
Risk Analysis of the Space Shuttle: Pre-Challenger
Prediction of Failure

In this document we reperform some of the analysis provided in Risk Analysis of the Space Shuttle: Pre-

Challenger Prediction of Failure by Siddhartha R. Dalal, Edward B. Fowlkes, Bruce Hoadley published in Journal of

the American Statistical Association, Vol. 84, No. 408 (Dec., 1989), pp. 945-957 and available at

http://www.jstor.org/stable/2290069.

On the fourth page of this article, they indicate that the maximum likelihood estimates of the logistic regression

using only temperature are:  and  and their asymptotic standard errors are 

and . The Goodness of fit indicated for this model was  with 21 degrees of freedom.

Our goal is to reproduce the computation behind these values and the Figure 4 of this article, possibly in a nicer

looking way.

1 - Technical information on the computer on
which the analysis is run
We will be using the Julia language:

using InteractiveUtils

versioninfo()

Julia Version 1.4.0

Commit b8e9a9ecc6 (2020-03-21 16:36 UTC)

Platform Info:

  OS: Linux (x86_64-pc-linux-gnu)

  CPU: Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz

  WORD_SIZE: 64

  LIBM: libopenlibm

  LLVM: libLLVM-8.0.1 (ORCJIT, skylake)

Environment:

  JULIA_PROJECT = @.

The computations rely on a number of packages in the Julia ecosystem. The direct dependencies are

summarized hereafter; the complete environment is described in the Manifest.toml file.

# Setup environment

using Pkg

Pkg.activate(@__DIR__)

Pkg.instantiate()

# Load dependencies

using HTTP, CSV

using Plots; plotly()

using GLM

using DataFrames

using Printf

include("utils.jl")

# Summary

Pkg.status()

Project Challenger v0.1.0

Status `~/tmp/MOOC-RR/module4/Project.toml`

  [336ed68f] CSV v0.6.1

  [a93c6f00] DataFrames v0.20.2

  [82cc6244] DataInterpolations v2.0.0

  [38e38edf] GLM v1.3.9

  [cd3eb016] HTTP v0.8.14

  [9b87118b] PackageCompiler v1.1.1

  [91a5bcdd] Plots v0.29.9

  [44d3d7a6] Weave v0.9.4

2 - Loading and inspecting data
Let's start by reading data.

res = HTTP.request(:GET, "https://app-learninglab.inria.fr/moocrr/gitlab/moocrr-session3/moocrr-reproducibility-st

data = CSV.read(res.body)

23 rows × 5 columns

Date Count Temperature Pressure Malfunction

String Int64 Int64 Int64 Int64

1 4/12/81 6 66 50 0

2 11/12/81 6 70 50 1

3 3/22/82 6 69 50 0

4 11/11/82 6 68 50 0

5 4/04/83 6 67 50 0

6 6/18/82 6 72 50 0

7 8/30/83 6 73 100 0

8 11/28/83 6 70 100 0

9 2/03/84 6 57 200 1

10 4/06/84 6 63 200 1

11 8/30/84 6 70 200 1

12 10/05/84 6 78 200 0

13 11/08/84 6 67 200 0

14 1/24/85 6 53 200 2

15 4/12/85 6 67 200 0

16 4/29/85 6 75 200 0

17 6/17/85 6 70 200 0

18 7/2903/85 6 81 200 0

19 8/27/85 6 76 200 0

20 10/03/85 6 79 200 0

21 10/30/85 6 75 200 2

22 11/26/85 6 76 200 0

23 1/12/86 6 58 200 1

We know from our previous experience on this data set that filtering data is a really bad idea. We will therefore

process it as such.

data.Frequency = data.Malfunction ./ data.Count

plot(xlabel="Temperature [F]", ylabel="Frequency")

plot!(data.Temperature, data.Frequency, seriestype=:scatter, label=nothing)

disp()

3 - Logistic regression
Let's assume O-rings independently fail with the same probability which solely depends on temperature. A

logistic regression should allow us to estimate the influence of temperature.

model = glm(@formula(Frequency ~ Temperature), data,

Binomial(), LogitLink())

α, β = coef(model)

σα, σβ = stderror(model)

G² = deviance(model)

nDOF = Int(dof_residual(model))

model

StatsModels.TableRegressionModel{GLM.GeneralizedLinearModel{GLM.GlmResp{Array{Float64,1},Distributions.Binomial{Fl

Frequency ~ 1 + Temperature

Coefficients:

────────────────────────────────────────────────────────────────────────────

              Estimate  Std. Error   z value  Pr(>|z|)  Lower 95%  Upper 95%

────────────────────────────────────────────────────────────────────────────

(Intercept)   5.08498     7.47703    0.68008    0.4965  -9.56973   19.7397

Temperature  -0.115601    0.115184  -1.00362    0.3156  -0.341358   0.110156

────────────────────────────────────────────────────────────────────────────

The maximum likelyhood estimator of the intercept and of Temperature are thus  and .

This corresponds to the values from the article of Dalal et al. The standard errors are  and

, which is different from the  and  reported by Dallal et al.

The deviance is  with 22 degrees of freedom. I cannot find any value similar to the Goodness of

fitreported by Dalal et al. ( ). However, the number of degrees of freedom is different but at least

similar to theirs (21).

There seems to be something wrong. Oh I know, I haven't indicated that my observations are actually the result

of 6 observations for each rocket launch. Let's indicate these weights (since the weights are always the same

throughout all experiments, it does not change the estimates of the fit but it does influence de variance estimate).

model = glm(@formula(Frequency ~ Temperature), data,

Binomial(), LogitLink();

wts=data.Count)

α, β = coef(model)

σα, σβ = stderror(model)

G² = deviance(model)

nDOF = Int(dof_residual(model))

model

StatsModels.TableRegressionModel{GLM.GeneralizedLinearModel{GLM.GlmResp{Array{Float64,1},Distributions.Binomial{Fl

Frequency ~ 1 + Temperature

Coefficients:

─────────────────────────────────────────────────────────────────────────────

              Estimate  Std. Error   z value  Pr(>|z|)  Lower 95%   Upper 95%

─────────────────────────────────────────────────────────────────────────────

(Intercept)   5.08498    3.05247     1.66585    0.0957  -0.897762  11.0677

Temperature  -0.115601   0.0470236  -2.45836    0.0140  -0.207766  -0.0234366

─────────────────────────────────────────────────────────────────────────────

Good, now I have recovered the asymptotic standard errors  and ,

The Goodness of fit (Deviance) indicated for this model is  with 137 degrees of freedom. Now  is

in good accordance to the results of the Dalal et al. article, but the number of degrees of freedom is

approximately 6 times larger than that of Dalal et al. Note that, even removing this factor (which is probably due

to the way the number of residual degrees of freedom are defined in both libraries in the presence of weights),

the values are similar but still differ by 9%.

4 - Predicting failure probability
The temperature when launching the shuttle was 31°F. Let's try to estimate the failure probability for such

temperature using our model:

prediction = DataFrame(Temperature=30:0.25:90)

prediction.Frequency = predict(model, prediction)

plot(xlabel="Temperature [F]", ylabel="Frequency")

plot!(data.Temperature, data.Frequency, seriestype=:scatter, label="data")

plot!(prediction.Temperature, prediction.Frequency, label="prediction")

disp()

This figure is very similar to the Figure 4 of Dalal et al.

Published from challenger.jmd using Weave.jl on 2020-04-16.
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