Nous utilisons Julia dans sa version 1.4.0, sur une architecture matérielle de type x86 (64 bits)
using InteractiveUtils versioninfo()
Julia Version 1.4.0 Commit b8e9a9ecc6 (2020-03-21 16:36 UTC) Platform Info: OS: Linux (x86_64-pc-linux-gnu) CPU: Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz WORD_SIZE: 64 LIBM: libopenlibm LLVM: libLLVM-8.0.1 (ORCJIT, skylake) Environment: JULIA_PROJECT = @.
Il nous faut maintenant charger l'environnement logiciel de notre étude, c'est à dire toutes les bibliothèques sur lesquelles elle s'appuie, dans les bonnes versions. La liste des dépendances directes est contenue dans le fichier Project.toml
, et complétée par le fichier Manifest.toml
(qui liste toutes les dépendances directes et indirectes, accompagnées de leurs numéros de version précis).
Toutes ces informations permettent au gestionnaire de paquets de re-créer un environnement logiciel identique à celui qui a été utilisé pour développer cette analyse.
using Pkg Pkg.activate(@__DIR__) Pkg.instantiate()
Tant que nous y sommes, profitons en pour charger dès maintenant les paquets dont nous aurons besoin.
import HTTP import CSV import DataInterpolations; const DI=DataInterpolations using GLM using Printf using Dates using DataFrames using Statistics using Plots; gr()
Nos données d'entrée proviennent du programme Scripps CO2. Nous fondons l'analyse sur le jeu de données contenant des observations hebdomadaires.
Le jeu de données est téléchargé une seule fois ; c'est une copie locale qui sert à réaliser l'analyse. Ceci permet de garantir la reproductibilité des données utilisées pour l'analyse, qui seront stockées dans git aux côtés du présent document.
Il est toutefois possible de forcer le téléchargement en positionnant la variable force_download=true
. Ceci permet notamment d'actualiser le jeu de données.
const data_url = "https://scrippsco2.ucsd.edu/assets/data/atmospheric/stations/in_situ_co2/weekly/weekly_in_situ_co2_mlo.csv" const data_file = "weekly_in_situ_co2_mlo.csv" const force_download = false
if force_download || !isfile(data_file) println("Downloading data:") println(" url = $data_url") println(" file = $data_file") open(data_file, "w") do f req = HTTP.request(:GET, data_url) @assert req.status == 200 "Error while downloading" write(f, req.body) end open("download.stamp", "w") do f write(f, string(today())) end else println("Using local data:") println(" file = $data_file") println(" downloaded = ", readline("download.stamp")) end
Using local data: file = weekly_in_situ_co2_mlo.csv downloaded = 2020-04-10
Les données d'entrée sont stockées au format CSV, et contiennent 44 lignes d'informations préliminaires que nous reproduisons ici, et qui seront sautées lors de la lecture des données.
skip = 44 open(data_file) do f for _ in 1:skip; println(readline(f)); end end
"-------------------------------------------------------------------------------------------" " Atmospheric CO2 concentrations (ppm) derived from in situ air measurements " " at Mauna Loa, Observatory, Hawaii: Latitude 19.5°N Longitude 155.6°W Elevation 3397m " " " " Source: R. F. Keeling, S. J. Walker, S. C. Piper and A. F. Bollenbacher " " Scripps CO2 Program ( http://scrippsco2.ucsd.edu ) " " Scripps Institution of Oceanography (SIO) " " University of California " " La Jolla, California USA 92093-0244 " " " " Status of data and correspondence: " " " " These data are subject to revision based on recalibration of standard gases. Questions " " about the data should be directed to Dr. Ralph Keeling (rkeeling@ucsd.edu), Stephen Walker" " (sjwalker@ucsd.edu) and Stephen Piper (scpiper@ucsd.edu), Scripps CO2 Program. " " " " Baseline data in this file through 06-Feb-2020 from archive dated 06-Feb-2020 08:55:31 " " " "-------------------------------------------------------------------------------------------" " " " Please cite as: " " " " C. D. Keeling, S. C. Piper, R. B. Bacastow, M. Wahlen, T. P. Whorf, M. Heimann, and " " H. A. Meijer, Exchanges of atmospheric CO2 and 13CO2 with the terrestrial biosphere and " " oceans from 1978 to 2000. I. Global aspects, SIO Reference Series, No. 01-06, Scripps " " Institution of Oceanography, San Diego, 88 pages, 2001. " " " " If it is necessary to cite a peer-reviewed article, please cite as: " " " " C. D. Keeling, S. C. Piper, R. B. Bacastow, M. Wahlen, T. P. Whorf, M. Heimann, and " " H. A. Meijer, Atmospheric CO2 and 13CO2 exchange with the terrestrial biosphere and " " oceans from 1978 to 2000: observations and carbon cycle implications, pages 83-113, " " in "A History of Atmospheric CO2 and its effects on Plants, Animals, and Ecosystems", " " editors, Ehleringer, J.R., T. E. Cerling, M. D. Dearing, Springer Verlag, " " New York, 2005. " " " "-------------------------------------------------------------------------------------------" " " " " " The data file below contains 2 columns indicaing the date and CO2 " " concentrations in micro-mol CO2 per mole (ppm), reported on the 2008A " " SIO manometric mole fraction scale. These weekly values have been " " adjusted to 12:00 hours at middle day of each weekly period as " " indicated by the date in the first column. "
Le fichier est structuré en deux colonnes :
date
: date de la mesure
val
: concentration en CO2 (en ppm molaires)
data_raw = CSV.read(data_file; skipto=skip+1, header=[:date, :val])
L'examen des premières et dernières lignes de données révèle qu'elles couvrent la période de fin mars 1958 jusqu'à nos jours.
info(data_raw)3156 rows × 2 columns
date | val | |
---|---|---|
Date | Float64 | |
1 | 1958-03-29 | 316.190000 |
2 | 1958-04-05 | 317.310000 |
3 | 1958-04-12 | 317.690000 |
... | ||
3154 | 2020-01-11 | 413.390000 |
3155 | 2020-01-25 | 413.360000 |
3156 | 2020-02-01 | 413.990000 |
Les relevés étant hebdomadaires, l'écart entre deux dates successives du jeu de données devrait être de 7 jours. Un point manquant provoque un écart de 14 jours, ce qui devrait être rattrappable dans le reste de l'analyse ; au delà, il faudra se poser des questions sur le traitement à apporter.
dates = data_raw.date for i in 2:length(dates) if dates[i]-dates[i-1] > 14Days println("Missing data: ", dates[i-1], " - ", dates[i], " (", dates[i]-dates[i-1], ")") end end
Missing data: 1958-05-24 - 1958-07-05 (42 days) Missing data: 1958-09-06 - 1958-11-08 (63 days) Missing data: 1962-08-18 - 1962-09-15 (28 days) Missing data: 1964-01-18 - 1964-05-30 (133 days) Missing data: 1964-06-06 - 1964-06-27 (21 days) Missing data: 1966-07-09 - 1966-08-06 (28 days) Missing data: 1967-01-14 - 1967-02-04 (21 days) Missing data: 1984-03-24 - 1984-04-28 (35 days) Missing data: 2003-10-04 - 2003-10-25 (21 days) Missing data: 2005-02-19 - 2005-03-26 (35 days) Missing data: 2006-02-04 - 2006-02-25 (21 days) Missing data: 2012-09-29 - 2012-10-20 (21 days)
Il y a 12 périodes durant lesquelles les données sont manquantes, dont une en particulier ayant duré 19 semaines en 1964. Le traitement devra en tenir compte.
Une visualisation de l'ensemble des données semble montrer une augmentation tendancielle de la concentration en CO2, à laquelle se superpose une oscillation à plus haute fréquence.
Un zoom sur les dernières années laisse penser que le cycle court se produit sur une période annuelle, avec un minimum local atteint chaque année autour du mois d'octobre.
Dans cette analyse, nous allons tenter de séparer ces deux composantes : composante tendancielle "lisse" et composante oscillante de période annuelle. Plus précisément, en notant $C$ la concentration en CO2 et $t$ le temps, nous cherchons une approximation des mesures sous la forme :
\[ C(t) \approx \theta(t) + \phi(t), \]
où $\phi(t)$ est une fonction périodique, de période 1 an, donnant la forme de la variation de la concentration en CO2 sur des échelles de temps courtes. $\theta(t)$ est une fonction très régulière, idéalement un polynôme d'ordre bas, donnant la tendance de la variation de concentration en CO2 en temps long.
La démarche que nous suivons est globalement la suivante : le jeu de données va être découpé en périodes annuelles. Chacune de ces périodes annuelles sera traitée (indépendamment des autres) afin d'en extraire une composante lisse, et une composante périodique.
Si notre hypothèse est correcte, les composantes périodiques de chaque année devraient être relativement comparables les unes aux autres, et pouvoir être approchées par leur moyenne : ce comportement annuel moyen constituera notre composante oscillante $\phi(t)$.
On pourra ensuite obtenir la composante lisse tendancielle en éliminant la composante oscillatoire moyenne du signal d'origine :
\[ \theta(t) = C(t)-\phi(t). \]
La périodicité des données (hebdomadaire) n'étant que peu adaptée à un découpage annuel, nous allons commencer par interpoler les données à une maille journalière. Ceci nous permettra de découper le jeu de données en années.
Il est plus simple d'interpoler entre deux nombres qu'entre deux dates. Dans la suite, nous adopterons une convention selon laquelle chaque date peut être représentée par le nombre de jours qui la sépare de la première mesure :
date2num(d::Date) = Dates.value(d - data_raw.date[1]) num2date(n::Int) = data_raw.date[1] + n * Days
Par exemple, pour les premières mesures :
date | date_num | |
---|---|---|
Date | Int64 | |
1 | 1958-03-29 | 0 |
2 | 1958-04-05 | 7 |
3 | 1958-04-12 | 14 |
Afin de comparer des données année par année, nous allons aussi enrichir les données avec de nouvelles représentations de la date : une date peut être décomposée comme un couple (year, day)
dans lequel
year
représente l'année
day
représente l'indice du jour dans l'année (entre 0 et 365).
Dans ce formalisme, le 1er janvier 2020 est représenté par le couple (year=2020, day=0)
. Le 31 décembre 1983 est représenté par le couple (year=1983, day=364)
.
dayinyear(date::Date) = Dates.value(date - Date(year(date))) dayinyear(num::Int) = dayinyear(num2date(num)) let d = Date("1983-12-31") year(d), dayinyear(d) end
(1983, 364)
Enfin, prévenons dès maintenant que tout le code de l'analyse fonctionne en présence d'années bissextiles, mais rien n'a été fait pour les traiter à part : l'impact, de l'ordre de 1/365 une année sur 4, a été jugé négligeable a priori.
On construit un interpolateur linéaire basé sur les mesures de CO2 en fonction de la "date numérique". C'est le paquet Julia DataInterpolations
qui se charge d'effectuer le gros du travail.
interp = DI.LinearInterpolation(data_raw.val, date2num.(data_raw.date));
Nous allons profiter de la construction des données interpolées pour gérer le problème des données manquantes : nous n'interpolerons aucune donnée dans les "trous" de 3 semaines ou plus. La construction de ce nouveau jeu de données interpolées est aussi l'occasion d'enrichir les formats de représentation des dates. Nous avons maintenant 5 colonnes dans notre jeu de données interpolé :
date
: date identifiant le jour de la mesure (ou de la valeur interpolée)
val
: valeur de la mesure de CO2 (ou de l'interpolation)
date_num
: date convertie en nombre
year
: composante de la date identifiant l'année
day
: composante de la date identifiant le jour dans l'année (entre 0 et 365)
data_interp = DataFrame(date_num=Int[], val=Float64[], date=Date[], year=Int[], day=Int[]) for i in 2:length(dates) if dates[i]-dates[i-1] > 14Days # pas d'interpolation : seule la date de gauche est inclue range = dates[i-1] => dates[i-1] else # Interpolation entre le début de la période et # la fin (exclue car traitée en tant que début de # la prochaine période) range = dates[i-1] => dates[i]- 1Days end # Pour chaque jour dans la période considérée, # on ajoute une nouvelle ligne de données en interpolant for date_num in date2num(first(range)):date2num(last(range)) date = num2date(date_num) push!(data_interp, (date_num = date_num, date = date, year = year(date), day = dayinyear(date), val = interp(date_num))) end end info(data_interp)22132 rows × 5 columns
date_num | val | date | year | day | |
---|---|---|---|---|---|
Int64 | Float64 | Date | Int64 | Int64 | |
1 | 0 | 316.190000 | 1958-03-29 | 1958 | 87 |
2 | 1 | 316.350000 | 1958-03-30 | 1958 | 88 |
3 | 2 | 316.510000 | 1958-03-31 | 1958 | 89 |
... | |||||
22130 | 22586 | 413.720000 | 2020-01-29 | 2020 | 28 |
22131 | 22587 | 413.810000 | 2020-01-30 | 2020 | 29 |
22132 | 22588 | 413.900000 | 2020-01-31 | 2020 | 30 |
En zoomant sur les données interpolées autour de l'une des périodes de données manquantes, on observe bien le résultat attendu : une interpolation linéaire journalière lorsque les données sont disponibles, mais aucune interpolation lorsque les données sont manquantes.
Enfin, nous ne gardons pour notre analyse que des années complètes. D'ailleurs, afin de tester la validité de nos résultats, nous n'allons réaliser l'analyse que sur une fraction des données ; nous garderons les 5 dernières années comme données de test. Les données sur lesquelles portera l'analyse couvrent donc la période 1959-2014.
firstyear = minimum(data_interp.year)+1 lastyear = maximum(data_interp.year)-6 idx = (data_interp.year.>=firstyear) .& (data_interp.year.<=lastyear) data = data_interp[idx, :]; info(data)20100 rows × 5 columns
date_num | val | date | year | day | |
---|---|---|---|---|---|
Int64 | Float64 | Date | Int64 | Int64 | |
1 | 278 | 315.231429 | 1959-01-01 | 1959 | 0 |
2 | 279 | 315.235714 | 1959-01-02 | 1959 | 1 |
3 | 280 | 315.240000 | 1959-01-03 | 1959 | 2 |
... | |||||
20098 | 20729 | 399.270000 | 2014-12-29 | 2014 | 362 |
20099 | 20730 | 399.400000 | 2014-12-30 | 2014 | 363 |
20100 | 20731 | 399.530000 | 2014-12-31 | 2014 | 364 |
Sur ces années complètes, la composante day
de la date devrait être équirépartie entre 0 et 365, ce qui est globalement le cas. Les données manquantes n'ont donc pas d'impact significatif de ce point de vue là.
Pour chaque année, on commence par tenter d'extraire la composante oscillante de la mesure. Si l'on note $C_a$ la concentration en CO2 durant l'année $a$ et $d$ un jour de cette année, on cherche à écrire :
\[ \forall d\in{0\ldots365}, \quad C_a(d) = \underbrace{\theta_a(d)}_{\text{tendance locale}} + \underbrace{\phi_a(d)}_{\text{forme locale}} \]
ce qui correspond à une version locale de l'expression globale cherchée pour la variation de concentration en CO2 : $\theta_a$ et $\phi_a$ donnent respectivement la tendance et la forme de la concentration pour l'année $a$.
Cherchant une tendance d'ordre aussi bas que possible, nous supposons que $\theta_a$ peut être approchée par un modèle affine à cette échelle de temps courts :
\[ \theta_a(d) = \alpha_a + \beta_a \, d. \]
Pour que la forme $\phi_a$ soit périodique, il faut que cette fonction prenne la même valeur en début d'année qu'en fin d'année : $\phi(0)=\phi(365)$. Afin de définir la constante $\alpha$ de manière unique, on fixe de plus :
\[ \phi(0)=\phi(365)=0. \]
On obtient donc
\[ \begin{align*} \alpha_a &= C_a(0), \\[1em] \beta_a &= \frac{C_a(365)-C_a(0)}{365}, \\[1em] \phi_a(d) &= C_a(d) - \alpha_a - \beta_a d. \end{align*} \]
En pratique, plutôt que des valeurs ponctuelles $C_a(0)$ et $C_a(365)$, on prend plutôt des valeurs (notées $C_0$ et $C_1$ dans le code) moyennées sur les 7 premiers et 7 derniers jours de l'année.
data.phi = copy(data.val) data.alpha = zero(data.val) data.beta = zero(data.val) for year in unique(data.year) idx = (data.year .== year) C₀ = data.val[idx .& (data.day .< 7) ] |> mean C₁ = data.val[idx .& (data.day .> 358)] |> mean α = C₀ β = (C₁ - C₀) / 365 data.alpha[idx] .= α data.beta[idx] .= β data.phi[idx] .-= α .+ β*data.day[idx] end
Examinons par exemple l'effet de ce traitement sur les données interpolées de l'année 1982. On voit, sur la figure du haut, les mesures brutes ainsi que la tendance locale (affine). Sur la figure du bas, la composante périodique locale vérifie bien les contraintes demandées, avec ses valeurs nulles aux bords.
Pour que notre décomposition soit valide, il faut que les composantes périodiques locales de chaque année se ressemblent, au point de pouvoir être représentées par leur moyenne. Nous calculons donc cette moyenne pour toutes les années du jeu de données d'étude.
avg = by(data, :day, :phi=>mean, :phi=>std) info(avg)366 rows × 3 columns
day | phi_mean | phi_std | |
---|---|---|---|
Int64 | Float64 | Float64 | |
1 | 0 | -0.102212 | 0.125698 |
2 | 1 | -0.073884 | 0.088030 |
3 | 2 | -0.043949 | 0.048068 |
... | |||
364 | 363 | 0.058941 | 0.055141 |
365 | 364 | 0.091555 | 0.077335 |
366 | 365 | 0.126676 | 0.100662 |
Et nous traçons l'ensemble des composantes oscillantes locales aux côtés de cette moyenne.
Comme on pouvait s'y attendre, il reste une forte variabilité d'année en année. Notons toutefois que l'écart-type, bien qu'important, reste un ordre de grandeur en dessous des valeurs extrêmes, ce qui permet d'espérer que ce profil moyen est suffisamment représentatif pour permettre d'extraire la composante tendancielle lisse des données.
Nous sommes maintenant prêts à extraire la composante tendancielle des mesures. Il suffit pour cela de retrancher aux données brutes la composante oscillante moyenne : d'après notre modèle, on a en effet
\[ \theta(t) = C(t) - \phi(t). \]
data = join(data, avg, on=:day) data.theta = data.val .- data.phi_mean;
Même s'il reste des oscillations locales, nous constatons tout de même que la composante tendancielle est devenue suffisamment lisse pour récupérer une forme de monotonie.
Nous allons maintenant tenter de caractériser la tendance sous-jacente. Au vu de la courbe (convexe), nous proposons un modèle quadratique de la forme :
\[ \theta(t) = \alpha + \beta t + \gamma t^2 \]
Le paquet Julia GLM
permet de fitter des modèles linéaires (ou modèles linéaires généralisés). Nous l'utilisons ici pour estimer les paramètres de notre modèle. L'estimation est réalisée sur un sous-échantillonnage du jeu de données, comprenant un point (moyen) par an.
sample = by(data, :year, theta = :theta=>mean, date_num = :date_num=>mean) model = GLM.lm(@formula(theta ~ date_num + date_num^2), sample)
StatsModels.TableRegressionModel{LinearModel{GLM.LmResp{Array{Float64,1}},GLM.DensePredChol{Float64,LinearAlgebra.Cholesky{Float64,Array{Float64,2}}}},Array{Float64,2}} theta ~ 1 + date_num + :(date_num ^ 2) Coefficients: ─────────────────────────────────────────────────────────────────────────────────────── Estimate Std. Error t value Pr(>|t|) Lower 95% Upper 95% ─────────────────────────────────────────────────────────────────────────────────────── (Intercept) 313.862 0.263289 1192.08 <1e-99 313.334 314.39 date_num 0.00221635 5.77649e-5 38.3685 <1e-39 0.00210049 0.00233221 date_num ^ 2 9.10059e-8 2.66606e-9 34.135 <1e-37 8.56585e-8 9.63533e-8 ───────────────────────────────────────────────────────────────────────────────────────
Le modèle obtenu semble correspondre assez bien aux données, avec une incertitude de l'ordre de quelques pourcents sur l'estimation des paramètres $\alpha$ et $\beta$.
α, β, γ = coef(model); α1, β1, γ1 = coef(model)-2*stderror(model); α2, β2, γ2 = coef(model)+2*stderror(model);
En première approximation, on a en particulier une hausse tendancielle de la concentration de CO2 atmosphérique de l'ordre de $\beta$ = 2.22e-03 ppm/jour ($\pm$5.21%), qui se traduit en une augmentation annuelle comprise entre 0.77 et 0.85 ppm/an avec un niveau de confiance de 95%.
On voit toutefois que l'incertitude sur les paramètres (en particulier $\beta$) est de nature à engendrer une perte de prédictibilité du modèle en temps long.
Nous avons maintenant tous les éléments nécessaires afin de reconstruire l'évolution de la concentration en CO2 selon notre modèle :
\[ C(t) = \theta(t) + \phi(t). \]
Les 5 dernières années du jeu de données brut n'ont pas servi à calibrer notre modèle ; nous allons les utiliser comme données de test. Nous extrapolons aussi les valeurs des 5 prochaines années. Pour toute cette période, nous reconstruisons les valeurs de concentration en CO2 tous les 10 jours.
date_num = date2num(Date(lastyear)):10:date2num(today()+5Years) prediction = DataFrame(date_num=date_num, date=num2date.(date_num), day=dayinyear.(date_num)) info(prediction)412 rows × 3 columns
date_num | date | day | |
---|---|---|---|
Int64 | Date | Int64 | |
1 | 20367 | 2014-01-01 | 0 |
2 | 20377 | 2014-01-11 | 10 |
3 | 20387 | 2014-01-21 | 20 |
... | |||
410 | 24457 | 2025-03-14 | 72 |
411 | 24467 | 2025-03-24 | 82 |
412 | 24477 | 2025-04-03 | 92 |
Le modèle GLM
précédemment calibré est utilisé pour calculer $\theta(t)$. On y ajoute la fonction de forme annuelle $\phi(t)$ par périodicité.
prediction.theta = predict(model, prediction) prediction = join(prediction, avg, on=:day) prediction.val = prediction.theta .+ prediction.phi_mean info(prediction)412 rows × 7 columns
date_num | date | day | theta | phi_mean | phi_std | val | |
---|---|---|---|---|---|---|---|
Int64 | Date | Int64 | Float64? | Float64 | Float64 | Float64 | |
1 | 20367 | 2014-01-01 | 0 | 396.753169 | -0.102212 | 0.125698 | 396.650956 |
2 | 20377 | 2014-01-11 | 10 | 396.812412 | 0.198187 | 0.220453 | 397.010599 |
3 | 20387 | 2014-01-21 | 20 | 396.871673 | 0.403495 | 0.374229 | 397.275168 |
... | |||||||
410 | 24457 | 2025-03-14 | 72 | 422.502175 | 1.633506 | 0.561281 | 424.135681 |
411 | 24467 | 2025-03-24 | 82 | 422.568862 | 2.023296 | 0.459201 | 424.592158 |
412 | 24477 | 2025-04-03 | 92 | 422.635568 | 2.538372 | 0.467285 | 425.173939 |
On voit que la forme annuelle semble bien reproduite sur les 5 premières années, pour lesquelles il est possible de comparer les prédictions avec les mesures réelles. En revanche, la tendance ne colle que sur les deux premières années d'extrapolation ; on observe un décalage significatif et croissant ensuite.
En utilisant des modèles plus complexes, il est possible de mieux caractériser la tendance en temps longs :
model2 = glm(@formula(theta ~ date_num + date_num^2), sample, InverseGaussian(), InverseSquareLink())
StatsModels.TableRegressionModel{GeneralizedLinearModel{GLM.GlmResp{Array{Float64,1},InverseGaussian{Float64},InverseSquareLink},GLM.DensePredChol{Float64,LinearAlgebra.Cholesky{Float64,Array{Float64,2}}}},Array{Float64,2}} theta ~ 1 + date_num + :(date_num ^ 2) Coefficients: ──────────────────────────────────────────────────────────────────────────────────────── Estimate Std. Error z value Pr(>|z|) Lower 95% Upper 95% ──────────────────────────────────────────────────────────────────────────────────────── (Intercept) 1.02097e-5 1.68812e-8 604.796 <1e-99 1.01766e-5 1.02428e-5 date_num -1.73581e-10 3.46014e-12 -50.166 <1e-99 -1.80363e-10 -1.668e-10 date_num ^ 2 -8.3699e-16 1.52956e-16 -5.47208 <1e-7 -1.13678e-15 -5.37201e-16 ────────────────────────────────────────────────────────────────────────────────────────
En reprenant l'analyse précédente, ce nouveau modèle donne les prédictions suivantes, qui collent quasi-parfaitement aux mesures dans la période de test :
Je n'ai aucune idée de la signification qu'il est possible de donner à ces valeurs de paramètres, aussi est-il sans doute préférable de conserver, au moins dans un premier temps, l'interprétation donnée par le modèle quadratique simple (quoi que donnant des prédictions plus éloignées des données).