574 11184 19964 27 \n", "1991-03-18/1991-03-24 199112 7 10864 7331 14397 19 \n", "1991-03-25/1991-03-31 199113 7 9567 6041 13093 17 \n", "1991-04-01/1991-04-07 199114 7 12265 7684 16846 22 \n", "1991-04-08/1991-04-14 199115 7 13975 9781 18169 25 \n", "1991-04-15/1991-04-21 199116 7 14857 10068 19646 26 \n", "1991-04-22/1991-04-28 199117 7 13462 8877 18047 24 \n", "1991-04-29/1991-05-05 199118 7 21385 13882 28888 38 \n", "1991-05-06/1991-05-12 199119 7 16739 11246 22232 29 \n", "1991-05-13/1991-05-19 199120 7 19053 12742 25364 34 \n", "1991-05-20/1991-05-26 199121 7 14903 8975 20831 26 \n", "1991-05-27/1991-06-02 199122 7 15452 9953 20951 27 \n", "1991-06-03/1991-06-09 199123 7 11947 7671 16223 21 \n", "1991-06-10/1991-06-16 199124 7 16171 10071 22271 28 \n", "1991-06-17/1991-06-23 199125 7 16169 10700 21638 28 \n", "1991-06-24/1991-06-30 199126 7 17608 11304 23912 31 \n", "... ... ... ... ... ... ... \n", "2019-10-07/2019-10-13 201941 7 4130 2030 6230 6 \n", "2019-10-14/2019-10-20 201942 7 6279 3989 8569 10 \n", "2019-10-21/2019-10-27 201943 7 4834 2751 6917 7 \n", "2019-10-28/2019-11-03 201944 7 5728 3627 7829 9 \n", "2019-11-04/2019-11-10 201945 7 4492 2615 6369 7 \n", "2019-11-11/2019-11-17 201946 7 2638 1316 3960 4 \n", "2019-11-18/2019-11-24 201947 7 7536 5058 10014 11 \n", "2019-11-25/2019-12-01 201948 7 5542 3383 7701 8 \n", "2019-12-02/2019-12-08 201949 7 6621 4540 8702 10 \n", "2019-12-09/2019-12-15 201950 7 6424 4276 8572 10 \n", "2019-12-16/2019-12-22 201951 7 5823 3675 7971 9 \n", "2019-12-23/2019-12-29 201952 7 7941 5246 10636 12 \n", "2019-12-30/2020-01-05 202001 7 9835 7019 12651 15 \n", "2020-01-06/2020-01-12 202002 7 6534 4530 8538 10 \n", "2020-01-13/2020-01-19 202003 7 5968 4100 7836 9 \n", "2020-01-20/2020-01-26 202004 7 7991 5831 10151 12 \n", "2020-01-27/2020-02-02 202005 7 8505 6314 10696 13 \n", "2020-02-03/2020-02-09 202006 7 9264 6925 11603 14 \n", "2020-02-10/2020-02-16 202007 7 8959 6574 11344 14 \n", "2020-02-17/2020-02-23 202008 7 10424 7708 13140 16 \n", "2020-02-24/2020-03-01 202009 7 13631 10544 16718 21 \n", "2020-03-02/2020-03-08 202010 7 9011 6691 11331 14 \n", "2020-03-09/2020-03-15 202011 7 10198 7568 12828 15 \n", "2020-03-16/2020-03-22 202012 7 8123 5790 10456 12 \n", "2020-03-23/2020-03-29 202013 7 7326 5236 9416 11 \n", "2020-03-30/2020-04-05 202014 7 3879 2227 5531 6 \n", "2020-04-06/2020-04-12 202015 7 1918 675 3161 3 \n", "2020-04-13/2020-04-19 202016 7 758 78 1438 1 \n", "2020-04-20/2020-04-26 202017 7 272 0 658 0 \n", "2020-04-27/2020-05-03 202018 7 912 47 1777 1 \n", "\n", " inc100_low inc100_up geo_insee geo_name \n", "period \n", "1990-12-03/1990-12-09 0 5 FR France \n", "1990-12-10/1990-12-16 12 28 FR France \n", "1990-12-17/1990-12-23 25 43 FR France \n", "1990-12-24/1990-12-30 23 45 FR France \n", "1990-12-31/1991-01-06 18 36 FR France \n", "1991-01-07/1991-01-13 20 38 FR France \n", "1991-01-14/1991-01-20 18 36 FR France \n", "1991-01-21/1991-01-27 8 20 FR France \n", "1991-01-28/1991-02-03 11 25 FR France \n", "1991-02-04/1991-02-10 12 26 FR France \n", "1991-02-11/1991-02-17 15 29 FR France \n", "1991-02-18/1991-02-24 15 31 FR France \n", "1991-02-25/1991-03-03 15 33 FR France \n", "1991-03-04/1991-03-10 20 38 FR France \n", "1991-03-11/1991-03-17 19 35 FR France \n", "1991-03-18/1991-03-24 13 25 FR France \n", "1991-03-25/1991-03-31 11 23 FR France \n", "1991-04-01/1991-04-07 14 30 FR France \n", "1991-04-08/1991-04-14 18 32 FR France \n", "1991-04-15/1991-04-21 18 34 FR France \n", "1991-04-22/1991-04-28 16 32 FR France \n", "1991-04-29/1991-05-05 25 51 FR France \n", "1991-05-06/1991-05-12 19 39 FR France \n", "1991-05-13/1991-05-19 23 45 FR France \n", "1991-05-20/1991-05-26 16 36 FR France \n", "1991-05-27/1991-06-02 17 37 FR France \n", "1991-06-03/1991-06-09 13 29 FR France \n", "1991-06-10/1991-06-16 17 39 FR France \n", "1991-06-17/1991-06-23 18 38 FR France \n", "1991-06-24/1991-06-30 20 42 FR France \n", "... ... ... ... ... \n", "2019-10-07/2019-10-13 3 9 FR France \n", "2019-10-14/2019-10-20 7 13 FR France \n", "2019-10-21/2019-10-27 4 10 FR France \n", "2019-10-28/2019-11-03 6 12 FR France \n", "2019-11-04/2019-11-10 4 10 FR France \n", "2019-11-11/2019-11-17 2 6 FR France \n", "2019-11-18/2019-11-24 7 15 FR France \n", "2019-11-25/2019-12-01 5 11 FR France \n", "2019-12-02/2019-12-08 7 13 FR France \n", "2019-12-09/2019-12-15 7 13 FR France \n", "2019-12-16/2019-12-22 6 12 FR France \n", "2019-12-23/2019-12-29 8 16 FR France \n", "2019-12-30/2020-01-05 11 19 FR France \n", "2020-01-06/2020-01-12 7 13 FR France \n", "2020-01-13/2020-01-19 6 12 FR France \n", "2020-01-20/2020-01-26 9 15 FR France \n", "2020-01-27/2020-02-02 10 16 FR France \n", "2020-02-03/2020-02-09 10 18 FR France \n", "2020-02-10/2020-02-16 10 18 FR France \n", "2020-02-17/2020-02-23 12 20 FR France \n", "2020-02-24/2020-03-01 16 26 FR France \n", "2020-03-02/2020-03-08 10 18 FR France \n", "2020-03-09/2020-03-15 11 19 FR France \n", "2020-03-16/2020-03-22 8 16 FR France \n", "2020-03-23/2020-03-29 8 14 FR France \n", "2020-03-30/2020-04-05 3 9 FR France \n", "2020-04-06/2020-04-12 1 5 FR France \n", "2020-04-13/2020-04-19 0 2 FR France \n", "2020-04-20/2020-04-26 0 1 FR France \n", "2020-04-27/2020-05-03 0 2 FR France \n", "\n", "[1535 rows x 10 columns]" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sorted_data" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm4HUWZP/55z7n3Zt83s0GAhCUESSBGlEXZJIAO4IAGFxgHhxkGHbffKIiKfpEZYFQQR1AUh0UQEFEQZA8YlpAQtmwQEkhCNpJA9uXe3HtO/f7oru7q6reWPufcLac/z3Ofe06d6qrq7qp6691JCIEcOXLkyJFDRaGzB5AjR44cOboecuKQI0eOHDlSyIlDjhw5cuRIIScOOXLkyJEjhZw45MiRI0eOFHLikCNHjhw5UsiJQ44cOXLkSCEnDjly5MiRI4WcOOTIkSNHjhQaOnsAlWLo0KFi3LhxnT2MHDly5OhWeOmll94TQgxz1eu2xGHcuHGYN29eZw8jR44cOboViGilT71crJQjR44cOVLIiUOOHDly5EghJw45cuTIkSOFnDjkyJEjR44UcuKQI0eOHDlSyIlDjhw5cuRIIScOOXLkyJEjhZw45KgbPDR/Hbbs2tPZw8iRo1sgJw456gJrt+zGxXe+jH+/4+XOHkqOHN0COXHIURdoaSsDANZs2d3JI8mRo3sgJw456gLU2QPIkaObIScOOXLkyJEjBSdxIKKeRDSXiF4jokVE9KOw/IdEtIaIXg3/TlOuuZSIlhHREiI6RSk/kogWhL9dT0QUlvcgorvD8jlENK72t5ojR44cOXzhwzm0ADhBCHE4gMkAphPRUeFv1wohJod/fwMAIpoIYAaAQwFMB3ADERXD+jcCuBDAhPBvelh+AYDNQojxAK4FcHX1t5YjR44cOSqFkziIADvCr43hn7BccgaAu4QQLUKI5QCWAZhGRCMB9BdCzBZCCAC3AThTuebW8PO9AE6UXEWOHDly5Oh4eOkciKhIRK8C2ADgcSHEnPCnrxDRfCL6HRENCstGA1ilXL46LBsdftbLE9cIIdoAbAUwhBnHhUQ0j4jmbdy40esGc+TIkSNHdngRByFESQgxGcAYBFzAJAQiogMQiJrWAfhpWJ078QtLue0afRw3CSGmCiGmDhvmTGSUI0cKwsbzGrBmy268uGJT7QeTI0cXRiZrJSHEFgBPA5guhFgfEo0ygN8AmBZWWw1grHLZGABrw/IxTHniGiJqADAAQL4ac9QM1Qgpj7vmKZzzq9m1G0yOHN0APtZKw4hoYPi5F4CTALwR6hAkzgKwMPz8AIAZoQXSfggUz3OFEOsAbCeio0J9wnkA7leuOT/8fDaAmaFeIkeOTkepnE/FHPUHnxzSIwHcGlocFQDcI4R4kIhuJ6LJCMQ/KwD8KwAIIRYR0T0AFgNoA3CxEKIUtnURgFsA9ALwcPgHADcDuJ2IliHgGGbU4N5y5MiRI0eFcBIHIcR8AFOY8i9arrkSwJVM+TwAk5jyZgDnuMaSI0eOHDk6BrmHdI66xFf/8ArumLOys4eRI0eXRU4cctQl/vraWlz254Xuijly1Cly4pCjriCs/ps5cuSQyIlDjhw5cuRIIScOOeoC3cUwWgiBy+9fiJdWbu7soeSoc+TEIUddoJvQBpQFcOvslTjnV8939lBy1Dly4pCjLpD7VObIkQ05cchRF+gupCEnYjm6CnLikKMuIPfcrr73dvHh5agj5MQhR50g33Zz5MiCnDjkqAt0dY5BoruMM8fej5w4dDO8/M5m7Ghp6+xhdDt0lz03d9LL0VWQE4duhB0tbfj0Dc/jot+/1NlD6XboLify7jLOHHs/cuLQjdDaVgYALFiztZNH0v2Qn8hz5MiGnDjkqAvkJ/IcObIhJw456gLdxpS1i49vb4UQAve8uAprt+zu7KF0GeTEIUddoLuIleQ4qZqk1zkyY8X7u/DtP83HN+95tbOH0mWQE4ccdYFanMg70ns595TuWLSVAn3eyvd3dfJIug6cxIGIehLRXCJ6jYgWEdGPwvLBRPQ4ES0N/w9SrrmUiJYR0RIiOkUpP5KIFoS/XU/h8YiIehDR3WH5HCIaV/tbzZGjOpQ7YL/uTJrwm1lvY9wlD6G5teSuvJdBPvacJsfw4RxaAJwghDgcwGQA04noKACXAHhSCDEBwJPhdxDRRAAzABwKYDqAG4ioGLZ1I4ALAUwI/6aH5RcA2CyEGA/gWgBX1+Deao6/LViHVZvyk0V3RHfhHDpzb/r1rLcBANt2t3biKDoHkU6qm4gfOwJO4iAC7Ai/NoZ/AsAZAG4Ny28FcGb4+QwAdwkhWoQQywEsAzCNiEYC6C+EmC2CVXabdo1s614AJ1IXFLr++x0v47Trn+m0/vNpWzlqseg74vlLAtSp07/Lrbz2h5wfOecQw0vnQERFInoVwAYAjwsh5gAYIYRYBwDh/+Fh9dEAVimXrw7LRoef9fLENUKINgBbAQyp5IbaG9ubO887OZdDV47acA7Vt+HfV2e86/qdXzHnkEPCizgIIUpCiMkAxiDgAiZZqnPnDmEpt12TbJjoQiKaR0TzNm7c6Br2Xod84laOWjy7jhA5dOY7lhsk1SPrECI/f8XIZK0khNgC4GkEuoL1oagI4f8NYbXVAMYql40BsDYsH8OUJ64hogYAAwBsYvq/SQgxVQgxddiwYVmGvlegXibu2i27Uaqx9rcWJ/GOeP7RBt0OYqUFq7diybvbnfW6nkC3/RG/2zpZZB7wsVYaRkQDw8+9AJwE4A0ADwA4P6x2PoD7w88PAJgRWiDth0DxPDcUPW0noqNCfcJ52jWyrbMBzBRdWIbyg/sXYvPOPR3ebz0oy97d2oyPXjUT1zz6hvc181dvwWd+PRstbWYrm27z5NpxoJ/632dxynWzOqPrLo9c55CGD+cwEsBTRDQfwIsIdA4PArgKwMlEtBTAyeF3CCEWAbgHwGIAjwC4WAghV+1FAH6LQEn9FoCHw/KbAQwhomUAvonQ8qmr4rbZK3HVw/6blwvLNmzHVh8LkTqYuO/taAEAzHrzPe9rvveXhZi7fBPeWGc+FderzmFPWxkvvP1+pj7rkHHIdQ4MGlwVhBDzAUxhyt8HcKLhmisBXMmUzwOQ0lcIIZoBnOMx3i6D1nK5Zm2d9LNZmDC8Lx7/5ses9eph4hZCmUbtGcegvTVVhEfoGJ1Dbfu46uE38LvnluPBrx7j0XeOHDFyD+lKUeOVtHTDDmedch2c7KqRd9teSXfhHGqtc1i6IeCm3s8gBq1HIhHH3qrHu+eREwdP6JOm3AmTqJ7mba3vtRbNdcQ7r3UPlIET6y7BCdsDkc6hk8fRlZATB0/oC6YzrdD35gksD8y1Fq/UhHOovokOh+Q/fO5fEhD57Bes3oorHlxcV6fpOrpVJ3Li4Al9znTGJKqHRSpt7LPcqo8ApvuYsta2k4InsV21aRf2hMHnZNV/vPF53PzscrS01U6/1lWRi5XScCqkc/DIxUrtg5hzqC1q0l5HEIcatycV/Db7iZ0tbTj2mqdSY5BzvFAHjg/1wJVnRc45eEI/URQLHb9gFobpQWvtINaVEItBuqJYqQN0DjXuQu7rtsOMHoVVVi1rYqa9GdF82/tv1Rs5cfCEPmcaix3/6C6642UAnRvfqb1RDedgIyg1CbzXIZxDbTuJFNIVjGEvPoOkkHMOaeTEwRP6xtBY3PtZ7c5B15UrdceNoxJOLGV80R1vPCPq4R6zIicOntBPdA2F/NG1B6oRb9t8A2oSeK9jWIeaIuLEMrRbn/ukDJ9Rn3fPId/hPKHPmYacc2hX1FysJPzqWdt3/P61u17BCT99OlG2bMP2SFdUiz6yolCJWKkON8hc5ZBGThwqRGfoHOoB7RU+Q+X8fvX3tytqw2Whdv+ra/H2xp2JspN+Nguf/MWz3n3EYbP9sGzDDvzfc8vZ3x5ZuA4PL3wXALAjg56qHsVKEvV0ry7kpqwVIucb2geRjLzG7aoWXlc/UmHQxI4MvOdZ78xfPocdLW04/yPjUNAs6O56Mc659e0/za/h6PY+xArpnDpI5MdfT3QFD+l6gv6875r7jlk846GoaCv5v7H3drTg1VVbAAQ+ANGYvFuoHFk3px0tZo6gUv+E9Fzf+2d7PYcOMSEnDp7QF0g9ymU7AqYT3CX3LcgkntHRliGK7pm/fA5n/vI5AMC3741P3B0ZeA8IREY/fGARyh42pVyNSrnbXa1tiT7rYarHoUNySOTEwRP1LIdtD+zeU8IVDy7Grj38ybfWz7ctg9H+6s27wzEILFobcysdmSaUAHz51hdxy/MrsHLTLvd1zAPzjeyqXzn9umdw7RNvel27t0CkPuTIiYMnUrGVOmUUew/+7/nluPnZ5bhpVlI5HJ3gKnjAtkuyiJUkWksCW5QkTB2a7AdJQuFTX0c1ZsG/mLnM2vbeBvXdPvn6ejy71D/Z1N6KXCFdIXLOoTrIzVoPBdJej7W1lD14XHNbCS2t8XUdonMQlYlzuLom2lAui5Ty2ndMeyvikN0CF9w6DwCw4qrTO3NInY6cc/CEvkDqQUnXnjDtN+21D2URK0k0t5ZQSmzWHRdbqVQWEUHz4QC4+Wi6rjOCRnYX5I8mhpM4ENFYInqKiF4nokVE9LWw/IdEtIaIXg3/TlOuuZSIlhHREiI6RSk/kogWhL9dT6FQlIh6ENHdYfkcIhpX+1utDimxUj6JagLTvpdlI/Y5A7dl4BxkaJSW1nKnKmbXbW0GEIcxt4Ebm8laqZTxRmp1282tJbzx7rYatVZjhDeZE84YPpxDG4BvCSEOAXAUgIuJaGL427VCiMnh398AIPxtBoBDAUwHcAMRFcP6NwK4EMCE8G96WH4BgM1CiPEArgVwdfW3Vlvkc6ajkD3om0/VLJyDdHBsaSslNovOmgOV6g5MxCHrfdTqvr9973xMv+4ZbM6QsrSjkAfeS8NJHIQQ64QQL4eftwN4HcBoyyVnALhLCNEihFgOYBmAaUQ0EkB/IcRsERwLbwNwpnLNreHnewGcSL6mFh2FlLVSPo2qgUks125ipQwK6aaGYFk0t5YTRKorh+xmrzOsoM4K+T5vxSYAwE6DhRoA/PSxJbj8/oUdNaQI+XJOI5POIRT3TAEwJyz6ChHNJ6LfEdGgsGw0gFXKZavDstHhZ708cY0Qog3AVgBDsoytvZHyc6hVu/U+K02n2wxP2Eus5OMrIATunPMO9oSZz0x5DtoTlRIg7joT56CLTpz3VaP7jvNZm+v8YuYy3Dp7ZW06zIBIIV3ny1GFN3Egor4A/gTg60KIbQhERAcAmAxgHYCfyqrM5cJSbrtGH8OFRDSPiOZt3LjRd+g1QXv5OXT3yXj/q2uw5N3tNWtPPo5aH259ZMlzl2/Cd/+8ALv2BEShuTWpp+gYa6XaXWcimj9+8PWkLsVxZ/VgfNHd12F7wIs4EFEjAsJwhxDiPgAQQqwXQpSEEGUAvwEwLay+GsBY5fIxANaG5WOY8sQ1RNQAYACATfo4hBA3CSGmCiGmDhs2zO8O2wn1sGB88LW7XsUp183KfF1HWyv5YJfGKdz38urE987i8nwIG1fDZK1697xVWLjWP1JsrZAlfPhts1dg665WZ71aIV/NafhYKxGAmwG8LoT4mVI+Uql2FgApKHwAwIzQAmk/BIrnuUKIdQC2E9FRYZvnAbhfueb88PPZAGaKLiZvaS9rpS51kxbMeft9nHvTC9iyq32VidWw97ZrKplO972yJtlG5hayg+vDZ+jc/dliKyWqO9qv1VyPw4e7G/zB/Yvwgwc6RvfwwwcW4Xt/WdAhfXUn+DjBHQ3giwAWENGrYdl3AZxLRJMRTK0VAP4VAIQQi4joHgCLEVg6XSyEkEeyiwDcAqAXgIfDPyAgPrcT0TIEHMOM6m4rO1pLZTyxeD2mT/oAG3Yg7edQX/jJY0vw4orNeHP9DkzbbzCA6k7SbnOD2j7hmuSQ7gidA9NJpZyDb3ClDlI5ZE48tHtPyV2pBrjl+RUd0k93g5M4CCGeBT/N/ma55koAVzLl8wBMYsqbAZzjGkt74jfPvI1rHlmCGz5/BE47bGTq93bjHLoWg+SEOt6Wtuxex3E79vJaPxaf5jy8CaofSAU9+OhfeJ2D+Y46wxYwazj2vj3dZ9dFa7di4sj+3nGkcvgj95AOIeWbK9/ng5ylF19tNoruQhrkRqOO10QcZr25Ee+GDlzudpOoJCOXlwdxN+Ec+H59qEO6yDdChqv5Wh1g5Abu62jWp8lOHJ5d+h5Ov/5Z/P6FjrduqgfkxCFE/16NAICtu3klWDpkd7sPqUtCve+WNp7tP+93cysOr91eiv5atNtZ1kqmfhNxmDKEz0i377JWqg0izsGzQRdxW7kpyLq3eF0X9bru5siJQ4im0CtWDbPw19fWYtwlD2EVEzK5M0xZJ47sDwDYd0jv2nSeBeFCVU990h+giUmZ+t6OFmtzTjl3rdOE1qC5jgmt4K9zcImbKk32016Ih+P3HF21ipITqVy6mcOCnDiEkAtQjVb5l9BaZcm729Me0p0gEDpwRF8AwKRRAzq8b/lU1I1KLsqse9CC1Vvx2KJ32Wtl87X2c6hFcx2d7EfCtPmVHHGfbHL4hOd3B1kr+TjBZYEkflljReXwQx6yO4RcLNx6EmgfhfSSd7cnvHBdoZRL0cbZsYvh9hdWYs7ywO2klMF5yoRP/W/lGd0qRg2eWcd4SHNlJs5BfRdp2Ih2qewfitznPb/yzmY0FAo4bIz74OJL+F3PW66VPFhe+yAnDiHkBFMtPOTiam4tYcO2pJikFtNRdx7bUyqjZ6FoqB2PsaPXwn//7fXos7CcOFdt2oUxg3plalu3qImtlWosVvIZi4MF6izHR9OjSAYFZHQOljbVWFO1eNZn3fA8AHsOhAIjmqwGsr2cNrQPcrGSBm5/+OofXkmddttjQu5xhJWO89x23mpIcg4xlry7Hcde8xR+rWV2qxSV3aH5qu5ircSKlQwdm96FhE3nkEkUUyuxErKd9G3zvK1UxqpNQTpXWyDBVZt24fifPI312/ys53LEyIlDCLnxepv/Vbli/u32l1Jlexx+A1IS0NEnJbU/02lVKu3nvP1+prZnLtmQ7Es+1wz36Hplm3fuwROvr880rs4CN6+MnEPZXscuVrLrK5Jjqg3keHQdyuadezI7vF33xNIoz7WN2Px+zkosf28n7nt5jbFODh45cQgh10rytGVZXVWumEdChawKJ3GIOIfOQzKEdQCieOFnTdX82qotie+V+Dm4MOWKx/GGR3BA9W1P2Wdg6veuxjnMWhoHn8x6WKkkM16toN/PlCsexz8weij9tr/75wUYd8lDAICX39lsbE9Fj4ZATGsyu7ahuzmo1ho5cQgR6Rw8TW+qmTZ6KGgJN3EI++5ozkG5W1Pym/hUWN3g5NXCwKF0FIpcCJVOIsumR/rVP7wSf8k4tFIGKm56/Dta2rCjxZybQYfNCW7phh3pfrXvd855J/rcT/Getpmy9ghzc1z3xFL8/Iml3mMNxpmp+l6HnDiEiKyVPOtXs2Ftb+YXlEsWG//esbPWJFZSxyEXfq0SySR6qZF1SxZwVmOdxTn4vO+sQ1P1W26xEl9h0uWPYtLlj3r3+XrorFYLhXS/no3RZ1t7PRtjAw8phvJFZyVF6irIiUMIEXEOnvWr6MvEObjmolwEnTlnTbJq+diqtTmPlO6dvC45zqEjTCa5jbjy2EpmqDL+juaIamHKqr4f23uR+cArQb2byObEIYScB75epfe/utZdyQDzpHNxDmGtTpy0bHgHoTo41UispDyLzrjbIsc5dEC/vBOcu+dtza2Z5OrNGerWerr5n8h963mGJs8I0zr95VPLsPy9nZU33E2QE4cQcjPytVaqqi+T9YmLve8khbTan8l8kpjfq+pTVXx3AjHsLLESB59H+olrZ+Hzv5njrhhCzXJXrbXS39/MlpWxFidybw6/ir64ubx55x78z6NL8IXf+j9rH6zatMsoUegs1D1xeH3dNoz/7t+wenNgM60qpNsrNI1puvrqHDp8kzLoHFiFdJVj46yVOup21ffdwJ4SOoc6cGKfv76W5lznrdyc+G4zrlA3omrv6vzfzU2VbWtuxYPzee66FvNXvTXbOq2mK07RLdvbtcdfEe/uR+DYa57CV+58uWZt1gJ1TxzunPMO2soCjy0K7OA7IliZiQi4Fk3k51Dj8WRB4kSPWE+T1cHJ0kPiX2eBmwedpZDmyhasqS7Npxpu3XW6ruT0/c27X8NX7nwFb21MWyH5cpf2bj2tCqt4Zzb92eZdrfjpY0tqwtXKFp58Y4O1Xkej7olDfOLNppCuBj7hEGy/d6SYZd6KTQnLlpKDc1AXfiVyWd/NUUV7JHrhGIeOeOp/0vJWA+l50VYq46YqPdGzzKFKptuaLQEnzjm3eXtIW6qpr9wmCq7mnXFETH1uv5i5DBu326MP+6CrKr5z4hD+z2rtUQ1MC9PJOXhOoh0tbbj8/oUYd8lDuI/ZbFSseG+n1Tv17F/NTnxfuj4+CXLEYdHaOLa+b8IfDkmFdMcvngbGyqUj1jCXslLv964XV1XdT5ID7Fi8v8MvD7ntvSddVW0K6crvjltvKW6iBptEThy6KCL7/MhMtCPMFQ3lTuIg/9sr/uTRJbh1dpAd65559o3k4z95GhfePs/esYK/LVgXfd6yK17ktgWaBZG1UkIhXZOmnVDvgRcrtd9Adu1pw3PL3mN/09/39/6ysOr+TLqjWsFmGv6tP75WdfuVMotZDCa4uu2ROyLSs3UxGuEkDkQ0loieIqLXiWgREX0tLB9MRI8T0dLw/yDlmkuJaBkRLSGiU5TyI4loQfjb9RTuzETUg4juDsvnENG42t+qHR2p7K1erGRvX1WW+ZyqnlnKb0oc3t3WjLtfDDxVP6dYbFSTiSw5JtleBddWcI0JjUwCI1v7ruRGLtz6/Ep83mAB0x5zMovhQHutibZSGZt2mrkIq1iJiZ7s08afX/GPscQRB51zqIV1XlcjChI+nEMbgG8JIQ4BcBSAi4loIoBLADwphJgA4MnwO8LfZgA4FMB0ADcQkXRTvBHAhQAmhH/Tw/ILAGwWQowHcC2Aq2twb5nAipXaSa5kzuzlIg7Bf9dkUm30sywcX9z6fDpnL3eiquTxxU5wnbtiuOx2tiF94+5Xq+pv3dbdxt/aQ6yWfL6d86wv+/NCHHHF48bfbaN6eGE6NhkHfTM3cWccuPWo+5y0ZQ0m5tlPV4CTOAgh1gkhXg4/bwfwOoDRAM4AcGtY7VYAZ4afzwBwlxCiRQixHMAyANOIaCSA/kKI2SKYmbdp18i27gVwIrWHlpFBOhNZ+7LbtnZd3fmG7C54muNWent6mwSq+QRPbF2eTVc7BPW+ejRyxMHcwTZD7nGJVkc4dpuVXDL6am2ec5bnWw1xsnGuJlNXH6icmm2Ou+KV2Z4nK1bS6rveqw+6LXFQEYp7pgCYA2CEEGIdEBAQAMPDaqMBqILu1WHZ6PCzXp64RgjRBmArgCFM/xcS0TwimrdxYzbHG+M9GZLNtCdMi8218H3FSgnOoZ2UdTq4CV4Jfed0Di7ERgW1ux81Jo+ErXU11g8Hzi/BF+qzXfF+Op95RW1mEIdU81izTAHf9/ezx5Yk+7DM8WVaQD99w7c9Bu43/fpaiJW6aggnb+JARH0B/AnA14UQ22xVmTJhKbddkywQ4iYhxFQhxNRhw4a5huwFffKqL6rdnOCMOgf7dSVPP4eO5hwERM3Ecqwpq2Ok7bG2OCc4X9NKDm5zXMu1yucsXrS2NrnQ6x0N/fCgPyPTM7t+5jLvPvSQIll0BqxYKcU51ODpdWfiQESNCAjDHUKI+8Li9aGoCOF/6cGxGsBY5fIxANaG5WOY8sQ1RNQAYACATVlvphLo66dW8t0dLW0Yd8lDuOW55anfjGIlF3vvqa3lvXuz9+cLIWrHGmdJdpO+tnbgxAVViVccr8QmVlJP1LUQYwCaqbDhtq4449CwbgXtV3CRfonv8+biYEnoe7/OMdnmLauQLrvrZEW3FSuFsv+bAbwuhPiZ8tMDAM4PP58P4H6lfEZogbQfAsXz3FD0tJ2IjgrbPE+7RrZ1NoCZoh01kp/99Wxc/2QQ2z2tc/BvxzZE6Rzzf5zdumHS+1oruerZFovPOAD7vaVOeEh63Eq0R/huDjZflUrB3Y+dc7A/c5fnve1X9TG6ZOi+SPo58Dcm40tVsxTlbfu0sbvC2EKcZZmE3m1arJT8fv25U4x1ubLWGti2qmOQYc27Anw4h6MBfBHACUT0avh3GoCrAJxMREsBnBx+hxBiEYB7ACwG8AiAi4UQ8q1fBOC3CJTUbwF4OCy/GcAQIloG4JsILZ/aA0IIzFm+CT97nI/tnmUZ2Pa+OO0oF/rZ1J69d5m9K8sYTZvWm+u34y8Gs755KzZhv0v/hpdW8sxbatEI4N/vSMeFqSjxTxUb/DWPvlH5xRoOGz0gVWYbmoscEwHTr5uFj/73k8bfTVDnhRowrxr4nFZr5bsS9Oeu8z+PaO/Pcy7YwnLrREm/b30uq1ZqPmKlWuscTv35M9jQRfJdN7gqCCGehXnun2i45koAVzLl8wBMYsqbAZzjGkstoGeuSm2eysvnFsc3Tjowkbu2yNRpbi1hSZiWklWmVGiuJCei6xSmTljTi/vEtbOM1z8e5lues9xPsmc6eVaSipK7wldR/8o7W6z1AOBfjt0Pv3kmLeoDks9q9MBemceh1tPn1d+XbLSmKrWLleLPWQK+2Y0R+M/JMYW/e/eotInsm+g6zaPet1+7WMkxdzRaKzPHAZ6cQw3EfPqz2tHSFln3dCbqzkNanwz6tHLN4YNH9lPqxpXbSuXopPyNu1/FRfIknSFGj6tvaVPtWjTVKtV3hJnq+vbgzw6+SrlqE/9IZLnfcZc8ZA0hfdnpE/06zRhbSX3O3G3f53K+8uQcKhW96Hjh7fejz0biEImVKu/HFpBRv+U92kZby6B2pl71calhU3zCZ9iG+PnfvoBbGbFyaoxaG+f/XzrKbWeg7ohD6pTLWN6/rhKTAAAgAElEQVTYUCTCJaceHNRVqo6/7GGcdcNzAJILL0sYBtcpJ+YcrNUS91CJYGBni4s4+LVTiViJtVZy3a9WgQshnRXsqVsbx+OL1+NDVz6RsoipZEvzPeXvssTByoKlG3Zg5fv2wIjqKTor9He21eEHAgAtFYrMspij6svRttlzTIE+p20c0XPL3sflDywyDy4aY7KNVZvMDpEdifojDinaYDan407dhULMbusT47XVQRhltZSN7lmZVAltIdvjPElXKQeVcm3O1h/wt67wFSslHA+Vu5u3YhNmvrHeeX2tOBQX9Pv+0V8XYeP2FmzY1pKYRZWceO2RReP2akUcgDiXuelAFIvGqn++qze7/TOyZLJLwjw+/V2kJAUWBTW38W/XxNI+a8ElUuv2fg57C1zvwfV7gSjiBoxhMBIy/9orpF1HaRl0D6gunLXpSt+9z5dIqRue2vbZv5qNf75lnvOltEcwNO6x+VorrdpsP/ntaGnDaT9/JmGZYlVIK/dX+QZqhum+amEFJue0jyI9JVby7cPStGvsNs6BW48rtDD0PsThxqftfhmdHSrGhPojDvpJIqMpa7FA0UbglfidtdvnL9TLN2xrxhFXPI431weKzFIo27f1q8eXr8bexKwbSf/SxIggfE9EXJjq5Dj8FNImcGNzwccr09TtY4vscX9mv/U+Fq/bhp88Gnv62sRK7R1B1YRqnEDlMG9+djn+9fZ5+NXf33Jeo4uV/P1bLJyD9psu5k0b3gnlN7dC2udgooaxZ8fYNWlDHRIH7XvKCU5VMjO7W8A5JOvqJ2T1G7dBmuaCPkkeXbwem3buiZRasSmreTZ96MonEt/bw8ubY5N9ncbaHNYdlawTJ3Gw2MEnoDwrjuNS58Y981ZFCW20S9GriRfHSXDPwDdhjX6A+NLR44zXud69dx5mv2os7n1pNR5dtJ6P/Kv1v3RDOmucD6w6B91pTTdt1dduQufgITLy2NkH9raHVum2TnB7G9zK3Bj8IlbFSkFZ2soi/sytP9NkeGoJnyZQ1o50Dpnmkr9CPLqiglAQXBm3tnYyMnNV8cmNzSkacCxie2Rak7w9XSa72bRzD75973xjfZOuRqKZEw15ekjrw/3wfqkQZCyW//dpxt9M5piSmzE9/wG97JtetfCd5rb5oa81l0JZ/erj5+AjOnU5peY6hy6ClP11Subo4hziU56vxzIzCBa/f+GdxHd9SkWcQ4buuD1n2267rXxW66Bq6yWIA/O76/k6u6lw8U0eOzDxXW4kF2sOf0TJ/L99muzuQ5z83ddDWr8VT2d4EBGOnTCU/e1b9/DJd1yHBNt7qYkZag3mmf6Lvt51BX9SIc31lfzus7G76uScQ1eB/nIzspVJnYNg66mTlVVsZhlvOKZyOQ5ul+V6Csf308eWRIlVNu7w88A07Q2+Jx12zjNlvR2b6bsOj1EXa2/7NcnlKQELkRZHSc5trZZ7QYhkOy4xApeW1eYEt2VXbAaasrazXKf/cvsFH2brvc3k+r78U7E/iH6gEkLg9y+sjKydONRiu/NpY+zgXo73a+cUtjUnTWxd699FbLh+XXu/LU1vZ6LuiIP+nnTuIClWYjiHgiJWCk8WTDSJCLy1kt/SUde9GsMl66ls1tKN+MXMZfjeXxbg2aXv4ccPvZ7peh2+4/fKwQtgcN+m+AvT9A8dtuLVnLxMVxIhtbtKZz+XGMs1HE6sZDulX/3IG5GfgM1pq5b40tH7Ga2V5q3cXJNUpS48NH+ds06BKFMcMP3d6f4XalvcvNKLTH0n+zGP74nF6/HJXzxr/L0z4QyfsbfBJTNUf25jTBEKRNGClLJatY3v/WVBMnxFRpNIDjtb2rCzpcKgZA2FiMi1tJbxhZv5VJRZUA3nwD1Tk5+DrZ3EeBwWI/bNQ4DnkSglsimFHemHhrVbkpyEi1hlFSsBwPbmVgzo1Zh6Or4ReCuBiWBlCRve3iC4nODsnIN+L8JSN/jd3l5U7sE5bN3dil/MXMr/2AVQf5yDfpLQCn6nhNhmxUpEkcJR2pyrbfz+hXfYiJ6JMXiOVXIdD7y2FsdcPTO+PgNxaSoWos3R3zrFdTIWeHuj27KET7PI1EtkOuPGk72fLNdzIEpzfZJz0E/+n73phUz9cZtrQdnk+/dswEmHjEj8XoxN5JLlNrFSjehG+rQcf77gmP0MF9Wmbxsu+vgBAedgqZMK2e2YK+WMnIOJOKhz+tVV6Zhfb67fjsN/9FjkONsVUX/EQfn8sf95KqUEVsEppIliBao8AdomHCcTrkQMoirOslyvR6w0hUTIEgq6LARO+OnfnfW4UXJipZWbYu9Z1vQ3w4Jmx2H52Xal/uqk9ZrrWbk5B/vJe/Sg3vjuaQcnyqQoU2jjKrQj5yD5GdthYXCfJtx+wTTvFj87dSz69ayNwOLYCUMBcijGte9p/WDyd/VnH1NWU9fqmN54dzueeiNpifhOjTL6tSfqjzgoL22l4wV9ZP+0mWCxkOYcbGINdukaJtTUfQclrzWs+yykpcHTxv/4nzydKjP17xummNvUS4we54oHF0ef2dOaox+b68SC1VutwepMi5vAEIfwvp2cYZXEAUjnKFC98lXltW/uDg6ukNw+nEdDgdDfkSJVRbFINeMqIrNyG/FX3sUHxwyAPv0k4bv5/Kl48lsfS5jnsjmktbJv/2l+qg6QPgR96ZYXE99dRgtdAXVIHPzrcknmiwVCT41zsFnL8NZKBgsHz3Et27DDW+7bVCwkwvCZ+lizJR3ywXRbvs+QzcHrPOWnf3eF4rZtxjL8uPFa9eloTnB6s7VSSO9mdA5J6xZh3PSFSB44XEmEagHb/TQUC5nGUFTEQD5X2d5tsUChzsFPId2rsRjpjYCAE7z8/sDYYfzwvjhgWF8cN2EovjM9HVgzas9jzIDb/6ESr/2ORtcfYSeCmxwFip2c5AZtmwisM5Xh4OkKEqaCMyOcvzq9iaoKSyJ4ze44zDL/u69Yi6tWcmiPKzE8ag87cWLG4hp7PB7775xzpd6XrmiWREyKlV687CQ8+53j2/UEaoytpXxuKlImc+1iwW5dlGrHUjXwOUoTcRXq3GgsFhJr77onlmJbuI7knCcinDllFAD+IOM79O4abE9F3RGHLPsIV7VAFJ3q5ATIujnVYl5wVir/8L/PsX1l3TvjjcigbPPmHBixkmN/rWTRcAvRNymOUaxE8f3f8PkjAPgnk/fVkaibqn4Lujgw8nERwUY2rF8PjBnUGwcM68v2sXbLbj5kRQb4BG1sKBYyKb6LBbsCWYdtbRUoIEy+nENB61vGLAOS70Iq+X2slUyohEPuaqg/4pBhapaFSLF/ckIGbQWwnRKy+DnopZfct8A6Nh+o9VwsuI6v3PkKW+77DFmFtOFZLVobWG1UwgVwTUrz0mqELqMGBNngRg3shQL561rcHrHpMvWZCpG2QoqIA0RqMz74A/2g45O/eNaaeU7CJ8+CVayk+P34oEDZDiu2ZykPab6mrE3FJNeSWBuMkt/HWsmEJxbzoXDivv3a6Uw4iQMR/Y6INhDRQqXsh0S0RsspLX+7lIiWEdESIjpFKT+SiBaEv11P4bGEiHoQ0d1h+RwiGlfbW0zC9nJTqSFFenNpaigoMWck52BuM4ufQ5ZF45vDQK322OL1FaXu1DFl7CB3JRgU0ob+n14SZG+rhDjsO6R35mtcIBCuOHMSfj5jMiaPHRiaTPqOja8nmb3XGNNG9bYFBArayoy4OeEXSVh6w7vAGSJIRE5wlvtuauB1DuaYVVmeo5tzaCgSW0em6RUCOHniCCz60SmBWEmpq64FlUuycw5ulMoC3/2z+WAXjKvrUwcfzuEWANOZ8muFEJPDv78BABFNBDADwKHhNTcQkYxCdiOACwFMCP9kmxcA2CyEGA/gWgBXV3gvXrC9ErkghRB4askG/HrW2ynLlJEDeir1gv/vbjWHd5jP2DEvXsvbNvtMF5mdzXduBZOwNhPxgGF90LupiENG9vfsO13WHol5pu03mClNb1hzL0unPLeJlfr0aMAZk0cDCDYif3EaXz64Tw8AwAYtrDqQfENCpBXNsVhJpBNUVfF+bUTEhyHo09SQSeeg6nJ8xFZ2nQOhoVBIBQ58aP46nHLdLDy8YB0EBBoKhD49GlLv0JRrvVAwEwduQE8sTho9zFvB515XnSX3Cs5BCDELgF+meeAMAHcJIVqEEMsBLAMwjYhGAugvhJgtgt3qNgBnKtfcGn6+F8CJ5DNrKoSNYke25AK4e+4qtg4RpRS2Lq9jXf49f43B8cVj4zx6fGBem0XEUcv9OJAZZxdpSZjG7UqgVAsM79czVeabUtUl2060qWzkKqxWxUrd1lIZvZuKuPj4A6Iy2bcv51BL2Nrv3aPoHfwPAJDRktXKORQCazzdY/2Nd4P8CW+u34Gy+ry0d6jORc48mI/Kmh7Hl2+bl/huEtV9RzF73Vs4BxO+QkTzQ7GTlDOMBqDuqqvDstHhZ708cY0Qog3AVgB+cYgrgM8rEUguwMX/75TE75GzqvcmmfzeVhKYss9AXHnWpMxja2oohm36b9DPv/W+u6I6DkPTBSLWisfcd7rMTBzCayrI6saNx9sb3MI5qHBZxaiQ7+bmZ5cnym3ezGrTza1lEBH+85TYES7WOTA5SPyGlYJvvgdb+wHn4E8dyEEdfj5jcuK7bZ4XQ7GSzjnEnEnIaYXj030iTGFuYrFSuk+fNb/NEJBQdZ7cKzgHA24EcACAyQDWAfhpWM7NEm4+y3LbNSkQ0YVENI+I5m3cuDHbiGXDHi8lmFDxdz1qqPzN9wXrjl9lEbC6k0YNyDw26fGcZYO+/YWVfpUdIApYbv8TtD/nED/TrrlqChSbLO8/rI+1rryDJzQfC9smqt42m+8hhO4EF1zbPs/M5SQHBImNeJ2DoU2yb7Cpe7ONjwLz1NZU8MzguzzIyBYLGuegG2tEYyikf5eY+YZ739muRHr91OGjos8qEdtrOQchxHohREkIUQbwGwDSf341gLFK1TEA1oblY5jyxDVE1ABgAAxiLCHETUKIqUKIqcOGDatk6LBNN1Jq2BaGXOS+L7hVOw6Xw9NMeiG425PhL3zFSrXSN0hQhr65x2Pa/CMlf6UDS7UX/nfsb8LwWX//qrx6okPnIueFrq/SlczJccS9cyGcVbGSPjW5Z+Yj6smmt+K/NxR8SEiMpM6B+V2/NwsnWSoHh6XWNp5z+Onjb2Jbc1u0znSdQ1aF9M6WtkTebxPUfCnjFVNj1RR6r+UcQh2CxFkApCXTAwBmhBZI+yFQPM8VQqwDsJ2Ijgr1CecBuF+55vzw89kAZop2JKt+nAOwcUegNORiEZFSzwdctqkCVSY7ljkGvMVKFYhpTCAEuSy8OQdm2zJZS0UijA4+UflmglN1Dq4RRpufVm4VK4l4Q+dMU9Vh+mzGDQZKNPvSE+I2XXfCiJXe2rgDd78YS44bCtk8pB3RLpgcz+baraUy1mxpxuJ12/DSyvg8qV7x3o6W6LnqptyJZ6qashqIg68xRYvC+amm8AnOoSMiE1YJZwQsIvoDgI8DGEpEqwFcDuDjRDQZwXtYAeBfAUAIsYiI7gGwGEAbgIuFEPJJXYTA8qkXgIfDPwC4GcDtRLQMAccwoxY3ZoKdTQ0mxZ1zVmLu8mCySW/oB796TKSoyqo81TfEclmgoSHtPOQnVuKJg2mTq6WYhghV2/ubvMnls398sT3cBYdaERTTZgGEDlSq4N8C+cz1jc4WJE8gUIT+8cKjWMc22aUqQ5fg8o40FAlcDpmRA2JzbddjUw00JE697plEWtxCgW/HtPm5+Az9Ednmb6ksopP8PS+uxpH7Dmavkc+LC4kSj0sZQ8EtGZh96Qn4wf2L2Pmqvnc18KW6D3QHzsFJHIQQ5zLFN1vqXwngSqZ8HoBJTHkzgHNc46gVbAtCvsbnFAVur5A4TBod6wf0RTN+eF8ssyRH18MllEUQO6eSuDjyJKJPLmPo4BpOwmCRkdNXoqEQ1GFNWU3EIfz/xOt25yFfeOecMJTbxErukOZhG4xS23YNgaINLv17zLXoGygXWNAnIJ+LOMQcclxRz5feUChkNk/2sRiUsL3HPj2K0VzbqVoEateoOgdT33q/TcUC9mhEVxVxjRzQy5hLQ50fKueg7gNdVbemIveQdqBXUzpZvK48db3oFOcgQpNYD9mxDhPnYExXWGP21YdzsHmY6kpatd1KwY3GP/+w2o5t09Lk/hbE4TGSN2W3VhJWeZF85GWGc5AxvlSC4HPwuO+V1dbf1TDhxjoFftg9G9LrBnCLlfRotDtaeMufW770IYwf3i+KLfWgkjVOn3cygKbNV0V/XP17NaRSiKa5db4ttQ9VvKfqHPZahXR3hvWdULqOFCslqmmyWNd71tl+IUQUNEwvl1i6ng99INnUlB7DGMzPPK4zJ48y/8iAENy7iXP4xMQgQY0tO9ldL/L+IwAfkE6Hrqxtbi0ZxBrhf6eCgC9O6xwUzsHRpvxZfwzW3At22hC1Kph6LWGU157KKdWHc9js8KKODkGWw4BJ5zC0bw++TZh1MkA67enlhhSxHz9oOIDAUdEFuYYLBbdBhET/Xo3YuitJHPQDmDG6skoclPtJWis5h53Cc8ves0ooao2cOCjgJmsvJmy3bq3k5hx0sZL7ZPfC27xvQiwPTZabOAfb2D4woJfxNw5EwSLSN4vDQpGbvCdJHPR6Ty2xi4yWeWSXe/6tOJjckne34+DvP4KHFqRzDVfEtqs6B+0nVSThkykvuEYXTSXrqURWwG5ZlfBz0OodPjZ4/qoIowpGLG6DUUjrKFI6nSoAc0Ifx7zXFenrLdEHZP8A0E8hEvqrjw94Zg9p/YH169GQ4lp8OQd1fqgHJZfO4XunH8I3GOLzv52Dk372d2udWqL+iENGMQvHOegZG53EgfFzKFAy6csnJo5ITDZTBFA52VKWFIbTnW1oYwfzxMF0SRCCIN3XRw4IfBblum8o8nqR5Rt3Gsfi+1ZUMZ8M1seFgJD02M04GE6SjL7AJVY6/qBhid/TxCH5Xbd755S1HzswbDOqB+g72c3/9CEcmUoUVTl5GDkg8CSPIwGYn2KxSN59/eXio1k9hoqmhmRbzqYZArZeC08i9YbB0olrqs8/ReAoHT1WH7KJoVLrqRxcq0PnsO8Qu/9MR6P+iIONc2Bm4tX/+MF0PSV8hhACqzalE+Wo4DgHIsLOlpg46IHd9GskigVe52Bi/Wup+BozqBeIKEUcUiabkrvRlpdN0qEP/9NTRrP1VIdE261F9+24/6TOQYVNIc1Dzh/TpqGLlZIyaH4j/OyHxoZtSsIkUs+xf89GTBrVP9Gvl58DU3b3hUfhiW9+LNmG5REWGd1ZMN50Wa/GomKyzLencw6+me5UYvPX19YmfouJQ5JzUDdrfe0T0gQsfQAzHcjichNx4IjjyRNH4Dh5GOgCOom6Iw42cNNw7OB0xE81fMZf56dFGjp2tCTl5HKBq562gat/XMfEOUgRZspayaSQruEc69EQLO4ntXy4+oMrGjZJm8y9X4+GxMnZVNemz1Ch37fpBGp6PDs1kULCz8G0+SvzAkgTZn3oSbt3fv7FJ+34P+88RsZNKQuG9usRyfFdxE724xuVVYolAfNz13UOvhZ9tmneM1JIJ99JwgmOGauOLArppmIBL1x6YmJOt2mHAQ5H7DPQ+ntHou6Ig99Dd1RSNuj3mAibOma9mXS5L5WDEAgj+vfE4D5NGNi7MWXFYRIT9Q9z3NaCc8jm2xoEjrOtVflb5OCn9b3NkjtAJwY2yx4f+DqsqVCHO7hPU+K3ZGwlI+8Q9h18c3FY+mbBca6xfkv2zIuf9NhPlaYPVYmvTwyxgDiky7krVMdPzl8DYHJnO4icTjw59GqKiZ26TtTnrz8vZvqmjD5MXQoROM9+YEDPxHrx8XPwsRDrKLhV/XsZaiFmKSi8sc8avPnZ5fj+JycmxiAn/dzvBmGkv3bXq4nTlrqxPP6N4zB2cG+8uX47doRBvXRiUAvOoVwW1sVYJGI3pji/RfidZG7fZL2fPPamuW/9lG0YRyVJjoIx8jCx7zrH6GPKqnt5p7kXs85h6YbtrNmmbjZt4hz0U7Fa56ARaY9rE9RNMu47+L+nLS3qLBB/yODfU1zTyDmkDgmOAXugd6in0rlzVXTLWafpRNHX8VRNyGQa/qX3zWfLC8r7LtbErKBy1B/nYPnN97Alq7msjowKX+W6hmIhUOCSeWwTRvRDz8YiPjhmYLTB6MRAP6XKEAxZiKEeC0hHwXBK1B+BFDVkUf77hrdWb9PWelazUxd0ncOE4WkvZrmxCQH86aXVeOmdzdY2B/WOuRNTSk/10Ta3lvDHl1ZjF+P6HARE5Pu5598+wpbf/+raVJkq1tGt8q57Ik3ciQjEvCtuLEnOgR9rinMgwurNu7B68y7+ghC2uabqHNRah40ewF8AnnNIm7KGdbX5r3KBpu1Bj9z64mUnhfUl99n5vEP9EYcacg569Nbx2oYxbkgfTNlnYGT9ISGtlVT4nhGKygaUaFPb1//r04dh4sj+VnmxDmk9pYYEOHdaHEexoRBYpujybPktOi1RtuQ4QHozMYmVskaE3bJ7Tzgm9xO2bTBJnYNgrdjUPADf+uNrTmfBSaPdSZNUsZI0b+byBajjA5Kc5YBQFOkD9d3qIhs1WY0KX51DkGJXik34Z6MThxH9e+KYq5/CMVc/xdb30Yv0VKyV1GekGjekxErk5hSMpqzKvuBryTWsX4+oX1vbHYn6Iw6W33xl8Cq7rb58aeWhYtSAXilHHSPH4TEhVLZTRepUE05QEzH81OGjUqea5rZSauNJJEQpBJYpKVm61k5DIGvIdPpJ6VAsC8+vveD/7194JxijoZ7vEFWFrwB/ImwwEO6oDa2uD/FU5f6cWCeuR5rIpLLdJWEUoG3kphZZnQNTWX1mQiCVhwFIK6Snjqs8Ja2EFCup5siAWQwXfE/HYdKHa5rf6vrOqvvh4ll1FuqPODAPXVoITBzll/4yPv3YT/x72sqpTXLLrj14Z9Ou1OIlxq7a1re+Qb+hhRLeurs1YqPVk+NnpsaR0z84JslWN7eWUztA0jwyTT7HDemd0jk0FgvBhuFxQ5KrKgvdkoTfCF173renHxTW8+QwlEHaLiko8moh+PduMjOWGKQouYsFv+RB6kHEZoFky1WQBVx2NJP3/bEThgZj9NQ5FDSzV+nZLTG0bxMaNVNWvZkzJo/CX79yTKptGzGMfGMoOX9M+Rzkd71F/Z4ODHU5I/snJQOB0QDfrgumw19noO6IA7djnTVlNF763kmY4mlGpioebSeD5tZSMDmU9q5+5A0AwKML3022Cb9TsUmsdNEdL2vtUbRhqENUCcWho3TiUErNZjU/c5HSDk8XHLt/1L40v20oBopr1wTfd0hv3PKlaeH9iER9kymvFJe0tJXw3LK0nF7Kl9OROQ2DUKpdcOuLxrEmnODCBodoFk0uM9v/OTv2mSl6Jk2KCa99rhWIEtyj6fnZcPAH+mFI3/iedGW4DukDxDLBRu4pnr96EL9igVKcg973UfsPwWHKoUYXfXFI6BwSojdlXIxYSd8q9APZ10+aAAA4QBMnq6lJsxqNmSI+d4bfQ90RB+4ZFwsFDOnbw5vKq6yf7eXvbi2llGDytKSLgXRTVommBl1BF/x3ybM/ftCwKB6QmonOZo3UrEX37NVYxDlHjsEph46IrrXpSuRpP4i3Ez/r5tYSXmSSrp9+2EgMD2Wt5bJILFaTCEXe9hUPLsafX1mT+t20WfiIDG0bajK2UnAylJuDRLFoVyYOVBTQ3qa6kVjJbVIqREw8feJU6Xjk68clZP6k9A2kn6kkhhzRYjmHAiltpn9vKBRSOge9mSZrIm4evZpinYPanjrG9LxOG1ToY+nXsxFH7DMwUV4qC9w55x28t0PqujIPNxyb/XtHoP6IA1MWnVY836SsxSmWVQzv1zOt2Arrc5usWk2eFB78apKF1k8Wr6/bltrUAURRX4UQCUKkL+S53z0R//u5KQACayXdkYqIIvbZbMoaQG7ojUVKbKYHf/8RnPOr2anrkvcDzLgprvPeDt5/RI7PFIBMEr8rHlzM/p5qz6tWOtwzUXrBFpVDgwvFoh/noB5EbPu93FRl1sHBfZvMlT2hci07WtrwgOZ5XIiIQ/paVueAeK5s3pVWqhcLlMh/AKSJSA8m1pkLSQ9pk84hzTmkjD6Ym9JNXh9d9G7qdw6f/OBItrygU+QQ/pkfa4f6Iw4c50DmSc5BdVQxnUhv/PwR+MW5U1iTOLUNCX2StZUFGovxxqxfVxbA+ztacOrPn8ElfzLZTAenSVUeq59Yh/fvGSWAaW4tsSEY5MTknOCIEBVKBWNjsRByQsLJDkszyLIQ2KmYaL67jQ+45lojcjG+8a4W1dbwbn259YQpa6hz0DeL2Fopfb1u+qpvVAN7N+IAJjd1zAkJKzHRY27ZzDR9IcX/QgDXhOJQrk9uA+Q4gwLF3tQcZ3j42IGptvRnqXMOPuc5yX2rBxaubb1d/WfOl0hf3/+uiXfVdT5uSOw7Y9IfSeLYUkoe+DpDB1GHxIFjd4P/2a2VzE5wpx42EoP6NKU2AdmHnn5Un2SlsmAnkJr8XCZ5kVnrUnVDrkW3ONIRRVHVNiBZVy6KQoEPsrZ1V8BCS5PBhmIhIkzO3A8GGevg3vzJ15VYpsngNWVWOfgtuoQTHAQbYyqyVmLa7K3lBdFFHIN6N2HiqPSGrh4kbYRWzpXWksCWXXuwcI0717ELagwxzkHPxjlwr50ovh9O7PXjM1O5wFLzokej/hzdazYiYuF3n2jKBEo9by4Kgb6+0+3EUM2fTctCRkDY0WyPCNsRqD/iYPnNwNGZ6wngyr+97qic3AT69ggmyJADoL8AACAASURBVL8cu7+1XltZsHmAi8pmKn83bZiEYAMrWTgHIGmVok7CPqEduFwURcZaiUA4MHS4O3xMoNBvKlIkTrNt5iJxP8nfbvzCkbj9gmm4+PgDEuVuJXd8+l64Zmv0+YJj9rNe54Kez4HjCKXOwW8d66dYwXoDqwpcG52VYqW2Uhln/vI5vLMpcBp75OvH+gyGhWpGa+O4uQMDL4KJiZiujAZi8Y8Kl87hV184EkDsJ8BBjk8V0bWWyilrKX2s+h1wY9bXrY4jlGi5Jn2HChnqXHeS65JiJSL6HRFtIKKFStlgInqciJaG/wcpv11KRMuIaAkRnaKUH0lEC8LfrqfwjRFRDyK6OyyfQ0TjanuLSXDvRJb56o5UWewWTXY697ITMfNbH4u+6yebhmIBPRsL+OqJSWWmvu2aOAfVlFXSjvXbYvn8mZNHYdZ/Hh/WTU8qTp+nckLqgrnjyx8GAFx43AE48eDhmPGhfcDlrf/ctH3wzLePx8XHj8dxBw7DZadPjDgHkxkk17eKYf164NgJwzBqYNLL3CWmGjMorn/hbfPiz8ftz1XPIFaK+5aGCDrh23dwH/MYtXmgh48uG6yR4vDwMVfHOc9JvVlbWWDF+7E38cEf8DPP5qCa0XL3ZDOt5XUOsViJU/6rty+TBen96jqHcUP7JBw1bVDNRI+5eiZmG3KmSOj3wInCCPbDZF/Fx0mdL6Z53K+ngXPIbl9QNXw4h1sATNfKLgHwpBBiAoAnw+8gookAZgA4NLzmBiKSx4EbAVwIYEL4J9u8AMBmIcR4ANcCuLrSm/EBx/LLDdTXskDP56BieL+e2F9JEK/Lpne3lhITJqqnKTzbymXWNNJkyirx4f2HYJ9QtlkgQivjT5G+n/j0/t0/L4jKxw0NNrth/Xrg5n/6EAb0buQV0kQYO7g3ejUVcds/T8N+Q/tE9+0SA7mcflI5hR2LRD19qvdqzHdhby4xjoRYiTHVlT4krEhF/07JeymXDcpLZYOW7V732SmpanKuVOr8xkENn8E1aycOnAgmFkWpDnAy1IvE4984LuJ49H51cawcpw+RLyg6IfVAxYHzOzISNM9HroqlTPNYckZ7NJ1D1jzdtYCTOAghZgHQhdpnALg1/HwrgDOV8ruEEC1CiOUAlgGYRkQjAfQXQswWway5TbtGtnUvgBOJXSU1AvOMI+LgrXMwKx7TdZMb34ZtLehhyK+rj4nVOagnbaZ/dcN66Z3NeG3VlsTvPDcS/BdCGGP86P3r16bbDBaXW+cQjtsUhbZnMvSDS6ykynVVLkcV0b1w6YnWNjgUiOIEQgIABf4xoxXOxkbo/uHwICXrDZ8/AqccOiIVe4rL0wAoXKqi3Ofqyfv7ORP/SMdVnz7MWSfoW46N3//sObGZ9oiia1qVU/jvv/xh3PrP0yLR2IQR/SIfkpTOgSEOuiWZCS6/jURdIPUiec7BP4aYj5OifAZ72pK/tzlyQbQHKtU5jBBCrAOA8P/wsHw0ADVJ8OqwbHT4WS9PXCOEaAOwFcCQCsflBPdYI6qclXPwmBTqJvDAa2vxxOvrsYaJUaMfQNpKguUc5AZUKvOnOXXecJPZpnPwE5X7EtBgErsmcoEhtOqGe+IhwxP1Zb2UNRKAV75/csIvRL3XAb1jIvMBJdaV70JTTZJD2oCRA3rhuUtOSNQJxphsc8mPp+NLR48DAJx22Ej8+otTQ84qeV82sVJLazlql6sngybeM2916jcdEzyjtKrhM0x+CxxmvrEe81cH+p67LjwqKldTiqry+6F9e0QZ7yRMBzDdDwKAl8OlrAf4iRJ1ncPOljZsbw5EyP+hiIQLBX/RZClBHOLy6Yd+IPos568eWkQNiukKkFkr1Fohzc0WYSm3XZNunOhCIppHRPM2btzIVXGCe5HliHPwQzRxlTf82/OmGurGE+GZN81j1jmMUllECk4Vag5pbkGom53ckLjrE2VZT1SW72qbNmulgz/QD184al92Q71G8STWA9xFAfUYO/lBfZoSBEFubj0ttvGyWx8iJgSwbMN2zF2+iaWRZCCyQZIkStXVFZScPkduKH96eXXEuXDEYeUmcwrW9Diz1SuX3c9HNdX9yaMB9zK0bxOO2j8+5xUKqljJ86Sv9WsioLKWPf5U8N/nUKd3fejlj+KS+wKRq8zOF9RT08fa21VFSWrdC47dL/osxUoqcVi8dhsuf2BR3E4X5xzWh6IihP9larDVAFTt0BgAa8PyMUx54hoiagAwAGkxFgBACHGTEGKqEGLqsGHDuCpOcBND7l+xVYO7nYZCMlwBlzEubBVCANc+/mY6g1qiVtrPgbNWinwPBD/FVX1HP0a3Ie2oVbqTRUyWxRfEpnN45OvHYfTAXglnPYmjxw81tusao0r8smxErvVWKASL8qSfzQJgF0GuM0QvVaHfsx7EUWLy2MACbN8hvaNNgdvcz//IOABJW3pj384aAVSO0vV8Tj0scOoSIraO0/NaB57zoW7Ew4Obi+xrMtIolwVeWrkJB37vYWt7QHIOHTthKFZcdTrbpomINGle5LKWa256iZUa0jqZz940GzOVvaOS0CiVoFLi8ACA88PP5wO4XymfEVog7YdA8Tw3FD1tJ6KjQn3Cedo1sq2zAcwU7ShU41qWCjE57Xxsp4sFSqYZNFwirVJ+/uRSbNq5RylLguUcOIW0YsrKyenVjZXjEk6dNBL/9NFxieRDqkWMC2wMGq4eQiWqBwecJbx3WQhj6GhuDICfGaCrhm7Pzp3yJf74klu0o4dVMekcpH6qqViMxUpMxVEDe+GkQ4anIgBzyKrSK4u0KevPZ0xOfI99ZZJhVFQUCrG1HGsWqo8TZkfDRL1w7bzwNu/vo9aD1qZprTNMSwTdYkrWMwWLlChrhwG1L4lI52BJKdpRZq0+pqx/ADAbwEFEtJqILgBwFYCTiWgpgJPD7xBCLAJwD4DFAB4BcLEQQqrdLwLwWwRK6rcASBJ/M4AhRLQMwDcRWj61F9TH2q9nA+ZediI+HLK+cp745N9tKFAyZpFRMct4ebIWF/HYbnz6Lby2egurc8h2yk9f36OxgB/+w6EY0rdHqp46eb918oGGNt39ynEK4WdloUcUtaEsBL7DeITrcY4AoLfHRim7dfWve9dWe3zhoqjadA4lxWLIPNeCMfZpshs8eHMOsRwmtZl//KCkLkiumbZyOTo06eso0DkEZdub0051qf4ZiyH+GZHRSfCGzx8RfY7Efsqt2NatEMCGbc248em3Er/1UfJAqFZNpk37/ouPBhBYSK0PPf/dCul4kHrdSuJmVQLn6hFCnGv4iTX5EEJcCeBKpnwegJQLpBCiGcA5rnHUCkI7NQzvFysnsxCHgsY5mJacHgkSMFl5xDJoGbn1UCaEuGrdo0+ac44ck/hu4zz0MQZtxmWmvS+LF7kwcDfpuuRtqicEvzGfOikdq2b/oX1S1lo65DN0EQfdImY3E88qC7hQDtzGJ5MrlcqxQtpkJSTHePT4oXhMSdikw2d+A/GMLguREGscue+gVAIhdQ7J3MyplJ8FiojC9/6yEC4Qc2jghm47XHz0gCGJekBStGyWEgSb/lfufAVztaCRqYRIYd8m4nB4KBoEAkOKEf17JuawOgRO55AiDl2Fc9jboD5WLhIjkIFzSMS+5+tJ8YoKfhPQR2fY3JVQF/p6mDFtH6ZN376Tk9C0V/pKJORpjlswl512SOJ70dNOXR9jog1mJvuIya6fuTSsa6+ni752KuEkrvnHD+L3F3zY2ZeKtM7BHIolIA5p3Rg/RuEUO/gShyxWbPL5l4TAhBGB3uujmu6IiDJZ2ugJjIJ+DDoHZj1w7QHJ9WiyuJLvR2YSNLcJJ+egomeDPeeH1Amqpr5dVqy010GdGAb5uU845WKhkDjtmhasmkEs6peb4AgtkNRQFw4PaX2C6Sc1lgW3eEirzZmUcXqTJk5CnvrUZ3T2kWMw97IT8S+at3KBzH4OOkzVuHv10ds9+No6AD7EIbmg31wfR4X9zIfG4pgJZiU6B12mLQycAxDMx1I5jphr2tslAXOdLP2JQ/A/lRvD0DcQzEsZ9O9sjZMFwIYIMYGYecGuHTK/P5FY78F/W6juqM3wv2sjloQJANZu4YNFqmhqKOD5t97D82+p3tnxIIJIyEnOQb83LoNee6DuiEOCpfQVoDPIonPQpxevSwjqqZupy0Nab5eT8aaut4iVfLKi+YqV4vAZCrHTxHhq3SwKaV+OqOShDZey9Kw6h2qhO8GVyubw7w2ScyiL6Fp+jMF9uBSj3qkro83UXTVSSJcF2srCmHchi6FNJp0Dsx6AZFmsr3OLlSTB0e/95vOTJusqkX9zfdr3RkdDoYDP/WZOoqx/z6QOo7FYSCik9bmZcw7tBPU56xulKUIoh5S1kukEjTRrzHEZcQRMO+egnn4eXrCOHX/cDz/udJtpdtv0BFKch1WcJjTuylDXIjPWYRIVcffVbAmspiOrzqFaBKfiZP+mjaoQ6RzkWGz6LWDbbruy15WxTkKuj5J2UrXNq7ayQFupbOROfDlE2U/KWoldO6H1HvN+9BwcAPBHxVHQKFYKTct1Qqs6UMo2ZRe6T46KD4W5sHXd2h1f/nDKKbGpWLDqHLq6KWu3BZevQCKWvbvbaShS4mRqE8OkFNKGpx4ocOPvnGlexL4LgZ88lgyVkOIcLGKpZJvB/8QkNGyE2RTSyQ3QRByaW8u45fkVXu2a3g3X9q49bosYCdcrd4VmNkG1ltHb0zk100bVUCDsKZVx14vvAECUA0OH3EzfNyRKkvAVK8nw2Lql0kcPSIvQ4rhFIvTR4fvQN8eFPzqFrQfw5qScWJTjMPo0FXHCwcMxWEnlKteOml7W9CS4+Qtw4Tvivm3z4+LjxwNIn/o5n57GImnEIfl7R3EOblu/vQzJk4R20mZO7yYUC5Sg4KZLVIVVdK1BKSw8+rbF79GJjq/4gDOPNY0irXPgITe/5ETma/vYvEuYng/nMLh7j9mi6KAR/bBEEQMIxxCyiL4k/uPECTjtMD7jF6CHzxDmZ1kg/GFuHJXGxTlIi6DjDuQdRX2Jg1Se6hzY105Mmw1HXEYYIl7PBS1R1k7yXBBKiUKB0dcZDje6QvqCY/fHNzVz7NifJy6zzXOBtO+CHhdNPfzZNm3VkMSFRo1z0JFlvVSDuuMc1Fdz/MF6PJewjqeMtaXNbc5IzInTppBWT1ZqzJXo2vBSbiLqC8dXp8I5wZmtlfw5h3IZWLd1d6KsWpjWHxciY5eFOJwyKfls3TqH7GELbLerWuIIx2k7bWhgH2NbWeBfjt0Pt/3zNLaeL3FoKBZQZOY5G4KlEBOH1pJA0eAlqIqVXIcX1kOauyZ8lr9/YaVyLVctrVszUQe5bvV92JTTHUjOj5MOGcGOW123/3HCeLbvxmIhFXhPhe3QU0vUIecQ/P/NeVPx8YM04hD+92HbioVCwizPegLRJ7hB3COESJxgp+wzMFXPdgLR280S6gJILlyTmGyWFh/KeoqFwIbtsYhDyl1tOJax+nn2O8dj4/YWnHXD80aZNRfp1kYc9JfieuO+YaGT15h/CwK2JU+cDQZ5o/6MTZt7lH1PCOvBwFshjYB78NHdqNkES4Zw80DSkso1Pzn/BVtssPd37lHK+AMYkI5EwIEAQKSNGnT/DjW2kmzr6f/v41G4e33c6vw1JShqaihE3IHqDNe7qYhde0rYmUFcWg3qjnOQ28Dogb1SER5jnYMPcUAiMY5JWclFjDSZygokOQc2AiUjApJIbSKemwCrkPbYCD//4X3wycPtYhN1cp81JW3aqEOPxwMAYwb1xrgww1tgrZS+L87r3KZz0G+vPRTSNv2MOi+keJJ73wBSIppGw6lcbqYlCxcC+CukgUDv4MMhJxTSFrHSsRPiA5mbC/UT5cnnfIRymOJa5gxOTO+dCzn/xaP2TSmd1cNfnGs93bssU9e3nu1NoqFAkRf0adc/E5VLEVwWXVo1qFvOgZ+XWXQOhcSisXEO+unEZKsNkey70bDATH4Bac4h/n7Vpw8zh5NgiOIHx7gT1F95ljkvQKksMPut93HEPm5uQYXNYicYI38dtyB3WjgH9V5Xb97FEhcVK97flciw5gMr56DoolrD06npfaes6iycgyQOtoNBFhPuHg0FazpNtW8gNGXVws1/7cQJUda1I/cdhENH9ceitducpg0FeXz3qgf0alJzeXCir+C/aiZq4i4DMW8yLP7nPrxPql5DsZAyh+a5m7RYafNO3sFONX5YtiH2p+nbowEbtrdgZ0suVmoXyFfDrR05oX1MxRoKlHhJNoW0j9xURnlVN/3tTFJ3INgIfcRKajcTRvRjT+VyjEBwDweO6IuejUVMZ8JRZMHScFK/tXGHo2YSZgV38F8I4R1bxha+WX0nF9/5Cn75uXR2NRWuMBwcbJvfa6vj/NamcBMSvps5ESmnVzOx89U5AMFG5RPaRD0ZBwrpuP9vnHwgvqHUlffpo3PwEfGqYexd7QFJ7+Nnl/HJrSK/I6V/zlR17KBeeHjBOrSVypF+gvUvYsTBpvhShQLPMckDTEfFVqo7sVLEOTBLN87D6374gaJOrWcWK3HX6tjdWsKuPSW8/E68Cb21gY/Rb4pFZJNN20QJqhNca0lg3yF9jHWvPCsVHsuKrIlJbKdiIFhcSe/SNP7xCLf4Sn18r63agmOufsp/kAA+MXGEs47vpi4Xu1nn4DemAsUE0WQuDfBz4Vdf4E1uiwVKHFj0lJ5x3/HJ2JTiNuo/HJyPziFLHCH1nZriVAH+EWF1AxHO6KF/r0a0lQX2lMr4+ZOBaTlHl2OFdHxoM4lkTZIBKXbsIDeHOiQO4SbOHVq4iIgmNBQILUrwtXGGDZXrh5s8K0ORxdfvfiUqMxEpUywim1jJdlqU9Vpay9i2u9Uo3gDMcnETWjwC1OlKPg6cXkTi2e8cn/i+/zAzcZPwTe1ogh6VtFK0lspRnm+TV7GvArlApERENb8nNlqvIXVtsUCJzcikJ5DEYM3m3Xh00XqrPqHoyTmQL+eg+P7EZUx74f+tu9OJori+dVPsYX3TCmS56S9dvyPKS81GIZCxp8oCYwf1xllTRif0L/r9cJIBeXjN4khYDepPrBRxDmnICb7HgzSrnMPPPnO48dTHLRJu8jQxhMl0ajLqHCyyaRtxkJf99PHg5GNSeAJ8Dl8bmj0I7Yj+PaIFawtnAPD6oDGDerN1bajU2VkSsnOnjXXU9BvH7tZSJOYwKXH9iUMcd8dGw1kveSPHlpxrppHINmU49dfXbTP2L9eZ67Y4fZ1pjADQrBxE2ENZWLhRsaA7yJAyNeIclP65Nc6Ji1wBM21BFgGzWEkezPKorO0Eq84hfPg+p90GhThYN16ujOlcjkt976dOSvs5AGY5sL6nq8PyEStJyGxUHLJyDs2hwu8X55pl+qoy2LRobM5/Ony8uCsNhdFaKuODYwZ4+Xv4jGP3nlKcHMfEOXg+cqLYMTOrzsGkwA4iwvrL/X32rYhzcMiVCkSRPsYGSRDnK3oc7v657v79+AP4RslvrvkSWtXPQQg7wZdWZ1t2JRXWcs529TSh3RbxppB+OVKc8s6mXRjUuxGv/eATxnaKhUJ0UuG8cyW4SdCLUWxxm5XuSBO1WfATKyXyKVuJQ/K77X5Mog8dn5kayP2b20oYPbAXPnX4KGPdpKzYPkafiJQ+MnrbJvY/Sg5rif8KLbP2tJUzOQK6sHtPKTZldehbsvTnin6q+/jYfCdU8aZpKHKucXNbR8Q5OOqRp86BExNx96+/t3/72AFGD3bvAJOMEQsvVoo5B1uQRSAWKx2r6cHkYdSHYNYCdUccJHhrpeBx7NpTwv7D+mJAb7MsvKEQy3dN4gBTP9dpKRYBXp1tOqUXDOx2OvBe/D0L52Az62z0FCt97MBAJt/cWkqlVbTB5lQH+OmDfPZS2+lrKOOcNDIMuNbmWNj/oiSLt9W7MAxbXhYiWvSm55RF5yBRdBBxvUUTcdANL4ycXdidnzGHVEi7OQefU/IOxrTTFrQSCIjYJacebFxjgf+Ch3iZmZc2zkyG2rdJG4pEKJfT1orSM9o3MVa1qDviYNM5qIpYl7mfvyVQ8vvksQMxon86bDX3vk3NFguEVxXTSikHt4VZsC1E/SebQtqXc5DVdreWvK+xQY7Rj3PwESvZfkwXqQcAW/vfPPmg6LPt9Cmz/JVFLCvvaVAKZ7FWknA5QKYt2/h6LW1lPLNUDVTHtysPVu/tsCfHAeL55eLAfDmHbc1pzsHmawDwlkeJvpEtydGeUkyguPkRmfqWA98J270T8QTg+5+cGGUF7AjUn0I6slZKvxxV5uvyIlWJg42Q6HJkH7ZbwpZA6N1tcWKRX5w7BeOH9031lSBgVu4m+ZtVrGTRR3BtNreWMbh39ZwDUZAExYdzqBYuHxKrSEC5VbsTnPwxG+fwMUMwPb2ea/7q79z03N/29FPRiYsp6F9QN9Q5OKZSoHNwv+8N29JJdjjiqHK9JussCfLUOXAcrU0PEQQIdIuVdA7s2s8ejuMOHBYmfnKPqxao6khHRCuIaAERvUpE88KywUT0OBEtDf8PUupfSkTLiGgJEZ2ilB8ZtrOMiK4nX6FuBfCxVgLcnENDgnMwP0a13kcPGIJrP5sWKQF+pxQJ1SoFCMRPowb2Yur534/6s51z8CNusu/mPSWn97G6CF0bqm6j/k8fHWfs2wabuIL7SX3HPmbBLqimuZJzMG1Y6in4x2ea/UzUZeNW9ia/G/MvaM/CrBNK/qAnxVHh6wRH8OMczpmathzj7l+d1y5Rp8zn4II8dLV4i5XC2FcOU1/9tj8x8QPRbx3FOdRCrHS8EGKyEELOhksAPCmEmADgyfA7iGgigBkADgUwHcANRCRXw40ALgQwIfybXoNxsbCFz/DlBrLUVWWal5x6cCpZSDwuf/JQJEpEZjRN4oQpawYxgy1pic2SKdle8L+5zU0cVNhaL1ByET741WNw+acmWtu75uwPpvwgAAdxYMoaPEWO6nN2iQ7kOP719pcAmEUdCfGgpe+X39kcfbYReLX/uA/P85jFqinx3br5FWxNJcb0+lqzSazEZ6aOTT07jnNSxZsuk+ysnIPL2TPycwijILjEvLpOsU8Y+kbmE+8ItIfO4QwAt4afbwVwplJ+lxCiRQixHMAyANOIaCSA/kKI2SLYIW9Trqk5Ylslu0zSxZarm4VtIfrKqrNg7dbmZERYS+iOaBwOe0hf4uCrP4hCFZQE+vd0O7lJ2LxXiSjBvk8azZuUTlYCsB02ekDKDwKwL3yOUKvzwRalVN28XYROH4eRc1A5Akujqtd2lvcNZAup4WqPyE7EvDkHSiplbUPUiRF3P+ohxTbHZd9+Ooe0WMk2vrKHKWuxkM5jof7WXUxZBYDHiOglIrowLBshhFgHAOF/6Uo6GsAq5drVYdno8LNengIRXUhE84ho3saNG7kq7gELs4d0QqHXDpyDrV4179sU0iBpympvQ92UrZyDJ3FQn+9+Q90eyxIu+28fnYOPOM22L3HXqM9k5hsbnGMIxmH7NZZBc30k2/E7YEwaHQdLdHEOlRIHUy31EOR7sHKdlXTC/9g3PmasqxMj7jmpc5fLZa717ufnEPbzp5dXW+tJYt0WWiu5TVkN/RXS+oj2QrXE4WghxBEATgVwMREdZ6nLPQ5hKU8XCnGTEGKqEGLqsGFmhZcNtvdNHpuKhHoys53SfC2gzldk5z0bC1hx1enW/iXmfe8kDGHc+gHdlNX/VY8aaF44vh7SvpyIDpsoRtU52OIn+RD5bylWRSo+M3UMjmdCY2QxJJCw30vwP8E5mMRKBT/ioI7RRcQrFStN228wW16Jvs5tyhp/Pv2DIzF+eF9L3WycgymXgkRgKeVxEAn7eSWMiWaal3L5lcvCI9+G2TO824iVhBBrw/8bAPwZwDQA60NREcL/8pi1GoCqORoDYG1YPoYpbx9YdA7JTcX+aLytlZR2bIvh5IkjcPjYQBxy7rR0aGATbGkWs+hQVHA5giV8OYeEiM5xilWXgU33UiCKwkefPNEc28hHPDioTxOGMkT1v846jF24ajhoX/hYK6m362PKanuNvZuyEIdkQyZdmIr/POUgfPsUnqgmOGTHph/7Odj7U9+jS5xpiyvGteHirIqaCNMEfX6d95F9reMLdA4uDjkQHQ1i/KwCa6UuzjkQUR8i6ic/A/gEgIUAHgBwfljtfAD3h58fADCDiHoQ0X4IFM9zQ9HTdiI6KrRSOk+5puawmbKqL2zBanuIZt+TUmNC52Af29thmGtXYC0Z16dvjwbrqTyLmExiiJKQnYOvclmlrbZYTTo4H5CoTYrFX75e6Vn8OwBzCIvelRAH22/hj3+dH5+DzPk7/O5HnQvujTf4f9IhI7DiqtOthwyJA0f0Mz6fBk/xaVA3O+fgCuGht8UqpBv8Dmqy7m6PMDr6QcLmaQ6EaVTLZStxkhn9TDGaOopzqMbPYQSAP4ebbAOAO4UQjxDRiwDuIaILALwD4BwAEEIsIqJ7ACwG0AbgYiGEfPoXAbgFQC8AD4d/7QKbKas6YVyJXXzDMfuaQAKx8m3Bmq3WerKdoX3tG3nCtNGTcXDdV3twDio++UFzHolCIT7N2dpU6YbVv8N7VOZTvQ2mjRSIn8/ts1fG4zFsWL7EQb3XVs/NNIuNhE2X0JiBS41+d/WtDM51ite75JwlffV/QEAcsugcJEzzTfbXWipDCPs6KhSCQxDnUNgtnOCEEG8DOJwpfx/AiYZrrgRwJVM+D0C2RAEVQr5vNt57Bj7q6SWxQtxmD92Y4bQi4dIPyAlp0jVE9VTLGc++XQvCxY5LJIlDBlNWl86hTWZN8+McfKLR+iBL9rQsfftYnqjN2Oao2p/LeUz2n+W2bIRWfccuJNKxgAAAEelJREFU7lLOX1fXazbHB7R/PNKeo0N/1mu3ph3jskRA8LXK0+/VREDlPbf4HG6IjGHF9RDq7Ym6C59Rtlor+a8UNeyvDVlOVNE4HG9FymxdIqBK4PK38CUySTNav2t+ck7qrKG1SVFqVt9YUTZC6xtcrVLYxqg/R9uGmiB2lueviu9cYUZkm00OjujOL384+uxreOEyQLj9hYBbemsjn8xKQp6cRw3oiZMdyZX0tbuTyaKoPuM1W3Zb29ONA0w+KLqBhukZycPFjU+/BcCcIhQI7sWUJ7q7OcF1K9jFSv7t+G54WWSxcdv21yJPHX172hm/Suyha2VD7Rv0D4gJks1KCkiastpFNvFn22ZaI7cTI3zHCAD7W8x91elgsxYrKhv0RyxGBUA8/10n5I+Oj9vxTQLlsmjzSbaTaNtDz6UvmRlMvg2VeLrSvqrPZWjfJtz7bx9l6+mE0HeN2whjgcy+NIFCunv4OXQ7RI/VwTk4WWNlEuw72LywVfbRdzNyh7oIT32OhV1JzoJazTv1Frx9IxwnedWU1aXQkyjWSOdQCaycQ9i7fEW2+bZ0fRzfyEZw1P5c2fXkHMvive7bt4sDP8AjU58KHz8Z/RDA+TGoosE+TfaDlUrg/vOUgxI+JKZ6gL9+zbbE+1mcRruNKWu3hBQrMVuDOr/6O07l6iSwmTmqpxWXiV/UtqeduGvTrWSj9znVnTttH1z7WbcISMK1YCSX4Tp0FQuxKauvtVIW0c4f/+0j1v4/YLGk4mCPwRT8l8TOZg21dINf8LssvizynWTJ7NfHMkb1Xt94d7u1HZf4UMf/+we3OjJrOLbePeyir94K8bAaAWjP3NuZ0NLmiP5mXWIuVmpH2DLBqZNgn8HpkAsqfMVKaiwib7GSywY7bMdVr71yzf73pw/DWVPsCsIsoUhir3UXEQFaPDgHtZks/h0fGsc7eEk8E8Zo8m0yC2GyOdl96ehxVfeXrhss/SzEYbiFOGbZnG0nYw77DLGvRSA7l+yyPhs9KA5kaVtn6ZhOfs/TdlDsb+H6coV0O8LXlPWnn+Gjp0r4ToKEE5zn4vU1BXRxIh2VFISDOjRXeGQ5TB9xmo/OIeH856lzGDMoHdVWR0OBMHpgL1xztt/J1zZGfVg2Ja7NG1xFFosqSVyziJVc3PRoJjIwB1+ClCUPSBYvfB8MVBzQbA6xw/v3TBwkbYTkP06cEH0+yBDyBnDolXLOof1gO6Wqa4vzTlTxiUMD6wk18xeHhPmc5+lqYG+7FZJvDt5KaEMW72wbfHNJALESPEsODV9rJdszUhV7PpZqRITnLjkBZzvMKqWM3GeMsu7lnzrUWDeLn0hWZNmAXdzBoD5+HIGvDuqVH5yMhT86xV0R7nAYEneE1lcuw4ssudKPmRAr7a3RaJXfvnrCeGM922HKN6d3LVCHyX4CcK8wSzz8r590IL541L5WVhvQ8yP7LfLvnnaI9XfZjKu5sWE00tMtjmU6/vvTh3nXtSELUZQL1cU5LH8vtvCw+zn4jDAZZrmWSYRk9z5+DoTgIGILX5FFl+ALeb+9PTyjfeEbf8o38F6fDGPLGi3Ytb2q7bn0cGpde7TV4H/PxoKVq9Q5BzWeVZE6LvBe/REHS2wlFe74MOQkDEAyeJfvGneFMpCWKLuY3Lkq9hnSGy9//2QnF9QeUDdvXw4nywk5S2Y7E1qU8AjSf6ImCLu3W1TJfsvOU6psZ5RH/CNf7AkF1650mVkgn/sFx9i56UG9m/CJiSPwz456leC/zjoMn/1Q2oxVIpoaTmfP+Lm4nvvGHbHPk+15ynVgs24EkqK+t/7rtMRBNsjpnXMO7QJbPgcV1ca3l9hvaBxJ0les5MLHDxqO0QN74SSHYxAADG4HRzkfZPHvKHmKlVTY4jX5vjuVc3Ala8kESexsDniKx6xLBi+fpc+WMHFkf3zycDen6ONpXilcDmvFAuGm88yZ4qpBj4aCV6Y+t1gpbuOEg81BHgHgofnrgP+/vTOPsao6A/jvY2YYdqjDooIsiqIosgwFaaFYd6oRrRoXClRMrIm21tgFraRprI021bgmSFoI2kXTtE2htTV2Qau1KtQVERFrFEtqbUFZKjj26x/33OF23nt3mbn33Xtnvl/y8u6cOe+8873v3fed851zvg9v5hQ2MPG/38NDdiPB/7uVKpIomVspOzRsRTpAWsahs5FRwxg5pC9PLD0plbayIngyfGxL+EjpgFsp+VbMasT9mGcd0cKftrwLpGsc/IBtA0MWcP0u7m/7iP4R2yr9QUWcNaSHrp4Tq4/+Ftokaw5lIHrbtPcc9VEGD95FzUQH9Wnk/Q/auOOi8E0svmGK8gyEpTD1divZIbhM6apbqXPvGd7m2qtmc9O5dQkxlTnBEWnUYqHveUu0FTMFt9K9C1vbr9McjR0wDrXdee2J6T+Kdiv5H0uaGcB27vXCNwzq273Gh1HGzv8so7a+JjGaC07wwnTPnRCeY8YfHEatpYTNJBt7CW112sva44xDzIlDpwKt1eKLJ43n7MmHRtabNGowC2ZWjwdfNpKsH/g/eom2YoYegovXRr+IU7Kd5fhRXl6O0JmD6+P+tv9GG8WYo90kHDHMc3cePrR2Ap3E5Ldzuv2to4I8Huq22558TLjrK4m77WunT+CVG8+I3LLtG4eo4JVh7TQ3NaS6eSKM7jVsiEFYPoesuPa06glSujNJbi5/1J5kthaeSat+uq3GPZdM5Y1390bk2vB937C7SpC4IAf1683Yln6Ru9iSsHTe0Xx22kjGJkjhGkX7vZVai8mJsrOHDO7Ls8tOjRVeZPjA5liDOhGJdc4i7nmesJlDc2OvdNfHQuh5xiHmzMHoGkmMg+/RyWDHZiR9mxpiJXVJwsA+TUwaVT0Wj0/Qfm3bER4htLGhF+u++uk0utZOn6aG9hlO2tRz4OXzn/2eDqNG7+BlAYzDU9efnKos/iAoamty2JqDZxzS/b7Woue5ldxzzoPLwvGdcyex/HPTUmvPHx0Nj3E4SUPiXXWGJCEh1t9wSirvmZSsw4XnwYUf9w5Qjh0aHe4ibXa6swhDUty2nbaRa58hdyGXRHNjQ3t8sazpcTOHeccdzFEjBsQaYfQkLpmZzsnoICsWttaMZhmkfc0hpXuxsaEXb9x8Zqy6/uLgmBjxe9Ikj1lSZ7n9wimxAjKe3zoq8vR4Viw78xi+tfZlxg9PcQ0lZdpiGofmEBfVnn1t7NrXxoPPvNlujLOixxmHMS39GROxtTJqX7MRj9OOPThWvRGD+rBj74eJMsalyR+unUtL/3jhF9IiuC6y7isn1vW9k3LO1JF5dyGST4wfysPXfCrvboTiz2h9F1gtBjQ3cusFk5l8WOXAyk/iVA/XXWGMg4icAdwBNADfV9Wb8+jH5m+fkUm4AqM2q5fM4Mmt/4pcJPT3k88eH57IJimHD6v/aDN4a9d71mLkgx9HKypcONROiypxD2qkQCF+BUWkAbgHmAdMBC4WkYl59KW5sSG1w2pGPEYM6hNrdHrfZV7QtLCIlmUhuLsljwVco/6cOGEYt184hWtOOarTbfjbYD+sQ3ylQhgHYAbwmqq+rqr7gQeA+Tn3ySgYUw4bwv2XzWDpvKPz7kqXGeHicnW3E8pGbUSEc6aO7FJ48flTvEHUjIjcI2lQFLfSSOCtwN/bgJk16ho9mDlHhp9CLQu9G3ux7KyJzByX/U1udB9mHdESe7NFVymKcag2r67wqonI5cDlAKNHZ7tSbxhZExW91DDypChz2m1AMM7uKODvHSup6gpVna6q04cN6x4jSMMwjCJSFOPwDHCkiIwTkd7ARcCanPtkGIbRYymEW0lV20TkKuBhvK2sK1V1Y87dMgzD6LEUwjgAqOpDwEN598MwDMMojlvJMAzDKBBmHAzDMIwKzDgYhmEYFZhxMAzDMCqQqFyqRUVEdgGbq/xrNPBmjCYGA++lWC+LNuPKksV7Z9FmnvJkIXfa37UkdbOQ2+6ddOpl0Waa8kxQ1egAZapaygewvkb5P2O+fkWa9bJoM64sJk9ucqf6XSuA3Hbv9AB5av12dnx0R7fSzpj11qZcL4s248qSxXtn0Wae8mQhd9rftSR1s5Db7p106mXRZhbyhFJmt9J6VZ0et7yMdCdZwOQpOt1Jnu4kC6QrT9y2yjxzWJGwvIx0J1nA5Ck63Ume7iQLpCtPrLZKO3MwDMMwsqPMMwfDMAwjIwpvHERkpYi8IyIvBcomi8iTIvKiiKwVkUGuvLeIrHLlz4vIiYHXtLry10TkTskpN2OK8qwTkc0i8px7DM9BlsNE5I8isklENorI1a78IBF5RES2uOePBV5zndPBZhE5PVCeu35Slqd0+hGRFld/t4jc3aGtXPWTsixl1M2pIrLB6WCDiJwUaCsb3cTdHpXXA/gUMA14KVD2DDDXXS8BbnTXVwKr3PVwYAPQy/39NDALL7HQb4B5JZdnHTA9Z90cAkxz1wOBV/FygH8XWOrKlwK3uOuJwPNAMzAO2Ao0FEU/KctTRv30B2YDVwB3d2grV/2kLEsZdTMVONRdHwe8nbVuCj9zUNXHgH93KJ4APOauHwHOc9cTgd+7172Dt/1ruogcAgxS1SfV+zTvA87Juu/VSEOeOnQzFqq6XVX/6q53AZvwUr7OB1a7aqs58FnPBx5Q1X2q+jfgNWBGUfSTljz17XVtksqjqntU9XHgg2A7RdBPWrIUhU7I86yq+gnQNgJ9RKQ5S90U3jjU4CXgbHd9AQeyyD0PzBeRRhEZB7S6/43Eyzbns82VFYWk8visctPiZXm4YYKIyFi80c1TwAhV3Q7eTYA364HqucJHUkD9dFEen7LppxaF0k8XZfEps27OA55V1X1kqJuyGoclwJUisgFvSrbfla/E+3DWA7cDfwbaiJmjOkeSygOwQFUnAXPcY2FdexxARAYAPwO+rKrvh1WtUqYh5bmQgjxQTv3UbKJKWS76SUEWKLFuRORY4BbgC35RlWqp6KaUxkFVX1HV01S1FfgJnq8XVW1T1WtUdYqqzgeGAFvwfmBHBZqomqM6LzohD6r6tnveBfyYnNwZItKE9+X+kar+3BX/w013fZfEO668Vq7wwugnJXnKqp9aFEI/KclSWt2IyCjgF8AiVd3qijPTTSmNg7+7QER6ATcAy93f/USkv7s+FWhT1Zfd9GyXiJzgppCLgF/m0/tKksrj3ExDXXkTcBaea6re/RbgB8AmVb0t8K81wGJ3vZgDn/Ua4CLnKx0HHAk8XRT9pCVPifVTlSLoJy1ZyqobERkC/Bq4TlWf8Ctnqps0VrWzfOCNpLcDH+JZycuAq/FW918FbubAYb6xeJFaNwG/A8YE2pmO9yXYCtztv6aM8uDtxNgAvIC3OHUHbpdMnWWZjTeFfQF4zj0+A7TgLaRvcc8HBV7zDaeDzQR2VRRBP2nJU3L9vIG3YWK3+35OLIJ+0pKlrLrBGzTuCdR9DhiepW7shLRhGIZRQSndSoZhGEa2mHEwDMMwKjDjYBiGYVRgxsEwDMOowIyDYRiGUYEZB8PIABG5QkQWJag/VgKReg0jbxrz7oBhdDdEpFFVl+fdD8PoCmYcDKMKLhjab/GCoU3FO6C4CDgGuA0YALwLfF5Vt4vIOrzYV58E1ojIQGC3qn5PRKbgnXrvh3dQaYmq7hCRVrz4WXuBx+snnWFEY24lw6jNBGCFqh4PvI+XX+Mu4Hz14mCtBG4K1B+iqnNV9dYO7dwHfN218yLwTVe+CviSqs7KUgjD6Aw2czCM2rylB+LY/BC4Hi/RyiMuynMDXigUnwc7NiAig/GMxqOuaDXw0yrl9wPz0hfBMDqHGQfDqE3H2DK7gI0hI/09CdqWKu0bRmEwt5Jh1Ga0iPiG4GLgL8Awv0xEmlx8/Zqo6nvADhGZ44oWAo+q6k7gPRGZ7coXpN99w+g8NnMwjNpsAhaLyL14UTLvAh4G7nRuoUa8JEwbI9pZDCwXkX7A68ClrvxSYKWI7HXtGkZhsKishlEFt1vpV6p6XM5dMYxcMLeSYRiGUYHNHAzDMIwKbOZgGIZhVGDGwTAMw6jAjINhGIZRgRkHwzAMowIzDoZhGEYFZhwMwzCMCv4HP8wKg4IZuZcAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'].plot()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAELCAYAAAAybErdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmUJFd95/u9seWetVd3dVX1qtbSLakltCFACCSMhI0tzIBH4AHZMJYPFh7z7LEf+L039hs/jDk21jMzDzxgYUDGFhhsJGwkI4SMWKQWrV2tVi/qru6q7torq3LPjMi474+4NzIyM3KpqqzMyMz7OadOZ0dFVEVmRcTv/r6/jVBKIRAIBAKBE6ndJyAQCAQC7yGMg0AgEAgqEMZBIBAIBBUI4yAQCASCCoRxEAgEAkEFwjgIBAKBoIK6xoEQMkkIeZwQcowQcpQQ8jts+x8TQs4TQp5nXz/vOOYThJBThJDjhJDbHNuvIYS8xL73WUIIYdt9hJCvs+2HCSG7m/9WBQKBQNAojXgOBoDfo5ReBuD1AO4hhBxg37uXUnoV+/ouALDv3QngIIDbAXyOECKz/T8P4G4A+9nX7Wz7hwHEKKUXAbgXwKc3/9YEAoFAsFHqGgdK6Syl9Fn2OgHgGIDxGofcAeABSmmOUnoGwCkA1xNCxgBEKaVPUqvy7qsA3uU45ivs9TcB3Mq9CoFAIBC0nnXFHJjcczWAw2zTRwkhLxJCvkQIGWDbxgFMOw6bYdvG2evy7SXHUEoNAGsAhtZzbgKBQCBoHkqjOxJCwgC+BeBjlNI4IeTzAP4EAGX/fgbAhwC4rfhpje2o8z3nOdwNS5ZCKBS65tJLL2309AUCgUAA4JlnnlmilI7U268h40AIUWEZhq9RSv8JACil847vfxHAv7D/zgCYdBw+AeAC2z7hst15zAwhRAHQB2Cl/DwopV8A8AUAuPbaa+mRI0caOX2BQCAQMAghZxvZr5FsJQLgPgDHKKV/6dg+5tjtlwG8zF4/BOBOloG0B1bg+WlK6SyABCHk9exnfhDAg45j7mKv3wPgB1R0BBQIBIK20Yjn8EYAHwDwEiHkebbtDwG8jxByFSz5ZwrAbwIApfQoIeQbAF6Blel0D6W0wI77CIAvAwgAeJh9AZbxuZ8QcgqWx3Dn5t6WQCAQCDYD6dQFupCVBAKBYP0QQp6hlF5bbz9RIS0QCASCCoRxEAgEAkEFwjgIBAKBoAJhHAQCgUBQQc8Zh59NreDP/+1VFMzODMQLBAJBK+g54/D8uVX8f4+/hnTeaPepCAQCgWfpOeMQ9FkNYtP5Qp09BQKBoHfpOeMQ9ll1f8mc8BwEAoGgGj1nHIKaZRzSOeE5CAQCQTV6zjiENEtWSomYg0AgEFSl54xDkMlKIiAtEAgE1ek542B7DkJWEggEgqr0nnEQnoNAIBDUpfeMg8azlYTnIBAIBNXoOeMQYLJSWqSyCgQCQVV6zjhoigRNlpASRXACgUBQlZ4zDoBVJS1iDgKBQFCdnjQOIU0R2UoCgUBQg940DsJzEAgEgpr0pHEIaororSQQCAQ16EnjYHkOQlYSCASCavSkcQhqClLCcxAIBIKq9KRxCPuUrvccjs3Gcdu9T2Atrbf7VAQCQQfSk8YhqHV/QPqlmTUcn09gajnV7lMRCAQdSE8ah5Cv+1NZ41nLY1jLCM9B0D7WMjp+/W+fxnw82+5TEayTnjQOQU1GRi+gYNJ2n8qWwbOxhHEQtJPjcwk8fnwRL0yvtvtUBOukJ40Db77XzdJSImu9N+5BNMJPX1tCVu9uj0rQWvj1lBHXVcfRm8bBbtvdvRdsYp2y0uxaBu//4mF8+7nzW3lagh6DG4duvte6lR41DnzgT/d6DlxWimcae4/nYxkAwOya0IYFzSNnmACEcehEetI4BLVe8BzWF3OYj+cAAEvJ3Jadk6D3sGWlLpZwu5WeNA7FUaHde8HGecyhhnHIGQV8/FsvYnYtgzmWTSKMg6CZZJnnIGIOnYfS7hNoB0EWc0h18WomyWIOtQLSpxdTeOBn0zi4I2qnGi4n8y05P0FvkBMxh46lJ41D2I45dO8F24islGerurPLaSwmhawkaD485pARxqHjqCsrEUImCSGPE0KOEUKOEkJ+h20fJIQ8Sgg5yf4dcBzzCULIKULIcULIbY7t1xBCXmLf+ywhhLDtPkLI19n2w4SQ3c1/q0WCvZTKWlNWsm7cqeU05ta4rCQ8B0HzENlKnUsjMQcDwO9RSi8D8HoA9xBCDgD4OIDHKKX7ATzG/g/2vTsBHARwO4DPEUJk9rM+D+BuAPvZ1+1s+4cBxCilFwG4F8Cnm/DeqsLrHLrVc9ALpq3xNuI5nFtJ2bJSMmeIWgdB0xB1Dp1LXeNAKZ2llD7LXicAHAMwDuAOAF9hu30FwLvY6zsAPEApzVFKzwA4BeB6QsgYgCil9ElKKQXw1bJj+M/6JoBbuVexFQRYQLpbPQceaA9pMuJZA9bHXUm+YN2wZ5fTmItnEfFbRlNIS4JmkdWFrNSprCtbick9VwM4DGAbpXQWsAwIgFG22ziAacdhM2zbOHtdvr3kGEqpAWANwNB6zm09aIoETZaQ6tILlktK4wMBFExa9X3m2I2bM0xkdRMHd0QBCGlJ0DxyBpeVunMh1s00bBwIIWEA3wLwMUppvNauLttoje21jik/h7sJIUcIIUcWFxfrnXJNgj65a1NZeYbSeH8AQHVpKV8wS/5/+Y4+AMCy8BwETYJ7DiLm0Hk0ZBwIISosw/A1Suk/sc3zTCoC+3eBbZ8BMOk4fALABbZ9wmV7yTGEEAVAH4CV8vOglH6BUnotpfTakZGRRk69KkG1e6fBJR2eA1A9KM09B87Bce45COMgaA4i5tC5NJKtRADcB+AYpfQvHd96CMBd7PVdAB50bL+TZSDtgRV4fppJTwlCyOvZz/xg2TH8Z70HwA9oNaG8SQQ0uWt1UC4rTQwEAVT3HHJlnsOBMctzELKSoFmIVNbOpZE6hzcC+ACAlwghz7NtfwjgzwB8gxDyYQDnALwXACilRwkh3wDwCqxMp3sopfzK+AiALwMIAHiYfQGW8bmfEHIKlsdw5ybfV12CmtK1Omgi15isxAuUhkIallN57BoKIuxThOcgaBrF9hnCOHQadY0DpfTHcI8JAMCtVY75JIBPumw/AuByl+1ZMOPSKqxpcN15wTYqK/GYw0WjYRTmE/CrMobDmvAcBE2Dt89I6wVQSrGFSYiCJtOTFdKAZRyWU935EIzbslI9z8G6cT9w4y6cWkgCAIbCPhGQFjQN7p0WTIp8wYRPkescAfz45BIu3h7GaMS/1acnqEFPNt4DuKzUnZ5DImtAkyUMh3wgpGgsyskXTGiyhHdeuQMfe9vFAMA8B2EcBM2BxxwAIJs3a+xpUTApfv3LT+P+J89u5WkJGqBnjUNAk5Hu0lTWRFZH2K9AkggiPqVmtpKmlF4Cw2GfaL4naBrOavu0Xv9+i2d06AXatd0LOomeNQ5BTUa6S9PrkjnDrnaOBtQadQ4F+MqMQ8Sv2tlOAsFmyeoF9AVUAI3VOqykrYUJL54TtI+eNQ6BLg5IJ7JF49BXwzi4eQ5hn4x8wezZm3MhnsUf/vNLPfv+m01WNzEQtIxDIxlLq7ZxKEpQT5xYxM1//rg93VDQGnrWOARVBXnDRMHc0nKKtpDI6gizmRUDQc2+4crJFyqNA5+v3atu/Y9PLeHvD5/D8blEu0+l46GUImcU0B/UADTmOcRS1kLGaRz+7qmzOLucxkwsvTUnKnCld41DFzffszwHa7XWF1Sxmq7uOZTLSmHbOHTf59IIfHUaq/KZCRpHL1CYFBgMWcahkSppW1Zi+yayOv79hNUqZ6VLswu9Ss8aB96ZtduKcx55eRanFpLY0WelAQ4EVcTW4Tlw49CrLjyPt1TztgSNk2XS3ADzHBqZI10uK/3g1QW7tbwwDq2lZ41D0XPoHuPw7LkY7vn753DlRB9+9+2XALBuzLWMDtNFPssZhYq881CPGwfbcyh7EK2ldfzhP78kHlDrgGcqDYbWEZC2ZSVr3395cRYRdk2Kz7619LBx4NPgusc4HL0QR8Gk+J/vf52dIdIXUGFSuGYg5Q2rzsFJ2N/bxiFVRVa67ydn8PeHz+Hw6eV2nFZHwoss1xNzKPccjkyt4O0HtwMQxqHV9LBx6L6Yg85uKD7pDii69G7SUt4w4VNFzMFJ0kVWSucNfPXJKQDo2qr6rSBXJis1MmEwZscciq2+h8Maon5FGIcWI4xDF3kOOuuVpCrF/jUDzKVfdUlnzbl4Dras1KO1DgkXz+EbP5u2g/riAdU4fJYDT2VdT7ZSvmDCNClyhgm/KlttXcRn31J61jgEutA4GCyuoEjFP2tfoJ7nUBpz6PWANDeKzs/r4ZfncGAsiqhfEX2n1gH3FEI+BZosNWYcHEVwXFryqzIGQxpWROV+S+lZ48BjDpkGSvo7BZ7VocoOz4Gt2tyyb1w9B2Y0e7XOgRtFZ/rvWkbH5GBArF7XCX+4+xSJzU+pf69xjy2nm3bqa0CVMBjSqmbdCbaGHjYO3ec56AUTqkxK2iJzvdet1iHnEnNQZAl+VUKqi2Ix66FY51B8EMUzOqJ+FUMhTchK64B7Dn5Vrtsi//xqBnrBLAlIO48fDGrCMLeYnjUO3VjnoBfMEkkJsHorEVJckZ1fzeB1f/IoTs4nkDMKFZ4DAIR9vdtfqVjnUDSm8ayBaEDFYEgTTQnXAY85+FUZAVWuWgSXzht422d+iM8+dhKGSaFIBDmjUPQcNBmDYQ2xVB5bPCBS4KBnjUNQ7UbPgZZISgAgSwRRv2qvyE7OJ7CSyuPEfNI1Wwmw+iv1bLYSm6KXzBnIGyaMgolkzrA8h7BYva4Hnq3kV6WaY3nPraSR0Qv45+fOAwBGIz7kDNPe36fIGAppMExatf28oPn0rHFQZKnhIFmnoLtUPANW3IGvhHkTvkRWt2QlF88h5FN60jjoBRNZ3cRoxAfAitNwmSkaUGzd262gUFAkmTPwqYeP2decT6ktK51btnomzcQyAIBtfX5QR22On8UcAJEt1kp61jgAaDhI1ilYMYfKP2l/sBjM4zcsXwGXZysBVsZSogeNAzeIk4NBAJYUF88w4+BXMRTyoWBSxLOi79JdX3oaf/eU+0Cew6eX8b9+eBqPvToPgHsOStUW+dPMKHDGWOsXvpAJqDIGbOMgssVaRU8bh5AmI9VVngOFIlfO6O13eA78Xz7tzT3m0JueA1+p7rSNQ942BNGAJSsBEDO2ATx7NoYXplddv8c/s5fPxwFYMYe+gFrRkoQzvZKGX5UgsUt3W9QyDnxIlV+1ZCUAIubTQnraONTSQTuRap7DQFDDaoZ5Duxf/oBzizn0qqzEJaRJNnt7NZ23H1BRv9KV0kY8q2+odiPHYjFu8FoRvvL3KRJ2DQbtjKRyplfS2D0UwhUT/QCA7dEyz0GT7c9epLO2jp42DtYc6e55COqFyroFgHkOrPJ0jctKtTwHv9KTRXD8PU8MOGQlp+cQsmIRXNqglHZ89swfP3QUv/o3h9d1DKUUeg3j4Awaa4oEQgh2D4dQMCmmVypnMkzH0tg5GMRbLxlB1K9ghMV8uHHwK0XjIBICWkdPG4dumwZXVVYKaEjkDCuPPFMqK7lnK/WocWAPtYlBy3OIpfPFmIOLrPRnj7yK939xfQ9Wr7GYyOHVuQSmllINH2OYFJRWr6J3pkH7WYLEnmHL4E4tF3/Pwy/NIpHVMb2SweRgEL/1lovw6O/ejACLg3Ev169JCGoK/KokqqRbSE8bh6BWPfe6E6kqK7H+SmsZ3U5p5Q84Ta4MSIc0BVndSuPsJXgQfjTig0+RsOr0HPyKXVC4krIylr71zHkcn68+Me6vf/gajl5Y2/oT3wS8wd3jxxcaPoZX4leTHhOOgL2fPeh3D4UAAGeWLM9hPp7FR772LP7ooaPI6AXsHAxCUyRsi/rtBctaxij5GUMhnz0MSLD19Lxx6C7PoXq2EmBp6Nxz4Npt+SQ4AAj5rJvxSz85g7f8+eM9M56Rew5hn4qBoFV0Fc/okIhlMDVFsruDvjCziqVkrmqDQkopPv3Iq3johQutfAvrhg/kefz4YsPH8LhBtfde4jmwB/tgyOqsyj0Ufv19m9U2TDJvDYA9Y4QvZLgn0W0xQq/T08YhoCpddbHpBeoaQ+CZHouJvB1z4FK5W11EhM10+PZzFzC1nMav/+3PbP23m+EFcGG/ggHWKiPORq5KLJWG91f6/jErTTNfMO1iLydceuErc6/Cz++p08sNx9+451BdVtKxLWrFDfjigxCCPcMhW1bi1yEvGeEZYs5j4hkdskTsBY9flUpmSwu2lp42Dpbn0D3aul4wXWMO4/3Wqmwmlq5o3e3uOVjG4ZXZOC4bi+LkQhL3PznV9PP1GsmsAUKs6vnx/gCmY2mrr1KgOB9jMKRheiWN7x2dLzmuHP4AbWSGQTvJGgWMRnzIGyb+7ehcQ8fkHMbBLSCfyBrYOxxGxK/YngMA7B4O4QzzHHjQWmZGlycBAA7PIaPbXgPf7vXPs5sQxqHLPAc3WWms3w9CgONzCRRMWmIQ3DwHbhwA4M7rJhH2Kfb4xm4mmSsgrCmQJIJdQ0GcW0ljjTXd4+wcDOL56VWcXEji4I4oO666cfD6SjerF/Dmi0dwcEcUf/rdV+0VfS3yTFYyabF/kpNE1kDEr+Cysag9kRCw4g4XVjPIGQU7RfjX3rAbN188UmJE+DW5ltHhdyRM+FVJGIcW0tPGIaDJyBkmCl3SDqFaKqtPkbE96sfLLDg6MVCp7zqJOIzDocl++FW5q1qbVyOZ0+0xqbuGgsjqJl5bTJYYhz/95Stw/4evxyd/+XL8xk17ARQ1dtOk+Pi3XsSLM6u2Lu/1h1lWNxHSZHz6P1yJlVQef/bIq3WPcdYqJHKVxiSR1RHxq/jMew/hU+++wt6+ZzgEk1p1DVym/O1bLsJXPnR9yfFOWclpNPyK7Hlj2030tHEI2XOku+PBx1t2uzExEMBRVrE66dB3a3kOqkxw2VjEyurqIg+rGsmcYQ874hr41HK6RFYKaDJu2j+CX71hl92DiXsOiZyBB342jR+dXLIfYt43DgX4VRmXj/fh568Yw+Ov1s9ayjse0G5zP7jnMDkYLLnWdg8XM5Z4FljYsRDh8Gwlk6LUOKhCVmolPW0cgr7uGmyjGyYUF88BsDRdnqrpFvxzwm/Yy8aidZumdQOHTy/j7ff+EK8tpGzPwfkZOT0HJ3xfHnPIsQdXzjBt6cVNdvEKlFI204OnimoNLZScxqE83mKaFMm8gai/8qHPeybNx7OIZyxD7Ha9Or3Z0piD5OnPs9voaeMwErZWfguJbJvPpDnopnvMASi2hLBeN2YcDrF2BoEuqwcp58WZNZyYT+L4fMJ+7xMDQbvXTzTgbhwizGhwz4F/RnnDLMpKLplMXqE4htO6BkI+axFQr+o775CVyuMtqbwBSoufjRNe5byUzGEto5fEI5w4r0lnzMGnClmplfS0cRjrsx6Ys2tdYhwKJrSqslLRILjllDvpC6h43/WTeO+1EwCs1Vs3yEpPnV7Gf//OKxXbeSUuUDSMmiLZ10dVz4Htyz0yvqrNGQVHtpJ3H2Y8jZVfA0FNgWHSkoe/GyWeQ5lx4PGXiIvnoMoSBoIqlpNWQ0O3fazzcRoHp6wk2d6ZYOupaxwIIV8ihCwQQl52bPtjQsh5Qsjz7OvnHd/7BCHkFCHkOCHkNsf2awghL7HvfZawWZaEEB8h5Ots+2FCyO7mvsXqjPVbbu7saqbOnp1BTVnJYRCchsIt5iBJBJ9695W4knkO1WSl6ZV01U6bXoNSiv/+nVfwpZ+cqdCtV9M6BkMa3nPNBN56yai9fdeQ9Tk5Yw5O+MONVwRnXTwHXgMxE0t7riVJ1jGMB3CMzq0js5bGHKoZB3eDOhT22Z5DNY9MkSU7xdVfnsrqYU+s22jEc/gygNtdtt9LKb2KfX0XAAghBwDcCeAgO+ZzhBD+1/08gLsB7Gdf/Gd+GECMUnoRgHsBfHqD72XdDIU0aLLUPZ5DTVnJetAFVNlubAa4G4dyAppSISsZBRPv/vxP8RffO76JM24dh8+s4JVZKyC/mCjtQrqa1jEQVPEX7z2EX7lu0t5uG4cqDzqfIkGRiK27O40Dlz/46vw//q+ncO+jJ5r4jjYPPzc/8xzsBI06q3O9UJSdKj2HYiGhG8NhDUvJHOI1ZCWg6D2Uew56gXZNdqHXqftkoJQ+AWClwZ93B4AHKKU5SukZAKcAXE8IGQMQpZQ+SS1B86sA3uU45ivs9TcB3Mq9iq2GEILtfX5c6ALjwDtlVpOVtvf5IRGrQytf8SoSsVdotQioUoWs9PTUChYTuY6pnL7vx2fs10tlLapXM3m7xYiTnYNWdk21FS4hpKSDbZYZhHzBrCiCW0zkcKJGH6Z2UPQcmKzk455DbQ8nXyheC+uRlQBWYZ7MI5E1qhpdoGgcAmqlxORWkS5oPpuJOXyUEPIik50G2LZxANOOfWbYtnH2unx7yTGUUgPAGoChTZzXuhjr82NurfNlpQJr11DNc1BlS0PvC6gIqDJkibgGo91wa23+8EtWNa1bf36vMbuWwfePzeOm/cMAKof1xFKW51BO0XNwf9ABrIOti+fAV9dZvQC9YGUvnXNpV91O+Pny64B7DvUGYNWSlZyNCt0YCfuwWCcgbZ2TZQj8ZdlK1nl7/5rrBjZqHD4PYB+AqwDMAvgM2+62DKU1ttc6pgJCyN2EkCOEkCOLi403CqvFjv4ALqx2vufAH0bVYg4AcHBHFLuHQiCEIOpXGpKUgMpspYJJ8chRbhy87+J/54ULoBT4yM37AFR6DtaDqtJzuOXSUfzhz1+K1+0aqPgexzlSNetMZeWeg2Ha8ZrzsYynOt3yh6zf0dgOaMRzKP7NE9l1xhxCGhJZA8mcUTWWAxRrHQJldQ6A8BxaRfW/Tg0opXZjGULIFwH8C/vvDIBJx64TAC6w7RMu253HzBBCFAB9qCJjUUq/AOALAHDttdc25ak01ufHfDyLgkkbkli8xPRKGiMRH/yqDN20bvRqRXAA8Fd3Xm2/jvjVkhVgLYKqDL1A7a6vz5yN2bp9J3gODz5/AYcm++2HfPnks9V0Hv0unoNflXH3m/fV/NkRfzXPwfpcCia1W0UYJsWF1Sx2DgXdf1iL4edrp7Ku03MIaXKNgHSVmIMj3tWIrOQrizlY5+39a64b2JDnwGIInF8GwDOZHgJwJ8tA2gMr8Pw0pXQWQIIQ8noWT/gggAcdx9zFXr8HwA9oC8drjfX5YZh0Q6MS2wmlFL/w2R/hSz+xtHSd3bC1vIGAJturw8g6PQegmMf/CmvDsXck5HnjcGohgaMX4rjj0A74VRkRv1IiK+UNE6l8wVVWagTnYCT+0Mo7PAegdLSll6SlYp1DWcyhTiEcf28DIc01IC1LpGTF74R3CAZQU1bSFBfPgUlNokq6NdT1HAgh/wDgLQCGCSEzAP4IwFsIIVfBkn+mAPwmAFBKjxJCvgHgFQAGgHsopfwv+RFYmU8BAA+zLwC4D8D9hJBTsDyGO5vxxhqF57JfWMtilM2u7QSyuol41sD5mBUv4fJOtZhDORG/0rDnYBuHfAFRv2oPYRkJ+zwvK333pTlIBHjnldZ6hmveHF7j0OcSkG6EiF/F1LL1wLdlpYKJnMNoOmdOn11J4U0Y3tDvajbVYg71quH5gmDQ1ThYrTOq5ZSUeA4NxRycRXDccxDGoRXUNQ6U0ve5bL6vxv6fBPBJl+1HAFzusj0L4L31zmOrcNY6XDXZ367TWDf8plxlXTT5Das0KI1dvC2CC77GAvF2/jt7aKxldIQ0q62G12f6zsWzGAxptuEfCmtYcqSy8s9vw56DX7GlFKfnoBvuxuHcsnc8h6KsVOo5VJvwxskbJmSJIOpXXT2HapISUOxKANQO9PtqeA6iSro1bCjm0E3scHgOnQR3/blkwY1Do1LR//1LBxv+XfwGzTiMQ19AhSpLDXsf7SJvlHaqHQ77SlJKuXHodwlIN0LEp9hDgjJ2QLpQUmVcYhw8JCvx1Fu+Ig+qpYuAauRZg8ewT6loPZPMGYj4qhtaPocbAPpqGGS3OgcefxCeQ2vo6fYZgJX371Okjktn5Su2mO05rE9WIoRUdf3LCTC5gbft5tWtqiJ5PuaQN8wSgzkc9pXEHPgoSreAdCOEfda8bb1glgSk8y6ew3h/AGc95DnkyjwHRZagKRJSDcQcNFlCyJHGy4lnjaoFcICVFs090doBaZHK2m563jgQQrB3JIwXZrw9CL4cvrpbLfMcGpWV1kO5rMSrWzVZ8nzMwc04rGV0++Ftew6bkJUAqzspT7F0ZisBRe/usrEIzq2k6za2axV2QNrRXyukyfXbZxRMaIoV3E/mDPzV90/aU+RW0/magWag6D3UrHNQi6NBOSKVtbX0vHEAgNsPbsfPplYw10HSUirnLiupDcpK66FcVopnmecgE0/l7bthPcgcxiFiPZiWU1bcgQek3SqkG4E330vmjGLMoeDuOVy6PYpkzrC9vXaT1QsgpDT92Sp4rJ/KqskEIZ+MeNbAvd8/gQeePgdKrVRdPpa2GsNhH2SJ2IsON6q1zwC8P5e7WxDGAcA7D42BUuBfX5pt96k0DJ9BkdVNVoVrrUbdJsFtlvJUVh5zUGSppCDKi7jFHABgmUlLsbQORSII1XhQ1aLYfM8olZWcngMbsbpv1GrH4ZVFSFYvwK/IJfKi1ba7AVlJkRB2xBamYxmsZXQkc0bJpEE3hkI+RGtkNAFFWal8hjTg7Tbo3YQwDgD2jYRxcEcU33nhQv2dPYJTF15N60XPYQuMg1u2UlFW8vYqzk1WAmCns66mdfQHtYbjL+XwB2QyZzgC0qWew3IqB4kUBwh5ZX5IVjdLZBvAii/VK4LTmTfGJbWxPj9mYmnMsLTqep7DzRcP45ZLt9Xcpxc8B6NgwvRwE0FhHBjvvHIHnp9exXzcGzduPZzphrF03l6pKjUqpDdKUGUB6bzVJyidL7BsJeJ545Dy/y3hAAAgAElEQVRj+jhnmOndPJ11LeNeHd0o3HNI5nTbcyiYtKTdyEoqj6CmYDRipdMuJLxRcMlHhDqxYg71PQdVlnDbgW34xDsuxW/ctBdZ3cTz06sASlvCu/GBG3fjM79yqOY+tdpndEu20vv/5jA+/W/1Z3a3C2EcGLzJmrOa1cs4deFYOg9jC2Ulv2b9zIxesLuw8lRWzxsHvVDSYJB7Dk++tozlZA6xlI7+OgHUWoRLZKXShnT8965mdAS1Yqv08pbh7SJnmBXNF4NVPAejYOKWv/h3PPD0OTuOMxr14zdv3oc9bDb0k6eXAQDjdWSlRnArglPZnIdukZVOLyZxdsk72Wvl9HydA4fLMYbHNXSOs/ho1RHg3ApZSWM3ZTpvlBiHlVQeeoGCUrphWWarKQ9Ih3wKbtgziH967jweOToHnyLhml2DG/75ERaQjjtiDoAVE4r4VeSSOVBqSXN+VUbUr3jGO3X1HKrEHF46v4bTSykcn09UxHH4ZMGnXltGUJM3XFDoJKjJIAQI+kofUT5F6hpZKZ41PD1+VxgHBpdjvL4S5qTLZCWeNbMVshIhBEHVmgbHjUM0UOzNpBcoNMWjxsEw4SszmF//zRtxbDaO/+3rz+PVucSmZCVeyLWWzpdU7iayOqIBxe4AG2S1IqNRPxbi3vAcsoZZ0tgOqJ6t9NPXLK8gkTWQL5j29QYUZaTlVB77R8NNWSi855oJ7BkOlfwewJKWusFz4KNkvWwchKzEUKXig64TSOYKtn5uBaS3TlYCrIylrF6wO4zymAMAGKZ3DWp5QJpz2VgUD9z9erztslF7zsNG8ClWG5HVtBVz4GUmiZxhexVAMag/GvF5KCBdgL9CVnKPOTzJjEMya1R4Dn7HdMF6mUqN0h/UcOtllUFrvyJ1RRFceSdfLyKMA4OvuL2et89J5w0MBDUEVBmxVH5Ls5UAyzg4PYe+gAqFG1TDuwa1XFZy0h/U8Dd3XYc7rhp3/X6j9AdUxNI6MnrBnmNgxRxk+3dzecQyDt7wHHJ6ocJzCGky0nqhJIsmZxTwsymri34yZ9jZSk54JlYz4g218KlyV/RW4rJw+YRFLyGMA4OvgnUPp5Y5SeYMhHwKBoLWg6loHLZG3gkwWSluy0qqXXCX97BBLV/lbgX9QQ2r6TyyesGu+k1mDagKsVfmvG/RaNSPhUTOE1XSOcOs9Bx8CigtrSV47twqcuxzTOQMO1vJySQzCvUylTaLT5E8vdpuFN6sUchKHUAxIO3dB52TdL6AkE9Gf1DDWiZv59XXmgS3GYJMVnJ6DloHxGmqyUrNZCCkIpbOI6ub9nSzVL4ATZYqOp6ORnzIGybimdrpoq2gWiorUCyyBICnTi9DIsANeweRzOqun+kk9xzq1DhsFr8qd5Vx8PJ7EQFphtJhMYdUzsBQKAhKrSpfw9z6mAOXlfyqBJ8i2wbVq8bBNCkMk265cegPaDi7bOX4O/sFqQ7jwGclcG1+IZGt2ZV0K3nw+fPQC9S1CI4Hzp1yx8vn49g7EsZ4fwAn5hMouHym3Dg0K+ZQDZ8idYWslGCztr0sKwnjwFA7YBXsJJW3ZCVVlnBsLm7PD9g6WUnBSipTMhje68aBy11bbhyCqp2e6uw0qimS/fDlAelt0WIh3P5tkS09r2rc/+RZrKTyyBqVngM/T2cF/isX1nDt7kFr6l3WgCyRikXIOy7fjlgqjysntnYmil+V7WaTnYwdc9ALnk0FF8aBweUYL2feOEnlLFmJZ8roBROEYMvmYAftbCXDfgBy45D3aECarzC3Puag2h6n03OwjAOTlbRiQBpobwuNjF7A1HIKskQqi+B8fBoca+yYyuPCWhYHd0SR0QuWXKZIFQY34lfxmzfXnrfdDPxqd2QrcVnJpNYixqdsrLfXViJiDgze6rqTZKWQpmCABUNzBROqJG3ZCiSoyXYRHH8A8toGrxpUHocpfwA2mwFHR1fn6EtNluzfbaeycs+hjbUOGb0Ak1rXer2YwyuzcQDAwR19ds1BK4L81fAp3VHnwGUlAMjmvXn/COPA4CuhTqiQNgomcoaJoKZgIKTBpFaX0a2SlADLnecxB24cinEab17crZOVHMbBMeimxHNgAemwzxp20850VqfOXSkrlXoORy9Yc04O7IiWjP/cqpTpevjV7qiQTjhqSdJ6+5MT3BDGgcE9B6+ugp3w3jchn2wXws2uZbZklgMnqMnI5AuIOYa5eF1W4p7D1geki95CpefAZSVn8z+fXTndDpzpk+VeVchX5jlciGOsz4/BkFbSonurP9NqdEuFdMIxQc+rQWlhHBiK/aDrAOPAVh0hn2I3kptdy9or+a0gqMkwTIrZtSwuHbMCqVxW8qznYMtKW6vnDoSKD82SbKWSgHRx1R32KSVddVuN82Hk1j4DKAakj16I4+COKACUjP9sq3HwcPpnozjHq3q11kEEpBnFVhDeXAU74S5/iXFYzTal4Vk13rR/BM+dW8V7rpnAbQe3A+iAbKUWBaT7AtVjDuWprIBlHJJtMg6mSUtSQcuL4JyT7fKGidcWk7j98u0l3wNg17i0Gp7K6tUMn0YpiTkI4+BtOqkILslc/pBWlJUyegGjim/LfudVk/2479euK9nmeeNQsD6nLS+CcxjlaqmsAYesFPLJWEq2Jx2Tr1K5gSqPOfhVqwNvKmcgntVh0mKGVXk8pR34VRnUwxk+jZLMGWweCkVGBKS9TSdlK6UdstJAULPTV1sdJLRjDh79zHItijk4paS+gHN1XYw5cC3fet0+WYkbhyvG+wBUBqQJIXY9A9fFuZzkBVmJx0g6PZ01kTUwwrx+r8pKwjgwCCFQJNIRAWkuSYQ0BZJEMBiyvAdli2ocqqF5zNuaXknj5j9/HEdYk7hWGQdFluxMnpBPsY11SRGc6g1Ziccbbrl0FG++eMQ2Ek7CPgWJnGHr4hEWiHbKSu3KVuIxklyHB6UTWQMjLK1ZGIcOQGFuntdJO7KVgOJ0s1av5rw2A+Pe75/A2eU0vvLkWQCtizkAxVoHvyLbv0+VJfiV0lRWgE1ba7PnsKM/gK9+6Hps7/NX7MMD5lwX5x6DM27SrjoHHiPp9HTWRFa3PYesyFbyPqrk/bGXgMNzYCs5HnfoFVlpIZHF3V89UtJG4dRCAt9+7jzCPgXfOzqHOGsQB2x9ERwAe2CQXy226dYUCTuHghgMaSU1AmGfjFS+0Jbh8txzCGjVP5Ow3/JseC4+P3dJIrb30C5ZiWdT8QaQnQilFMmcgdGokJU6BlWROqIIzpmtBMBegWxlEZwbfPWotzj999mzMXzvlXl7AA0AfPGJM/CrMj77vquQM0w8/NJsy+ocgGIhnM/RWkJTJPzSoR146hO3lgRP+d+tHQ8F/jvLYw1OymMOEUd9g20c2uQ5vG6X1bvpRyeX2vL7m0E6XygJ9Avj0AF0TszBupj4jIDhCDcOLfYc2lTnwGdmn1pI2tumY2kcGIvirZeMYu9ICP/07PmWVUgDViGcT5EgOZrSaTIBIaTi93Pj0A5piT+IArWMg5/HHKzPucTr8bfXcxjrC+CK8T48+spcW35/M+BGl8vBogiuA1BlqSNiDnNrGYxEfJBY4LPdslKrjUOMGYeTDuOQyBqI+BUQQnDDnkG8tphqacxhcjBgt+P2OTwHN5y1BK2GP4icRXnlhDUecyjNVgLQdlkJAH7uwDY8N72KRY9M1FsvyVxxYJZflYTn0AlYAWnvew7nVtL2WEaguAJptazEs6NaHXNYzVixBqfnEM/q9ojOqF9FwhFzaMWD7KNv3Y9vfeQNJb9Pk91X50XPoQ2yUr4xzyGZNVgdhFSy6OBeRLuylQDLOFAK/ODV+badw2aI23KdgqCmCM+hE1Ak0hExh+mVDHa5GIetmgJXDUIsCaXVqayrKWvl9dpiEgUW1OWeA2A9wHKGaQdUW2EcAppsz2rgnkM1Y82zzNriOfCYQ62AtE9BijVZdPZTAorGoZ2ew6XbIxjvD+CHJxbbdg6bwU4R9isIqLLwHDoBS1bytueQN0xcWMvYk7cARyprG1Zz7fC2uOeQM0ycj2VAKUXC6TmworRl1tyu1Z+L1qCs1JaYQwOeAzcA8/FsSbwBaH9AGrAWJReNhjETy7TtHDaDU67raFmJEPIlQsgCIeRlx7ZBQsijhJCT7N8Bx/c+QQg5RQg5Tgi5zbH9GkLIS+x7nyWsMQohxEcI+TrbfpgQsru5b7FxVFnyfG+lmVgalKJUVorwmEPre820I04TS+v2w+3kQgI5w4ReoPb8Zv5AW07moclbN+OiGvWMgy0r5T0akGbnN7vmZhz4LI/2riu3RX329L1Og6fhRvwqAprc0XUOXwZwe9m2jwN4jFK6H8Bj7P8ghBwAcCeAg+yYzxFC+FX4eQB3A9jPvvjP/DCAGKX0IgD3Avj0Rt/MZumEmMO5lTQAYOdQ0TgMBjUQ0h4dWJUlOyuoVayldVw1aaU0nlxIIp4t3mxAsb/RUjLXkhqHcorZSh4MSOsFaLJUU4IMOYyDsyoacGQrtdFzAKxxq4uJnC0rdhKzaxlIxEpl5bLScjKHtbS3ajfq/oUppU8AWCnbfAeAr7DXXwHwLsf2ByilOUrpGQCnAFxPCBkDEKWUPkkppQC+WnYM/1nfBHArafVSj9EJRXDT3Dg4PAdFlnDFeB/2DIdafj6aTFpe5xBL57FzMIjRiA+nFpK2m84bw9myUirflhUur2mo6zm0SVbiLT2qwQ3AWkav8Bx2DwUR9SslFd/tYDTqZ0OuOi9j6Xwsg7G+gFVBz4zD3fc/g//j2y+1+9RK2GhX1m2U0lkAoJTOEkJG2fZxAE859pth23T2unw7P2aa/SyDELIGYAhAy6tcFJl4fp7DuZU0fIpkF9BwHvrom9pyPqrSWoNKKcVqRkd/SMXekRCmllKIZ0rz8fm/S4lcSRpmq9DsgLT7Q5jXpyTblK3k7BDrRsTnTF0tDUi/66pxvP3g9rZ3RN3Grv/5eM4evdopzMQyGB8IALDkvYV4DmdXUp5bmDZ7WeW24qc1ttc6pvKHE3I3IeQIIeTI4mLzMxVUWYLeBjf13kdP4LOPnWxoX57G6pVe9q2OOWT0AvKGif6AhpGIH0vJXLGSt0xWSuSMtngO9WIOkkQQ0mS7u24ryeiFmvEGoLSuodxzcLbQaCc8M8xLcYeFRLahligzsTQmuHHQZEwtp5DVTSy3qY17NTZ658wzqQjs3wW2fQbApGO/CQAX2PYJl+0lxxBCFAB9qJSxAACU0i9QSq+llF47MjKywVOvjiqTtnQY/ccj0/hegxWf51YyJZJSu2l1hhevju4PqhgOa1hK5h2ykmUUnA+0dmjj9YwDAAR9StsC0oEaBXBAaYO9cuPgFWzjkPCGcVhN53HTpx/Hv740W3M/vWBiLp7FRH/Rc+DdgxeTOViquzfY6J3zEIC72Ou7ADzo2H4ny0DaAyvw/DSToBKEkNezeMIHy47hP+s9AH5A2/QJKVLreyutpXVcWMtipYFVA6UU0yvpkjTWdqO2OIjPjcNAUMVw2IdkzsAie0BEHN1DeffytngOdQLSAG/b3XpZKasXEKgTc4jU8By8wnBYg0QsWckLzMQyVmr1au302rm1LEwKTAxY97Czx1XeMNvWyt2Nun95Qsg/AHgLgGFCyAyAPwLwZwC+QQj5MIBzAN4LAJTSo4SQbwB4BYAB4B5KKb8DPgIr8ykA4GH2BQD3AbifEHIKlsdwZ1Pe2QZoR7bSsbk4ACt4Wm/04fnVDJI5A3tHWh94rkarZSXeibUvoGEkbN1IU8tWkL68e2g82x5ZyW6fUTMjSG5LQDrdQMwhVCPm4BUUWcJw2IcFj8hKvJWHcza0G9Mx61p1ykpOlpJ5Wx5tN3WNA6X0fVW+dWuV/T8J4JMu248AuNxlexbMuLQbK+bQWuPw6qxlHHKGiXS+UHJjlnP4tKW2Xbd7sCXn1giqTFqayrrKgs8DIRUZ3arveG0xCUJK5ZBoQLWMQxtkpQM7ojg02W/3vnIjpLVn4E8mX6g7a9zKopGQ1c22BPQbZVvUjzmPGIcF5r3W+5vywj3uOZTHf5aTubZkHbohKqQdWDGHza+Cnzm7gliqseDSq3MJ+/VKlWP4APKnz6ygL6Dikm2RTZ9js2h1zCHGPIf+gIahkJWxcmYphbBPKXkY89VXOzyHO64ax4P3vLHmPnygzkf+7hl88l9fadGZMVmpTswBKNZieFVWAnghnDdkJe45JKp4DmsZHT88sYjzsQwIgT1kiRsHfk+3a7a4G8I4OFCaIJEYBRPv++JhfPmnUw3tf2w2bo+VdDMO51czeN2fPIoHnj6Hw2eWcd3uwZor0lajtTMgzdIZz69m7GA0h9c8tKMIrhFCPgWxVB6PHVvAizNrLfu96Xz9mAPgMA4eyEyqxmjU7xlZaYHLSjn3Qrb7fnwGd33paTz4/Hlsj/rtRYufyUrX77HUgCUP1W14885pE2oT5jmspPLIG2ZDk6oKJsXx+QQOTfTZxwJW4Pmbz8wgntXxtafOIp0v4FMPv4qp5TRev9c7khLAPAejtTEHv2oVDw2x2dmUVq5w2+k5NELIp+DCWhb5QmPXSrNoJJUVKKazekX/dmNbxI9ldr+1GzvmUEVWOnzaGkw1tVxMYwWKnsO1u60ORF5KZ/XmndMmFFnadLUvX0FkG2imxfOb33jRMAArKA0AL5+P47/+4wv42APP4+s/m8b+0bD9ALlhz9Cmzq/ZqEpr4zSrab04r1mVbaNQ4TkEvNHmoRphR4VxvMXGwV8nIA0UPQdvxxwsz3HRA6vthRoB6ZxRwPPTq7h8PAoAGO8vGocdfX7IEsGhiX70B1XhOXgVRSabLoLjf9x0A820Xp214g1v2GcZBx6nOL1kzSn4wasLWE7l8d9+8QDefmAbBoIqLhvzTrwBsLyt1sYcdPQFioaAj0gt9xyiHeA5cFrlORRMirxhIqh2ScyB6fZza+3vzsoD0gkXz+GlmTXkDBMffet+/J+/cBk+cONu+3s37hvCTz9+C3YPhzAU0rCc8o5x8O5fvg00YzYBdy8bacPL4w1X7+yHKhPbczi9mAIhwDuv3IGZWBpv3DeM1+0cwEoq3/KZDfVolaz0wvQqPnDfYegFikOTffb24bAPp5dSLsaBxxza2+ahGs4q41S+AL1gNqVx4l//8DVcOdFnLzg4x2bjdpO6QI1ZDuXnF2ogeN0ueDHo2eU0rtnVPrmVUlozIP30FM8yHMDtl28v+R4hxC7oGw77sJTwjqzk3b98G1AkCSYFTJNuOOjLXdxGpju9OhfH3uEQ/KqMwZCGFbZqOLOUwsRAAP/jfVfb5xLyKTXTXNuFqrTGczg+l0A8a2DXUBBvdDz4htiI1HJtvBNiDgCwayiIs8tpxDM6hsK+OkfV53/+4BTeeNFQhXH43W+8gATrXttIzCEaUBHxK3ayhBeZHAhCIsDUUqqt55HIGcjqJhSJuMpKPzuzgotGw3X/vsNhn1335AW8eee0CYXNQ9iMhs5XEOkGWiMcm03gsjFLhxwIanZA+sxSCnuGwwDgqcwkN1rVspu35f7Ob78Jv33rfns7H3TEYwwcO+bgUePA4ya3XroNQLF+YzNQSpHKGzh6ofIBM7OStnPs/Q0Yhw+9cQ/u/ZWrNn1OW4mmSBgfCOAMK4JsF/ye3zkYREYvlKgPecPEkalYQ7VJw2FNBKS9Ch+Ws5l01qKsVPuBuZbRcX41g0tZDGEobBkHSinOLKWw1yOFMPVoVSprPGuAECBcJnMM2zGHKp6Dx2Q4zi2XjuL+D1+Pm/ZbK/xmxB1yhglKrUIr52yARFYv0cKDDUhFu4dDeNuBbZs+p61m91Co7Z7DAqu14J0LnLPBnzixiETOwM8dGHU91slQ2Ie1jO6J7CtAGIcSFMn6ODYTd1iyZaXansNxVvzGPYfBkA8rqTyWknkkc4ZnqiTr0ar2GYmsXlHoBhSn4HVaQFpTJNy0f8SePdEM4+Bsx/HKbNF7mFsrrQVoJObQKewZtoxDOxvW8WA0v2cTjlqHbz9/HgNBFTftr98olC90qhXDtpruuUqagMoeJM3xHGrHHI6xm/ey7ZZxsDIV8jjDVkG7O8g4FEzaUKvizRDPGBXpqkAtz8HbRXAcnnnVjHRWZ4bc0QvFwrpZZhyuY7n0jchKncLuoRASOaOtD1R+z+8dsaRgXuuQzBn4/rF5/MKVYw0lG/D4Gf957cbbd06LUdmqdDOFcMWYQ23j8OpcHANB1c7VHghqSGQNnJi3PIpOkZVUZfNxmkZIZCunkgHWwwEAxvtLB77wFblXPQdOXxM9B+c194oj7jDLUj0/est+XLo9govYQ6wb4Kv1qeX2SUuLiRw0RcIOVr/Ag9KPvjKHrG7iXVeN1zrcZh+TpbwSlPb2ndNieJroRvsrZfUC4lkDEqmfrXRsNoFLt0ftLqyDbNXw7NkYNLl4oXkdVdq8t9UI8azu6jlcsj2CJ37/rRWpjGN9fhya7MfBHX0Vx3gJ2zg0YX4wT4LQFKlEVrqwmgUhwI17h/DIx97ccZPTasE97DNL7QtKLyZyGAn77MULj++8fD4OvyrhdTsHGvo5e4fD6AuoePZsbMvOdT0I4+CAB6Q3mn3D6xTG+gIwTFo1UFswKY7PJexgNAC7FcSjr8xj70jI0ymETuwg/hYH0RJZo2pB1s6hyvkWflXGg/e8EdfsauzGbBeaIiGgyk31HA5N9OHkQtI2FnNrWQyHfZ73ojbCxEAAskTaGpReSuUxHNbs2hruOSwlcxiJ+BrOOJQkgmt2DeCIMA7eQ92k58AlpV3sYVVNWjq3kkZGL9jBaKBoHAKajE/+8hUb+v3toBin2XrjEA14t8/PZugLqE01Dr9wxRgKJsVffu8EAODCWgY7+rrHW3CiyhImBwI400ZZaTmZw1DYZ8++SDiMw/A6a1eu2TWAUwtJe25JOxHGwYEi8VTWjT3oyo1DNWmpPBgNWDMaPvXuK/Dd37nJ86tdJ9ygbnWtQ7xKzKEbaJ5xsB5Kb9o/gg+8fhfu+8kZPH1mBXNrWbtFdDeyoz9QkZHVTGbXMnjP539aNVC8nMxjKKTZfah4Z9alRH5DxgEAnj3Xfu9BGAcHtuewwcwbfvHwMZ7VMpZenY1DIsD+bcXAoCQRvO/6neu+mNoNryPYypgDpbSmrNTpNNtzCGoyPv6OS7GjL4BPP/IqZteyGOvrjBjWRgix2RhbxSsX4jhyNoaXz1e2VqeUYjlleQ5BVQYhpbLSeu/nQxP9UCSCI1PCOHgKXiG90ToH2zgMcFnJ/YI9NpfA3pFwV6QU8sD51382vWW/I6MXUDCpa0C6G4g22TiENKvVyq+/cTeeORtDMmdgrIs9h5AmN9TocqPwRZ6b5xDPGtAL1JppLRGENQWJnAGjYGIlnccISzRplIAm47KxaEtnfFRDGAcHvAhuoxLJ7FoGw2GfrY1Xa9t9bDZeEm/oZK7fM4j3Xb8Tf/3D1/DYsfkt+R3xjGVkvTxbYDP0BdTm1Dmw1TOfS/yeaybsOo+xDsl+2whBn7KlxiHLuh24tQZfZtt4jULYryCZNbCSzoNS2AOp1sO2qM+eeNhOhHFwoCncc9iYRDIdswZ5BNnN6XbBxrM6ZmIZXLrdW623N8Mf/eIBjPcH8LXD57bk5/OGcUJWqk1aL0CViZ2V1B/U8IuHdgBAV3sOQVVuqJfZRuGeg9usBZ6hyEfWhn3WbHDeXXUjMnHI15754uV05922Qez2GRss6JqJZXDFeJ/d9bLcOBy9sIZvP3ceAHCgSzwHwEob3T0cbMoDLpbK48jZGH7O0deHN93r1myl/qDalLbd6ZxR0XH1t96yD6mcgYM7uud6K4d7DpvpplyLXA1ZydVzyBm2IdmIcQhvcQylUYTn4EDZROO9gklxYTWDiYGg7daXy0q/9bVn8cUfncHOwSCumuzf/Al7iIivOdLI149M4ze+eqRklRbPclmpO9cyzWqhkc4XKtq67x0J4/P/6ZqGmu11KiF+vxlbIy3xrEM3z2EpWeohRPwqElnDNiQjG5CVwj7FdS5EqxHGwcFm6hwWElnoBYrJQXdZiVKKubUs/vOb9uCJP3grBkLrC1R5nWhAsVf4m2EpUZxpweE3SrTLjcNmPa90vmAvTHoJfr85u6E2E250uCGYjxfTZnmLbd6CPeIr9xzWf5+HfQpyhtnSCYtuCOPgYDN1DrxX/sRA0FVWSucLyBnmhgJUnUCUrZg2S4y1kXAaB76i7tZspeYZB8PTk9u2Cu4VbVXcIZNnAelEDsdm47jhTx/DZ753HACwnMqhL6DacZ6wzwpILyVz8ClSycS/RuHeX7ulpd67kmqgyhuv9p2JWb1dJgYCrrIS7xo52GUeAycaUJFugm7OszSmXDyHbs1WitjFU5t7GKR61HMI+aongDQD7jmsZXS7tcX/+MEpjER8VgGcwzvYFvVhMZnD6cUUhsM+u3faegg7rof+YPueF8JzcLCZIriZFctzGO8PQJMlSKR0JVPMauhS48Cbjm3Se+DGoVRW0qHKBH61Oy9XvlJ0GzG5HjL5gq2/9xLN8BzOLKWqem5Zh9F56rVl+FUJb7poGH/56AnMx7MYDhXVgFsu24aCSfHvJxY3rBJwb6PdGUvdebdtkM0Uwc3EMhiJ+OBXZRBCENQU2x0FnFkNXSorNSmouuomK2V1RPzqhlZhnQB/GCQ27TkYXR14rkYzYg7v+8JTuPfRE67fcwa6nzy9jItGw3j/DTuxmtbx3PRqiedw5Xgfxvr8KJh03QVwHK/ISsI4ONhM++mZVavGgRPQZGT0XvIcmHHYZFCay29nl9P2AKFubp0BFGWlzT4MMvmC/aDsJYqew8aMg14wMRfP4nSVzq6ZfAE8Q3YllcfFoxHctH8YqkxQMGmJcakawDAAABrHSURBVJAkgtsObgewsTRWwLFYaHPGkjAODoqprBvzHCYGiq2jA2ppSX8vxByAYjXzRjAKJuJZHcNhDRm9gHk2fjGecZ/l0C00S1ZK96hxKMYcNvb5xdi9ObPiPhMiq5slvan2b4sg4lfx+r1DAIoFcJxmGYetyr5qFGEcHGw05lCscSheQEFNLunKupLKw6dIXXvz8tXvZjyHtYwOSoGr2XAULi11u+egyhJ8irRpjTmdNxDcQHZMp8OD8KkNeg48RXVmNeM67jajFzDuuLcvZg0zeaFmebrqdbsH8J5rJnDrZaMbOp/y7q7tQhgHB+oGPYfXFpPQCxT7HOMX/apc0pWVd2jsVt2cew6JTRgHnsbKJ2dNsele3W4cAMu4bibmkDdM6AWKYBc0c1wvPH03s0HPgXv1ecPEUjKH+5+cwg9PLNrfz+oF9AdURJjhvXib1frmtoPbMd4fwOXjpdMGFVnCX7z3kL3IWS9hzRuyUnffceuEEAJZIusugnuO9V6/emex6jmoVcpK3SopAcVspc3ISnzAyWVjEfgUCa8tJmEyr+z6PYN1ju5sNtsygXupPek5qJsLSC+nipXPU8tp/Ol3X8UNewdx88UjACzjENBkDEd8MEyKcdbEcFvUj598/JZNnn0lXCZrt6zUe1dSHRSJQF9nb6Xnzq2iL6BiL5tnC1jGYdUxF7jbjUNIUyCRzclKfAU3HPbhivE+PHsuhpMLSSRyRonh7UZ4N8+NkmbJD90qW9ZCkgiL8W3s8+OyEgD8+/EFZPRCSbZcVjfhV2SM9wcwEFS3pH+TE0WW4FelzpaVCCFThJCXCCHPE0KOsG2DhJBHCSEn2b8Djv0/QQg5RQg5Tgi5zbH9GvZzThFCPkvaqL2osgTdWJ/n8Oy5GK7e2V8iGZXLSnxaVLciSQQR/+b6K3Fj2h9Ucf2eQbw0s4YfnbTc+06ajrcRwr7NyUp8ldmLxgGwVtsbzVZaSeXsbKSHX54DAEyvpJFnc9EzzHP41LuvwP/7H69uyvnWI+xTkeyCgPRbKaVXUUqvZf//OIDHKKX7ATzG/g9CyAEAdwI4COB2AJ8jhPAr+fMA7gawn33d3oTz2hCqTNbVlTWe1XFyIYmrJ0sfXuUB6eVUrqs9B4D3V9r4A24lXexTc8PeIRgmxd/+ZApDIQ07B4N1ju5seNuFjWLLSj1Y5wBY73ujxmE5aY3zHA5rtsdgUqsFP2DJSj5VwuRgEDuHWnMdhn1yVxbB3QHgK+z1VwC8y7H9AUppjlJ6BsApANcTQsYARCmlT1JKKYCvOo5pOYosravO4cXpNVAKvG5XqezhdHPTeQNZ3ezaAjhOdJOeQyydh8Yyuq7ZNQBZIji/msHrdg10bSCfE95kD/8Uu9Z6sUIasBZjG43ZLCXzGAr7MM5S0Xnyw5nFFEyTImeYFa3Qt5qwv/1tuzdrHCiA7xFCniGE3M22baOUzgIA+5fnc40DcM6SnGHbxtnr8u1tQZXIuiqknzsXAyHAobIW3AFNsWUl3rmxm2UlwLqpNhNziKXyGAhaldBhn2JngXS7pARs/mHAPYde7K0EME+9yuTFeiynchgKaXYq+u2sTuHMUgo5Ji21eqRvSNucJ9kMNmsc3kgpfR2AdwC4hxDy5hr7ui39aI3tlT+AkLsJIUcIIUcWFxfddtk0iiytq85hOpbGaMRXUaQV1GToBQq9YHZ9ARzH8hwav6BNk+KPHzqKoxesebmxtG63PgaAG1iGUk8YB5+6qZiDPT+6B7OVAOt9b9S4rqSs5nl89vtNF49gIKjizHLKNjit9hwi/vZPg9uUcaCUXmD/LgD4ZwDXA5hnUhHYvwts9xkAk47DJwBcYNsnXLa7/b4vUEqvpZReOzIysplTr4oik3XNkF4te6BxBoKWsVhK5uxUucEN9lrpFKIBdV11DkupHL780yl876g1e3o1nS/5LH/l2km895oJHJro7kwlwNKY84aJ3AYH1nBZqdUPMa9Qnjq+HpaTVibhvpEQCAGunuzHnuEQziym7M7KrW766IVRoRt+x4SQECEkwl8DeDuAlwE8BOAutttdAB5krx8CcCchxEcI2QMr8Pw0k54ShJDXsyylDzqOaTmaLK1LVlrN6HY/fif7WaHMifmknSrX7bJS1K+uKyDN5+zy+oaVVB4DoeJnedFoGH/+3kN2r/xuZrMtEzI97jlsNCCd1QtI5gwMh31419Xj+M5H34TJwSD2DIdxZqnoObRaVvLCqNDNXEnbAPwzCxQqAP6eUvoIIeRnAL5BCPkwgHMA3gsAlNKjhJBvAHgFgAHgHkop/2t+BMCXAQQAPMy+2sJAUCvJe67HWlrH7uHKDAZeRXlyPoHZtSx8ioQd/YGK/bqJaMBa7RgFE0oDMx0WWafaFZbCuprW29q/vp2EmSyZyhkbkh95GvBGhst0A5bnsP6H6YqjIaYqS3aca89wEN96Nmv3XWqHcdhsl97NsuEriVJ6GsAhl+3LAG6tcswnAXzSZfsRAJdv9Fyaye7hIB59Zb7h/VczefQHKmWPwZCG4bAPx+cSmFpO4eCO6KaG4HQCPO7S6JASPhJ0NZ2HaVLE0nkM9qpx2GQnzrl4FsNhrSe8LDesmMP6PQeeLFJukHcNWQWtx+cTAFov14V9CvKGibxhtu1v2ptXUg12DYWwlMw3rJ1bq133jqEXbwvj2FwcL5+P48oe0M3X25mVz9ldSeWxks7DpBubudsNbHYa3NxaBtui/maeUkcRYEWnbo3zarGUcp+zsr3P+izPLVu1Di3PVvLATAdhHMrYzYpczi67t+91ktWtudB9VY1DBC+fjyOjF3Boss91n26C91dqdBYyNw6rad1+PRLpzQec3bZ7gy0T5uI5jPX15mcHFPsRNZrOSinFr/7NU/iTf3kFQOWiZJRNcTvH2ni3o84BaO80OGEcyuDuZCPGwW73EHBf7fK4A4Ce8Bx4TIVXltZjMVH0HPjrkQ2OVux0iqMhNxaQnlvL2KvdXoRXhqcajDvMx3P4yallTC2lEFDliutulC1SztqeQ2sflV4YFSqMQxm7mOcwtew+FcrJasbSK6vJSpdst1p4R/wK9gyFXPfpJi4aDYMQ4PicpdPOrmVq7s8D/xm9gJmYtW/Py0obiDlk9QJiaR3be1hW4j2lMg1mLPFYwn2/dh0e+72bK9qOBDQZEb9iew7tCEgDwjh4iqCmYDTiw9lGjIPtObgbh4tGLc/hyom+Le/k6AX8qozdQyGcXEjgxZlV3PipH+D7NYL7XEoCgBPsZu11zyGWzuOrT07hhelVWN1kqvPg8+fx7s/9BLNr1sS87X3dnQ1XC9tzaNDzOsmut0MT/VWzCEcjPvvh3HLj4OcJCu3rzNqbeW912DUUxNQ6ZKVqMYe+gIpbLh3F2y7b1tTz8zL7R8M4PpfAj04uAQD+7vBZvO2A+/tfSlrNCFdSeZycT8KnSD2dikkI8K1nZ3B60VqY3HHVDvzVndW7gP7o5BKePbeKp04vA4CIOaDxUaHH5xIYDms104ZHI368xv4WrZaVhtno0eV1pNU3G+E5uLBrKNSQ57Bmy0rVL7Av/dp1eP8NO5t2bl7nku0RTC2n7VbbT5xYxIXVSnnJKJhYTuWxf9SS3k7MJzAS6d5JefUghCCsKTi9mMJQSMMb9g3h+enVmsdMsQ6iPPW6l7OVeEB/Pp6rs6fFiYVkSUzQjdFo0YtttecwHLGeKYvJxt7PViCMgwu7h4KYj+fqrkLqyUq9yMXbIiiYFE+dXsHNF4/ApMA3n5mp2G8lnQelwH42j3chketZSYnDpYSfO7AN+0bCdTvccu/2x6csL62XA9IHd0Qx3h/AF554ra4cZ5oUJ+cT9Y0Dux4VibS8RimoKQhpsp2o0Q6EcXCBZywdm03U3C+W1qHKpGcHrLhxyfbiDfcfrpnADXsG8QgboOKEt85w3qDDXd7SvB5cUnv7wW3oC1itSKo96BLZYvpv3jAR8Sk9K8kBgE+R8Ttv248XZtbwvTpFrOdXM0jnC/bCpBo8Y6ld/apGIr51dWtoNsI4uPCmi4bRH1Txp989VrOoZi2TR19A61kpxI3dQyGosvV5XL97EJduj7imtvIH20WjxRtUeA7WavEN+4YRDSgomBSpKtk3PMWSZyj1stfAeffV49g7EsIXnjhdcz+e/HBJg7KSr43GYTGRbcvvBoRxcGUgpOH/+oUDeOZsDF87fLbqfrWqo3sVTZGwdziMXUNBbO/zY3wggETWqJjzwN3lsb4AImzF2+uew89fPoaPvGUf/KpstyKpJi3xVOt3XjkGQBgHwGq3/+b9Izg+l6jqcX3nhQv47GMnAQD7R2sbB75YCWjteUwOh31CVvIi737dOK6c6MM3nz1vb1tM5HDt//N9/PQ1S+NdTesi3uDC//6OS/Df3nkAADDeb9WNnI+VBqWLFdE+DLCMkV73HH7jzXvx0Vv2A3C0IqmSysiD0e88tAMAerrGwcmuoSCSOQPLqUo5JpHV8dv/8BwWEzn8/m2XVM0y5PAAv19pp+cgjIPnIITgsu3RkkybY7NxLCVz+PJPpgBY7bqF51DJLZduw60sfXecTdcqNw4LiRz8qoSQJtuzL0Z63HNwUvQc3JMippbT2Bb14fIdUezo89vdRHud3cO8w0FltiHX7//rbZfgnrdeVPdnjdqeQ5uMQ9iHeNbY8IyPzSKMQw129AewmMjZAz+4dv6DVxewlMxhLW3FHATV2dFvrb7Ol6WzvjSzhku2RUAIsVOBRyLis+TwGSHV+lRNLaWweygERZbwxB+8FR+8cVcrT8+z7GbJJGeWKuNcy0n3JnvVCPsUBFS5rZ4DgLYFpYVxqAF/sM2xCtTplQwIAQyT4tvPnReeQwMMh3zQFKnEA8sZBTw/s4rrdltjQHkh0khYSCOcaMCKw9SKOfAHoSJLIimCMTEQgCyRmp5Do0O3CCEYjfrgb5fnwIxDu6Sl3s19awAuiVxYzWD3cAjTsTR2DgbRH1DxxR+dRjpfsCURgTuSRDDeH8CMwzi8OLOGvGHiOjYjmhvYYeE52NiykkvM4R+PTGMpmcfF22sHVHsRVZYwMRBw7XDAx/WuJ/Hhrht3l0wnbCX8PJeEcfAe46znCn+wzaykMTkQxO/fdgn+ywPPAQAGQ0Inr8d4fwDnYxksJqx52k+fWQEA23N4+4HtyBtmRfOzXiZSpf35Iy/P4Q++9SJu2j+MX+2hyvv1sGsoZAfsnVQb7FOLD71pT9POa73YnkObqqTF3ViD7X1+EAJbEpmOZXDbwT4cmuzHv33szfi3o3M91Tdpo+zo9+Px44v4L//wHJ45G8PEQAD7R8P2TXrjviHcuG+ozWfpLRTZ6jNVHpD+/L+fwr6RML74wWtb3tKhU9g9FMRz52KglJbIbcvJHKJ+pWOm5Q2xDsXtkpU641NqEz5FxkjYhwurGaRyBlZSeUwOWt6EX5Vxx1XjPTvQfT2M9wexmMjhydPLKFCK00spW1ISVCfqV0pkpdOLSbwws4ZfuXZCGIYa7B4KIZE1EEuXel1LqXxH1dL4FBn9QVUYB6+yoz+AC6tZO1NpciDY5jPqPHjsRpYI7v/Q9ZgcDOC2g9vbfFbeJxpQSwLS337+AggBfunQeBvPyvvsHrbu0TNl0tJyMmevxjuFkbCvpLV9KxHGoQ7jAwGcX81gesWSliYHhXFYLzx287bLRvGGi4bxoz+4BTdfPNLms/I+Ub9qxxwopXjw+fO4ce+QqIauQzGdtdQ4LCXzGOqwGOFw2IcF4Tl4k/F+yzjwiVCTA707UGWjXDYWwb6REO5+8952n0pHEWXN9wBgJpbB2eU03nG58LjqsXMwCE2W7IE+nE70HHawZI52IIxDHcb7A8gbJl6YXkVQk9eV6SCw6A9qeOz33oJrdok4w3qIBhRbVuK9lC6q0w9IYAXz946E7AZ7gDU/JJbWOyrmAAD7RkOYi2fbMi5UGIc68BGC//rSLHYPhUSxkaBlRP3FmAPvwspnnAtqc8n2CE7MJ+3/r6StNNZOm1G+b8TqWvzaQrLOns1HGIc6XDXZjysn+vD+63fir+68qt2nI+ghogEViZyBgklxbiUNTZFEg70GuXhbBOdXM/aKm9c4NNo6wyvYxmGx9cZB5GHWYSTiw0MffVO7T0PQg/D+SsmsgbPLKUwOBCBJwnNtBD5+9uR8oqT1daOtM7zCrqEgFIkI4yAQCIpEWZV0PKvj7HLanlAoqA+fSPiPz8zgH54+Z2cwdZrnoMoSdg4F8dpC/Zn2zUbISgKBR4k6OrOeW7H6egkaY3IgCL8q4e8P///t3X+s1XUdx/Hni3sRkZ8iF5NfGUQqGkJQoqG5yhaysk23oBZka2o/Vv7RFjo3+6c/ZOWc0kakOK1G2qwFZTpz6TJLgmQiMhGMAUYCivwsEXz3x/dz8IxzL3Du/Z7z/Z57X4/tu3vO93zPh8/nvS/nfT6f7/d8PluJeO+21la75gDZ0FIRPQcnB7OSqky+t3nXAQ4dPuqL0XXo10/HlqC98YoJDD29nfZ+OhbTVjKxYzBb3jjIkaPvAvDs5t38t4vlY/PkYSWzkqpcc1i9ZQ/gO5XqNXXccHbvP8zNn/4QU8YOZ9W/3mjJazYTOwbxztHspoQB/dv40s+e47Y5F/D1yxv7uyEnB7OSmjhqEGOGD2T5qq0AjB/haw71uG3OZL73mfMYeFobc6acw5y03narmZh6QBtf38+bB7Nbm688r/EzDHhYyaykBrS3cevVF3Dk3UDi2KSPdmpO7992bJXBVnbh6KEMG9ifR9f9h6de3smY4QOP3eLaSO45mJXY1R9+HzMnjGDnvrcZUNBylVasAe1tfP7i0Ty8ehvt/cQ108Y05ce4pek5SPqspJclbZK0sOj6mJWBJO5d8FGW3zCz6KpYga6bPpa3j7zLwcNHubJJk1aWIjlIagN+AswGJgPzJE0utlZm5TB4QDtn+5fRfdqUscOYNGow/dvEZR8c2ZR/syzDSh8DNkXEqwCSfgVcA7xUaK3MzEpAErd/7kJe3X2AwU1aYKwsyWEMsK3q+XbgkoLqYmZWOrMmjWTWpOb0GqAkw0pAZ1dXouYg6QZJqyWt3rVrVxOqZWbWN5UlOWwHxlU9Hwv8+/iDImJpRMyIiBkdHV5JzMysUcqSHP4BTJL0AUmnAXOBFQXXycyszyrFNYeIOCLp28DjQBuwLCLWF1wtM7M+qxTJASAiHgUeLboeZmZWnmElMzMrEScHMzOr4eRgZmY1FFHzc4KWIGk/8HI33joM2JtjVfIubySwO6eyyt7WvMuryCuGrdDeMp9/UP4Y9qX4jQe2Au+PiJP/FiAiWnIDVnfzfUtzrkfe5XWrXS3a1lzLyzuGrdDeMp9/rRDDvhQ/YFc9x/fFYaWVJS8vT2Vva5ljB63RXsewXOXlLc/6vVXPwa08rLQ6ImYUXY+89dZ2NZNj2H2OXc+UOX711q2Vew5Li65Ag/TWdjWTY9h9jl3PlDl+ddWtZXsOZmbWOK3cczAzswZxcmgwSeMk/VnSBknrJX037R8h6QlJr6S/Z6b9Z6XjD0haXFXOEElrq7bdku4qql3NlFcM02vzJK2T9IKkxyQ1b4L8AuQcuy+muK2XtKiI9jRbN+J3laQ16RxbI+mTVWVNT/s3SbpbzVgIuifyvO3KW6e3j50DfCQ9HgJsJFsKdRGwMO1fCNyRHg8CZgE3AYtPUO4a4Iqi29dKMSSbS2wnMDI9XwT8oOj2tUjsziK7R74jPX8A+FTR7Sth/KYBo9Pji4DXqspaBVxKtn7NH4HZRbfvRJt7Dg0WETsi4p/p8X5gA9nKd9eQ/Qcj/f1COuZgRDwD/K+rMiVNAkYBf2lg1UsjxxgqbYPSt7ahdLJuSG+SY+wmABsjorLK1p+Aaxtc/cJ1I37PR0TlnFoPnC5pgKRzgKER8bfIMsWDlfeUlZNDE0k6l+ybxXPA2RGxA7ITkOzD/lTNAx5KJ1mf0pMYRsQ7wDeAdWRJYTJwXwOrWyo9PP82AedLOldSO9kH27iTvKdX6Ub8rgWej4i3yRLK9qrXtqd9peXk0CSSBgOPADdHxL4eFjcXWN7zWrWWnsZQUn+y5DANGA28ANySayVLqqexi4g9ZLF7iKzHugU4kmcdy6ze+Em6ELgDuLGyq5PDSv3lzsmhCdKH0iPALyPiN2n366mrSfq78xTLuhhoj4g1DalsSeUUw6kAEbE59boeBi5rUJVLI6/zLyJWRsQlEXEp2bxmrzSqzmVSb/wkjQV+C8yPiM1p93ay5Y8rOl0KuUycHBosjW3fB2yIiDurXloBLEiPFwC/O8Ui59HHeg05xvA1YLKkyqRjV5GNIfdaeZ5/kkalv2cC3wTuzbe25VNv/CQNB/4A3BIRf60cnIae9kuamcqcz6n/ny9G0VfEe/tGdudHkA1hrE3b1WR3fzxJ9u3rSWBE1Xu2AG8CB8i+cUyueu1V4Pyi29WqMSS7C2dDKmslcFbR7Wuh2C0HXkrb3KLbVsb4AbcBB6uOXQuMSq/NAF4ENgOLST9CLuvmX0ibmVkNDyuZmVkNJwczM6vh5GBmZjWcHMzMrIaTg5mZ1XByMGsASTdJml/H8edKerGRdTKrR3vRFTDrbSS1R8SSouth1hNODmadSJOsPUY2ydo0sqma5wMXAHcCg4HdwFcjYoekp4BngY8DKyQNAQ5ExI8kTQWWAGeQ/QDqaxGxR9J0YBlwCHimea0zOzkPK5l17TxgaURMAfYB3wLuAa6LiMoH+w+rjh8eEZ+IiB8fV86DwPdTOeuA29P++4HvRDZXkVmpuOdg1rVt8d78OL8AbiVbwOWJtIhXG7Cj6viHji9A0jCypPF02vUA8OtO9v8cmJ1/E8y6x8nBrGvHzy2zH1h/gm/6B+soW52Ub1YaHlYy69p4SZVEMA/4O9BR2Sepf5q3v0sRsRfYI+nytOsrwNMR8RawV9KstP/L+VffrPvcczDr2gZggaSfks2+eQ/wOHB3GhZqB+4iWw7yRBYASySdQTar7vVp//XAMkmHUrlmpeFZWc06ke5W+n1EXFRwVcwK4WElMzOr4Z6DmZnVcM/BzMxqODmYmVkNJwczM6vh5GBmZjWcHMzMrIaTg5mZ1fg/t8LMmyXhlg8AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'][-200:].plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "C'est en aout que l'épidémie est la plus faible, on coupe l'année à ce niveau là" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", " for y in range(1991,\n", " sorted_data.index[-1].year)]" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "year = []\n", "yearly_incidence = []\n", "for week1, week2 in zip(first_august_week[:-1],\n", " first_august_week[1:]):\n", " one_year = sorted_data['inc'][week1:week2-1]\n", " assert abs(len(one_year)-52) < 2\n", " yearly_incidence.append(one_year.sum())\n", " year.append(week2.year)\n", "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAD8CAYAAACyyUlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHvhJREFUeJzt3X+QVeWd5/H3B9uAOmDAgBEQcaLDBM2EhK7GxN2srhPAZEuwRjNER9mJVRijmSS1VQlU2MJSJhtTSdwQSxcSfysqw4bSHSWKONa4u6ShiSaIhKETSYugtNWMYGbp2PDdP85z5XbbdN/u0933R39eVafu6e89z8N5OF39vc/znPscRQRmZmZ5jCj3CZiZWfVzMjEzs9ycTMzMLDcnEzMzy83JxMzMcnMyMTOz3JxMzMwsNycTMzPLzcnEzMxyqyv3CQy0D33oQzF16tRyn4aZWVXZunXrWxExvr/lay6ZTJ06laampnKfhplZVZH0+zzlPcxlZma5OZmYmVluTiZmZpabk4mZmeVWUjKR9A1J2yW9LOkRSaMk3SzpdUkvpe1zRccvkdQsaaekOUXxmZK2pfdWSFKKj5T0WIo3SppaVGahpF1pWzhwTTczs4HSazKRNAn4O6A+Is4HTgAWpLdvj4gZaXsqHT89vX8eMBe4U9IJ6fi7gEXAuWmbm+LXAQci4hzgduC2VNc4YBkwC2gAlkkam6/JZpbX/oOH+cLKTew/dLjcp2IVotRhrjrgJEl1wMnA3h6OnQc8GhHtEfEq0Aw0SDoDGBMRmyJ7vOMDwPyiMven/bXAJanXMgfYEBFtEXEA2MCxBGRmZbJi4y627G5jxbO7yn0qViF6/Z5JRLwu6ftAC/D/gGci4hlJnwZuknQt0AT8l/QHfxLwi6Iq9qTYu2m/a5z0+lr69zokvQ2cVhzvpsx7JC0i6/EwZcqU3ppkZv00bel62juOvvfzQ40tPNTYwsi6EexcfmkZz8zKrZRhrrFkPYezgYnAKZL+hmzI6iPADGAf8INCkW6qiR7i/S1zLBCxKiLqI6J+/Ph+f4HTzHrxwjcv5rIZExl1YvanY9SJI5g3YyIvfOviMp+ZlVspw1x/CbwaEa0R8S7wM+DTEfFmRByJiKPAT8jmNCDrPZxZVH4y2bDYnrTfNd6pTBpKOxVo66EuMyuDCWNGMXpkHe0dRxlZN4L2jqOMHlnHhNGjyn1qVmalJJMW4AJJJ6d5jEuAHWkOpOBy4OW0/wSwIN2hdTbZRPvmiNgHHJJ0QarnWuDxojKFO7WuAJ5L8ypPA7MljU09pNkpZmZl8tY77Vw96yzWfeVCrp51Fq3vtJf7lKwClDJn0ihpLfBLoAN4EVgF/FTSDLJhp93A9en47ZLWAK+k42+MiCOpuhuA+4CTgPVpA7gbeFBSM1mPZEGqq03SrcCWdNwtEdGWp8Fmls/Ka+rf218+//wynolVEmUdgNpRX18fXujRzKxvJG2NiPrej+yevwFvZma5OZmYmVluTiZmZpabk4mZmeXmZGJmZrk5mZiZWW5OJmZmlpuTSREvq23DlX/3LS8nkyJeVtuGK//uW17+BjzvX1a7wMtqW63z774V+BvwA8DLattw5d99GyhOJnhZbRu+/LtvA6XXVYOHi8Ky2lc1TGH15hZaPRFpw4R/920geM7EzMw8Z2JmZuXnZGJmZrk5mZiZWW5OJmZmlpuTiZmZ5VZSMpH0DUnbJb0s6RFJoySNk7RB0q70Orbo+CWSmiXtlDSnKD5T0rb03gpJSvGRkh5L8UZJU4vKLEz/xi5JCweu6WZmNlB6TSaSJgF/B9RHxPnACcACYDGwMSLOBTamn5E0Pb1/HjAXuFPSCam6u4BFwLlpm5vi1wEHIuIc4HbgtlTXOGAZMAtoAJYVJy0zM6sMpQ5z1QEnSaoDTgb2AvOA+9P79wPz0/484NGIaI+IV4FmoEHSGcCYiNgU2ZdbHuhSplDXWuCS1GuZA2yIiLaIOABs4FgCMjOzCtFrMomI14HvAy3APuDtiHgGOD0i9qVj9gETUpFJwGtFVexJsUlpv2u8U5mI6ADeBk7roS4zM6sgpQxzjSXrOZwNTAROkfQ3PRXpJhY9xPtbpvgcF0lqktTU2traw6mZmdlgKGWY6y+BVyOiNSLeBX4GfBp4Mw1dkV73p+P3AGcWlZ9MNiy2J+13jXcqk4bSTgXaeqirk4hYFRH1EVE/fvz4EppkZmYDqZRk0gJcIOnkNI9xCbADeAIo3F21EHg87T8BLEh3aJ1NNtG+OQ2FHZJ0Qarn2i5lCnVdATyX5lWeBmZLGpt6SLNTzMzMKkivqwZHRKOktcAvgQ7gRWAV8CfAGknXkSWcK9Px2yWtAV5Jx98YEUdSdTcA9wEnAevTBnA38KCkZrIeyYJUV5ukW4Et6bhbIqItV4vNzGzAedVgMzPzqsFWGfYfPMwXVm5iv5+FYTYsOZnYgFixcRdbdrex4tld5T4VMysDP2nRcpm2dD3tHUff+/mhxhYeamxhZN0Idi6/tIxnZmZDyT0Ty+WFb17MZTMmMurE7Fdp1IkjmDdjIi986+Iyn5nZ0PAQb8bJxHKZMGYUo0fW0d5xlJF1I2jvOMrokXVMGD2q3KdmNiQ8xJvxMJfl9tY77Vw96yyuapjC6s0ttA7zT2g2PHiItzPfGmxm1g/7Dx5m+VM7eGb7Gxx+9yijThzBnPM+zLc//9Gq7Jn71mAzszLwEG9nHuYyM+snD/Ee42EuG7b2HzzMTY+8yB1XfWLYfpo0K/Awl1k/+S4cs4HjYS4bdnwXjtnAc8/Ehh1/0dJs4DmZ2LDju3DMBp6HuWxY8l04ZgPLd3OZmZnv5jIzs/JzMjEzs9ycTMzMLDcnEzMzy63XZCJpmqSXiraDkr4u6WZJrxfFP1dUZomkZkk7Jc0pis+UtC29t0KSUnykpMdSvFHS1KIyCyXtStvCgW2+mZkNhF6TSUTsjIgZETEDmAn8G7AuvX174b2IeApA0nRgAXAeMBe4U9IJ6fi7gEXAuWmbm+LXAQci4hzgduC2VNc4YBkwC2gAlkkam7PNZmY2wPo6zHUJ8NuI+H0Px8wDHo2I9oh4FWgGGiSdAYyJiE2R3Y/8ADC/qMz9aX8tcEnqtcwBNkREW0QcADZwLAGZmVmF6GsyWQA8UvTzTZJ+Lemeoh7DJOC1omP2pNiktN813qlMRHQAbwOn9VBXJ5IWSWqS1NTa2trHJpnVJj+b3IZSyclE0geAy4B/SKG7gI8AM4B9wA8Kh3ZTPHqI97fMsUDEqoioj4j68ePHH7cNZsOJV0W2odSX5VQuBX4ZEW8CFF4BJP0E+Mf04x7gzKJyk4G9KT65m3hxmT2S6oBTgbYUv6hLmef7cM5mw45XRbZy6Msw1xcpGuJKcyAFlwMvp/0ngAXpDq2zySbaN0fEPuCQpAvSfMi1wONFZQp3al0BPJfmVZ4GZksam4bRZqeYmR2HV0W2ciipZyLpZOCzwPVF4e9JmkE27LS78F5EbJe0BngF6ABujIgjqcwNwH3AScD6tAHcDTwoqZmsR7Ig1dUm6VZgSzruloho63szzYYPr4ps5eCFHs1KUG2P+L3+wSbGjx7VaVXkldf0ew0/GwbyLvToZGJWgqXrtvHw5haubpjC8ss/Vu7TMRtweZOJn2di1gNPZpuVxmtzmfXAk9lmpXEyMeuBJ7PNSuNhLrNe+BG/Zr3zBLyZmfmxvWZmVn5OJmZmlpuTiZmZ5eZkYmZmuTmZmJlZbk4mZmaWm5OJmZnl5mRiZma5OZmYmVluTiZmVpX2HzzMF1ZuYr+Xt6kITiZmVpVWbNzFlt1trHh2V7lPxfBCj2ZWZfyMmcrknomZVRU/Y6Yy9ZpMJE2T9FLRdlDS1yWNk7RB0q70OraozBJJzZJ2SppTFJ8paVt6b4UkpfhISY+leKOkqUVlFqZ/Y5ekhQPbfLPq4nkCP2OmUvWaTCJiZ0TMiIgZwEzg34B1wGJgY0ScC2xMPyNpOrAAOA+YC9wp6YRU3V3AIuDctM1N8euAAxFxDnA7cFuqaxywDJgFNADLipOW2XDjeYJM4Rkz675yIVfPOovWd9rLfUrDXp+eZyJpNrAsIi6UtBO4KCL2SToDeD4ipklaAhAR/y2VeRq4GdgN/FNE/HmKfzGVv75wTERsklQHvAGMJ0tKF0XE9anMyvTvPHK8c/TzTKwWdZ0nKPA8gQ2UoX6eyQKg8If89IjYB5BeJ6T4JOC1ojJ7UmxS2u8a71QmIjqAt4HTeqjLbFjxPIFVupKTiaQPAJcB/9Dbod3Eood4f8sUn9siSU2SmlpbW3s5PbPq43kCq3R96ZlcCvwyIt5MP7+ZhrdIr/tTfA9wZlG5ycDeFJ/cTbxTmTTMdSrQ1kNdnUTEqoioj4j68ePH96FJZtXD8wRWyfryPZMvcmyIC+AJYCHw3fT6eFF8taQfAhPJJto3R8QRSYckXQA0AtcCP+5S1ybgCuC5iIg0l/Kdokn32cCSPrbRrCasvObYcPby+eeX8UzM3q+kZCLpZOCzwPVF4e8CayRdB7QAVwJExHZJa4BXgA7gxog4ksrcANwHnASsTxvA3cCDkprJeiQLUl1tkm4FtqTjbomItn6008zMBlGf7uaqBr6by8ys74b6bi4zM7P3cTIxM7PcnEyGgJfAMLNa52QyBLwEhpnVOi9BP4gqbans/QcPc9MjL3LHVZ/wl93MbEC5ZzKIKm0JDPeQzGywuGcyiCplCYxK6yGZWe1xz2SQVcISGJXWQzIrB98IM7jcMxlklbAERqX0kMzKqXiYd/nlHyv36dQcJ5NhotBDuqphCqs3t9DqT2c2THiYd2h4ORUzq2n7Dx5m+VM7eGb7Gxx+9yijThzBnPM+zLc//1H3zot4ORUzsx54mHdoeJjLzGqeh3kHn4e5zMzMw1xmZlZ+TibWLd+Tb2Z94WRi3fLSK0PDSdtqhSfgrRPfkz+0/EU6qxWegLdOfE9+fqWsztw1aRc4aVu5eAK+TGp1eML35OdXyhCh10uzWlNSMpH0QUlrJf1G0g5Jn5J0s6TXJb2Uts8VHb9EUrOknZLmFMVnStqW3lshSSk+UtJjKd4oaWpRmYWSdqVt4cA1PZ9anlOohMUpC6opaU9bup6pi5/kocYWIrIhwqmLn2Ta0vXvO9ZJ22pNScNcku4HXoiIn0r6AHAy8HXgnYj4fpdjpwOPAA3AROBZ4M8i4oikzcDXgF8ATwErImK9pK8AfxERX5a0ALg8Iv5a0jigCagHAtgKzIyIA8c718Ee5hrs4Qk/wKqzpeu28fDmFq5umFLxcwp9HSK8/sEmxo8e1emLdMULg5oNpbzDXL1OwEsaA3wG+M8AEfFH4I+pU9GdecCjEdEOvCqpGWiQtBsYExGbUr0PAPOB9anMzan8WuCO1GuZA2yIiLZUZgMwlyxZlcUL37z4uH8wBoInZDPVeCNAX3sblbCitNlAKWWY60+BVuBeSS9K+qmkU9J7N0n6taR7JI1NsUnAa0Xl96TYpLTfNd6pTER0AG8Dp/VQV9kM1vBEX4ZIhoNqnVOopCHCSlFNQ5XWf6Ukkzrgk8BdEfEJ4A/AYuAu4CPADGAf8IN0fHddlugh3t8y75G0SFKTpKbW1tYemjIwBuMPRrX+8Rws1TqnsPKaepbPP5/pE8ewfP75HraitucX7ZhSvmeyB9gTEY3p57XA4oh4s3CApJ8A/1h0/JlF5ScDe1N8cjfx4jJ7JNUBpwJtKX5RlzLPdz3BiFgFrIJszqSENuUyGMMT1frHczB5cb7qVo1DldZ/vSaTiHhD0muSpkXETuAS4BVJZ0TEvnTY5cDLaf8JYLWkH5JNwJ8LbE4T8IckXQA0AtcCPy4qsxDYBFwBPBcRIelp4DtFQ2izgSV5G12p/MezM88pVLfBnl+0ylLqN+C/Cjyc7uT6HfC3wApJM8iGnXYD1wNExHZJa4BXgA7gxog4kuq5AbgPOIls4r0wIXA38GCarG8DFqS62iTdCmxJx91SmIyvRf7jabXEve3hxd+AN7NB49ufq0feW4OdTMzMzMupmJlZ+TmZmJlZbk4mZmaWm5OJmZnl5mRiZma5OZmYmVluTiZmZpabk4mZVQyvMFy9nEzMrGJ4heHqVeraXGZmg8YrDFc/90zMrOz8PJ/q52RiZmVXaSsMe+6m75xMzKwiVNIjjz1303deNdjMLOk6d1MwHOZuvGqwmdkA8dxN/zmZmJkllTZ3U02cTGzIeXLTKlklzd1UE8+Z2JBbum4bD29u4eqGKSy//GPlPh0zY4jmTCR9UNJaSb+RtEPSpySNk7RB0q70Orbo+CWSmiXtlDSnKD5T0rb03gpJSvGRkh5L8UZJU4vKLEz/xi5JC/vbUCu/aUvXM3XxkzzU2EJE9sW0qYufZNrS9eU+NTPLqdRhrh8BP4+IPwc+DuwAFgMbI+JcYGP6GUnTgQXAecBc4E5JJ6R67gIWAeembW6KXwcciIhzgNuB21Jd44BlwCygAVhWnLSsunhy06x29ZpMJI0BPgPcDRARf4yIfwXmAfenw+4H5qf9ecCjEdEeEa8CzUCDpDOAMRGxKbKxtQe6lCnUtRa4JPVa5gAbIqItIg4AGziWgKzKeHLTrHaVsjbXnwKtwL2SPg5sBb4GnB4R+wAiYp+kCen4ScAvisrvSbF3037XeKHMa6muDklvA6cVx7spY1WoMLl5VcMUVm9uodWT8GY1oZRkUgd8EvhqRDRK+hFpSOs41E0seoj3t8yxf1BaRDZ8xpQpU3o4NSu3ldccm99bPv/8Mp6JmQ2kUuZM9gB7IqIx/byWLLm8mYauSK/7i44/s6j8ZGBvik/uJt6pjKQ64FSgrYe6OomIVRFRHxH148ePL6FJZmY2kHpNJhHxBvCapGkpdAnwCvAEULi7aiHweNp/AliQ7tA6m2yifXMaEjsk6YI0H3JtlzKFuq4AnkvzKk8DsyWNTRPvs1PMzMwqSKnPM/kq8LCkDwC/A/6WLBGtkXQd0AJcCRAR2yWtIUs4HcCNEXEk1XMDcB9wErA+bZBN7j8oqZmsR7Ig1dUm6VZgSzruloho62dbzcxskPhLi2Zm5oUezcys/JxMzMxqQLnXvHMyMTOrAeV+oFepE/BmZlaBuj7Q66HGFh5qbBnyB3q5Z2JmVsUqZc07JxMzsypWKWveeZjLzKzKVcKad/6eiZmZ+XsmZmZWfk4mZmaWm5OJmZnl5mRiZma5OZmYmVluTiZmZpabk4mZmeXmZGJmZrk5mZiZDZFyLxM/mJxMzMyGSLmXiR9MXpuryu0/eJibHnmRO676xJAv7GZmpamUZeIHk3smVa6WP+mY1YpKWSZ+MJWUTCTtlrRN0kuSmlLsZkmvp9hLkj5XdPwSSc2SdkqaUxSfmepplrRCklJ8pKTHUrxR0tSiMgsl7UrbwoFqeLWbtnQ9Uxc/yUONLURkn3SmLn6SaUvXl/vUzKyLSlkmfjD1pWdycUTM6LKq5O0pNiMingKQNB1YAJwHzAXulHRCOv4uYBFwbtrmpvh1wIGIOAe4Hbgt1TUOWAbMAhqAZZLG9qOdNWc4fNIxqyWFZeLXfeVCrp51Fq3vtJf7lAbUYMyZzAMejYh24FVJzUCDpN3AmIjYBCDpAWA+sD6VuTmVXwvckXotc4ANEdGWymwgS0CPDMJ5V5Xh8EnHrJasvObY5/Dl888v45kMjlJ7JgE8I2mrpEVF8Zsk/VrSPUU9hknAa0XH7EmxSWm/a7xTmYjoAN4GTuuhLqP2P+mYWfUotWdyYUTslTQB2CDpN2RDVreSJZpbgR8AXwLUTfnoIU4/y7wnJbhFAFOmTOm5JTWk1j/pmA131XS3Zkk9k4jYm173A+uAhoh4MyKORMRR4CdkcxqQ9R7OLCo+Gdib4pO7iXcqI6kOOBVo66Gurue3KiLqI6J+/PjxpTTJzKziVdPdmr32TCSdAoyIiENpfzZwi6QzImJfOuxy4OW0/wSwWtIPgYlkE+2bI+KIpEOSLgAagWuBHxeVWQhsAq4AnouIkPQ08J2iIbTZwJKcbTYzq2jV+L2UUoa5TgfWpbt464DVEfFzSQ9KmkE27LQbuB4gIrZLWgO8AnQAN0bEkVTXDcB9wElkE++F+1jvBh5Mk/VtZHeDERFtkm4FtqTjbilMxpuZ1aoXvnkxy5/awTPb3+Dwu0cZdeII5pz3Yb79+Y+W+9SOq9dkEhG/Az7eTfyaHsr8PfD33cSbgPcN7kfEYeDK49R1D3BPb+dpZlYrqvFuTS+nYmZWgQp3a17VMIXVm1torfDFIRXxvpujqlp9fX00NTWV+zTMzKqKpK1dvpTeJ16by8zMcnMyMTOz3JxMzMwsNycTMzPLzcnEzMxyczIxM7PcnEzMzCw3JxMzM8vNycTMzHJzMjEzs9ycTMzMLDcnEzMzy83JxMzMcnMyMTOz3JxMzMwsNycTMzPLzcnEzMxyczKxmrH/4GG+sHIT+yv88aZmtaikZCJpt6Rtkl6S1JRi4yRtkLQrvY4tOn6JpGZJOyXNKYrPTPU0S1ohSSk+UtJjKd4oaWpRmYXp39glaeFANdxqz4qNu9iyu40Vz+4q96mYDTslPQNe0m6gPiLeKop9D2iLiO9KWgyMjYhvSZoOPAI0ABOBZ4E/i4gjkjYDXwN+ATwFrIiI9ZK+AvxFRHxZ0gLg8oj4a0njgCagHghgKzAzIg4c71z9DPjhZ9rS9bR3HH1ffGTdCHYuv7QMZ2RWfcr5DPh5wP1p/35gflH80Yhoj4hXgWagQdIZwJiI2BRZBnugS5lCXWuBS1KvZQ6wISLaUgLZAMzNcc5Wg1745sVcNmMio07Mfp1HnTiCeTMm8sK3Li7zmZkNH6UmkwCekbRV0qIUOz0i9gGk1wkpPgl4rajsnhSblPa7xjuViYgO4G3gtB7q6kTSIklNkppaW1tLbJLVigljRjF6ZB3tHUcZWTeC9o6jjB5Zx4TRo8p9ambDRl2Jx10YEXslTQA2SPpND8eqm1j0EO9vmWOBiFXAKsiGuXo4N6tRb73TztWzzuKqhims3txCqyfhzYZUSckkIvam1/2S1pHNh7wp6YyI2JeGsPanw/cAZxYVnwzsTfHJ3cSLy+yRVAecCrSl+EVdyjxfauNs+Fh5zbGh3uXzzy/jmZgNT70Oc0k6RdLowj4wG3gZeAIo3F21EHg87T8BLEh3aJ0NnAtsTkNhhyRdkOZDru1SplDXFcBzaV7laWC2pLHpbrHZKWZmZhWklJ7J6cC6dBdvHbA6In4uaQuwRtJ1QAtwJUBEbJe0BngF6ABujIgjqa4bgPuAk4D1aQO4G3hQUjNZj2RBqqtN0q3AlnTcLRHRlqO9ZmY2CEq6Nbia+NZgM7O+K+etwWZmZoCTiZmZDQAnEzMzy63m5kwktQK/L/d55PQh4K1ej6putd7GWm8f1H4bh1v7zoqI8f2trOaSSS2Q1JRnIqwa1Hoba719UPttdPv6xsNcZmaWm5OJmZnl5mRSmVaV+wSGQK23sdbbB7XfRrevDzxnYmZmublnYmZmuTmZDBFJ90jaL+nlotjHJW1KjzL+X5LGpPgHJN2b4r+SdFFRmefT45BfStuEbv65ISfpTEn/JGmHpO2SvpbiA/Z453Ia4PbVxDWUdFo6/h1Jd3Spq+qvYS/tq7hr2I/2fVbZM6q2pdf/WFRX369fRHgbgg34DPBJ4OWi2BbgP6T9LwG3pv0bgXvT/gSyxxWPSD8/T/YI5bK3qUv7zgA+mfZHA/8CTAe+ByxO8cXAbWl/OvArYCRwNvBb4IT03mbgU2TPs1kPXFpj7auVa3gK8O+ALwN3dKmrFq5hT+2ruGvYj/Z9ApiY9s8HXs9z/dwzGSIR8c9kKyIXmwb8c9rfAPxV2p8ObEzl9gP/ClT0/e4RsS8ifpn2DwE7yJ6KOZCPdy6bgWrf0J513/S1jRHxh4j430CnJ5HVyjU8XvsqVT/a92KkZ1UB24FRyh4d0q/r52RSXi8Dl6X9Kzn2ULFfAfMk1Sl7JsxMOj9w7N7Utf6vlTB80JWkqWSfehoZ2Mc7V4Sc7SuohWt4PLVyDXtTsdewH+37K+DFiGinn9fPyaS8vgTcKGkrWbf0jyl+D9kFbAL+O/B/yZ4NA3B1RHwM+Pdpu2ZIz7gXkv4E+J/A1yPiYE+HdhMr+VHN5TIA7YPauYbHraKbWDVew55U7DXsa/sknQfcBlxfCHVzWK/Xz8mkjCLiNxExOyJmAo+QjasTER0R8Y2ImBER84APArvSe6+n10PAaipo6ETSiWS/xA9HxM9S+M3UbS4Mf+R5vHNZDVD7aukaHk+tXMPjqtRr2Nf2SZoMrAOujYjfpnC/rp+TSRkV7gCRNAJYCvyP9PPJyh6RjKTPAh0R8Uoa9vpQip8I/CeyobKyS938u4EdEfHDorcG8vHOZTNQ7auxa9itGrqGx6unIq9hX9sn6YPAk8CSiPg/hYP7ff3KdefBcNvIeh77gHfJMv91wNfI7rj4F+C7HPsS6VRgJ9kE2rNkq3lCdnfJVuDXZBNmPyLdIVTujeyul0jn9lLaPgecRnYzwa70Oq6ozLfJemM7KbpbhOxmg5fTe3cU/l9qoX01eA13k91Y8k76vZ5eY9fwfe2r1GvY1/aRfYD9Q9GxLwET+nv9/A14MzPLzcNcZmaWm5OJmZnl5mRiZma5OZmYmVluTiZmZpabk4mZmeXmZGJmZrk5mZiZWW7/H6DC9bohFXlSAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "yearly_incidence.plot(style='*')" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2002 502271\n", "2018 543281\n", "1996 553859\n", "2017 557449\n", "2019 584926\n", "2000 605096\n", "2015 613286\n", "2012 620315\n", "2011 645042\n", "1995 648598\n", "2001 650660\n", "1993 653058\n", "2005 654308\n", "2006 657482\n", "1998 660316\n", "2014 673458\n", "1997 679308\n", "1994 682920\n", "2007 701566\n", "2013 708874\n", "2004 736266\n", "2008 745701\n", "2003 770211\n", "2016 780645\n", "1999 784963\n", "1992 821558\n", "2009 822819\n", "2010 848236\n", "dtype: int64" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "yearly_incidence.sort_values()" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEICAYAAABGaK+TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFTRJREFUeJzt3X+Q3Hddx/Hnu2kLaa8NlbSrBjCoWKUcP8wiv2bwriDTmoojg0ItKI7O4SBYnDgYQa0KlaBGraKOEWurKAeWdsRGwSI9FMXCpSDXElGksTTVlAoErgRq5O0f32/KES+33+9lv3ffDz4fM5nsj+9397Wf3Xvt9/vd7+43MhNJUnlOWe8AkqTVscAlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSoSxwSSqUBS5JhTq1ixvdvHlzbt26tdU89913H2eeeWYXcTph3m6Zt1vm7dZq8u7bt+/ezDy31UyZOfZ/27Zty7Zuvvnm1vOsJ/N2y7zdMm+3VpMXmM+WXesmFEkqlAUuSYWywCWpUBa4JBXKApekQjUq8Ij4iYi4PSJui4g3RcSDuw4mSVrZyAKPiC3AjwPDzHwMsAF4ftfBJEkra7oJ5VRgY0ScCpwB3N1dJElSE5ENjokZEZcDVwJHgL/OzMuWmWYGmAEYDAbbZmdnWwVZXFxkYmKi1TzrybwnZ+Hg4RWvH2yEQ0fGf7+TWzaN/0bp3/iOYt5urSbv9PT0vswctplnZIFHxDnAW4HnAZ8G/gy4LjPfeKJ5hsNhzs/Pt8nB3NwcU1NTreZZT+Y9OVt37l3x+h2TR9m9MP5fejiwa/vYbxP6N76jmLdbq8kbEa0LvMkmlGcCd2TmJzLzv4Hrgae2SiZJGrsmBX4n8OSIOCMiAngGsL/bWJKkUUYWeGbeAlwH3Aos1PPs6TiXJGmERhsZM/MK4IqOs0iSWvCbmJJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklSokQUeEedHxAeX/PtMRLx8LcJJkk5s5CHVMvMjwOMBImIDcBC4oeNckqQR2m5CeQbwb5n5712EkSQ1F5nZfOKIq4FbM/P1y1w3A8wADAaDbbOzs62CLC4uMjEx0Wqe9WTek7Nw8PCK1w82wqEj47/fyS2bxn+j9G98RzFvt1aTd3p6el9mDtvM07jAI+J04G7ggsw8tNK0w+Ew5+fn2+Rgbm6OqampVvOsJ/OenK079654/Y7Jo+xeGLmFr7UDu7aP/Tahf+M7inm7tZq8EdG6wNtsQrmYaul7xfKWJK2NNgV+KfCmroJIktppVOARcQbwHcD13caRJDXVaCNjZn4OeGjHWSRJLfhNTEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSoSxwSSpU00OqPSQirouIf46I/RHxlK6DSZJW1uiQasBVwNsz87kRcTpwRoeZJEkNjCzwiDgbeDrwIoDMvB+4v9tYkqRRIjNXniDi8cAe4MPA44B9wOWZed9x080AMwCDwWDb7OxsqyCLi4tMTEy0mmc9mffkLBw8vOL1g41w6Mj473dyy6bx3yj9G99RzNut1eSdnp7el5nDNvM0KfAh8I/A0zLzloi4CvhMZv7sieYZDoc5Pz/fJgdzc3NMTU21mmc9mffkbN25d8Xrd0weZfdC0y18zR3YtX3stwn9G99RzNut1eSNiNYF3uRDzLuAuzLzlvr8dcC3tkomSRq7kQWemf8JfDwizq8vegbV5hRJ0jpquo76MuBP6j1QPgb8UHeRJElNNCrwzPwg0GrbjCSpW34TU5IKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUKAtckgrV6Ig8EXEA+CzwP8DRtkdOliSNX9NjYgJMZ+a9nSWRJLXiJhRJKlRk5uiJIu4APgUk8HuZuWeZaWaAGYDBYLBtdna2VZDFxUUmJiZazbOezHtyFg4eXvH6wUY4dGT89zu5ZdP4b5T+je8o5u3WavJOT0/va7t5ummBf21m3h0R5wE3AS/LzL890fTD4TDn5+fb5GBubo6pqalW86wn856crTv3rnj9jsmj7F5os4WvmQO7to/9NqF/4zuKebu1mrwR0brAG21Cycy76//vAW4Avq1VMknS2I0s8Ig4MyLOOnYaeBZwW9fBJEkra7KOOgBuiIhj0/9pZr6901SSpJFGFnhmfgx43BpkkSS14G6EklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVKjGBR4RGyLiAxFxY5eBJEnNtFkCvxzY31UQSVI7jQo8Ih4GbAfe0G0cSVJTkZmjJ4q4DngtcBbwk5l5yTLTzAAzAIPBYNvs7GyrIIuLi0xMTLSaZz2Z9+QsHDy84vWDjXDoyBqFGYNReSe3bFq7MA307fUwyv+HvNPT0/syc9hmnpFHpY+IS4B7MnNfREydaLrM3APsARgOhzk1dcJJlzU3N0fbedaTeU/Oi3buXfH6HZNH2b0w8uXZG6PyHrhsau3CNNC318Mo5l1ek00oTwOeHREHgFngwoh4Y6epJEkjjSzwzPzpzHxYZm4Fng+8KzNf0HkySdKK3A9ckgrVaiNjZs4Bc50kkSS14hK4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQIws8Ih4cEe+LiH+KiNsj4hfWIpgkaWVNjsjzBeDCzFyMiNOA90TEX2XmP3acTZK0gpEFnpkJLNZnT6v/ZZehJEmjNdoGHhEbIuKDwD3ATZl5S7exJEmjRLWA3XDiiIcANwAvy8zbjrtuBpgBGAwG22ZnZ1sFWVxcZGJiotU847Rw8HCr6Qcb4dCR8dz35JZN47mhFaz3+B5v1HiPc3zXwqi8a/Ect9G318MobfO2/Xsel2PP82rGd3p6el9mDtvM06rAASLiCuC+zPzVE00zHA5zfn6+1e3Ozc0xNTXVap5x2rpzb6vpd0weZfdCk48QRjuwa/tYbmcl6z2+xxs13uMc37UwKu9aPMdt9O31MErbvG3/nsfl2PO8mvGNiNYF3mQvlHPrJW8iYiPwTOCfWyWTJI1dk0WcrwGujYgNVIX/lsy8sdtYkqRRmuyF8iHgCWuQRZLUgt/ElKRCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEI1OSbmwyPi5ojYHxG3R8TlaxFMkrSyJsfEPArsyMxbI+IsYF9E3JSZH+44myRpBSOXwDPzPzLz1vr0Z4H9wJaug0mSVtZqG3hEbKU6wPEtXYSRJDUXmdlswogJ4N3AlZl5/TLXzwAzAIPBYNvs7GyrIIuLi0xMTLSaZ5wWDh5uNf1gIxw60lGYDpi3W6PyTm7ZtHZhjrPca/srbXz74tjzvJo+m56e3peZwzbzNCrwiDgNuBF4R2b+2qjph8Nhzs/Pt8nB3NwcU1NTreYZp60797aafsfkUXYvNPkIoR/M261ReQ/s2r6Gab7ccq/tr7Tx7Ytjz/Nq+iwiWhd4k71QAvgDYH+T8pYkrY0m28CfBrwQuDAiPlj/+86Oc0mSRhi5TpKZ7wFiDbJIklrwm5iSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUqCbHxLw6Iu6JiNvWIpAkqZkmS+DXABd1nEOS1NLIAs/MvwU+uQZZJEktRGaOnihiK3BjZj5mhWlmgBmAwWCwbXZ2tlWQxcVFJiYmWDh4uNV862WwEQ4dWe8UzZm3W+btVil5J7dsAr7UZ21MT0/vy8xhm3lGHpW+qczcA+wBGA6HOTU11Wr+ubk5pqameNHOveOK1Kkdk0fZvTC24eucebtl3m6VkvfAZVPAl/qsa+6FIkmFssAlqVBNdiN8E/Be4PyIuCsifrj7WJKkUUZuVMrMS9ciiCSpHTehSFKhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEaFXhEXBQRH4mIj0bEzq5DSZJGa3JMzA3AbwMXA48GLo2IR3cdTJK0siZL4N8GfDQzP5aZ9wOzwHd3G0uSNEpk5soTRDwXuCgzf6Q+/0LgSZn50uOmmwFm6rPnAx9pmWUzcG/LedaTebtl3m6Zt1uryft1mXlumxlGHpUeiGUu+z+tn5l7gD1t7vzL7iRiPjOHq51/rZm3W+btlnm7tVZ5m2xCuQt4+JLzDwPu7iaOJKmpJgX+fuBREfHIiDgdeD7wtm5jSZJGGbkJJTOPRsRLgXcAG4CrM/P2DrKsevPLOjFvt8zbLfN2a03yjvwQU5LUT34TU5IKZYFLUqEscEkqVNEFHhEXRsQj1ztHU+btlnm7VVLekrLC6vMW+SFm/Vsss8CngS8CV2Tmu9c31YmZt1vm7VZJeUvKCieft4gl8Ih4WEScveSi5wFvzcynUz34SyPiKeuT7v8yb7fM262S8paUFcaft9cFHhHfEhF/CbwH+MWIOPYjWp8HzqhPv4XqNweeHBHLfe1/zZi3W+btVkl5S8oK3eXtXYFHxJlLzj4euCsztwLvAn61vvyTwBci4qzM/CTwL8AA2LqGUQHzds283Sopb0lZYW3y9qLAI+KciLgmIt4P7IqIc+t3oMcCfx8RkZlvAz4dEdupHuRZwGR9E/9K9etf95vXvOb9yslbUtb1yNuLAgeeDhwFvpPq1w9fCZxNle+r80uftF4LfD/wPuCzVAeZIDPfC1wIfMa85jXvV1TekrKufd7MXLN/VL+l8mLg3VS/Hb65vvwtwI/Xpx8J7KqvfyLVNqMN9XUTwCfq29kC7AdeCvwh8DvAGeY1r3nLy1tS1j7lXesl8EuAZwO/ADwF+OX68puAp9anPw78HXBxZr6f6l1sGiAzF4FbgCdm5kHghVTbi/4T+JnM/Nw4Qi75AOG7Ssi7hOPr+JY6vo7tKvI2OaBDK/U2noyIJ1KtIvwdsDczvwB8E/CxzHxXRNwB/EpEPAvYB3xPRGzOzHsj4l+B+yLiEcBvAS+IiPOofov8v6hWO8jMeWB+TLmHwI9Qrc78CnAP8PU9zuv4Or5L8/Z+fO2G8ecd6xJ4RJxdP0FTwNVUu8g8E3htPckXgX+JiI2ZeQfVasNjqQbmbqp9IgH+h2rV4hTgrVQ/zXgZsA3Yk5lfHFPeiYh4cERcW9/PHcBVmXlPRJxC9Y7Zp7wPrf9/KnAN/R/fc6La73UPcD39H9/zIuKh9R/stfR/fDdHxLdGxOuBG+jx+EbE6XU3fDvVZoK+j+1pEbExIq6hz90whm1BZwA/CPwN1Q7pAD8B/Fh9+hzgQ8AT6ge1C9haX3dJ/YA216cXgE1UG/H/Ejh9yf2ccrJZj8v7LuDN9WWvA168ZJpT6/9fCrxmvfLypW/Kfi/V9rM5quONvryP43tc3r8H3kn1ou7l+Na3cybwIqpV38PA9r6O73F530m1BPecvo4vcBrwEuAvgN8FvhG4vMdjeyzvjVRLyxfUmXo3tg/c1hge8B31E3TRksv/6NiTVJ9/NdW77ldRLZlfXF9+NtXBj8+uz7+8/kPaXz+hMa4HOiLvC4CrqJYGrqH60OGr6hfcG9Yrb30fm4A/A5675LI/7uP4rpC3l+Nb3/+t9Xg+Cfgw1e5cV1F/ENWn8V0m7+1US3Lbgdf3cHxfDlwHPIPqg7lXAH8O/GjfxvYEeX+GqtB/jarIezO2D2Qew4O+HrjsuMueB9yy5PzXAnfXp3+M6iuj5wAbqcr0EUum3dzFAx2R9xF1pjcDlwK/Aby9J3lfAry6Pn1sCfc5PR7fB/LW5zcCX1Nnekufxpdq1fZBS85fDTwX+O4+ju8yed9AtTR+Xh9fv/V9/UB9+oeBl9Xd8L6+je0yeX8I+Om6G97ct7F94D7G8KAvodoZfTfVKv7PAV9H9Q2j85ZMdxPwpPr0a4C/ploF/KmuH+QKeW8Gfp7qA4UtS6Y5rX4sF9bnr1zHvN9XZ7mMaunr2rpgDi99gfRofJfm3Qe8keoT+6Uv7N6M75JMD6VaEnwm1fbKT1Ltt9ur8V0m77Pq8717/VK9mf8N1RrZx6necC4APgWc27exPS7vnVRv6N8CPLxvY/tAnjE98HdQ7bD+cKp3qsuB91KVeVCtcrzh2B9xPQiPAR681g94mbx/QvW11kctuf6rqVaXHrveeYFH1WP5m1Tv9N9PtUr3CapV0lP6NL7L5P1eqiXvi/s4vsdl/wDwnPr0G4HX1ad7M77L5H12ffqUJZf3Znyp9t64mmrb8M8DV1Btanhl3167y+R9FfD7wJP7OLaZ49sP/Hsy85cy8+PAL1HtEvRbVKsVb6N6V9uQmXcCZOZ/Z+Ztmfn5Md3/yeR9LdWT8pCIeFxEvIpqM8vnMvNDPch7J9XXak/NzE9RfcByZ/3/GfRvfI/Pu5dq2/ITIuKbezi+1HsVQPVB8TfWp6+sroq/oF/je6K8p9R7pLySfo3vo4G5zLyXao1hA/Am+tsNS/NeCxwBviEiLujja3cs+4Hnl+90/mmqAv/ZzPzTiHgBcHtmfmAc9zUOx+X9LNUO9Pup3nFPo/qAsBd5M/MLEbGLatUSqqWWpwC7MvMDfRvfZfKeTrUa+mqqvX9Op0fjC5CZX4yIY78I99H6sv3AKyLiMuDDPc57oL7saEQ8n+r10YvxjYgNwF1UXy//I+A+qm8kviQz7+jba3eZvJ+nWqP8ZarNKw+iJ2N7zFgO6BARDwIuovo20QVUuwz9TmYePekb78Ayefdk5q+vb6qVRcSVVF8eeALVNrcr6iXcXjou7zuBV+T4vxk5VhHxEeDnMvPNx750st6ZVrI073pnOZGI+Aaq3evup3o93AC8JqtvIvbOMnnfBrwqM9fkx7DaGtsReSLixVQ74//xOq7+NFZaXoCIOB/4d/OO15JvCD6eate8o30u7wLzPoJqSfYfMvPIeucZpaS8RR5STZLUn5+TlSS1ZIFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQv0v0E12vPKxB+IAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "yearly_incidence.hist(xrot=20)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "hide_code_all_hidden": false, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }