"
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "%matplotlib inline\n",
- "pd.set_option('mode.chained_assignment',None) # this removes a useless warning from pandas\n",
- "import matplotlib.pyplot as plt\n",
- "\n",
- "data[\"Frequency\"]=data.Malfunction/data.Count\n",
- "data.plot(x=\"Temperature\",y=\"Frequency\",kind=\"scatter\",ylim=[0,1])\n",
- "plt.grid(True)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "À première vue, ce n'est pas flagrant mais bon, essayons quand même\n",
- "d'estimer l'impact de la température $t$ sur la probabilité de\n",
- "dysfonctionnements d'un joint. \n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Estimation de l'influence de la température\n",
- "\n",
- "Supposons que chacun des 6 joints toriques est endommagé avec la même\n",
- "probabilité et indépendamment des autres et que cette probabilité ne\n",
- "dépend que de la température. Si on note $p(t)$ cette probabilité, le\n",
- "nombre de joints $D$ dysfonctionnant lorsque l'on effectue le vol à\n",
- "température $t$ suit une loi binomiale de paramètre $n=6$ et\n",
- "$p=p(t)$. Pour relier $p(t)$ à $t$, on va donc effectuer une\n",
- "régression logistique."
+ "real_data = data\n",
+ "real_data[\"MalfunctionHappen\"] = real_data['Malfunction'].apply(lambda x: 1 if x > 0 else 0)\n",
+ "real_data"
]
},
{
@@ -506,15 +625,289 @@
{
"data": {
"text/html": [
- "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.hist(real_data['Pressure'])\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Pourcentage des essais ayant une pressions différente a 200 psi:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "35"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "round(len(real_data[real_data.Pressure != 200]) * 100 / len(real_data))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "~~Très bien, nous avons une variabilité de température importante mais\n",
+ "la pression est quasiment toujours égale à 200, ce qui devrait\n",
+ "simplifier l'analyse.~~\n",
+ "\n",
+ "**Avec l'ensemble des données 35% des essais ont une pression différente de 200 psi. Se serai un erreur de négliger l'analyse de son impact.**\n",
+ "\n",
+ "Comment la fréquence d'échecs varie-t-elle avec la température ?"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFYRJREFUeJzt3XuQpXV95/H3Zy7AIBMhsJm4MxBBCFlKAXG4GEx2IokLbgmxiBHcDS5ZMqGE3TK7m8BariHGVEWM2WiJjiOLCqmERFEgu+MiJNUaExCQTIaLgcwiQjMGBFFoHObW3/3jnHlyprun5/TQzzlM9/tV1TXnufa3vz6cj8/l/E6qCkmSABYMuwBJ0kuHoSBJahgKkqSGoSBJahgKkqSGoSBJarQWCkmuSfJkkvt2szxJPppkY5INSU5qqxZJUn/aPFP4DHDmNMvPAo7p/qwGPtFiLZKkPrQWClX1VeB706xyDnBtddwBHJzkFW3VI0nas0VD/N3Lgcd6pke7874zccUkq+mcTbBkyZLXHX744QMp8MUaHx9nwQJv2/SyJ5PZk6nZl8leTE8eeuihp6rqX+xpvWGGQqaYN+WYG1W1FlgLsHLlyrr77rvbrGvWjIyMsGrVqmGX8ZJiTyazJ1OzL5O9mJ4k+XY/6w0zhkeB3v/LvwLYNKRaJEkMNxRuBi7oPoV0GvCDqpp06UiSNDitXT5K8qfAKuCwJKPAbwOLAapqDbAOeDOwEfghcGFbtUiS+tNaKFTV+XtYXsAlbf1+SdLMeWtfktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktRoNRSSnJnkwSQbk1w+xfKXJ/mLJH+f5P4kF7ZZjyRpeq2FQpKFwFXAWcBxwPlJjpuw2iXAA1V1ArAK+HCS/dqqSZI0vTbPFE4BNlbVw1W1FbgeOGfCOgUsTRLgIOB7wPYWa5IkTWNRi/teDjzWMz0KnDphnY8BNwObgKXA26tqfOKOkqwGVgMsW7aMkZGRNuqddWNjY/tMrYNiTyazJ1OzL5MNoidthkKmmFcTpv8NsB54I/Aq4NYkf11Vz+6yUdVaYC3AypUra9WqVbNfbQtGRkbYV2odFHsymT2Zmn2ZbBA9afPy0ShweM/0CjpnBL0uBL5QHRuBbwE/1WJNkqRptBkKdwHHJDmye/P4PDqXino9CpwBkGQZcCzwcIs1SZKm0drlo6ranuRS4BZgIXBNVd2f5OLu8jXA7wKfSXIvnctNl1XVU23VJEmaXpv3FKiqdcC6CfPW9LzeBLypzRokSf3zE82SpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqtBoKSc5M8mCSjUku3806q5KsT3J/kq+0WY8kaXqL+lkpyaur6r6Z7DjJQuAq4BeAUeCuJDdX1QM96xwMfBw4s6oeTfJjM/kdkqTZ1e+ZwpokdyZ5V/eNvB+nABur6uGq2gpcD5wzYZ13AF+oqkcBqurJPvctSWpBX2cKVfWGJMcAvwrcneRO4NNVdes0my0HHuuZHgVOnbDOTwKLk4wAS4GPVNW1E3eUZDWwGmDZsmWMjIz0U/bQjY2N7TO1Doo9mcyeTM2+TDaInvQVCgBV9Y9J3gvcDXwUeG2SAO+pqi9MsUmm2s0Uv/91wBnAEuD2JHdU1UMTfvdaYC3AypUra9WqVf2WPVQjIyPsK7UOij2ZzJ5Mzb5MNoie9HtP4XjgQuDfArcCb6mqe5L8S+B2YKpQGAUO75leAWyaYp2nqup54PkkXwVOAB5CkjRw/d5T+BhwD3BCVV1SVfcAVNUm4L272eYu4JgkRybZDzgPuHnCOjcBP5NkUZID6Vxe+uZM/whJ0uzo9/LRm4HNVbUDIMkC4ICq+mFVXTfVBlW1PcmlwC3AQuCaqro/ycXd5Wuq6ptJ/i+wARgHrp7pU06SpNnTbyjcBvw8MNadPhD4MvDT021UVeuAdRPmrZkw/SHgQ33WIUlqUb+Xjw6oqp2BQPf1ge2UJEkaln5D4fkkJ+2cSPI6YHM7JUmShqXfy0fvBj6XZOfTQ68A3t5OSZKkYen3w2t3Jfkp4Fg6nz/4h6ra1mplkqSB6/vDa8DJwCu727w2CVN9+liStO/q98Nr1wGvAtYDO7qzCzAUJGkO6fdMYSVwXFVNHKZCkjSH9Pv00X3Aj7dZiCRp+Po9UzgMeKA7OuqWnTOr6uxWqpIkDUW/oXBFm0VIkl4a+n0k9StJfgI4pqpu6w5et7Dd0iRJg9bXPYUkvwZ8Hvhkd9Zy4Ma2ipIkDUe/N5ovAU4HnoXOF+4Afp+yJM0x/YbClu73LAOQZBGTv0VNkrSP6zcUvpLkPcCSJL8AfA74i/bKkiQNQ7+hcDnwXeBe4NfpfEfC7r5xTZK0j+r36aNx4FPdH0nSHNXv2EffYop7CFV11KxXJEkampmMfbTTAcDbgB+d/XIkScPU1z2Fqnq65+fxqvoj4I0t1yZJGrB+Lx+d1DO5gM6Zw9JWKpIkDU2/l48+3PN6O/AI8MuzXo0kaaj6ffro59ouRJI0fP1ePvov0y2vqj+cnXIkScM0k6ePTgZu7k6/Bfgq8FgbRUmShmMmX7JzUlU9B5DkCuBzVXVRW4VJkgav32EujgC29kxvBV4569VIkoaq3zOF64A7k3yRzieb3wpc21pVkqSh6Pfpo99L8iXgZ7qzLqyqv2uvLEnSMPR7+QjgQODZqvoIMJrkyJZqkiQNSb9fx/nbwGXAf+/OWgz8cVtFSZKGo98zhbcCZwPPA1TVJhzmQpLmnH5DYWtVFd3hs5O8rL2SJEnD0m8o/HmSTwIHJ/k14Db8wh1JmnP6ffroD7rfzfwscCzwvqq6tdXKJEkDt8czhSQLk9xWVbdW1W9W1X/rNxCSnJnkwSQbk1w+zXonJ9mR5JdmUrwkaXbtMRSqagfwwyQvn8mOkywErgLOAo4Dzk9y3G7W+yBwy0z2L0maff1+ovkF4N4kt9J9Agmgqv7zNNucAmysqocBklwPnAM8MGG9/wTcQGfAPUnSEPUbCv+n+zMTy9l1FNVR4NTeFZIsp/O46xuZJhSSrAZWAyxbtoyRkZEZljIcY2Nj+0ytg2JPJrMnU7Mvkw2iJ9OGQpIjqurRqvrsXuw7U8yrCdN/BFxWVTuSqVbvblS1FlgLsHLlylq1atVelDN4IyMj7Cu1Doo9mcyeTM2+TDaInuzpnsKNO18kuWGG+x4FDu+ZXgFsmrDOSuD6JI8AvwR8PMkvzvD3SJJmyZ4uH/X+3/ejZrjvu4BjumMkPQ6cB7yjd4WqasZPSvIZ4H9X1Y1IkoZiT6FQu3m9R1W1PcmldJ4qWghcU1X3J7m4u3zNjCqVJLVuT6FwQpJn6ZwxLOm+pjtdVfUj021cVeuAdRPmTRkGVfUf+qpYktSaaUOhqhYOqhBJ0vDN5PsUJElznKEgSWoYCpKkhqEgSWrMq1B4emwLf//Y93l6bMuwS5GkGXl6bAubt+1o/f1r3oTCTesf5/QP/hX//uqvc/oH/4qb1z8+7JIkqS8737++9d3nW3//mheh8PTYFi67YQMvbBvnuS3beWHbOL91wwbPGCS95PW+f+2oav39a16Ewugzm1m8YNc/dfGCBYw+s3lIFUlSfwb9/jUvQmHFIUvYNj6+y7xt4+OsOGTJkCqSpP4M+v1rXoTCoQftz5XnHs8BixewdP9FHLB4AVeeezyHHrT/sEuTpGn1vn8tTFp//+r3S3b2eWefuJzTjz6M0Wc2s+KQJQaCpH3GzvevO2//Gn9z9htaff+aN6EAncQ1DCTtiw49aH+WLF7Y+nvYvLh8JEnqj6EgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkRquhkOTMJA8m2Zjk8imW/7skG7o/f5vkhDbrkSRNr7VQSLIQuAo4CzgOOD/JcRNW+xbwr6vqeOB3gbVt1SNJ2rM2zxROATZW1cNVtRW4Hjind4Wq+tuqeqY7eQewosV6JEl7sKjFfS8HHuuZHgVOnWb9/wh8aaoFSVYDqwGWLVvGyMjILJXYrrGxsX2m1kGxJ5PZk6nZl8kG0ZM2QyFTzKspV0x+jk4ovGGq5VW1lu6lpZUrV9aqVatmqcR2jYyMsK/UOij2ZDJ7MjX7MtkgetJmKIwCh/dMrwA2TVwpyfHA1cBZVfV0i/VIkvagzXsKdwHHJDkyyX7AecDNvSskOQL4AvArVfVQi7VIkvrQ2plCVW1PcilwC7AQuKaq7k9ycXf5GuB9wKHAx5MAbK+qlW3VJEmaXpuXj6iqdcC6CfPW9Ly+CLiozRrmi6fHtjD6zGZWHLKEQw/av/Xt5jJ7Mnwbn3iOZ364jY1PPMfRy5YOu5x5pdVQ0GDctP5xLrthA4sXLGDb+DhXnns8Z5+4vLXt5jJ7Mnzvu/Ferr3jUf7ra7bzG//zq1zw+iN4/zmvGXZZ84bDXOzjnh7bwmU3bOCFbeM8t2U7L2wb57du2MDTY1ta2W4usyfDt/GJ57j2jkd3mXft7Y+y8YnnhlTR/GMo7ONGn9nM4gW7/s+4eMECRp/Z3Mp2c5k9Gb71j31/RvM1+wyFfdyKQ5awbXx8l3nbxsdZcciSVraby+zJ8J14+MEzmq/ZZyjs4w49aH+uPPd4Dli8gKX7L+KAxQu48tzj93iDdG+3m8vsyfAdvWwpF7z+iF3mXfD6I7zZPEDeaJ4Dzj5xOacffdiMn5jZ2+3mMnsyfO8/5zVccNorufcbd3Dbb5xmIAyYoTBHHHrQ/nv1Bra3281l9mT4jl62lNEDFxsIQ+DlI0lSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDVaDYUkZyZ5MMnGJJdPsTxJPtpdviHJSW3WI0maXmuhkGQhcBVwFnAccH6S4yasdhZwTPdnNfCJtuqRJO1Zm2cKpwAbq+rhqtoKXA+cM2Gdc4Brq+MO4OAkr2ixJknSNBa1uO/lwGM906PAqX2ssxz4Tu9KSVbTOZMAGEvy4OyW2prDgKeGXcRLjD2ZzJ5Mzb5M9mJ68hP9rNRmKGSKebUX61BVa4G1s1HUICW5u6pWDruOlxJ7Mpk9mZp9mWwQPWnz8tEocHjP9Apg016sI0kakDZD4S7gmCRHJtkPOA+4ecI6NwMXdJ9COg34QVV9Z+KOJEmD0drlo6ranuRS4BZgIXBNVd2f5OLu8jXAOuDNwEbgh8CFbdUzJPvcJa8BsCeT2ZOp2ZfJWu9JqiZdwpckzVN+olmS1DAUJEkNQ2EWJXkkyb1J1ie5uzvviiSPd+etT/LmYdc5SEkOTvL5JP+Q5JtJXp/kR5PcmuQfu/8eMuw6B2k3PZm3x0mSY3v+7vVJnk3y7vl8nEzTk9aPE+8pzKIkjwArq+qpnnlXAGNV9QfDqmuYknwW+Ouqurr7FNqBwHuA71XV73fHxDqkqi4baqEDtJuevJt5fJzs1B0e53E6H3S9hHl8nOw0oScX0vJx4pmCWpPkR4CfBf4XQFVtrarv0xne5LPd1T4L/OJwKhy8aXqijjOA/1dV32YeHycT9PakdYbC7Crgy0m+0R2aY6dLu6PAXjOfToGBo4DvAp9O8ndJrk7yMmDZzs+jdP/9sWEWOWC76wnM3+Ok13nAn3Zfz+fjpFdvT6Dl48RQmF2nV9VJdEZ/vSTJz9IZ+fVVwIl0xnT68BDrG7RFwEnAJ6rqtcDzwKQh1OeZ3fVkPh8nAHQvpZ0NfG7YtbxUTNGT1o8TQ2EWVdWm7r9PAl8ETqmqJ6pqR1WNA5+iM3rsfDEKjFbV17vTn6fzhvjEztFwu/8+OaT6hmHKnszz42Sns4B7quqJ7vR8Pk522qUngzhODIVZkuRlSZbufA28CbhvwlDgbwXuG0Z9w1BV/wQ8luTY7qwzgAfoDG/yzu68dwI3DaG8odhdT+bzcdLjfHa9TDJvj5Meu/RkEMeJTx/NkiRH0Tk7gM4lgj+pqt9Lch2dU70CHgF+fT6N75TkROBqYD/gYTpPTywA/hw4AngUeFtVfW9oRQ7YbnryUeb3cXIgnWH0j6qqH3TnHcr8Pk6m6knr7yeGgiSp4eUjSVLDUJAkNQwFSVLDUJAkNQwFSVKjtW9ekwat+wjjX3YnfxzYQWdICeh8kHDrUAqbRpJfBdZ1P78gDZ2PpGpOeimNTptkYVXt2M2yrwGXVtX6GexvUVVtn7UCpR5ePtK8kOSdSe7sjkH/8SQLkixK8v0kH0pyT5Jbkpya5CtJHt45Vn2Si5J8sbv8wSTv7XO/H0hyJ3BKkt9JcleS+5KsScfb6XwQ6c+62++XZDTJwd19n5bktu7rDyT5ZJJb6QymtyjJH3Z/94YkFw2+q5qLDAXNeUleTWdIgJ+uqhPpXDY9r7v45cCXuwMZbgWuoDP0xNuA9/fs5pTuNicB70hyYh/7vaeqTqmq24GPVNXJwGu6y86sqj8D1gNvr6oT+7i89VrgLVX1K8Bq4MmqOgU4mc4AjEfsTX+kXt5T0Hzw83TeOO9OArCEzvABAJur6tbu63uBH1TV9iT3Aq/s2cctVfUMQJIbgTfQ+e9nd/vdyj8PewJwRpLfBA4ADgO+AXxphn/HTVX1Qvf1m4B/laQ3hI6hMxyEtNcMBc0HAa6pqv+xy8xkEZ03753GgS09r3v/+5h48632sN/N1b1h1x3D5mN0RkN9PMkH6ITDVLbzz2fwE9d5fsLf9K6q+kukWeTlI80HtwG/nOQw6DyltBeXWt6UzncrH0jnG8H+Zgb7XUInZJ7qjqR7bs+y54ClPdOPAK/rvu5db6JbgHd1A2jnd/oumeHfJE3imYLmvKq6N8nvALclWQBsAy4GNs1gN18D/oTOF5xct/NpoX72W1VPp/O9zPcB3wa+3rP408DVSTbTuW9xBfCpJP8E3DlNPZ+kM3ro+u6lqyfphJX0ovhIqrQH3Sd7Xl1V7x52LVLbvHwkSWp4piBJanimIElqGAqSpIahIElqGAqSpIahIElq/H/IxmFZztFAcQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "%matplotlib inline\n",
+ "\n",
+ "\n",
+ "data[\"Frequency\"]=data.Malfunction/data.Count\n",
+ "data.plot(x=\"Temperature\",y=\"Frequency\",kind=\"scatter\",ylim=[0,1])\n",
+ "plt.grid(True)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "À première vue, ce n'est pas flagrant mais bon, essayons quand même\n",
+ "d'estimer l'impact de la température $t$ sur la probabilité de\n",
+ "dysfonctionnements d'un joint. \n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Voici le vrai plot avec toute les données :**"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEKCAYAAAAB0GKPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHt5JREFUeJzt3X2UXHWd5/H3J0kTknRUTKBVAiaY6JjhIZI2gOjYrTNMcJWsg65EBY8rm0EFVxYVnN1VRPeo+HTGIxojExHPSs8oIKxGeW4RFE3ChAQQtE2QNNEEmghpSEI6+e4f97ZT6fTDr7rrdj3k8zqnTtf93d+99f3W7apv3d+tulcRgZmZ2UgmVDsAMzOrDy4YZmaWxAXDzMySuGCYmVkSFwwzM0vigmFmZklcMMzMLIkLhpmZJXHBMDOzJJOqHUAlzZw5M2bPnl3tMPbzzDPPMG3atGqHUXHOq/40am7Oa2zWrl37REQcntK3oQrG7NmzWbNmTbXD2E9nZydtbW3VDqPinFf9adTcnNfYSPpDal8PSZmZWRIXDDMzS+KCYWZmSVwwzMwsiQuGmZklccEwM7MkhRUMSUdJukPSbyQ9IOm/D9JHkr4qqUvSekknlsxbLOnhfN4lRcUJ0NO7m/s2/5me3t1FPoyZVVhP72527tnr1+44KXIPow+4KCJeCZwMfFDS/AF9Tgfm5bdlwDcAJE0ErsjnzweWDrJsRdyw7jFO/fztvPvKX3Hq52/nxnWPFfEwZlZh/a/dTY8/49fuOCmsYETEHyPi3vz+DuA3wJEDui0Bro7MPcALJL0YWAR0RcTGiHgO6Mj7VlRP724uvnY9u/bsY8fuPnbt2cfHrl3vTytmNa70tbs3wq/dcaKIKP5BpNnAncCxEfF0SfuPgM9FxF359G3AxcBsYHFEnJu3nw2cFBHnD7LuZWR7J7S0tCzs6OhIjmvnnr1sevwZ9pY8BxMl5hw+jSlNE8vMcnC9vb00NzdXZF21xHnVn0bKrfS12zIFtu6s/Gu32sZre7W3t6+NiNaUvoWfGkRSM3At8OHSYtE/e5BFYpj2AxsjVgArAFpbW6Ocn9L39O7mws/fzq49+/7SdmjTBO4+47XMaJ6cvJ7h+LQF9aVR84LGyq30tXvRcX18acOkir92q60Wt1eh35KS1ERWLP5vRFw3SJdu4KiS6VnAlmHaK2pG82QuP/N4Dm2awPTJ2T/c5Wce3zD/cGaNqvS1O1Hya3ecFLaHIUnAvwC/iYgvD9HtRuB8SR3AScBTEfFHSY8D8yTNAR4DzgLeWUScZyw4klPnzqR7+05mHTbF/3BmdaL/tfvrX97VUHsWtazIIalTgbOBDZLW5W3/BBwNEBHLgVXAm4Au4Fngvfm8PknnAzcBE4GVEfFAUYHOaJ7sfzazOjSjeTJTmib69TtOCisY+YHswY5FlPYJ4INDzFtFVlDMzKwG+JfeZmaWxAXDzMySuGCYmVkSFwwzM0vigmFmZklcMMzMLIkLhpmZJXHBMDOzJC4YZmaWxAXDzMySuGCYmVkSFwwzM0vigmFmZklcMMzMLIkLhpmZJSnyinsrgTcD2yLi2EHmfxR4V0kcrwQOj4gnJT0C7AD2An2pFyg3M7PiFLmHcRWweKiZEfGFiFgQEQuAjwM/i4gnS7q05/NdLMzMakBhBSMi7gSeHLFjZilwTVGxmJnZ2FX9GIakqWR7IteWNAdws6S1kpZVJzIzMyul7LLaBa1cmg38aLBjGCV93gG8OyLeUtL2kojYIukI4BbggnyPZbDllwHLAFpaWhZ2dHRUMIOx6+3tpbm5udphVJzzqj+NmpvzGpv29va1qUP/hR30LsNZDBiOiogt+d9tkq4HFgGDFoyIWAGsAGhtbY22trZCgy1XZ2cntRZTJTiv+tOouTmv8VPVISlJzwdeD9xQ0jZN0vT++8BpwP3VidDMzPoV+bXaa4A2YKakbuCTQBNARCzPu70VuDkinilZtAW4XlJ/fN+LiJ8WFaeZmaUprGBExNKEPleRff22tG0jcEIxUZmZ2WhV/VtSZmZWH1wwzMwsiQuGmZklccEwM7MkLhhmZpbEBcPMzJK4YJiZWRIXDDMzS+KCYWZmSVwwzMwsiQuGmZklccEwM7MkLhhmZpbEBcPMzJK4YJiZWRIXDDMzS1JYwZC0UtI2SYNeXlVSm6SnJK3Lb58ombdY0sOSuiRdUlSMZmaWrsg9jKuAxSP0+XlELMhvlwFImghcAZwOzAeWSppfYJxmZpagsIIREXcCT45i0UVAV0RsjIjngA5gSUWDMzOzshV2Te9Ep0i6D9gCfCQiHgCOBDaX9OkGThpqBZKWAcsAWlpa6OzsLC7aUejt7a25mCrBedWfRs3NeY2fahaMe4GXRkSvpDcBPwTmARqkbwy1kohYAawAaG1tjba2tgJCHb3Ozk5qLaZKcF71p1Fzc17jp2rfkoqIpyOiN7+/CmiSNJNsj+Kokq6zyPZAzMysiqpWMCS9SJLy+4vyWHqA1cA8SXMkHQKcBdxYrTjNzCxT2JCUpGuANmCmpG7gk0ATQEQsB94GvF9SH7ATOCsiAuiTdD5wEzARWJkf2zAzsyoqrGBExNIR5n8N+NoQ81YBq4qIy8zMRse/9DYzsyQuGGZmlsQFw8zMkrhgmJlZEhcMMzNL4oJhZmZJXDDMzCyJC4aZmSVxwTAzsyQuGGZmlsQFw8zMkrhgmJlZEhcMMzNL4oJhZmZJXDDMzCxJYQVD0kpJ2yTdP8T8d0lan99+IemEknmPSNogaZ2kNUXFaGZm6Yrcw7gKWDzM/E3A6yPieODTwIoB89sjYkFEtBYUn5mZlSHpinuSXg58FHhp6TIR8YahlomIOyXNHmb+L0om7wFmpcRiZmbVkXqJ1u8Dy4FvAXsLiON9wE9KpgO4WVIA34yIgXsfZmY2zhQRI3eS1kbEwrJXnu1h/Cgijh2mTzvwdeC1EdGTt70kIrZIOgK4BbggIu4cYvllwDKAlpaWhR0dHeWGWaje3l6am5urHUbFOa/606i5Oa+xaW9vX5s89B8RI96AS4EPAC8GXth/S1huNnD/MPOPB34PvHyEx/5ISpwLFy6MWnPHHXdUO4RCOK/606i5Oa+xAdZEwvtrRCQPSb0n//vR0loDHJO4/AEkHQ1cB5wdEb8taZ8GTIiIHfn904DLRvs4ZmZWGUkFIyLmlLtiSdcAbcBMSd3AJ4GmfH3LgU8AM4CvSwLoi2y3qAW4Pm+bBHwvIn5a7uObmVllpX5Lqgl4P/A3eVMn2cHoPUMtExFLh1tnRJwLnDtI+0bghAOXMDOzakodkvoG2d7B1/Pps/O2A97wzcysMaUWjFdHROmn/tsl3VdEQGZmVptSf+m9V9LL+ickHUMxv8cwM7MalbqH8VHgDkkbAZH94vu9hUVlZmY1J/VbUrdJmge8gqxgPBQRuwuNzMzMasqwBUPSGyLidkn/MGDWyyQREdcVGJuZmdWQkfYwXg/cDrxlkHlB9sM7MzM7CAxbMCLik/ndyyJiU+k8SWX/mM/MzOpX6rekrh2k7QeVDMTMzGrbSMcw/gr4a+D5A45jPA84tMjAzMystox0DOMVwJuBF7D/cYwdwH8rKigzM6s9Ix3DuAG4QdIpEfHLcYrJzMxqUOoxjPMkvaB/QtJhklYWFJOZmdWg1IJxfET8uX8iIrYDryomJDMzq0WpBWOCpMP6JyS9kPTTipiZWQNILRhfAn4h6dOSPg38Arh8uAUkrZS0TdL9Q8yXpK9K6pK0XtKJJfMWS3o4n3dJajJmZlacpIIREVcDbwO2AtuAf4iI746w2FXA4mHmnw7My2/LyK6vgaSJwBX5/PnAUknzU+I8GPT07ua+zX+mp3fkU3mV07feNHJuRejauoPtz+6ha+uOaodidaycYaWHgO39y0g6OiIeHapzRNwpafYw61sCXJ1fhPweSS+Q9GJgNtCVX3kPSR153wfLiLUh3bDuMS6+dj1NEyawZ98+Lj/zeM5YcOSY+9abRs6tCJ/44QauvudRLjqujwu/cifnnHI0ly05rtphWR1K2sOQdAHZ3sUtwI+AH+d/x+JIYHPJdHfeNlT7Qa2ndzcXX7ueXXv2sWN3H7v27ONj164f9BN2OX3rTSPnVoSurTu4+p79P9dd/ctHvadho6LsA/4InaQu4KSI6Clr5dkexo8i4thB5v0Y+GxE3JVP3wZ8DDgG+Pv8mt9IOhtYFBEXDPEYy8iGtGhpaVnY0dFRToiF6+3tpbm5eczr2blnL5sef4a9JdtrosScw6cxpWniqPuOVqXyKlfRuVUrr6Jsf3YP3dufBaBlCmzdmbXPOmwqh01tqmJkldNo26zfeOXV3t6+NiJaU/qmDkltBp4afUiD6gaOKpmeBWwBDhmifVARsQJYAdDa2hptbW0VDnNsOjs7qURMPb27ufDzt7Nrz76/tB3aNIG7z3gtM5onj7rvaFUqr3IVnVu18ipK19YdXPiVOwG46Lg+vrQhe8nfeuHJzG2ZXs3QKqbRtlm/Wswr9VtSG4FOSR+X9D/6b2N87BuBc/JvS50MPBURfwRWA/MkzZF0CHBW3vegNqN5MpefeTyHNk1g+uRJHNo0gcvPPH7QN8ly+tabRs6tCHNbpnPOKUfv13bOKUc3TLGw8ZW6h/Fofjskv41I0jVAGzBTUjfwSaAJICKWA6uANwFdwLPkl3yNiD5J5wM3AROBlRHxQGKcDe2MBUdy6tyZdG/fyazDpgz7JllO33rTyLkV4bIlx3HOybPZsPaehtqzsPGXeonWT5W74ohYOsL8AD44xLxVZAXFBpjRPDn5DbKcvvWmkXMrwtyW6XRPbXKxsDFJKhiS7iC7wt5+IuINFY/IzMxqUuqQ1EdK7h8KnAn0VT4cMzOrValDUmsHNN0t6WcFxGNmZjUqdUjqhSWTE4CFwIsKicjMzGpS6pDUWrJjGCIbitoEvK+ooMzMrPaMdE3vt0fE94E39p/byczMDk4j/XDv4/nfHxQdiJmZ1baRhqR68q/UzpF0wK+tI+KMYsIyM7NaM1LB+E/AicB3yS6iZGZmB6lhC0ZEPEd2rYrXRMTj4xSTmZnVoJEOev8/8l94SzpgvoekzMwOHiMNSX1xXKIwM7OaN9KQlH/NbWZmQPovvecBnwXmk51LCoCIOKaguMzMrMakXkDp28A3yH7l3Q5cTfbNKTMzO0ikFowpEXEb2TXA/xARlwI+tbmZ2UEk9VxSuyRNAH6XXw3vMeCIkRaStBj4Z7Ir510ZEZ8bMP+jwLtKYnklcHhEPCnpEWAHsBfoS71IuZmZFSN1D+PDwFTgQ2Rnqj0beM9wC0iaCFwBnE527GOppPmlfSLiCxGxICIWkJ2G5GcR8WRJl/Z8vouFmVmVpV4PY3V+t5f82tsJFgFd/SctlNQBLAEeHKL/UuCaxHWbmdk4G+mHewecP6rUCD/cOxLYXDLdDZw0xONMBRYD55euHrhZUgDfjIgVw8ViZmbFGmkP4xSyN/1rgF+RXQ8j1WB9D7gueO4twN0DhqNOjYgtko4AbpH0UETcecCDSMuAZQAtLS10dnaWEWLxent7ay6mSnBe9adRc3Ne42ekgvEi4O/IhoveCfwYuCYiHkhYdzdwVMn0LGDLEH3PYsBwVERsyf9uk3Q92RDXAQUj3/NYAdDa2hptbW0JoY2fzs5Oai2mSnBe9adRc3Ne42fYg94RsTcifhoR7wFOBrqATkkXJKx7NTBP0hxJh5AVhQOGuCQ9H3g9cENJ2zRJ0/vvA6cB9yfmZGZmBRjxoLekyWSnOV8KzAa+Clw30nIR0Zd/Bfcmsq/VroyIBySdl89fnnd9K3BzRDxTsngLcH1+wsNJwPci4qepSZmZWeWNdND7O8CxwE+AT0VEWZ/yI2IVsGpA2/IB01cBVw1o2wicUM5jmZlZsUbawzgbeAZ4OfChklOcC4iIeF6BsZmZWQ0Z6Wy1qT/sMzOzBueCYGZmSVwwzMwsiQuGmZklccEwM7MkLhhmZpbEBcPMzJK4YJiZWRIXDDMzS+KCYWZmSVwwzMwsiQuGmZklccEwM7MkLhhmZpak0IIhabGkhyV1SbpkkPltkp6StC6/fSJ1WTMzG18jXnFvtCRNBK4guyZ4N7Ba0o0R8eCArj+PiDePclkzMxsnRe5hLAK6ImJjRDwHdABLxmFZMzMrQJEF40hgc8l0d9420CmS7pP0E0l/XeayZmY2TgobkiK7jOtAMWD6XuClEdEr6U3AD4F5ictmDyItA5YBtLS00NnZOeqAi9Db21tzMVWC86o/jZqb8xo/RRaMbuCokulZwJbSDhHxdMn9VZK+LmlmyrIly60AVgC0trZGW1tbRYKvlM7OTmotpkpwXvWnUXNzXuOnyCGp1cA8SXMkHQKcBdxY2kHSiyQpv78oj6cnZVkzMxtfhe1hRESfpPOBm4CJwMqIeEDSefn85cDbgPdL6gN2AmdFRACDLltUrGZmNrIih6SIiFXAqgFty0vufw34WuqyZmZWPf6lt5mZJXHBMDOzJC4YZmaWxAXDzMySuGCYmVkSFwwzM0vigmFmZklcMMzMLIkLhpmZJXHBMDOzJC4YZmaWxAXDzMySuGCYmVkSFwwzM0vigmFmZklcMMzMLEmhBUPSYkkPS+qSdMkg898laX1++4WkE0rmPSJpg6R1ktYUGaeZmY2ssCvuSZoIXAH8HdANrJZ0Y0Q8WNJtE/D6iNgu6XRgBXBSyfz2iHiiqBjNzCxdkXsYi4CuiNgYEc8BHcCS0g4R8YuI2J5P3gPMKjAeMzMbA0VEMSuW3gYsjohz8+mzgZMi4vwh+n8E+KuS/puA7UAA34yIFUMstwxYBtDS0rKwo6Oj4rmMRW9vL83NzdUOo+KcV/1p1Nyc19i0t7evjYjWlL6FDUkBGqRt0OokqR14H/DakuZTI2KLpCOAWyQ9FBF3HrDCrJCsAGhtbY22trYxB15JnZ2d1FpMleC86k+j5ua8xk+RQ1LdwFEl07OALQM7SToeuBJYEhE9/e0RsSX/uw24nmyIy8zMqqTIgrEamCdpjqRDgLOAG0s7SDoauA44OyJ+W9I+TdL0/vvAacD9BcZqZmYjKGxIKiL6JJ0P3ARMBFZGxAOSzsvnLwc+AcwAvi4JoC8fS2sBrs/bJgHfi4ifFhWrmZmNrMhjGETEKmDVgLblJffPBc4dZLmNwAkD283MrHr8S28zM0vigmFmZklcMMzMLIkLhpmZJXHBMDOzJC4YZmaWxAXDzMySuGCYmVkSFwwzM0vigmFmZklcMMzMLIkLhpmZJXHBMDOzJC4YZmaWxAXDzMySFFowJC2W9LCkLkmXDDJfkr6az18v6cTUZc3MbHwVVjAkTQSuAE4H5gNLJc0f0O10YF5+WwZ8o4xlzaqmp3c3923+Mz29u0fsu2ZTD1+++WHWbOoZsW856y2nb9fWHWx/dg9dW3eM2DdVUbGWG8POPXuTn4MfrNnckM9BEesdTJFX3FsEdOVXz0NSB7AEeLCkzxLg6ogI4B5JL5D0YmB2wrJmVXHDuse4+Nr1NE2YwJ59+7j8zOM5Y8GRg/Z995X3cFdXVii+ensXr5s7g++ee/KY11tO30/8cANX3/MoFx3Xx4VfuZNzTjmay5YcN4rMi491NDF86JV7uPDztyc9B/0a7Tmo9HqHUuSQ1JHA5pLp7rwtpU/Ksmbjrqd3Nxdfu55de/axY3cfu/bs42PXrh/0092aTT1/KRb9ft7VM+ieRjnrLadv19Yd+71RAlz9y0fH9Cm7qFhHG8PeiIP+Oajkeoej7MN9ASuW3g78fX7dbiSdDSyKiAtK+vwY+GxE3JVP3wZ8DDhmpGVL1rGMbDiLlpaWhR0dHYXkM1q9vb00NzdXO4yKO1jz2rlnL5sef4a9Ja+biRJzDp/GlKaJ+/Xd+vRutu3YdcA6jph+KC3Pmzzq9ZbTd/uze+je/iwALVNg686sfdZhUzlsatOQeQ6nqFhHG0N/XinPQalafw4q+b84nPb29rUR0ZrSt8ghqW7gqJLpWcCWxD6HJCwLQESsAFYAtLa2Rltb25iCrrTOzk5qLaZKOFjz6undzYWfv51de/b9pe3QpgncfcZrmdG8fxFYs6mHi795zwHr+ME/ttI6Z8ao11tO366tO7jwK3cCcNFxfXxpQ/aSv/XCk5nbMn3IPIdTVKyjjaE/r5TnoFStPweV/F+slCKHpFYD8yTNkXQIcBZw44A+NwLn5N+WOhl4KiL+mLis2bib0TyZy888nkObJjB9cvYmdfmZxw/6Am2dM4PXzd2/MLxu7owDikW56y2n79yW6ZxzytH7tZ1zytGjfqMsMtbRxjBROuifg0qud1gRUdgNeBPwW+D3wP/M284Dzsvvi+zbUL8HNgCtwy070m3hwoVRa+64445qh1CIgz2vJ3bsinWPbo8nduwase/qjU/El256KFZvfKKi6y2n7+/+9HRc9+Ob43d/enrEvqmKirXcGFbdfGvyc/D91Y/WzXNQxP/iYIA1kfieXuSQFBGxClg1oG15yf0APpi6rFmtmNE8OfmTXOucwfcqxrrecvrObZlO99SmMX2qHsvjl9O33BimNE1MWvfclukVzb//8WvhOSh0r6KEf+ltZmZJXDDMzCyJC4aZmSVxwTAzsyQuGGZmlsQFw8zMkhR2apBqkPQ48IdqxzHATOCJagdRAOdVfxo1N+c1Ni+NiMNTOjZUwahFktZE4nla6onzqj+NmpvzGj8ekjIzsyQuGGZmlsQFo3grqh1AQZxX/WnU3JzXOPExDDMzS+I9DDMzS+KCUUGSHpG0QdI6SWvytkslPZa3rZP0pmrHWa78Wus/kPSQpN9IOkXSCyXdIul3+d/Dqh3naAyRW11vM0mvKIl9naSnJX243rfZMHnV9fYCkHShpAck3S/pGkmH1uL28pBUBUl6hOyaHk+UtF0K9EbEF6sV11hJ+g7w84i4Mr+g1VTgn4AnI+Jzki4BDouIi6sa6CgMkduHqfNt1k/SROAx4CSySwnU/TaDA/J6L3W8vSQdCdwFzI+InZL+jezSDvOpse3lPQwblqTnAX8D/AtARDwXEX8GlgDfybt9B/jP1Ylw9IbJrZG8Efh9RPyBBthmJUrzagSTgCmSJpF9aNlCDW4vF4zKCuBmSWslLStpP1/Sekkra2G3skzHAI8D35b075KulDQNaInscrrkf4+oZpCjNFRuUN/brNRZwDX5/UbYZv1K84I63l4R8RjwReBR4I9kl6q+mRrcXi4YlXVqRJwInA58UNLfAN8AXgYsIPtn+FIV4xuNScCJwDci4lXAM8Al1Q2pYobKrd63GQD5ENsZwPerHUslDZJXXW+vvMAtAeYALwGmSXp3daManAtGBUXElvzvNuB6YFFEbI2IvRGxD/gWsKiaMY5CN9AdEb/Kp39A9ia7VdKLAfK/26oU31gMmlsDbLN+pwP3RsTWfLoRthkMyKsBttffApsi4vGI2ANcB7yGGtxeLhgVImmapOn994HTgPv7N3jurcD91YhvtCLiT8BmSa/Im94IPAjcCLwnb3sPcEMVwhuToXKr921WYin7D9vU/TbL7ZdXA2yvR4GTJU2VJLL/w99Qg9vL35KqEEnHkO1VQDbU8b2I+D+Svku2qxzAI8A/9o9L1gtJC4ArgUOAjWTfSpkA/BtwNNk//Nsj4smqBTlKQ+T2Vep/m00FNgPHRMRTedsM6nybDZFXI7zGPgW8A+gD/h04F2imxraXC4aZmSXxkJSZmSVxwTAzsyQuGGZmlsQFw8zMkrhgmJlZkknVDsCsaPnXSW/LJ18E7CU7JQhkP658riqBDUPSfwVW5b8VMasJ/lqtHVRq6ezBkiZGxN4h5t0FnB8R68pY36SI6KtYgGYDeEjKDmqS3iPp1/l1FL4uaYKkSZL+LOkLku6VdJOkkyT9TNLG/ustSDpX0vX5/Icl/a/E9X5G0q+BRZI+JWl1fh2E5cq8g+yHaP+aL3+IpG5JL8jXfbKkW/P7n5H0TUm3kJ1EcZKkL+ePvV7SueP/rFqjcsGwg5akY8lOJfGaiFhANkR7Vj77+cDN+ckknwMuJTtlw9uBy0pWsyhf5kTgnZIWJKz33ohYFBG/BP45Il4NHJfPWxwR/wqsA94REQsShsxeBbwlIs4GlgHbImIR8Gqyk2AePZrnx2wgH8Owg9nfkr2prslO4cMUstNOAOyMiFvy+xvITjndJ2kDMLtkHTdFxHYAST8EXkv2uhpqvc/xH6eQAXijpI8ChwIzgbXAT8rM44aI2JXfPw14paTSAjWP7NQSZmPigmEHMwErI+J/79eYXcSm9FP9PmB3yf3S183Ag4Axwnp3Rn7gMD8v0tfIzpD7mKTPkBWOwfTxHyMCA/s8MyCnD0TEbZhVmIek7GB2K/BfJM2E7NtUoxi+OU3ZdcGnkl3T4O4y1juFrAA9kZ/p+MySeTuA6SXTjwAL8/ul/Qa6CfhAXpz6r4M9pcyczAblPQw7aEXEhvwsobdKmgDsAc4juzxmqruA75FdwOe7/d9qSllvRPQou6b4/cAfgF+VzP42cKWknWTHSS4FviXpT8Cvh4nnm2RnN12XD4dtIytkZmPmr9WajVL+DaRjI+LD1Y7FbDx4SMrMzJJ4D8PMzJJ4D8PMzJK4YJiZWRIXDDMzS+KCYWZmSVwwzMwsiQuGmZkl+f8pxuAlWv6PAAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "real_data.plot(x=\"Temperature\", y=\"Malfunction\", kind=\"scatter\")\n",
+ "plt.grid(True)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Là on peut deviner un impact de la température malgré un outlier à 2 Malfunction pour 75°F**"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Estimation de l'influence de la température\n",
+ "\n",
+ "Supposons que chacun des 6 joints toriques est endommagé avec la même\n",
+ "probabilité et indépendamment des autres et que cette probabilité ne\n",
+ "dépend que de la température. Si on note $p(t)$ cette probabilité, le\n",
+ "nombre de joints $D$ dysfonctionnant lorsque l'on effectue le vol à\n",
+ "température $t$ suit une loi binomiale de paramètre $n=6$ et\n",
+ "$p=p(t)$. Pour relier $p(t)$ à $t$, on va donc effectuer une\n",
+ "régression logistique."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "