diff --git a/module2/exo1/toy_document_en.Rmd b/module2/exo1/toy_document_en.Rmd index ad11b2a77f068123489b64f3ead209e68308efdc..f55186c4e2460b6d6a2189dafd7c41b2855fd125 100644 --- a/module2/exo1/toy_document_en.Rmd +++ b/module2/exo1/toy_document_en.Rmd @@ -5,18 +5,17 @@ date: "25 juin 2018" output: html_document --- - ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) ``` ## Asking the maths library -My computer tells me thay $\pi$ is *approximatively* +My computer tells me that $\pi$ is *approximatively* ```{r} pi ``` -##Buffon's needle +## Buffon's needle Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__ ```{r} set.seed(42) @@ -26,7 +25,7 @@ theta = pi/2*runif(N) 2/(mean(x+sin(theta)>1)) ``` -##Using a surface fraction argument +## Using a surface fraction argument A method that is easier to understand and does not make use of the $\sin$ function is based on the fact that if $X\sim U(0,1)$ and $Y\sim U(0,1)$, then $P[X^2+Y^2\leq 1] = \pi/4$ (see ["Monte Carlo method" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach: ```{r} set.seed(42)