no commit message

parent 06556317
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Création d'un vecteur"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"liste <- c(14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"14.113"
],
"text/latex": [
"14.113"
],
"text/markdown": [
"14.113"
],
"text/plain": [
"[1] 14.113"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"mean(liste)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"2.8"
],
"text/latex": [
"2.8"
],
"text/markdown": [
"2.8"
],
"text/plain": [
"[1] 2.8"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"min(liste)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"23.4"
],
"text/latex": [
"23.4"
],
"text/markdown": [
"23.4"
],
"text/plain": [
"[1] 23.4"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"max(liste)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"14.5"
],
"text/latex": [
"14.5"
],
"text/markdown": [
"14.5"
],
"text/plain": [
"[1] 14.5"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"median(liste)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"4.33409445530145"
],
"text/latex": [
"4.33409445530145"
],
"text/markdown": [
"4.33409445530145"
],
"text/plain": [
"[1] 4.334094"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sd(liste)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
" Min. 1st Qu. Median Mean 3rd Qu. Max. \n",
" 2.80 11.85 14.50 14.11 16.80 23.40 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"summary(liste)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"100"
],
"text/latex": [
"100"
],
"text/markdown": [
"100"
],
"text/plain": [
"[1] 100"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"length(liste)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "R",
"language": "R",
"name": "ir"
},
"language_info": {
"codemirror_mode": "r",
"file_extension": ".r",
"mimetype": "text/x-r-source",
"name": "R",
"pygments_lexer": "r",
"version": "3.4.1"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
{
"cells": [],
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"liste <- c(14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"14.113"
],
"text/latex": [
"14.113"
],
"text/markdown": [
"14.113"
],
"text/plain": [
"[1] 14.113"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"mean(liste)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"2.8"
],
"text/latex": [
"2.8"
],
"text/markdown": [
"2.8"
],
"text/plain": [
"[1] 2.8"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"min(liste)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"23.4"
],
"text/latex": [
"23.4"
],
"text/markdown": [
"23.4"
],
"text/plain": [
"[1] 23.4"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"max(liste)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"14.5"
],
"text/latex": [
"14.5"
],
"text/markdown": [
"14.5"
],
"text/plain": [
"[1] 14.5"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"median(liste)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"4.33409445530145"
],
"text/latex": [
"4.33409445530145"
],
"text/markdown": [
"4.33409445530145"
],
"text/plain": [
"[1] 4.334094"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sd(liste)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
" Min. 1st Qu. Median Mean 3rd Qu. Max. \n",
" 2.80 11.85 14.50 14.11 16.80 23.40 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"summary(liste)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"100"
],
"text/latex": [
"100"
],
"text/markdown": [
"100"
],
"text/plain": [
"[1] 100"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"length(liste)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
"display_name": "R",
"language": "R",
"name": "ir"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
"codemirror_mode": "r",
"file_extension": ".r",
"mimetype": "text/x-r-source",
"name": "R",
"pygments_lexer": "r",
"version": "3.4.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
{
"cells": [],
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"liste <- c(14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeXxU9b344TOEENlBZQu7wLUo14LgSi0KFhQUEffa2oqooFKlSnuxoiAq\nWrVqFRAtS6FuKFisSG2tFHChgAK1SFtZRBAUFAJhhzC/P+b+clMIWYDkJF+f59U/Jt9zMvlM\nphPezsw5k0gmkxEAAOVfhbgHAADgyBB2AACBEHYAAIEQdgAAgRB2AACBEHYAAIEQdgAAgRB2\nAACBEHYAAIEQdgAAgRB2AACBEHYAAIEQdgAAgRB2AACBEHYAAIEQdgAAgRB2AACBEHYAAIEQ\ndgAAgRB2AACBEHYAAIEQdgAAgRB2AACBEHYAAIEQdgAAgRB2AACBEHYAAIEQdgAAgRB2AACB\nEHYAAIEQdgAAgRB2AACBEHYAAIEQdgAAgRB2AACBEHYAAIEQdgAAgRB2AACBEHYAAIEQdsCh\neOWVVxKJRCKROOqoo+Ke5Rvk5Zdfbt++feXKlatUqdKiRYsdO3bku1u+9467DL4JhB0Q/eY3\nv0n8f1lZWQfucO6556a2nnfeeaU/Hil/+9vfLr/88g8//HDnzp07duxYsWJFTk5O3EMBZUvF\nuAcAyqW2bds+9thjURRVrHgof0a+/PLLhg0b5uTkLF269Fvf+taRni5M48ePT12oWbPm0KFD\njznmmIyMjKJ/u7sMvgmEHXAoWrZsedtttx3yt0+ePNmzTcX12WefpS5ceeWVh/DLd5fBN4GX\nYoEYvPTSS3GPUP7s3r07daFatWql/9PdZVAuCDvgUBzsnfh79+595plnzj333Lp166anp9et\nW/eUU04ZMWLEV199ldrhggsuSCQS7777burL1q1bJxKJvM8kbdmy5YEHHjj99NOPPvroSpUq\n1atXr1u3buPHj8/36aLx48d36NChatWqxxxzzAUXXLBgwYKVK1fmvl9w586dqd3GjRuXWunU\nqdPevXtvvfXWOnXq1KtXL7U1mUy++OKL3bp1S81co0aN00477cknn8z7E3Ov4bvf/W7q5rdr\n165KlSrNmjW766679uzZE0XR0qVLe/bsWbt27WrVqnXt2nXJkiVF+U0W5fb269cvkUj85S9/\nSX356KOPpobZunVrUX5ESsndZf/617/69evXqlWro446qkaNGqeccsqvf/3rvXv3Fn024IhJ\nAt94zz77bO7fhE2bNh24Q5cuXVJbu3Xrllp5+eWXUysZGRm5u+3evfvss8/O90/Ncccdt2zZ\nsmQy2aNHjwO33nrrralrWLRoUcOGDfO9hjPOOOOrr77KO9XAgQP32ycjI2PkyJEH/n17/vnn\nUysnnXTSo48+mrqclpaW2nr11Vfn+xMvuOCCffv2pfZ58cUXU4tt2rSZPHlyIpHIu+fNN9+8\nYsWKY489Nu9inTp1srKyCv7NF/H23njjjfnuk52dne/V5nvvlNBdNmXKlHwPs+3cufOOHTsK\nvvnAESfsgCMWdqNHj04tfutb33rhhRfee++9P/7xj5dccklqsVOnTslkcsmSJdOmTcv9cc89\n99ycOXNWrFiRTCY3btyYWznNmzcfPXr073//+5///Oe5b/bv0aNH7s+aN29e7pW0bdv22Wef\nnTRp0plnnpn7MmVut+WdtlmzZo0bN05PT2/btu3xxx+fTCb/8Ic/pDZVqFBh1KhRH3300dix\nY3N/4uTJk/e7hgYNGjRq1Khnz5633HJLzZo1c38J559/fmZm5q233nraaaflDvbYY48V8Gsv\n+u1dtmzZnDlzOnTokFq/8sor58yZM2fOnJycnHyvuehhd5h32YoVKypXrpxaHzRo0L/+9a/5\n8+d36tQptTJ48OACbj5QEoQd8B9hV7CCw+7HP/5xavHRRx/NXdy9e/dVV111yy23PPjgg6kQ\nWbduXe4VLl26NHfPYcOGpRZr1Kjx+eef565PmjQpd/8FCxakFm+44YbUSq1atXKf2dq+fXvT\npk1T6/mGXRRFrVq1Wr16de6mp556qkePHj169Mh9CiqZTPbs2TO18zXXXHPgNVx22WWpxSlT\npuQuHnXUUcuXL08mk7t27Tr++ONTixdeeGEBv/Zi3d5knry+/fbbC7jaZHHC7jDvsltuuSW1\nePbZZ+cubtiwIZXX1atX96QdlDJHxQJHTI0aNVIXnnjiiTp16nTt2rVevXrp6em5r4QWbOrU\nqakLvXv3zszMzF2/6qqrfvKTn2zatCmKojfeeKN9+/ZRFL3zzjuprRdeeOExxxyTuly5cuVr\nrrlm+PDhBfyUYcOGNWrUKPfLm2+++eabb95vn9w6/OKLLw68hkGDBuX+6IyMjF27dkVRdPHF\nFx933HFRFFWqVOnCCy/817/+FUXR6tWrj9TtLSGHeZfNmDEjdaFjx46572isVq3aySefPHv2\n7Ozs7HfffTe3R4FS4OAJ4D80bty46QGK+FkF1157bZUqVaIo+uyzz6655pr69eu3bNmyb9++\nU6dOLfRMGclkMvdog//+7//OuyktLS33xGlLly5NXfj0009TF1q3bp13529/+9sF/6DOnTvv\nt/LWW2/16tWrRYsWRx11VOrwgieffDK1Kd+x27Rpk7qQnp5ep06d1OWTTjopd4cGDRqkLmRn\nZx9sjOLe3hJymHfZypUrU5fvv//+ynnMnj07tV7EI0iAI0XYAf/h73//+6cH6NixY1G+t23b\nttOnTz/xxBNzV5YvXz527NhLLrmkZcuW77//fgHfu3379tzjKA88nUfVqlVTF1KplEwmt2/f\nvt+mg31vXmlpabkpljJ69Ojvfe9706ZNW7FiRcWKFVu3bv3tb397v8Mg8srIyMh9V1nqy9SF\nWrVq5S5WqlSpgBlSinV7S85h3mX79u0r+Po3btx4ZAYFikbYAUfS2Wef/dFHH7333nv33nvv\neeedl3t4waeffnrRRRdt27btYN9YpUqV3IMGtmzZst/W3L5JXWEikcgtqtzC22/PfFWsWLFC\nhf/7u7d169Y77rgjdfn73//+hg0bPv7440WLFl1++eWF3dDDVazbW6IO5y5LS0tLXX788cfz\nfbvP0KFDS3p+IC9hBxxhiUTijDPOGDJkyIwZM77++utp06bVrl07iqINGzbkvkKX73flvsS5\naNGivJv27Nnz8ccfpy7nvuLZuHHj1IXcTSmLFy8u+qgLFy7M7cJBgwblPhWXeodciSru7S3p\nYQ7tLmvRokXqcu5rskC8hB1wZOzYsWPEiBHXXnvtRRddlPsKXVpaWs+ePU855ZTUl6njDPKe\nBC73LLhRFPXu3Tt14fe///2aNWty1ydMmJB6BiuRSPTq1Su1ePrpp6cuvPbaa7lXsnXr1t/+\n9rdFnzk1T0rqJMNRFH388cczZ87cb7EkFOv2loTDv8u6deuWuvDyyy/nJnJOTs7VV1/dp0+f\nwYMHf/755yU3P3AgR8UCR0blypUnT56cevLp8ssvv+666+rWrbt9+/aZM2emOikjI+PMM8+M\noujYY49NT09PNdOdd945YMCAmjVrdu3adcCAAc8888yaNWu2bdt2zjnnDBw4sH79+nPnzv31\nr3+d+hHXXXfdf/3Xf6UuX3vttb/73e+iKNq8eXOXLl1++tOf5uTkPP3008V6U9cJJ5xQoUKF\nVNMMHz78gQceWLlyZf/+/Vu1apV60m7RokVz585NHe56xBXr9paEw7/Lbrvttt/85jc7duxY\nu3Zt165d77zzzooVK44ZMyZ1wO+JJ5543333ldz8QD5K8dQqQBl1pE5Q/NFHH+U9k0heFSpU\nGDt2bO6e559/ft6tuWfiLeCTGHr37r3fSdF+9KMf7bdPlSpVHnroodTlfM9jl3falAEDBux3\nJZmZmStXrsx7/pF77rnnYNeQ+1rk6NGjcxdzD6pt0aJFwb/5Yt3ekjiP3eHfZS+//HLu+x3z\natiwYd4z3gGlw0uxwBHTpk2bBQsWDB8+vEOHDqnToVWpUuVb3/rWDTfcsHDhwj59+uTu+eyz\nz/bq1atWrVpHHXVU8+bNU08LRVH07W9/++OPP77vvvtOOeWUmjVrpqenN2jQ4OKLL37ttdcO\n/OiqcePGPfzww8cff3xGRkbdunUvvfTSuXPn5p46JPfQhII9+uijDz300AknnFC5cuWGDRv2\n7dt3/vz5zZo1++1vf3v88cdXrFixUaNG+51R5Qgq1u0tCYd/l1166aWpPZs3b56RkVGlSpU2\nbdr84he/+Oijj3JP2gKUmkQymYx7BoAjZuLEialn8jIzM73BC/im8R47oFxaunTptGnTVq9e\nvXHjxkmTJuU+P5f7MV+nnnpqfNMBxEPYAeVSenr6nXfemXrNYefOnbfddlvFihVfeeWV1157\nLbXDTTfdFOuAADHwUixQXg0bNuxg578dMmTIvffeW7rjAMRP2AHl2Ntvvz169Oi5c+d++eWX\nFSpUqF+//umnn96/f/9OnTrFPRpADIQdAEAgnO4EACAQwg4AIBDCDgAgEMIOACAQwg4AIBDC\nDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQ\nwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAg\nEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4A\nIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIO\nACAQwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBAV4x4A4MhbtWrVJ598EvcU\nRbVly5YdO3bUq1cv7kGKqkGDBieeeGLcUwD5SCSTybhnADjCLrzwwtdffyuKKsc9SBFlR1Ei\niqrFPUYR7W7S5JhVq1bFPQaQD8/YAQHKycmJoluj6MG4BymiM6KodhS9EfcYRfT83r2D4p4B\nyJ/32AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELY\nAQAEQtgBAARC2AEABELYAQAEQtgBAASiYtwDFFsymVy5cuWKFSuys7OjKKpZs2arVq0aN24c\n91wAADErT2G3adOm+++/f9KkSevXr99vU5MmTfr27XvHHXdUrlw5ltkAAGJXbsJu3bp1HTt2\nXLlyZatWrbp37960adOqVatGUbRly5bly5fPmjXr7rvvnjJlysyZM2vXrh33sAAAMSg3YTdk\nyJA1a9ZMnjz5sssuO3BrTk7OmDFjbrnllmHDhj3++OOlPx4AQOzKzcET06dP/+EPf5hv1UVR\nlJaWdtNNN11++eVTp04t5cEAAMqIchN2X3/9dYsWLQrep3Xr1l9++WXpzAMAUNaUm7DLzMxc\nvHhxwfssXLgwMzOzdOYBAChryk3Y9erV6+WXX37kkUd27dp14NZt27bdc88906ZNu+KKK0p/\nNgCAsqDcHDwxdOjQOXPmDBo06N577z311FMbN25crVq1ZDK5devWVatWzZs3b/v27WedddZd\nd90V96QAAPEoN2FXq1at999/f+TIkRMnTvzrX/+ak5OTuyk9Pb19+/Z9+vTp06dPWlpajEMC\nAMSo3IRdFEWVKlUaOHDgwIEDd+7cuXr16tQnT9SoUaNJkyaVKlU6tOtcsWLFCSeckO/Lu3ml\npaXt2rVLNQIAZVl5CrtcRx11VKtWrQ5c37Rp0+bNm5s1a1b0q2revPmf/vSn3bt3F7DPkiVL\nbrvttpycHGEHAJRl5Sns/v73vw8ePHjJkiWNGze+6qqrbrzxxv1K66GHHnrooYeSyWTRrzOR\nSHz3u98teJ8qVaocyrgAAKWr3ITdu+++26VLl127dlWpUmXt2rXvvPPO5MmTX331VR8gBgCQ\nUm5OdzJixIh9+/a9+uqrW7duzc7O/tWvfvXee+9169Zt27ZtcY8GAFAmlJuw+/vf/37FFVf0\n6tUrkUhkZGQMHDjwj3/84+LFiy+//PK8R8gCAHxjlZuw++KLL4477ri8K507d/7Nb37zxhtv\n/PSnP41rKgCAsqPcvMeuXr16ixYt2m/xhz/84dKlS0eMGNGoUaNBgwbFMhgAQBlRbsKud+/e\nTz755FNPPXXjjTemp6fnrt9///1r16792c9+tnbtWq/JAgDfZOUm7O6+++7f//73AwYMmDZt\n2p///Ofc9UQiMX78+Jo1az7++OMxjgcAELty8x67Y4455oMPPrjpppvatGmz36ZEIvHEE09M\nmTKlRYsWscwGAFAWlJtn7KIoOvbYY0eOHHmwrb179+7du3dpzgMAUKaUm2fsAAAomLADAAiE\nsAMACISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAI\nhLADAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMA\nCISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLAD\nAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISw\nAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLADAAiE\nsAMACISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAI\nhLADAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMA\nCISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLAD\nAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISw\nAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLADAAiE\nsAMACISwAwAIhLADAAiEsAMACETFuAc4LLt37168ePHWrVubNWvWvHnzuMcBAIhTuXnG7r77\n7ps5c2belTFjxtSvX//UU0/t3Lnzcccd16FDh0WLFsU1HgBA7MpN2A0ZMuTNN9/M/XL69On9\n+vXbvn37xRdffOONN3bs2PGDDz44++yzly9fHuOQAAAxKq8vxQ4cOLBmzZrvv/9+69atUytT\np0699NJL77///nHjxsU7GwBALMrNM3Z5bdiw4ZNPPrn55ptzqy6Kot69e1900UV/+tOfYhwM\nACBG5TLsdu7cGUVR3qpLadOmzfr16+OYCAAgfuUy7DIzM2vWrLlmzZr91teuXVu9evVYRgIA\niF15CrvPPvtswYIFy5Yt27Rp00033TR27Njt27fnbv3nP//50ksvdezYMcYJAQBiVJ4Onnjh\nhRdeeOGFvCszZsy45JJLoih6/vnnb7jhhh07dgwZMiSm6QAAYlZuwm78+PFZeWzevDkrK6t2\n7dqprVlZWbVq1XrxxRdPOeWUeOcEAIhLuQm7H//4xwVsveaaa/r161ehQrFfWd6+ffvTTz+9\nZ8+eAvZZtWpVca8WAKD0lZuwK1i1atWiKPr66683bdrUsmXLon/j5s2bX3311R07dhSwz9at\nW6MoSiaThzkkAECJCiTsUh5++OGHHnqoWAXWoEGDOXPmFLzPe++917Fjx0QicXjTAQCUrPJ0\nVCwAAAUQdgAAgSg3L8V26NCh0H0+//zzUpgEAKBsKjdht3DhwiiK0tPTC9hn7969pTUOAECZ\nU25eih00aFDVqlX/8Y9/7Dy4O+64I+4xAQBiU27Cbvjw4S1btrzqqqsKPuccAMA3VrkJu/T0\n9Oeee27JkiV33nln3LMAAJRF5eY9dlEUtW7d+osvvijgjXTnn39+rVq1SnMkAICyozyFXRRF\nNWrUKGBrp06dOnXqVGrDAACUKeXmpVgAAAom7AAAAiHsAAACIewAAAIh7AAAAiHsAAACIewA\nAAIh7AAAAiHsAAACIewAAAIh7AAAAiHsAAACIewAAAIh7AAAAiHsAAACUTHuAQAoX5J79uz5\n4IMP4h6jqGrWrNmyZcu4p4BSIuwAKJYPNmzY0KFDh7jHKKoKFSps3LixZs2acQ8CpUHYAVAs\nu6OofhR9HPcYRfTPffvO3L17d9xjQCkRdgAUV4Uoqh33DEVUI+4BoFQ5eAIAIBDCDgAgEMIO\nACAQwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBDC\nDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQ\nwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAg\nEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4A\nIBCFh90ZZ5wxZsyYzZs3l8I0AAAcssLDbsGCBf369WvQoMH3v//9P//5z/v27SuFsQAAKK7C\nw+6LL74YM2bMmWeeOXny5K5duzZr1uyuu+5atmxZKQwHAEDRFR52xxxzzA033PDWW2+tW7du\n9OjRLVu2HDFiRKtWrc4666yxY8dmZ2eXwpQAABSqGAdP1KlTp1+/fm+//faaNWsee+yx7Ozs\nvn371q9fv3///v/+979LbkQAAIqi2EfF7tix4913333nnXdSMXfssceOHTu2TZs2w4YNSyaT\nJTAhAABFUoywe/fdd6+//vr69etfdtllb7zxRu/evWfOnLlq1arly5f37Nlz6NChw4YNK7lB\nAQAoWMVC91i9evXEiRN/+9vffvLJJ1EUtWvX7rrrrrv66qtr1aqV2qFx48Yvv/xy165dR48e\nPXTo0BIdFwCAgyk87Jo1a7Zv376aNWv269evb9++7du3P3CfRCLRq1evv/zlLyUwIQAARVJ4\n2HXs2PG66667/PLLK1euXMBu3bp1mzJlypEbDACA4ik87GbPnh1F0ZIlS+rVq3fsscemFpcs\nWbJ79+527drl7tayZcuWLVuW0JQAABSq8IMn9uzZc91117Vp0+Yf//hH7uLMmTNPPvnka6+9\nNicnpyTHAwCgqAoPuyeffHLcuHE9evRo2rRp7uL3vve9K664YsKECU899VRJjgcAQFEVHnYT\nJky44IILXn/99ebNm+cuHn/88S+++GL37t2FHQBAGVF42C1btuycc87Jd9PZZ5+9atWqIz0S\nAACHovCwq1Gjxqeffprvpk8//fToo48+whMBAHBICg+7Hj16jB079o033si7uGfPnmefffaZ\nZ57p2rVric0GAEAxFH66k/vuu2/GjBk9evRo0qTJ8ccfn5GRkZWV9fHHH2/cuLFBgwb33Xdf\nKUwJAEChCn/GrkGDBgsXLuzXr9+2bdv+/Oc/v/766++8805aWtr1118/f/78Jk2alMKUAAAU\nqvBn7KIoqlev3ujRo0eNGrVu3bodO3bUr1+/atWqJT0ZAADFUqSwS0kkEpmZmSU3CgAAh6Pw\nsEsmk6+88srEiRPXrFmzZ8+eA3fI+4kUAADEpfCwe/TRRwcNGhRFUZUqVdLT00t+JAAADkXh\nYffEE09069Zt1KhRxx13XCkMBADAoSk87L788stXXnlF1QEAlHGFn+6kXr16yWSyFEYBAOBw\nFB52V1111aRJk0phFAAADkfhL8Xefffdl1566dVXX33NNdc0adLkwOMnWrZsWTKzAQBQDIWH\nXfXq1VMXnn/++Xx38EItAEBZUHjYXXXVVZUqVapYsRinMgYAoPQVnmsHe6IOAIAypfCDJ3Jl\nZ2cvWbIkKyur5KYBAOCQFSnsZs2a1aFDhxo1arRp02bu3LmpxZ49e/7lL38pydkAACiGwsNu\n3rx5Xbt2/fe//92tW7fcxQ0bNsyfP7979+4ffPBBSY4HAEBRFR529957b/369T/++OMJEybk\nLtapU2fx4sX169cfPnx4CU4HAECRFR52c+fO7d+/f6NGjfZbr1u3br9+/WbPnl0ygwEAUDyF\nh93mzZsbN26c76YGDRps3br1SI8EAMChKDzs6tevv3Tp0nw3zZ49OzMz80iPBADAoSg87Lp3\n7z5q1KgPP/ww7+KmTZt+8YtfjB8/vkePHiU2GwAAxVB42A0bNqxatWqnnXZaquEGDx7crl27\nBg0aPPDAA02aNLn77rtLfkgAAApXpJdiFyxYcP31169atSqKokWLFi1atKh69er9+/efP39+\nvXr1Sn5IAAAKV6RPgK1bt+6oUaNGjhy5fv367Ozs6tWr6zkAgLKmSGGXkkgk6tWrJ+kAAMqm\nwsPu3HPPLWDr7t27ncoOAKAsKDzsCvhA2OrVq1evXv2IzgMAwCEqPOz27Nmz38ru3btXrlw5\nYcKEefPm/eEPfyiZwQAAKJ7Cj4qteIAqVaqceOKJDz/88Jlnnvnzn/+8FKYEAKBQhYddAS66\n6KLXXnvtSI0CAMDhOKywy87OzsrKOlKjAABwOAp/j12+6bZnz54lS5b87Gc/a968eQlMBQBA\nsRUedrVr1y5g66RJk47cMEWSTCZXrly5YsWK7OzsKIpq1qzZqlWrxo0bl/IYAABlTeFhl/qI\n2P2kp6c3aNDgkksu6dKlSwlMlb9Nmzbdf//9kyZNWr9+/X6bmjRp0rdv3zvuuKNy5cqlNg8A\nQJlSeNi9/vrrpTBHodatW9exY8eVK1e2atWqe/fuTZs2rVq1ahRFW7ZsWb58+axZs+6+++4p\nU6bMnDmz4KcYAQBCVYyPFIvXkCFD1qxZM3ny5Msuu+zArTk5OWPGjLnllluGDTCaiRcAAB0G\nSURBVBv2+OOPl/54AACxKzzs2rZtm5GRkUgkinJ1c+fOPeyR8jd9+vQf/vCH+VZdFEVpaWk3\n3XTT7Nmzp06dKuwAgG+mwsPuiy++2LJly44dO1JfJhKJZDKZuly5cuXdu3eX4HR5fP311y1a\ntCh4n9atW7/66qulMw8AQFlT+Hnsli5d2r59+5tvvvnDDz/csWPHvn37Nm/ePGvWrN69e591\n1lkbN27cm0fJDZqZmbl48eKC91m4cGFmZmbJzQAAUJYVHna33357y5Ytn3rqqXbt2h111FFR\nFNWoUeO73/3ulClTKlSocPvtt5f8kFEURb169Xr55ZcfeeSRXbt2Hbh127Zt99xzz7Rp0664\n4orSmQcAoKwp0lGxDz74YL6bzj333F/+8pfPPvvskZ4qH0OHDp0zZ86gQYPuvffeU089tXHj\nxtWqVUsmk1u3bl21atW8efO2b99+1lln3XXXXaUwDABAGVR42G3ZsuWLL77Id9P69es3b958\npEfKX61atd5///2RI0dOnDjxr3/9a05OTu6m9PT09u3b9+nTp0+fPmlpaaUzDwBAWVN42J1w\nwgkjR47s0qXLaaedlnf93XffHTdu3Le+9a0Sm21/lSpVGjhw4MCBA3fu3Ll69erUJ0/UqFGj\nSZMmlSpVOrTrXLFiRZs2bXIPDSlA7iEjAABlU+FhN3To0N69e59++unNmzdv0aJF5cqVd+zY\nsWLFihUrViQSiaeffroUptzPUUcd1apVqwPXv/76602bNrVs2bLoV9W8efMZM2bs2bOngH2W\nLFly2223FfGELwAAcSk87Hr27PmXv/xlxIgRs2bNWrlyZWqxUqVKnTt3Hjx48LnnnlvCExbD\nww8//NBDDxXrqbVEItGpU6eC96lSpcrhzQUAUBqK9MkTnTp16tSp0759+9atW7d9+/bKlSs3\naNDAu9kAAMqUYnyk2LZt27Kysho2bFirVq2SGwgAgENTpLCbNWvW7bff/sEHH0RRNGPGjPPO\nOy+Kop49e956661dunQp2QH/vw4dOhS6z+eff14KkwAAlE2Fh928efO6du2akZHRrVu3N998\nM7W4YcOG+fPnd+/e/b333mvfvn0JDxlFUbRw4cIoitLT0wvYp0Q/+gIAoIwr/JMn7r333vr1\n63/88ccTJkzIXaxTp87ixYvr168/fPjwEpwuj0GDBlWtWvUf//jHzoO74447SmcYAIAyqPCw\nmzt3bv/+/Rs1arTfet26dfv16zd79uySGWx/w4cPb9my5VVXXVXwqUkAAL6xCg+7zZs3N27c\nON9NDRo02Lp165EeKX/p6enPPffckiVL7rzzztL5iQAA5Uvh77GrX7/+0qVL8900e/bszMzM\nIz3SQbVu3fqLL74o4I10559/viN2AYBvrMKfsevevfuoUaM+/PDDvIubNm36xS9+MX78+B49\nepTYbPmoUaPG0UcffbCtnTp1+p//+Z/SnAcAoOwoPOyGDRtWrVq10047LdVwgwcPbteuXYMG\nDR544IEmTZrcfffdJT8kAACFKzzs6tevv2DBguuvv37VqlVRFC1atGjRokXVq1fv37///Pnz\n69WrV/JDAgBQuCKdoLhu3bqjRo0aOXLk+vXrs7Ozq1evrucAAMqawsPutddea9GixYknnphI\nJOrVqyfpAADKpsJfir3iiitef/31UhgFAIDDUXjYfec735k1a9a+fftKYRoAAA5Z4S/F/u53\nvxs4cGCPHj2uueaa//qv/6pZs+Z+O7Rs2bJkZgMAoBiKdILi1IU//vGP+e6QTCaP5EQAAByS\nwsPuiiuuqFSpUnp6eiKRKIWBAAA4NIWH3YsvvlgKcwAAcJgOevDEU0899c477+y3uGjRos8/\n/7yERwIA4FAcNOwGDBjwyiuv7LfYrl27ESNGlPBIAAAcisJPdwIAQLkg7AAAAiHsAAACUfhR\nsUBJ2Lt3b79+/bZs2RL3IEVVoUKFYcOGHX/88XEPAsWyLYqivn37ZmRkxD1JkVSsWPHRRx9t\n0KBB3INQXgk7iEdWVtbYsWOj6NIoOjruWYrouQsvvFDYUd6sjaLotddqRdFRcU9SRM9ed911\nwo5DJuwgXvdEUZu4Zyii6XEPAIfs0Sg6Nu4Zimhs3ANQvhUUdnPnzh06dOh+i/Pmzdtv8cB9\nAAAofQWF3d/+9re//e1v+y3Onz9//vz5eVeEHQBAWXDQsJs0aVJpzgEAwGE6aNj94Ac/KM05\nAAA4TM5jBwAQCGEHABAIYQcAEAhhBwAQCGEHABAIYQcAEAhhBwAQCGEHABAIYQcAEAhhBwAQ\nCGEHABAIYQcAEAhhBwAQCGEHABAIYQcAEAhhBwAQCGEHABAIYQcAEAhhBwAQCGEHABCIinEP\nAJQXu95+++1t27bFPUaRrF69OopOinsKgNIm7IAi2jRu3Ovjxv017jGKaFUU9Yh7BoDSJuyA\nonssir4f9wxFVDfuAQBi4D12AACBEHYAAIEQdgAAgRB2AACBEHYAAIEQdgAAgRB2AACBEHYA\nAIEQdgAAgRB2AACBEHYAAIEQdgAAgRB2AACBEHYAAIEQdgAAgRB2AACBEHYAAIEQdgAAgRB2\nAACBEHYAAIEQdgAAgRB2AACBEHYAAIEQdgAAgagY9wAAwP/Jzs7etGlT3FMUSSKRqFWrVtxT\n8B+EHQCUHTkXX3xx3DMUw9ixY/v06RP3FPwfYQcAZcroKDol7hmK6AdZWVlxz8B/EHYAUKa0\niqL2cc9QRFXiHoD9OXgCACAQwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBDC\nDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQ\nwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAg\nEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4A\nIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBAV4x7gsOzevXvx4sVbt25t1qxZ8+bN\n4x4HACBO5eYZu/vuu2/mzJl5V8aMGVO/fv1TTz21c+fOxx13XIcOHRYtWhTXeAAAsSs3YTdk\nyJA333wz98vp06f369dv+/btF1988Y033tixY8cPPvjg7LPPXr58eYxDAgDEqLy+FDtw4MCa\nNWu+//77rVu3Tq1MnTr10ksvvf/++8eNGxfvbAAAsSiXYbdhw4ZPPvnkzjvvzK26KIp69+59\n0UUX/elPfyrWVe3YsePpp5/evXt3AfusWrXqEAeldG3duvWZZ57Zs2dP3IMUybZt2+IeAYDQ\nlMuw27lzZxRFeasupU2bNtOnTy/WVW3atOmVV17ZtWtXAfts3bo1iqJkMlnMMSlt8+bNu/32\nO6Lo5LgHKaKdcQ8AQGjKZdhlZmbWrFlzzZo1+62vXbu2evXqxb2qd999t+B93nvvvY4dOyYS\nieJNSalLJpNRVCGKFsQ9SBH9O4qOj3sGAIJSbg6eiKLos88+W7BgwbJlyzZt2nTTTTeNHTt2\n+/btuVv/+c9/vvTSSx07doxxQgCAGJWnZ+xeeOGFF154Ie/KjBkzLrnkkiiKnn/++RtuuGHH\njh1DhgyJaToAgJiVm7AbP358Vh6bN2/OysqqXbt2amtWVlatWrVefPHFU045Jd45AQDiUm7C\n7sc//nEBW6+55pp+/fpVqFCeXlkGADiyyk3YFaxatWpxjwAAEDNPcQEABELYAQAEQtgBAARC\n2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAE\nQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEA\nBELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgB\nAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELY\nAQAEomLcA3zjPPbYY0899VTcUxRDly5dnnnmmbinAAAKJ+xK29///vcVK+pF0Y/jHqSI3qpZ\nc0HcMwAARSLsYnF8FN0Q9wxFtC2KlsU9AwBQJN5jBwAQCGEHABAIYQcAEAhhBwAQCGEHABAI\nYQcAEAhhBwAQCGEHABAIYQcAEAhhBwAQCGEHABAIYQcAEAhhBwAQCGEHABAIYQcAEAhhBwAQ\nCGEHABAIYQcAEAhhBwAQCGEHABAIYQcAEAhhBwAQCGEHABAIYQcAEIiKcQ8AAJRTm6ZPn75+\n/fq4xyiq88477+yzz457ipIl7ACAQ/Pl22/XePvtFXGPUUTzv/zyS2EHAHAwP4qigXHPUETX\nxj1AafAeOwCAQAg7AIBACDsAgEAIOwCAQAg7AIBACDsAgEAIOwCAQAg7AIBACDsAgEAIOwCA\nQAg7AIBACDsAgEAIOwCAQAg7AIBACDsAgEAIOwCAQAg7AIBACDsAgEAIOwCAQAg7AIBACDsA\ngEAIOwCAQAg7AIBACDsAgEBUjHsAyrjd2dnZb731VtxjFMnChQvjHgEA4iTsKNi8ZcuWfe97\n34t7jKJLi3sAAIiNl2IpWE4UtYuiZDn538Nx/7oAIE7CDgAgEMIOACAQwg4AIBDCDgAgEMIO\nACAQwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBDC\nDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQFeMeoNiSyeTKlStXrFiRnZ0dRVHNmjVbtWrVuHHj\nuOcCAIhZeQq7TZs23X///ZMmTVq/fv1+m5o0adK3b9877rijcuXKscwGABC7chN269at69ix\n48qVK1u1atW9e/emTZtWrVo1iqItW7YsX7581qxZd99995QpU2bOnFm7du24hwUAiEG5Cbsh\nQ4asWbNm8uTJl1122YFbc3JyxowZc8sttwwbNuzxxx8v/fEAAGJXbg6emD59+g9/+MN8qy6K\norS0tJtuuunyyy+fOnVqKQ8GAFBGlJtn7L7++usWLVoUvE/r1q1fffXVYl3typUrTzvttL17\n9xawT2prIpEo1jUfTFpaWhRNiqJpR+TaSt7WKNoXRUfHPUYR7YqinPIz7b4oiqKoYxSlxTxI\nUeVE0Q1RdEvcYxRRVhQ9EUXPxD1GEWVHUaL8/F93exTtKT/T7omiKIpaRdGR+RteKi4uP/86\n74iiX0TR8LjHKKJtaWk/jHuGElde/q8TZWZmLl68uOB9Fi5cmJmZWayrbdq06eTJkwsOu2Qy\nuX79+vT09GJd88EMHz78yiuvPCJXVQq2b9++cePGRo0axT1Ikezbt2/lypWF/gdA2bFs2bIW\nLVocqf9mKGmrVq1q0KBBpUqV4h6kSL788svKlSvXqFEj7kGKZMuWLTt27KhXr17cgxTJ7t27\n161b17Rp07gHKZJkMrl8+fKWLVvGPUhRLV++vHnz5hUqlI/X09asWXP00UdXqVIl7kGK6sQT\nT4x7hBKXSCaTcc9QJLfddtuvf/3rX/7ylwMGDMjIyNhv67Zt2375y1/ee++9P//5zx988MFY\nJgQAiFe5CbusrKwuXbp8+OGH1atXP/XUUxs3blytWrVkMrl169ZVq1bNmzdv+/btZ5111htv\nvFGtWrW4hwUAiEG5Cbsoinbv3j1y5MiJEyd+9NFHOTk5uevp6ent27fv06dPnz590tLKy9uV\nAACOsPIUdrl27ty5evXq1CdP1KhRo0mTJuXlfT8AACWnXIYdAAAHKh/H3QAAUChhBwAQCGEH\nABAIYQcAEAhhBwAQCGEHABAIYQcAEAhhBwAQCGEHABAIYQcAEAhhBwAQCGEHABAIYQcAEAhh\nBwAQCGEHABAIYQcAEIiKcQ/AN9EjjzwyaNCguKcAKIumTJnSu3fvuKegvBJ2xKBevXp16tSZ\nMWNG3INQDOeff/6tt9563nnnxT0IRfX8889Pnz79ueeei3sQiuHUU0+tUaNG3FNQjgk7YpCW\nlpaent6+ffu4B6EY0tPTmzdv7l4rR2bPnl2lShV3WfmSSCQSiUTcU1COeY8dAEAghB0AQCCE\nHQBAIIQdAEAghB0AQCCEHQBAIIQdAEAghB0AQCCEHQBAIIQdMahUqVKlSpXinoLica+VO+6y\n8si9xmFKJJPJuGfgG2fv3r1r165t0qRJ3INQDJ999llmZmbFij6HsNzYuXPnxo0bMzMz4x6E\nYli5cmWzZs18qhiHTNgBAATCS7EAAIEQdgAAgRB2AACBEHYAAIEQdgAAgRB2AACBEHYAAIEQ\ndgAAgRB2AACBEHYAAIEQdgAAgRB2AACBEHYAAIEQdgAAgRB2AACBEHaUngkTJiTyc99998U9\nGv9hz549gwcPTktL69Chw4Fbs7KybrvttmbNmlWqVCkzM7Nv377r1q0r/SHJq4C7zOOubNq0\nadMdd9zRtGnTjIyM5s2b9+rVa+7cuXl38EDj0FSMewC+QbKysqIouuqqq5o0aZJ3vWPHjjFN\nRD6WLl36gx/84JNPPsl36+7du7t06fLhhx9ecsklJ5988vLlyydOnPj2229/8MEHtWvXLuVR\nSSn4LvO4K4M2btzYvn37Tz/9tEePHj/60Y9WrFjx0ksvvfnmm/Pmzfvv//7vyAONw5GE0nLP\nPfdEUTR//vy4B+GgNm/eXLly5Q4dOnzyyScZGRnt27ffb4df/epXURQ99NBDuSsvvfRSFEW3\n33576U7K/yr0LvO4K4NuvvnmKIqefPLJ3JUpU6ZEUdS9e/fUlx5oHDIvxVJ6Us8c1KpVK+5B\nOKi9e/fedNNN7733XsuWLfPdYeLEidWrV7/11ltzVy6//PKWLVtOmjQpmUyW1pj8n0LvMo+7\nMig9Pb1Lly433nhj7srFF19cuXLlJUuWpL70QOOQCTtKT+4/MDk5OWvWrPnqq6/inoj9HX30\n0Y888kh6enq+W3fu3PnRRx+deuqpGRkZede/853vrF+/fuXKlaUyI/+h4Lss8rgrkx577LG3\n3nor7722e/fuvXv3NmrUKPJA4/AIO0rP5s2boyh6/PHH69Sp07hx4zp16hx//PHPP/983HNR\nVKtXr87JyWncuPF+602bNo2iaMWKFXEMRSE87sqFMWPG7Nmz58orr4w80Dg8Dp6g9KSeOXjh\nhRd+9rOfNWzYcOnSpSNHjrz66quzs7PzviRBmZWdnR1FUdWqVfdbr1atWu5WyhqPu7Jv1qxZ\ngwYN+s53vtOvX7/IA43DI+woPUOGDLnlllvOO++83D9YP/jBD04++eQ777zz2muvrVSpUrzj\nUUSJRGK/ldSbfg5cpyzwuCvjXnjhhWuvvbZNmzbTpk2rWPH//lH2QOPQeCmW0tO5c+dLLrkk\n73+GnnDCCd27d9+4cePixYtjHIwiqlGjRpTfEwZbtmyJoqh69eoxzERhPO7KrGQyec8993z/\n+98/55xz/vrXvx599NGpdQ80Dodn7IhZ3bp1oyjaunVr3INQuCZNmlSsWHHVqlX7rS9fvjyK\nolatWsUxFIfC4y52yWSyb9++48aNGzBgwGOPPZaWlpa7yQONw+EZO0rJ1q1bR48e/cILL+y3\nnjq8P/WmYMq4SpUqtW/fft68edu3b89d3Ldv36xZsxo3brzf+W8pCzzuyqyBAweOGzfugQce\n+PWvf5236iIPNA6PsKOUVKlS5f7777/hhhv++c9/5i5OmzbtnXfeadeu3XHHHRfjbBTddddd\nt3379ocffjh35Zlnnlm7dm3fvn1jnIqD8bgrm6ZOnfrEE0/ceuutgwcPzncHDzQOWcKpDik1\nr732Wq9evapUqXLllVdmZmb+4x//+P3vf1+9evWZM2eefPLJcU9HFEXRrFmzZsyYkbr8yCOP\n1KlT50c/+lHqy0GDBh1zzDE5OTnnnHPOnDlzLrroopNPPnnp0qUvvfRSmzZt5s6dW6VKlfgG\n/+Yq9C7zuCuDWrZsuXz58gEDBhz4qPn5z39eu3ZtDzQOXYyfesE30HvvvXf++efXqlWrYsWK\nmZmZ11xzzSeffBL3UPyfESNGHOxvRe49lZ2dnfrw8vT09IYNG958881ff/11vGN/kxXlLvO4\nK2sK+Ed55cqVqX080Dg0nrEDAAiE99gBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgB\nAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELY\nAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC\n2AEABELYAQAEQtgBAARC2AEABELYAd9oV155ZSKRWLNmTe7lL774Iu6hAA6RsAP4X23btu3W\nrVtGRkZRdn7wwQeXLVtW0iMBFIuwA/hf//M///PHP/6xdu3ahe65bt26wYMHCzugrBF2AMU2\nf/78uEcAyIewA/hfed9jt2vXrocffvjb3/52zZo1q1evftJJJz388MP79u2LouiCCy646KKL\noig6//zzE4nEO++8k/r2L7/88uabb27atGmlSpXq1KnTq1cv/QeUsopxDwBQFvXv33/8+PHf\n//73+/fvn0gk3nzzzZ/97GerVq166qmn7rrrrqOPPnrSpEl33313u3btTjjhhCiKNmzYcNpp\np2VlZfXr169NmzarV68eNWrUWWed9eabb3bq1CnuWwN8Uwg7gHy89NJLZ5xxxnPPPZf68sYb\nb/zpT3/62Wef5eTknH766X/961+jKDrjjDPOO++81A733HPP559//v7773fo0CG18oMf/ODE\nE0+84447PG8HlBphB5CP9PT0VatWrV+/vm7duqmVX/3qVwfbOZlMvvzyyyeddFKjRo1yz5aS\nnp5+5plnvvnmm1u3bq1WrVppDA184wk7gHzce++9t956a6tWrS666KJzzjmna9euDRs2PNjO\n69ev/+qrr7766qsGDRocuPWzzz5LvVwLUNKEHUA+fvKTn7Rp0+bJJ5+cOnXqpEmTEonE+eef\nP2rUqKZNmx64c3Z2dhRFbdu2HTFixIFbMzMzS3xcgCiKhB3AwXTu3Llz5867du2aM2fO7373\nu4kTJ5577rlLliypVKnSfntWr149dSH3LXcAsXC6E4CCZGRknHvuuRMmTOjXr9+yZcsWLVp0\n4D716tU79thj//nPf2ZlZeVd37BhQ2mNCRBFwg7gQHPnzm3YsOHEiRPzLlaoUCGKovT09CiK\n0tLSoijasWNH7tbLLrts586dDz/8cO7Khg0bTjrppAsvvLCUhgbwUizAgTp06HD00Udff/31\n77zzTtu2bROJxIIFCyZMmPCd73ynbdu2URQdd9xxURQ9+OCDK1euPOuss0455ZShQ4dOnz79\ngQceWLduXadOndauXfv0009//fXXP/nJT+K+NcA3iLAD2F/FihVnzZo1fPjwP/zhD88991x6\nenqzZs3uu+++AQMGJBKJKIp69ux5ySWXvPHGG5988skzzzxzyin/r107tmEQCKIoKOfEdGJC\niqOVC0mvCarCTVhCesxU8Dd7wX7Xdb2u6ziOOecYY1mWfd/P89y27elrgBf53Pf99AYAAP7A\njx0AQISwAwCIEHYAABHCDgAgQtgBAEQIOwCACGEHABAh7AAAIoQdAECEsAMAiBB2AAARwg4A\nIELYAQBECDsAgAhhBwAQIewAACKEHQBAhLADAIgQdgAAEcIOACBC2AEARAg7AIAIYQcAECHs\nAAAihB0AQISwAwCIEHYAABHCDgAgQtgBAEQIOwCAiB96vPUubYhaugAAAABJRU5ErkJggg==",
"text/plain": [
"Plot with title “Histogram of liste”"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"hist(liste, col=\"blue\")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"ename": "ERROR",
"evalue": "Error in xy.coords(x, y, xlabel, ylabel, log): 'x' and 'y' lengths differ\n",
"output_type": "error",
"traceback": [
"Error in xy.coords(x, y, xlabel, ylabel, log): 'x' and 'y' lengths differ\nTraceback:\n",
"1. plot(x = 2.3:23.4, y = liste, col = \"blue\")",
"2. plot.default(x = 2.3:23.4, y = liste, col = \"blue\")",
"3. xy.coords(x, y, xlabel, ylabel, log)",
"4. stop(\"'x' and 'y' lengths differ\")"
]
}
],
"source": [
"plot(x=2.3:23.4, y=liste, col=\"blue\")"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAADAFBMVEUAAAABAQECAgIDAwME\nBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUW\nFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJyco\nKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6\nOjo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tM\nTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1e\nXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29w\ncHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGC\ngoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OU\nlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWm\npqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4\nuLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnK\nysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc\n3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u\n7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////i\nsF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO3dB3gT5R8H8Dezg5YWCmUUWvaS\nPQQZsofsjajsDQVkiSwZKsgQREARBBRBQDb82TJkb5BRkCF7lVkodNDm/sndtdTSpBnv3XuX\nfD/PY943yeXuZ8u3SW68L+EAwGWEdQEA7gBBAqAAQQKgAEECoABBAqAAQQKgAEECoABBAqAA\nQQKgAEECoABBAqAAQQKgAEECoABBAqAAQQKgAEECoABBAqAAQQKgAEECoABBAqAAQQKgAEEC\noABBAqAAQQKgAEECoABBAqAAQQKgAEECoABBAqAAQQKgAEECoABBAqAAQQKgAEECoABBAqAA\nQQKgAEECoABBAqAAQQKgAEECoABBAqAAQQKgAEECoABBAqAAQQKgAEECoABBAqAAQQKgAEEC\noABBAqAAQQKgAEECoABBAqAAQQKgAEECoABBAqAAQQKgAEECoABBAqAAQQKgAEECoABBAqAA\nQQKgAEECoABBAqAAQQKgAEECoABBAqAAQQKgAEECoABBAqAAQQKgAEECoABBAqAAQQKgAEEC\noABBAqAAQQKgAEECoABBAqAAQQKgAEECoABBAqAAQQKgAEECoABBAqAAQQKgAEECoABBAqAA\nQQKgAEECoABBAqAAQQKgAEECoABBAqAAQQKgQIYgnT4OoCqnHf9XLn2QjhEAlTnm8D9z6YN0\ngMRJvg0AiuLIAYdfgyABpIIgAVCAIAFQgCABUIAgAVCAIAFQgCABUIAgAVCAIAFQgCABUIAg\nAVCAIAFQgCABUIAgAVCAIAFQgCABUIAggWeKnNy2Vp/1JlqrQ5DAI+0KKtT7i1bejV5RWh+C\nBJ7oTsaBCebmct7ulFaIIIEnGlEqkW//1N6js0IECTxR1bFCawpcRWeFCBJ4opIzxU7ehXRW\niCCBJ2rUX2ijvXbQWSGCBJ5oXuYHfDstKIbOChEk8ETxFUoe57iYbw2/UFohggQe6VErTeai\nhsyLaK0PQQIP9e+qH3e9pLY2BAmAAgQJgAIECYACBAmAAgQJgAIECYACBAmAAgQJgAIECYAC\nBAmAAgQJgAIECYACBAmAAgQJgAIECYACBAmAAgQJgAIECdxfwrx6uQq03CrlJhAkcHsx9QIH\nLZnXSf+ZhNtAkMDtDct1zdLs9Foj3TYQJHB3sRmXCJ3wGtJtBEECd3eWRAqd9X7SbQRBAnd3\nnLwQOtuN1OYVewuCBO7usW6/0JlWVLqNIEjg9hrWtUwqxj3KPUG6bSBI4PYuZal/4NWTDUXL\nREu3DQQJ3N/l+kRDjD2eSbgJBAk8QdShU7GSbgBBAqAAQQKgAEECoABBAqAAQQKgAEECoABB\nAqAAQQKgAEECJhIOzpt/OJF1FfQgSMDC4ULaAvm1RY+xroMaBAkYOOff5SHHPegQ8A/rSmhB\nkICBJo35S+xM9VqzroQWBAnkF2sUh8ba4JPAthJqECSQ3y1yReicJw/YVkINggTyiyJHhM5e\nTQzbSqhBkICB0sOEduC7bOugB0ECOTz473ehVYZVlmaZYQOTaiSAIIHkzjYNIN7Vtqd8aLKu\n8qCBlfTTWZVEHYIEUtvl03jd+W29dXNSPnhuVLMWoyNYlUQfggQSe5VrAN8uMl5mXImUECSQ\n2Fo/cRSssl+wLURSCBJI7KsqYie8FdM6pIUggcQQJGsQJHDAOny0swJBAgfE5A7n2wXGK4wr\nkRKCBFLb7dNo9bmtPXU/sC5ESggSSO5ci0zEt/oO1mVICkECOTx0o6vK04QgAdjJ9Evt4ODa\nv6Q57R+CBGCf1639B69YMdivdVoXIyJIAPaZFsSfGxiR+ds0nkSQAOyTd5rQTs2bxpMIEoBd\nnpBTQuckefr2swgSgF3uE/Gqj4i0BppAkADskphpqdBZmimNffkIEoB9+hZ/YWlevNM3jScR\nJAD7PCpYZuPDhxtLF3yUxpMIEoCdHnY0EmLs+DCt5xAkALvFnzsXn/YzCBIABQgSAAUIkqd6\nxboA94IgeaQ7PfJoAmpuYV2GG0GQPFFEcIUFB9f11n/DuhD3gSB5IFP5pq8t7SrtCdalOCPu\n9P7Hdiz2/PCxaMlrSYYgeaDjmhtCp14ftoU440W4F9GRamfSWexGU41Wo2sv2/RLCJIHWph0\nHUDykHPqEVcl/9onccda+p+yuditkPf3vny+o1xBe967qNSFIHmen/OLnYnvMa3DGTOz3rU0\npta2S/+4Ev8v6EXRgW8/93zztHlHadeFIHmgA7r7QqdZV7aFOKHiGKE9R67ZWCrGR5x4aWHw\nW88tyZShfAFdRcqD7CFIHiixaEd+AI/dur2sS3FYlpVCazL8aWOpf4n4LfA4eZ7qqdX6qbEc\nd7Ne2BOqdckdJNPVHWvW7LyZzlIIkrSO+H2w6d8jY30Gsy7EcbkWC22sZr+Npe6Qi0JnnybV\nv6TEsNF8G1NoNNW65A3SkyHBhBc6weaBdQRJYhea+hJtsV9Yl+GE5h8L7QavKBtLmUJmCp0x\nJVM9c5rcFTrflKJal6xBupuXFOw8dsqU0e1zklK23lkRJMkl3pDxIAtFu3TrLM3dAr1sLvZN\n0HlLc9hvQaonNvuInT+yUq1L1iB1M/wh9hLmaNLYnZIMQQJrJuna/fjbkKCqL2wu9bpthr6L\n5nfz6pV6NMdDGvGFcwpRLUvWIGVPsZOoXW4bCyJIYNXeD4vmqjv7dTpLmX5vlCd/8/VvPR4b\nIL5HVe9BtSpZg2T4+k1/nNHGgggSSGVi4D7zbcLnPpeorlbWIIW1fdNvlsfGgggSSCUxXPt+\n/075MlE+9V3WIA3UWHbhW0R/QYbbWBBBAukcHdWiy4w0B15wgaxBelqW+NfuHN6vUw1fUs3W\nl0UEiaqnf606k953CjV4fWbVHrqHUemR9zhS3PTSOsthJEOleWmN6J8MQaLoZT+jPgvJvZp1\nHS5bG0qyGAx9lLnbXvZThGIunThxOa2YPPy4TbKqJMaVbUAKpvphm+K4yDH6FawrcdFK/agH\nXNzmvHUVOWcZs3PtnlxL9cCz/j2TVSO2jxKA/VZkuMq3XwWr+49TbLYJfHvN73fGlaRJ3iD9\n3TCs6hzhQ91wW2uZiyBR07qL0EZ7b2NbiIt2eIn/Jrq3ZFtI2mQN0n4v4msg1fnviwiSTCpM\nETuFfmJah6t+LiB2vi3LtA4rZA1SI8NaU+x0QwXL10UESSY1xAt4uOxLmNbhqmVJVxaNrca0\nDitkDVLuTyy3O40NExAk2YwoI5xudoxQvpRNZtfIEb41lf+McSVpkvcUoS/4ZjEZgCDJ5maG\n0ZYk3S+pyK8WDmhd/J751jTW9zrrStIia5ByNRXaEWQKgiSb//lVGDWrd+aKCjmUeblzAX2+\nTy44/sKnlTL1+n7Uu34b6NdEgaxBGqCZxY/lb+pEPu2PIMnl+vA6JdrMszKLgtz2+FWft/Pn\nuj5bHX9p/Pw2JWoPu0a9JCpkDdKjUFKH75gGEIIgeaIXOcL5r2zDgxTyBkmLvMeRHvb9VOyt\nzo8geaLfMgtjDMTnnMu4EsqUOYoQguSuhjYSO217M62DOgQJ5DSwudj5uDvTOqhDkEBOP4SK\np5wWmcq2ENoQJJDTfb9ZfLvQ+wbjSihDkEBWC3UDjz48Pkw/i3UhlCFIIK/NZTSEFF/Lugza\nECSQ2/OztgZJVSkECYACBAmAAgQJHBVl38g0T2yOb+NuECRwyLNBYUT/zvfpDUBytX0W4l1Z\nmSdqSwJBAkdEFi4878TeiYGtbL/dnAiosfzvbQP0E2Uqiz0ECRzRoTT/m4nION/WUgnFPubP\n8V6jOylHUUqAIIEDoozikNkjKtpabK/+gdCp3V/qipQCQQIHJE/JujGDrcV+KCp2vqgpcUGK\ngSCBA5KD9D8E6b8QJHBAlFEcZXLku7YW+0sfKXTqhktdkVIgSOCIj8vyY9j/E2BztMmEIh35\nnQ3rtSfkKEoJECRwxP2CxRadPjglc3Pbu7+PZqyzKuLPIYYvZSqLPQQJHPK0f06iLTwjvbMW\nLrXJRIzvrpGlJEVAkMBRT17ZtdgDd5jbzG4IEgsRXd4JKDf0Aesy3MbdT8sGlOhOd3ZlByFI\nDKz3qTNn/ZQS2c+zLsRNnMpSetr6WdV9nRh0khoESX73/MdamviW73jUhx/JxBVsb/lBmoZn\nesSwCARJdt8UEs6dfmjczrgS97DB9ynfvg77jl0RCJL8ksdGfPcbpnW4i3Hvi53OHdkVgSDJ\nr3nSuM3VJjCtw12MrCd2en3IrggESX7DaghtfOZlbAtxEwuzi0e1Ko6xvaCUECT5ndQK342+\nyfSMcSXu4ZH/TL7doGO4GxRBYuCzDNOuxJ4dqMMbEh2L9EPPx16e5DOWzupeLR8x8KfbDr4I\nQWLANDcnIeSdLazrcBsbiph/nrkX0FnZvpDMdVvm8XJwDyCCxMbNgw9Zl+BWIg/corSmq/69\nX5n/1v1qcGwSeAQJIKXu1YRZ4L8MNTnyMgQJIKVQcViXmyTCkZchSAAp+W4S2gTNX468DEEC\nSClsntDeIBcceRmCBJBSzyrCd6PxYfiOlK6404efS7oBUK1rAd2jOc60wPC7Qy/zxCA962Ek\nhDS4IuEmQL0O5g6o1Ti392zHXuWBQYouW2TDk5f762W5LN02QMViVo4Z/PNdB1/kgUGakJu/\n/iuhTiPptsHcpd+nrYtkXYQn8cAgFZkmtPt0j6XbCFvP2mlylg/wnuDQ12VwhecFyWTYIXSe\nk+OSbYQtU80ixzgucZn/ONaVeA7PCxLnJ05/9YCclW4jKdyY0rHD5GuybEq02vcG3670uifn\nZj2aBwapujge9ZKMsdJt5I35XsW6dnvH+IMc2xJ1bie0puy/yrhVz+aBQVrltcvSXM81TLpt\nvLFNz4+SvVC/SY6tCeqNEDvvec6Meax5YJC4YfrO85cODqwbI+E2klURRzoZUEGOrQna9hQ7\nBeV8H/RsnhgkbkuL/LnqzpNl0u0Y7R6hc1Aj31lPc3K85NuTBENQysUjgySj+0kn418htK48\nS190aCvL5CvXirSWbZMeD0GSVrzXZqGzwyDLJ0nBubzZ2g9p6l0HJxTKBkGSWNOmQtuqgZxb\nfTm/Z6NB6xPl3KSHQ5Akdsa3bxTHPR/gc5J1JS6LPrr6dDzrIpQKQZLaX2HeZcv55N7Fug5X\nvR7rpwkiwZSG6nE7CJLk4rZ/O22bLMd+JdU9aEk093iqo8NUeQoECexyUHeYbxf6Yn60tCBI\nYJdBdYTWlGMh20IUCkECu7QYIHZqMRypXsEQJLDLJ13FTgVM6pQWBAnsMjuXsL/ktn4P40qU\nCUECuzwL7mmZqPV57XdxmDctCBLY52BQ8RFzBuUqeJ11IcqEIIGd7o2uW7TJVPxi0oYgAVCA\nIAFQgCABUIAgAVCAIAFQgCABUIAgeZhXS4Z1nYoxUahDkDzLsbCgRh1Ka4ZiVHDKECSPcj+o\no2Wkru0ZJ7GuxN24fZDi57YsWv1TN5hU7GjPiqU+XOXiO8nwEsJofov8XlIoCd5w9yA9rRjU\nd/a4yj6rKa2Pmam6RpO+6+TT2rXRR8qLYxi/Mqh+DAmFcfcgtSlx39J87X2V0goZ2aFfaWnO\nB3/BRbmwmrxJl7dmXel6TZJ5+drZV8bJOHhgqi27d5Cuaw4JnUqD6KyQlQZdhPZrQxaSsc5f\nzq6m0nihfaHbS6MqKTwblFdjLDPfic+w8ZOL6nWFxrPJkpsHaUUWsfNlZTorZCXTKr7Z40Om\nnlzfWefsoFjjCgqX583KrNRhje4XLDL36J9j/To4nKTYOsFT9h6YEfJetBR1pcfNg7Qoj9j5\nrjSdFbLitc1y+yp3L2IZzOcHbyevCnqaq3Ekx5mWeit2mop25fgcnPJd6ugrJ2bnp1e7n+cz\n2jXZw82DtNv4TOj0bE5nhawUnmG5XeO3T2P5zmcq8aWT67lY0rtC/RCvKfQqo+uxfqfQGVjD\n0ZfmmSG0C7PIMs9IKm4epPico/n2mp/Df+CUZXR+y4D4E6q1qs7f7d3O2RUl7pgyYvEdSlXR\nd0AjfuZcmcX2gm+JJseEziVym2pJ9nHzIHHr9J/d5mI25qmn8pEGooqUP/Ca6x/sd5q/27cN\n43qksl8j7t9fHeTgK5Pn1r4s4wQ6b7h7kLhN+UiAzthP9ccfH7TSGv2J7qBwr8xYpsVI52HS\n7sSh1Rx9aehsof0tk9N7z13g9kHiEi6u2/+M2toYity56VwOYd7bX4xucKpG2lpU5ndfR/gv\ncvSV43Lxc7g/Lvgp5ZLs4v5BcivbvFpt+mdnuG4W60Ikcyus9JJzR6ZkauXwZ/FXVXL9cPL0\n/HxlXDli7TQESV1ONshAjJW2sC5DQpE9shBNgRlO7HmLGRNKSM5hTA4jIUiqk3jb7Sf7euB0\nFp49oVmHIxAkULNNzfOF1JFngnrbECRQscGGrj8vGxxYj9m5qskQJKDg2RUmbwp/ePMj+l/L\nNZzF1v8DQQJXmX4sQIh3k4vyb7nqQKFdHBAn/8b/C0ECV/X0++bEzS0NMp6Qfcu+/xPae4T5\ncC4IkrxMF1au+5d1EXRtNfCzy5ral5R7RBVT0hmuz8hJu17weOeSoxJ9nUKQZHWyNAkKIDXd\nKkofthfaWxrZ35IKTxfav/RP7Vg6pr/RGKLJukiSUhAkOZ3L2P4ax52tI5zM4iZKi5cvcCFL\n5N70+NBHluZ1rSb2LN0096Z47vlU41wpSkGQ5PRBY/7TT2yZPqwrse749PDJDl2HXm6a2Mm2\nTIJybIouU3T94+h9dbLaMyLHRm9hd8icjFKceokgySgqaf7VX4LZFmLdy7ba0q0q6Os8sv8l\nXcW3g4sMvvE/62EkRNPQrpFtOrcV2vhAKQZ+QZBkFEHuC53D5BXbSqxql/eU+fZK6fft33Fw\nWLve0sTVeV+qomyJ+/uInf9Wao0RO8lvoVTrQJAk8Pentav1envkuJvkktDZZlDodYanNKf4\n9qbPRvtf9JW+z+p9P5YIUfiIZ03Fg05cASm+JCFIEpiurzX6q2b6Pqn/qptCpwqdfg5ftSaT\nb8qIncb9HXjV5jqZdQX7R0pREEXfFBAu+DtP/pZg7QgSfdv0yy3NwYzfpX5mVkb+p73G4MDf\ne1kNaSx2en3o2AuZn1mQvoeZwy3nMUWWayDF2hEk+mr1ENrpOd96S+qrbzFxXD2dYoewd+4d\nSSX+Cio29Nsemcs9lGLlCBJ93uKJK1fJ2wded/WsXCNc/nNp7HVSIwyucsuR70iqcX9c43If\nzpfmzRNBoi5es0/oPJbkw7i02uaz1Hy1TFU1T6B058DdN3duHnggxzYRJPpyigMKH9Qyu17T\naS9ba8u2rWioJcnHH3n8npcQkk88ODwvxHyniAxvrwgSfeGl+EEOTS1rs67EGUen9ftmD+si\nXPCtcew/sRe/MPB7ekb5TL4Se36I/lfJN4sgOebC0hlb0ztB8n6u2ufNXzM6iYM5Su71vrk/\nHVDogSnZXff6jW9/9b7JcWd1m/g7MzI+dnxNkRumr7D/0BiC5IiHTUjOUr7+c9JZ7N+aJFMw\nKX5Elpq4A/n1hQvqihyTZ2tKN62I2Ck0neNGinOQJAT/4uh6TOO9M5bJqu1g7z9EBMkB8eXK\nnDHf/uiV7qHxK2uWn5Xp6/qZDD3Mf24jOwb8I8/2FK530gGwNn05rm1f8U7t0Y6uZ0zGZYmW\nP1IN7Pw1IkgOmBckfAefHcBm7LQ0NWzGN6a6rRkXogwDkqYdafIpx33SVbxTdYKDq7ltXMO3\nV5KOZaQHQXJA435CG+OzmW0hKbwy7BA663wUMCgVe79mFc4Hfhlk/q40I69wVtATn00OrmZ+\nLvGdqEVP+16AIDmgjHhBJldgPtM6UrqRdNT3HFHxLmt6XuTsbdnvktgzxPyp4WHgCMtjr9sW\ndnRQzfFJp7IPbWTfCxAkB9QYJbSmzH+wLSSFp0nTAu3Ryj+b5et5TfKX7aKs3Rz7AyrNWDf9\n3UB+3o4tvjW+XzelZPCZdF50olu5fI3nppjF4rt3xE7nj+3bLILkgLFFhU9PO3R301lSRqXE\nmR77yT9LbnT1TAMWfNtEr6wh/W/0KxNQpt9N4c4/PUoGlht8P52X/KhvNG3hwMxVnyc/ckoj\nXKUYne0n+7aKINntYcyDzD0tHxEuhNr5uVkWqwz8BZ+L9Y5+DXBdz/z83HhLdIdk3zRVx3T8\n3vG7hbpy95M+AzYuYZmuLLpFHjtn1kKQ7BPZM5joig7NFtp5WCNjc/Yj5KYwRVdpQL/yBvnf\nFp4axT1aLR285kJpPmkqtIs0AcRYXpg//un7vi2Gf5wtn72XzyNIdrkZWvq3MwcmZmz9XaeG\ng5Q2qUrEmJatx16Sf7u7deKf7/n55N84TYV/5JtjGbVjL+waZhjH30tcHf5B95/snukRQbJL\nk6r8N/kzjk9a78Y2+4id33MwrcNlofypeAlFO2TcYG7/p3Vm7wmCZI97WnHu1gG12BaiKBeJ\nOAHnyCpsC3FVDX5/zV79CXLO0qnvzGBpCJI9duvEg53LsrMtRFlKd+Kbe1m+Z1uHq37MfMd8\nO7dwt+L83XHVnVgHiyDFHd2Vzpi9ig3S7whSCod8OkQkvNhUsLJw0emd30ZP36PGCwLjq+Xf\n+CJxfID3fv6u8oP0JT9C1dxMhJByp2wtqLQgPdAKP2IuvA7bQhTmaDnirTH0Eg6/TDTmrFPG\nUEGN45q/6GvUeBONuBOybj8nViFrkIhlPqj/Ea8WvaqQAFsT3CstSFzz9/gzuE76LGddicLc\n3n5U/FXN8F1mfje6Uyefwn519ok+tu1G8Q/5i7rWap0ZU0P+IBUMiDDfrtZ0sbGg4oJ0O2/x\nBSd2jfPrpMZPLrJ4mVE4BSA6dLK1RS6OatpgmLLOJ/qPk4HvLzu9bYD+a2deLHuQIslIvt88\nxMaCigsS9zg8NzGUmo8cWbPNWxyF+fOaVpaYY6g4aHgt7UjZSnLYvx8HE5/KG5x6rexBukmE\nS4FHG2wsqLwgmUU5egaxR1mcW+z8UDTtBXbo+fNwtvkskKkipzx19loU2YOUECCMjtg1s40F\nFRkksGWTr/h35ouqaS9Qs7vQfvX2aRCvZ1XLlL3uCokqk4e8QWp/7PLDEQUsp11cyGBrbigE\nSXWeeQtBeF1kbJrPm4zimVUR5Haqp17VChq1enm4dw81f3CWN0iCVRy3NIP2qI0FXQ1S3Pk7\nVp55dcaBmX/AAaMzW6Yni/4oOO0f8CsijgVzn0Skeuqz3Pw1D0czODxCiYLIGqRFM8YO7NS8\nxk7zF88Qm2P2uRakS40MhAR/9frtZw5V0RKSRzmXt7qTxH6a8p0bZ85jbVrkIPE0xf3aVBPm\nxQeKo84NryBZcdJjdIrQi7eHYYseNzxZfVeCdCaw/o4Hl37M2vytTwpbDR0OPDw7yXeo8ysH\n605903HIb1avMOn6nvCXrU3q0xX/Sfqst92o4s92zM61e3Q51QP3PqiTrCh5nuaL7FKpBZ/S\nixlSzw0cEzKMb//UHnZ+7eCkm1mb3zL/2nv5pn7LSh5s4i9tGh8i1IJZkIbbWosrH+3+IcKc\nu1x4/VTPbPIR11o/3Om1g9POlyOh+bUF9qV+/IVxu9CZUUDukihyvyBt9BM7i/KkemZ60uQ/\nI+s6vXZwnunU4p8Pp3Gcpq1w0uvD3OPkrogi9wvSVm/xk/a8gqmemVVc7Az7wOm1A303Qypv\nfXTnj4LlFTTspsNkDVK5FLJLFaS7WvH/qH2bVM/s04uD/5Qf4fTaQQK32xgI8Q134Xsxe7IG\nSav1SqaTKkhcy/L8b2SLLvW04omlmvNH3+d42TrzHBiIO3NJ5ePEyhqk4f5vdtVJ9tGOe1A0\n75Qty3vov3jrmfPZSs/a/msb/SLnVy61K0NqlWy7SMV7r7iIgTVKffi75LPMxMxuVbzeKGvH\n3eUna5Diy5RPPvFTuiBxL8aU8c7eIK3hue/1f8cQ1lKm6VacscrnvTEzewS8r95POb8Yq4+b\n0cWvwStpN3O/ZHD4rM9LZtot7WbsJ+/Ohgif5GOhEgZJvS578Wf03i7cgXUlzjql5yePuhom\n8RGGWpUs04omDsiklAHPZd5rF5U8c9qeSTYW89Qg9ReH49mjVc5nFsd0bCi0643PbC/omhMa\nYTao1wW/kXIzDsAoQkpSQfxnYQpYy7YQpxUSxlrk4vWpd/VQNTtpXr7+zaTcjAMQJCUpljSp\nZkjq05vSZrq684qyJo9NLtxPOCv51Yl9Tkzfmq4p74qdUUoZjQZBUpKG/YX2iX6/PYv/EkL0\nJIeiTmavIs4xeZOcNd8+624wV1gj9XUTrvsjk7hjs2V36ut2DoKkJAsDhROhR+SyZwf4VK+v\nr3M3p3h/KW1RDpmRTfj237eIieNeliu6KSruaNNAe0eit9uzjLP59qxxK+1VOwlBUpKE9wts\nj+fufaa3ZwCOG17CFT6rDKlPpGcotlzxv15zt8KNlq9IE0P4VCU2tnOg5/OLvv7Dzr0s8wwT\nH3Oxq3OkPnuFGQRJUZ531xuykLx2TXU0o5DYKWFrB6jcnnyiNQaRQvyuhqTCjmrSm+nL4mkr\nkqdKFuMo+770/ZadZNV5D5N/lkIrECSFebx71Tn7zpYJbyV2PlbK9wTBwz9XXxDC4Cv+QYgl\nB9N/WWL1Yqc4zrQm0M7xuuJPrdwf5WSJEkCQVGuoeMiGa6HUy6syC3N2cU+JtevPU1idQZit\ncr0h9eAoqoAgqdbyAOFEopdZfmVciTX1xbfK5X52THHYpZ3QmkIUPfCdNQiSasXk6WDZt5fQ\nLUSp1/Fs0vMnPF4PHWzHwg2Gi50qX0lXkXQQJPU6kbXk10snlcms3BEoxurb//DLwMC69sy5\n276r2Ck0x+ZyCoUgqdi9YZVzVBqi5NPydrcrGvbBz3btPPkpm/A7P0GoH3WSg9qC9OCB5BtX\nrbhrar6O6VW+JpadcJcLtZdc9LAAACAASURBVBUfeHldWWc/2aaqIL0YEkxI8BClfiVga1MF\nPTHWcPy3qRgXCwW1HtjA2ED41f9aTEt8m9A/uUgqagrS87L5F54/vzB/WfVe9iadOboBe2/8\n2UGv1tPGzWIXh7f4bIswdM1Q77GHr21q6KfgizD/S01BGpqfH1b6Ub5hkhegOte8FvLt+CBJ\nrwOSy37tTr7tXEQtQzmoKEiJWcUDDAuCVTy0rUS+Focai8+ymG0hdHRrKrQPdHadBq8AKgpS\nJDkndM6RSMkrUJtPuomdem4x1FiVpOknCyrqIhEbVBSkR+SM0PmbSHGtmLp16ix26oxiWgcl\n1SaInXxqOc1BRUEyhQjXoHCzc+GjXWrTCgr7il8FusW8633FQaVv2pxGS0lUFCRufA7+tMab\nOcZLXoDq3PWbwrcDcrrFwYGTupWW5nWzsmr5m6mmIMXUDp60c+ek4NqKuQhFQZbr2/5xaGk9\n393WFjCt6V6l8ZgbMpbkiin63msPLqiQVTVnOagpSFz81JJGY4mpmF08LUebZiE5212w9nRM\nE592Xw0p7aeW40xbawVq8nRX8ulP/6WqIJm9RoqsE0Y3/c+HoeQ74aGXLHcneF+StyYXSDxY\nK11qCxLYFje5nG9gtcVCfl6OK+OVuRZ/dd0Tgzhpb7W+zGpzawiSW3lROfuXW9cOy9DRsg/v\nccnQydtXDfAawFlmjRJPaP22FMv63BeFID0/95RSMckQJCcNzMcPM3LKz3L4pUMJ/hezz2j+\nXrQyi7jEgnz2rSn+3Jk4KSp0Vy4HaU85QrZwXJM/qZXEIUjOivVfJnRGVLB8mtsm3OlVn+OO\naMXR5ofXsGdFjzobCTF8jGtW7OZqkI4Y/eubgxSZ3XicXlEIkpMiyD2hs81o4vZrxMMEy7Jx\nXEKoMDjPo2wz7VjP4yKlNj58vLl8PiTJXq4GqVHorXuWd6QHoTRHM0eQnHOGPBI6u/SJ3B6t\neOb0qiDzzXr9GPMHvcOlythzEG5gUf5KlZelekhTpxtyNUhBkzg+SNzETNRqQpCc9cJLHMF3\nSlGOu6sRT6/5nJ8sZm2IJjSjprU98wmZsvwidP7IqOZrbmXlapD0S8QgLTJQqwlBclr7d/lx\nRu7msIxxWr8OH4N/A3/in4s7+usG+05seEz+FjqXiSrHmGPB1SDlGiUGqUsYrZI4BMlpd8LK\nr7t55ZewKpY8XQ5+f9Ptf37K3sDRt5UXRHwvO4sLVuzlapB6ZjphCdKTkYTmgT4EyVn3O/gQ\nkukz4aSAG629CMk6zvHd2IUmCu13udVyzihzrgbpXm59WVK6tBcJtWecdHshSM5LvHzzzZ2E\nf+46s46ZgfylXxezKGViSeVz+TjSgz5BhJAsfajuKFVTkGK+a1SwygAFzazirL2dyhZrw1+9\nwCW0zzBw2YrB/i2wr8FeFM5sMN2/TPPdyEJFQYosmW3w/K+r+KrlrGqrxupafftDF5+2fHZM\nS+pmD669CB/s7OZqkJJnCD2yiko9ArUEKf4x17AC/xOY4HOddTGuWWfkx+k+l1VJ8/+piKtB\nIkl/iad53nGkRaUNJIgI40aZyn7OuBoXVe8ntHOzqGUALGVxKUiXt2whX2zhrXnXl2JVqghS\nb98vdv/dy5jjKn9vdE3G5bjIW5wU7CZRzwVLSuJSkCaRFFpTrEoNQdpoPGS+/bFwHWGC1EmV\n2JbjogTtX0LnCTnNthKVcu2j3d31pMMk3pRVNC9dVUOQmvMDYG31Pkz4t6RP2rMtx1V5fhDa\nfTrqF8V4BJdPWj1Er5Y31BCkgvMst7HZxvlbrj294K3y3XafFeJ/5IkffMC6EnVyffe35btp\n7OGTVPeUqiJIwhigq/TGhdzzlTmbq3xX8dNCFfbGJZxpnsnq8Clgi6tBSuhr/m50LR8hVWn+\n01dDkJqLY5vOJiSDxkc589Q7635rrcGbVDnHug6VcjVIk8hgjmuo6dNXO4leUaoIkrCzgYuv\nU/PyxmNuMSrj47+242RvZ7kapOItOe62phvHdS1NryhHgvRiTuc6vVewOPbB7/5eUl7c/e1h\nns3sULfvWjVNqScxV4PkN5fjFpA/OW5OIL2iHAjS2Tw5Oo9u41eFxbD6lgOy2brdY7Bl5o7l\nzN11VEuf2pjyLYmrQfI3B6l9hjjzV4UM9IqyP0jRoa0tVwzcKdWQ4tbtF++h02I8zdbJ8p3w\nWuF2rCtRDJc/2n3E3fdrYe70KEytJgeC9GP2l3wboTlBcfOQjil5hWucjuI0iCSuBmkieS8n\n2cNxvxppzkdpd5A+6ip23vmO4uYhHU0GiJ1QtUxfJDlXgxTT2Sfge3Obo8QTajU5EKRGQ8XO\n+5jqRUbJP+0y05nWoSC0hiw+RPUSMLuD1KuF0JpC8KdRRh91FNrXmf5gW4hyuBKke+Y3oXtv\nUKzK7iBt9hI+pK80qmcCEDewwk+4nH1hBpqfQ1TNlSCR+ub/3qBYlf27vxvl28txiYv9x55Y\nstojD+jQEL1v4TaHhgpIrF7ksPn9aL4PPtklcSVI7SaZ/3uDYlX2Bym6izZzCV/f7vlJrkyk\n/i2KNXiOOYH6vD6Gvo5MR/SsvSaohI/fDMlqUh31T+tyc/XMLf/z6h/JcWeq5sclAI6b7j37\nFZewNbdjY07/u/L7bfhpv+FKkG79F8WqHD3Xrmw3vnlZcCTFIlx34JseX/+p9LPCH/ou4tsL\nXpvZFqJuLn1H+i+KVTkYpGskQuhML0qxCFe9aKZ79+MqxhoKH6x0SVbxjLmWGDHfBS59R/ov\nilU5GKS9GnHn+/9onqfkqhYFLVNyXytbRdnvSRPfEzuf12dah8qp/zuS2amk2UyWZJeiGruc\nHVCzXMeUV8ke1Z7l21s+G9lUZKdZSe/ivWmOuuFx3CJI8YE/C53WraSoxh5zDTXHTv3Yu/Wb\nkSu+Li92Gg1I+yUKcVIjXBMbF4Z9cC5wiyBxE4L4c1Z/1B12edPxTp2icVC30NKcz/Zmb8eg\npmKn50diR6HT3dcvZzmGFN812zPWlaiZewQpoZOhxYTh73ktdHG7cZOKG4ylv3P8MsGWbYT2\nN/+YpIcmlRU7H3xquT3RPJhkb33WxQKl8LBCpi4TwwtkO8K6EFVzjyBx3LZe7zcY/o+Lm31Z\nLfvkXX9+FfSBw0OL5fhNaJ+RY0kPndSe5Ntr3pbpo9YaW6w4tKyh9zYXS5RC/KKOlVp984h1\nGermLkGiYkQof8be1ayTHX1lxvVCm6jdk/zYh3ksnzcvFq9lMv/VD5jAPzYsOMrqOh7vO/Nm\nJqPIvyIwE4QsHu49T2NIRgTpjYSs4j6LafkdfWkJMXoR5FryY6/aa0o0K6v7wHJe5+xQ4eNi\nXNZfrKzhVGWiJT6DhO9RB8qY7/iPdnyGMHDQ4fLmn7TfCNfHgEKQ3riddL3nEeLoqEDj8wjv\nNJ3KpXz01PcDvxUG0Oz1ofhQ4yFpr+BohrYn4h79EVbL8j6009j17/gHi7O1UPYRKDfwl1en\n0/GRS3I0dvknjSC9cZNcETrHiaODejwvWv5IInerp/fBtJ/v/rHYaToo7QXKCgvctEycnJCv\nP3/ngs9KB8sAxyQW6s23lzL87uqqEKQ3XgeKP845uRx+7f0WGt8spOg+K09PLyj8yUsImZfm\n8xeSMjy0hvmDne6hcKdrS4frAEcc1YpX0fVq4uqqEKQU+hfmD6U8yD3GiRff2boywuo4b7d9\nhTHqJwc8TPP55HObFucW/uN9V8qJOsB+y5LOhJlTzNVVIUgpPC1R6NcL534Oq/iS+qp/1vXd\nc2NXV93yt596ubBPyw/14rGrnwpw3Iqs4jOT3qVeB6S0JmkwxmllXF0VgpRS1MAshGT7XIpT\nELZXMhBDtb/efuLvPMFtBtQgVYQjua0+5LirRBxbrGZfCQqBN25oxFNh6rl85juClMr9tD97\nURB3La3jFVE521re/5oZ+BOJVmgtv47GFfiPmD/pMaK9xFqU5QedWKhzeXY1BImxaWH8MYxn\nRUmfpT+01n1rufPgnVyjf5/VWI+RkaT2sGTOUb/Pbqqf6/KaECTGGg0U2riM7+Qs2l78Zbyc\nVDN7iY4n2VXlMV5NrpW9eIdj6S+YHgSJssSbjp2PUOUrsVNyJv1iQDYIElWnG/gSfTlHZsFs\n3V1oEzDWoqohSDTt9G65+cpfQ/QOnPT6S6AwotxvPh46s4WbQJAoisklfOH5Q2f/7rbXFcqc\nN38g/N2P5oyHIDsEiaINvmLZlYfb/6KHDTX5Kmf2/honqKoagkTR5IpiZ7BDp26dWTBxlUMj\nBoPyIEgUTakgdj51bNRSUD8EiaIt3uIgvuVHsy0EZIcgURSXvyv/Tedn42XWpYDMECSaDvvX\nXHp0bRed62ecgMogSFRd+SgnCay7m3UZIDsEiTZHh3sAt4AgqZFpUbVM/pVmqn/ArnMf5zMU\n6v4v6zIoQJBUKOFDv2FrNn4RVDsm/WUVbaN3g5//nFslo5UhY9REzUGKO3vJ8cGF3cGcQH7o\n4xsho1hX4pqHgfxhAlOPUIUOi+4A9QbpTjsDIb59rY9c6r7eEYZt5X7Oqu4/JN+HCR9OozOq\n/8x31Qbpdu73tjy6s7JwWc/7EBinEUf9ukpusK3ERV07iJ06ypqy1BmqDVL7ivwl2o/CnBk6\nS91eEXHiiOQRLVWqQ1ex0/AzpnXQoNYgRSdNHfx9XsmrUZxQYZA8bm0G18esZukrcdy+hBzq\nH51CrUGKIPeFzj4NjbkE1GVUHn4Olpelu7CuxDVXjEv59tuM6p9TRq1BukJuCp2deqvDm7qt\nF2ULLrt2e12ZfGq/+GKaYeTJx0fDdb+xLsR1ag3S66BFQmdkWZvLuafn/f0J8ekUyboOl60s\nSoimrBJnX3OUWoPEjcjF77E67qf+j9fOMP3rJsfQnp5xdOYPZVJtkGLqZB65enl/n650LtF+\nPL5e4Xrj1f9RHRhRbZC4hDnVMmerm8ag9M44m7Pg5/NGFMpxhs7qwOOoN0g0xeZvY9mRHNcu\nv7r3JwMzCJLFioz8qPVcVACldzjwNAiSxeBGYqexlZkpAWxDkCx6txM77XvJul1wGwiSxeQS\nYqckxjsFpyBIFpf16/l2o/4fWbcLbgNB4o3JMPsJ92SOH8ajA+cgSDzTzCASQDJ/hwG4wTkI\nkiju1LpTOIgEzkKQAChAkAAoQJAAKECQAChAkAAoQJAAKECQAChAkAAokDtIpqs71qzZeTOd\npSQI0o2NS0+qf/YGkN3l1cvP2nHCi7xBejIkmPBCJ9gcNp16kO430/jnJHm3010ruL2r1Umm\nYFLiWLoLyhqku3lJwc5jp0wZ3T4nKfXExoK0gxT9TnnzjyJykGEn1dWCu7sXUjeC42528E93\nMA9Zg9TNkDTrQMIczUAbC9IO0sTcwqXk/YpSXS24uz5l4iyNqVm99JaUNUjZu77pt8ttY0Ha\nQSovzoNynURQXS+4uWyLhHaf7lk6S8oaJMPXb/rjjDYWpB2k4BVix3sL1fWCe4sl4lyCkeRc\nOovKGqSwtm/6zfLYWJB2kPLNE9pXmv1U1wvuzWQU//BeSncmKlmDNFAzVbzkJ/oLMtzGgrSD\n1EEcJWi570uq6wU3V6O30E7Nnd4ecFmD9LQs8a/dObxfpxq+pJqtqLgQpLi0Hjyln2lpzuew\ne0KrNFfjjjzmf9Qpm/X87rH9/rPSW1Le40hx00vrLIeRDJXm2RwC3tkg7WwQpM3f6+7bTyzx\nrvT5pHbere2bS+lY8+wk7JPLTpWgKkurZDQUG4mzSKybpq89+sum+vB0D8nKfopQzKUTJy6n\n9Wfw9do/kvVwLkjf6bqu3D+vXHAau+YuD69fuft6+1azwtBq2f5fa/q5/fep3j5DN+z+Ll+x\nh6wLUbDTA2u/33t3+ssxO9fuUeo/+NdzZkrm61SQzuj4CeBeNyvr0BgmMSeP/eeb012/yZbG\n1NsNJq23aZX3IUsTVeoj1pW4AWZBGm5rLc59tBtQQ2hvaQ/b/6KHn+gJ0ba8/eaRKYWEOQCj\n/Vc5UYSK1OkrtDv0ts4yAbu4U5BqjBU7BebZ/Zonhctsefp8V5Xcd5If+qRb0vq+cKIIFUk6\nuhaLgwKuc6cgVRPPX+CK/Gj3awYV4SeMi323Q/JD7XuKnTqjrL0qauuMX/52vECFCRLfcV9r\n/2JbiDuQNUjlUshOP0g9GwvtY8Meu1+TTZw5c71v8qB248sIbXzQEisvWhDgWyaM1Llj5Wm1\nqCoeDDikvc+2EHcga5C0Wq9kOvpBOqDdxbc9Cth94dFzckLoXCf/Jj12xSgEaHyQlfOrFhtm\nxnHcP5WLqnxnxPwAfodPfM2GrCtxA7IGabj/m111Eny044b4TDh2a3szX/s/8id/PbhA3ry/\nzNAPOXR7T2f9mrRfEx/M79XjokKmOVOkciQ0zjr7zPW1lXL8m/6ykA5ZgxRfpnzyEVEpgsQt\nKkKIsYEjE8GWGCu034ek2GW+rrSWGKpZi+NefZTQ+by64xUqyuuJuQjx+0jtH1EVQd6dDRE+\nQ5O6kgTJ/FntimPXk8/z5y9+vJBl4n8efnXJ+qkzy7OLnfkFHKtNiR79i3kDqJB5r13U46Te\nHltTesk3+Impm3evX34b4NfS/vxt8RHfVieVl6goUB+MIrSqcZ7cDRY78Hf5mZfw5clUbohE\nJYH6uHWQYtI4fZWCodlOmW9fD/C/JcnqQY3cOEgL39GRwPbpXZDlhPhP9PUGd8mTZTf9VYNa\nuW+Q+vmO239hZdWg8xTqSW33Z407zXic/nLgMdw2SFv1/P9YQtOKrpcDkB63DVJb8dqAy+kO\nWwHgOrcNUvGki4Oz/mFzOQAa3DZIJb4XO1lWuroqgHS5bZA+Eof+ukAuuroqgHS5bZB26fhx\nvuPrV3O9HID0uG2QuM+8hm47tqhcDg8YDAjYc98gcX9U8iG5e9xzfUUA6XLjIHFcQjSNtQCk\nz62DBCAXBAmAAgSJpfiIa6xLAPs8O2178D8EiZ0bLQ2EBA6PYV0HpGtTKUJIEVuH9hEkZq5m\ne39L5L+/5q6OCSGUbpHu0+PPTo00TLe+CILETKNa/OXtt7LOYF0J2PbATzjf7Dej9fGWECRW\nIrXiT35cWbaFQHrm5hJGg+eKWx9oBEFi5RARvxxt9GNbCKRncBOx06mL1WUQJFaOk+dCZ00m\ntoVAeoY3EDvte1hdBkFiJdpnndAJr8m2EEjP8kBhAq34XD9YXQZBYqZXoUhLs98LF0wp3Mtc\nvfjh2oZntj5OB4LETNS7OSZsXNHPqz/rQiA9BzJW/XHrvDo+W60vgiCxEzv5Xb/gOqtZlwHp\n+7d7EWOBjhdsLIEgAVCAIAFQgCABUIAgAVCAIAFQgCABUIAgAVCAIAFQgCABUIAggfI9/q5z\nk8/2sK7CJgQJFG93ljydBtXVdXBswnp5IUigdLf8B1gidDLbMNaV2IAggdINKSfMOb/a6xnj\nSmxAkEDpyosjJcR727iMgTUECZSuwHyxk2050zpsQpBA6aqPFNoo/V62hdiCIIHSTQuJ4tvJ\nwfGMK7EBQQKle1mk8iXzv9TvDYtZV2IDggSKd7uWJk/ZDAE/s67DFgQJVODvRdO3RLEuwiYE\nCYACBAmAAgQJgAIECYACBAmAApUGKUHyEgAcocYg/d02tybPJ5ckrwLAbioM0nqvxov3LqqV\nQdlXTIJnUV+QHgaOtTSm/jmjJa8DwE7qC9KsUOGK41eZlkpeB4Cd1Bek7h+JnQbDJa8DwE7q\nC1KXjmKn8RDJ6wCwk/qCNLmY0CbknG91GQCZqS9I170W8u3UjA8lrwPATuoLEjdbP/jIvQO9\ndK7uazBtH9l+2Colj5UG6qHCIHEbSmuJ7t2dLm4jqp6xdu+GfmVuuLgeAE6dQeK46IgYl7fR\nrOgV821kjZJ4TwLXqTNIFBzXnOPbRwHLpN4UeACPDdKU0mKnTQ+pNwUewGODNKK+2AlvJfWm\nwAN4bJBmFhE7TfpJvSnwAB4bpH+0wtnj/3pvknpT4AE8Nkhcn2x/mm9PF6lrknxT4P48N0jx\n4drQmgU0rRQ8VQioh+cGieOu/vrFvDMybAc8gCcHCYAaBAmAAgQJgAIECZRs24C6bSfeY12F\nHRAkUK74Dw1NRvUuGrCZdSHpQ5BAuYbmsOxVTRzpc5V1JelCkECxorxWCZ0qyj+NC0ECxdph\njBM635ZkW4gdECRQrNWZxc6iPEzrsAeCBIp1RPtI6IyqyrYQOyBIoFgJucby7bOQqWwLsQOC\nBMq1Sj/xFcedq1jsJetK0oUggYItz2oomo18cJd1HelDkEDJXu3+YflF1kXYA0GCdN2bGz5o\nwRPWVSgbggTpWegT1qpZjsD1rOtQNAQJ0rFJPyeR416PMx5jXYmSIUhg3ZOvG73TJGdv4U6b\nxmyLUTYECaw6G5J/6Kw+JIfwbX+DN4aJsQ5BAmti87eJ5biLpF7ReMvd4+Q564oUDEECa34P\njDLfPtb86bfGcnetL96RrEOQwJoBzfimYu96n1naJi2YVqNwCBJY0+0TvtmpL96H414N9sHQ\nZTYgSGDNl+WF9g9dhro1A7P/ybYahUOQwJrzuu18u0E/Y8QXK5V/3ihTCBJYNSTjgmju+Vy/\n0awLUQEECaxK/CajJpsmcDr21qUPQQIbXh5dcewV6yJUAUECoABBAqAAQQKgAEECoABBAqAA\nQQKgAEECoABBAqAAQQKgAEECoABBAqAAQQKgAEECoABBAqAAQQKgAEECoABBAqAAQQKgAEEC\noABBAqAAQQKgAEECoABBAqAAQQKgAEECoIBFkOKO7vrX9hIIEqiMrEH6cpfldm4mQki5U7YW\nRJBAZWQNEhluvvkf8WrRqwoJuGJjQQQJVEb+IBUMiDDfrtZ0sbEgggQqI3uQIslIvt88JPWz\nZ48nG4kggbrIHqSb5De+P9qQ6skrGpIC5ocDVZE9SAkBk/h+18ypn33xJNlWEufsNgBYkDdI\n7Y9dfjiigOXd5kKGJjYWPIAggbrIGyTBKo5bmkF71MaCCJIg6tCW66xrALvIGqRFM8YO7NS8\nxk6OmxOy0daCCJJFVDeD1oeUPsy6DrADo1OEXiTafBpBMoutWHjrK9PFzj4HWVcC6VPmuXYI\nktnM4Pt827kU40LADgiSYlUeJbRXyEW2hYAdECTFyrFM7PhsZloH2ANBUqx884U2TreHbSFg\nBwRJsdq3ENqNxmdsCwE7IEiKdVi32NLczNebdSWQPgRJueboG06Z1y+gJs47VAEEScFO9ihf\nqPmCBNZlgB0QJAAKECQAChAkAAoQJAAKECQAChAkAAoQJAAKECQAChAkAAoQJAAKECQAChAk\nNYhhXQCkB0FSvJtd85BM9XaxLgNsQpCU7u/MlRYeXN1VN4t1IWALgqRwCcXb8tdRLNafZ10K\n2IAgKdxevTAoF1d1CNtCwCYESeFmFxM7I+oyrQNsQ5AU7vsSYmd0baZ1gG0IksLt8HoqdOqF\nsy0EbEKQFC4+bx++3aI9xrgSsAVBUrq9Ps23Xj88yms060LAFgRJ8c584E20xZeyLgNsQpBU\nIOEahrZTOgQJgAIECYACBAmAAgQJgAIECYACBAmAAgQJgAIECYACBAmAAgQJgAIECYACBAmA\nAgQJgAIECYACBAmAAgQJgAIEyYa4s1cSWdcA6oAgWXWrtYEQv0+jWdcBaoAgWXM9R9Wtj24u\ny1fpFetKQAUQJGtaVou3NPdzDl/7w59RrKsBhUOQrHhqECZSeVGeBBYz+s9gXA4oHIJkxSny\nzNKY6uXUm7j4eT7TWBcEioYgWXGORFqatT4LfSztr76P2NYDyoYgWRHrv8zSdGo3pLKlTcjy\nO9t6QNkQJGsG5bljvq3dxUcY4/TdyWzLAWVDkKx5+X7WMWuX59P1NvF3C8xlXA8oGoJkVfyM\nKoHZC2WN5e/8Tc4xLgcUDUGy7Vn2jpYk3S7RjHUloGgIUjqO5wzrMa6dX7WnrAsBRUOQ0vP0\nu49q9FyewLoMUDYECYACBAmAAgQJgAIECYACBAmAAgQJgAIECYACBAmAAgQJgAIECYACBAmA\nAgQJgAIECYACBAmAAgQJgAIECYACBAmAAmUG6RgBUJljDv8zlz5I3OnjqW0nk39jK197xgW0\nLMa4gPFkAeMKMvZnXMD7Dd76lyk67fi/chmC9Lb7JILFZlMoP5VxAWNrMi7gCHnJuIKsfzAu\noHNniitDkNhAkBAk1yFICBKCRAGChCAhSBQgSAgSgkQBgoQgIUgUIEgIEoJEAYKEICFIFCBI\nCBKCRAGChCAhSBQ81lxhsdkUKs9kXMBX9RkXcEoXy7iCkHWMC+jZk+LKmASJu8pkqynciWFc\nQPR9xgWw/x1cZz29zpMnFFfGJkgAbgZBAqAAQQKgAEECoABBAqAAQQKgAEECoABBAqAAQQKg\nAEECoABBAqAAQQKgAEECoABBAqAAQQKgAEECoIBBkJ4ODDPk6HZX/g2bPRkSaszT7BDbMgaR\nbgwL2Py+X0DN3QwLuPBJdn2W5kfYVBD/ubac0EuxbRplyB+kuLKk1dddDXlpXp5or8d5SKMx\nH+u9z7As45iODxKjAhaS/KOHZjUeYFbAOf/MXyz+Mrt+J4sKIsr6i0FKsW0qZcgfpOlksvl2\nBRki+5Y5rh+ZZb5dTRoyLON16VJ8kNgU8MCvTDTHXfbry+wn8BHZZb79m9RgUEGUT/nLXkKQ\nUmybShnyB6m0Pz/qRoFgk+yb5j6tHW++NfmEMSzjG80WPkhsCphKtloaE7MCuIrE8jvgMuZh\nUMHjIfGcGKQU26ZShuxBitHV5tvOhNnoG7GGKuzKuOLT56klSIwKqO8Tz8VGWXqsfgKdyFnz\n7UPtB4wqEIKUYtt0ypA9SJeIMJrYWLJD7k0nmWn+gMesjNo5nvFBYlRAWLGTVTQk/yJ2v4iI\nTKX23TtZ2/cwowqEqiLpUwAABLBJREFUIKXYNp0yZA/SCdKPb6eSNXJvWrTHWPU1szIWkVUc\nHyRGBfiH5RiyamYoWcruF3GxGCEk9CCrH4EQpBTbplMGgyCF8+0UslbuTQt+9yr7mFkZDzI3\n5pKCxKQAL/Kr+fauX/YEVr+IiLy5v9244J2AHYx+BElBSt42nTJkD9Jl0olvR5M/5d60hekL\n0uA5uzI+9LshBolRAUE6fqTiNuQMq19EJd/b5tuXISHxbCoQgpRi23TKkD1IcfoafNue3JB7\n02amrqR/ArsyNpMxt27dOk/a34pi9HMop+P3mfUlBxgV8EIjjHrekZxjU4EQpBTbplOG/Lu/\nK/pa/iYm5swt+5bNBpKJLMsYQpIMZ/RzCCeHLU09cpNRAZHkPb5tS46zqUDc/Z1i21TKkD9I\n88g48+2PZLzsW7Ycih3ItIyIjRbLSb2NFxj9HI5rasVy3DFtSWa/iLyGf8y3TzNnjGVTgRik\nFNumUob8QUqoRpqN/1BTgsWsIvlJ/+G8JyzL4L8jsSrgU1J6fA8f425mBazRBo1a+HVeModB\nBXvMv3pddvPNo5TbplIGg5NWXwwNM4T0eyz/hs3/t0musSxDCBKjAkxzS3kHNDzKrgDuYPOs\n+kx1NrGoYFLS7//yf7ZNowxcRgFAAYIEQAGCBEABggRAAYIEQAGCBEABggRAAYIEQAGCBEAB\nggRAAYIEQAGCBEABggRAAYIEQAGCBEABggRAAYIEQAGCBEABggRAAYIEQAGCBEABggRAAYIE\nQAGCBEABggRAAYIEQAGCBEABggRAAYIEQAGCBEABggRAAYIEQAGCBEABgqRmuoqsKwARgqQG\nF0j9NB9HkBQDQVIDBEnxECQ1QJAUD0FSAyFI7cmLz8KMuaabzP1NZb2zdnvKB+l+31BDlmZH\nOW6Hpr1l4Q+0+5gW65kQJDUQgtSJ1O996EA9spDj9ulyTpz/STWDOUiRYQHDf5uYy2sPx/Um\nOzhuFRnEulxPhCCpgRCkbsTyjnOVNOa4BsT8DsT1JeYg9dEfM3dv+pfnuBd5CsZG5y70im2x\nnglBUoOkIG213PEtzSX65Lf0TpmDZMpS9p5FffKC43Zpxg7VHmRaqqdCkNQgKUgRljsB73C3\nSV1LL8YcpPskyXnzI329DMNYFuq5ECQ1SArSZcsdc5AukSb845qK3GVSeovgqfmBE4ScZVin\nB0OQ1CB1kG4J70gv+Hek0m+WS3wvW1A1E5MSPR2CpAapg/TaWMDSO2DZ2ZDF2/JWxEVabqaS\n5YvId8zK9GQIkhqkDhJXg99r9xG/146MNHcjszfmuH98GnJcTd9LTGv1UAiSGrwVpM2a4M+n\nNq4VYA7Sg1DS5ZeJoYbt5g92Ga6b0+RVJZFxuZ4IQVKDt4LELS9hzNr1ae4y5u69Prn1gU2P\ncNw0Mt3y/ATyLcNSPRWCBEABggRAAYIEQAGCBEABggRAAYIEQAGCBEABggRAAYIEQAGCBEAB\nggRAAYIEQAGCBEABggRAAYIEQAGCBEABggRAAYIEQAGCBEABggRAAYIEQAGCBEABggRAAYIE\nQAGCBEABggRAAYIEQAGCBEABggRAAYIEQAGCBEDB/wEoBk7DL9Ic9AAAAABJRU5ErkJggg==",
"text/plain": [
"plot without title"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot(liste, lty=1)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
"display_name": "R",
"language": "R",
"name": "ir"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
"codemirror_mode": "r",
"file_extension": ".r",
"mimetype": "text/x-r-source",
"name": "R",
"pygments_lexer": "r",
"version": "3.4.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
{
"cells": [],
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Analyse des données de FAO"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Installation du kernel SAS"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: saspy in /opt/conda/lib/python3.6/site-packages (5.100.2)\n",
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"pip install saspy"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: sas_kernel in /opt/conda/lib/python3.6/site-packages (2.4.13)\n",
"Requirement already satisfied: metakernel>=0.27.5 in /opt/conda/lib/python3.6/site-packages (from sas_kernel) (0.28.2)\n",
"Requirement already satisfied: saspy>=3.6 in /opt/conda/lib/python3.6/site-packages (from sas_kernel) (5.100.2)\n",
"Requirement already satisfied: ipython>=7 in /opt/conda/lib/python3.6/site-packages (from sas_kernel) (7.12.0)\n",
"Requirement already satisfied: jupyter-client>=6 in /opt/conda/lib/python3.6/site-packages (from sas_kernel) (6.0.0)\n",
"Requirement already satisfied: jupyter-core in /opt/conda/lib/python3.6/site-packages (from metakernel>=0.27.5->sas_kernel) (4.6.3)\n",
"Requirement already satisfied: pexpect>=4.2 in /opt/conda/lib/python3.6/site-packages (from metakernel>=0.27.5->sas_kernel) (4.8.0)\n",
"Requirement already satisfied: jedi<0.18; python_version <= \"3.6\" in /opt/conda/lib/python3.6/site-packages (from metakernel>=0.27.5->sas_kernel) (0.16.0)\n",
"Requirement already satisfied: ipykernel in /opt/conda/lib/python3.6/site-packages (from metakernel>=0.27.5->sas_kernel) (5.1.4)\n",
"Requirement already satisfied: traitlets>=4.2 in /opt/conda/lib/python3.6/site-packages (from ipython>=7->sas_kernel) (4.3.3)\n",
"Requirement already satisfied: decorator in /opt/conda/lib/python3.6/site-packages (from ipython>=7->sas_kernel) (4.4.1)\n",
"Requirement already satisfied: setuptools>=18.5 in /opt/conda/lib/python3.6/site-packages (from ipython>=7->sas_kernel) (45.2.0.post20200209)\n",
"Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in /opt/conda/lib/python3.6/site-packages (from ipython>=7->sas_kernel) (3.0.3)\n",
"Requirement already satisfied: backcall in /opt/conda/lib/python3.6/site-packages (from ipython>=7->sas_kernel) (0.1.0)\n",
"Requirement already satisfied: pygments in /opt/conda/lib/python3.6/site-packages (from ipython>=7->sas_kernel) (2.5.2)\n",
"Requirement already satisfied: pickleshare in /opt/conda/lib/python3.6/site-packages (from ipython>=7->sas_kernel) (0.7.5)\n",
"Requirement already satisfied: tornado>=4.1 in /opt/conda/lib/python3.6/site-packages (from jupyter-client>=6->sas_kernel) (6.0.3)\n",
"Requirement already satisfied: pyzmq>=13 in /opt/conda/lib/python3.6/site-packages (from jupyter-client>=6->sas_kernel) (17.1.2)\n",
"Requirement already satisfied: python-dateutil>=2.1 in /opt/conda/lib/python3.6/site-packages (from jupyter-client>=6->sas_kernel) (2.8.1)\n",
"Requirement already satisfied: ptyprocess>=0.5 in /opt/conda/lib/python3.6/site-packages (from pexpect>=4.2->metakernel>=0.27.5->sas_kernel) (0.6.0)\n",
"Requirement already satisfied: parso>=0.5.2 in /opt/conda/lib/python3.6/site-packages (from jedi<0.18; python_version <= \"3.6\"->metakernel>=0.27.5->sas_kernel) (0.6.0)\n",
"Requirement already satisfied: ipython-genutils in /opt/conda/lib/python3.6/site-packages (from traitlets>=4.2->ipython>=7->sas_kernel) (0.2.0)\n",
"Requirement already satisfied: six in /opt/conda/lib/python3.6/site-packages (from traitlets>=4.2->ipython>=7->sas_kernel) (1.14.0)\n",
"Requirement already satisfied: wcwidth in /opt/conda/lib/python3.6/site-packages (from prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->ipython>=7->sas_kernel) (0.1.8)\n",
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"pip install sas_kernel"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Une fois les deux commandes lancées, il faut enregistrer et quitter (et restart the kernel ?). Mais quand on revient on a bien SAS proposé dans les kernel (Kernel > Change kernel)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[0;31m[<class 'saspy.sasexceptions.SASIOConnectionTerminated'>, SASIOConnectionTerminated(<class 'Exception'>,), <traceback object at 0x7fe1cf696688>]\n",
"\u001b[0m"
]
}
],
"source": [
"%load_ext saspy.ipython\n",
"%%SAS\n",
"proc import out=table\n",
"datafile='module2/exo4/cdu_ba_pied.csv' \n",
"dbms=dlm replace;\n",
"delimiter=';'; /*csv*/\n",
"getnames=yes; /*la première ligne donne les noms des variables*/\n",
"guessingrows=max; /*utilisation du max de lignes pour déterminer le type de variable (numérique / nombre de caractères, etc*/\n",
"run;\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"ça ne marche pas parce qu'il faut réussir à connecter Jupyter avec SAS (pour la licence je pense) donc j'abandonne (pas sûre que ça vale le coût de passer du temps dessus, mais à voir) et je reste en R."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Retour au kernel R"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Je change le Kernel (dans Kernel > Change Kernel > R)."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"library(readr)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"ename": "ERROR",
"evalue": "Error: '/cdu_ba_pied.csv' does not exist.\n",
"output_type": "error",
"traceback": [
"Error: '/cdu_ba_pied.csv' does not exist.\nTraceback:\n",
"1. read_csv(\"/cdu_ba_pied.csv\")",
"2. read_delimited(file, tokenizer, col_names = col_names, col_types = col_types, \n . locale = locale, skip = skip, comment = comment, n_max = n_max, \n . guess_max = guess_max, progress = progress)",
"3. standardise_path(file)",
"4. check_path(path)",
"5. stop(\"'\", path, \"' does not exist\", if (!is_absolute_path(path)) paste0(\" in current working directory ('\", \n . getwd(), \"')\"), \".\", call. = FALSE)"
]
}
],
"source": [
"data1 <- read_csv('/cdu_ba_pied.csv')\n",
"head(data1)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Classes ‘tbl_df’, ‘tbl’ and 'data.frame':\t1 obs. of 1 variable:\n",
" $ /home/3f624f2cce5b76d09dcee501242941ad/: chr \"mooc-rr/module2/exo4/cdu_ba_pied.csv\"\n",
" - attr(*, \"spec\")=List of 2\n",
" ..$ cols :List of 1\n",
" .. ..$ /home/3f624f2cce5b76d09dcee501242941ad/: list()\n",
" .. .. ..- attr(*, \"class\")= chr \"collector_character\" \"collector\"\n",
" ..$ default: list()\n",
" .. ..- attr(*, \"class\")= chr \"collector_guess\" \"collector\"\n",
" ..- attr(*, \"class\")= chr \"col_spec\"\n"
]
}
],
"source": [
"str(data1)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
"display_name": "R",
"language": "R",
"name": "ir"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
"codemirror_mode": "r",
"file_extension": ".r",
"mimetype": "text/x-r-source",
"name": "R",
"pygments_lexer": "r",
"version": "3.4.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment