diff --git a/module3/exo3/exercice_fr.ipynb b/module3/exo3/exercice_fr.ipynb
index 5c9707ba9cea544169b238873a5cd467adc6a571..7145f60ccdc6c5decb34883c80d36921a6916c61 100644
--- a/module3/exo3/exercice_fr.ipynb
+++ b/module3/exo3/exercice_fr.ipynb
@@ -10,7 +10,8 @@
"## Contexte\n",
"*En 1972-1974, à Whickham, une ville du nord-est de l'Angleterre, située à environ 6,5 kilomètres au sud-ouest de Newcastle upon Tyne, un sondage d'un sixième des électeurs a été effectué afin d'éclairer des travaux sur les maladies thyroïdiennes et cardiaques (Tunbridge et al. 1977). Une suite de cette étude a été menée vingt ans plus tard (Vanderpump et al. 1995). Certains des résultats avaient trait au tabagisme et cherchaient à savoir si les individus étaient toujours en vie lors de la seconde étude. Par simplicité, nous nous restreindrons aux femmes et parmi celles-ci aux 1314 qui ont été catégorisées comme \"fumant actuellement\" ou \"n'ayant jamais fumé\". Il y avait relativement peu de femmes dans le sondage initial ayant fumé et ayant arrêté depuis (162) et très peu pour lesquelles l'information n'était pas disponible (18). La survie à 20 ans a été déterminée pour l'ensemble des femmes du premier sondage.*\n",
"\n",
- "## Importation des données"
+ "## Importation des données\n",
+ "Les données sont mises à disposition sur Github. Pour nous protéger contre une éventuelle disparition ou modification du jeux de données, nous faisons une copie locale de ce jeux de données que nous préservons avec notre analyse. Il est inutile et même risquée de télécharger les données à chaque exécution, car dans le cas d'une panne nous pourrions remplacer nos données par un fichier défectueux. Pour cette raison, nous téléchargeons les données seulement si la copie locale n'existe pas."
]
},
{
@@ -140,7 +141,184 @@
"\n",
"- L'âge moyen au moment de la première étude est de 47 ans (min : 18 ans et max : 89 ans). \n",
"- Presque la moitié de la population étudiée fumait lors de la première étude.\n",
- "- Environ 1/4 des femmes sont décédées au moment de la deuxième étude. "
+ "- Environ 1/4 des femmes sont décédées au moment de la deuxième étude. \n",
+ "\n",
+ "### Calcul de l'effectif et du taux de mortalité général"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ " | Alive | Dead | Sum |
\n",
+ "\n",
+ "\tNo | 502 | 230 | 732 |
\n",
+ "\tYes | 443 | 139 | 582 |
\n",
+ "\tSum | 945 | 369 | 1314 |
\n",
+ "\n",
+ "
\n"
+ ],
+ "text/latex": [
+ "\\begin{tabular}{r|lll}\n",
+ " & Alive & Dead & Sum\\\\\n",
+ "\\hline\n",
+ "\tNo & 502 & 230 & 732\\\\\n",
+ "\tYes & 443 & 139 & 582\\\\\n",
+ "\tSum & 945 & 369 & 1314\\\\\n",
+ "\\end{tabular}\n"
+ ],
+ "text/markdown": [
+ "\n",
+ "| | Alive | Dead | Sum | \n",
+ "|---|---|---|\n",
+ "| No | 502 | 230 | 732 | \n",
+ "| Yes | 443 | 139 | 582 | \n",
+ "| Sum | 945 | 369 | 1314 | \n",
+ "\n",
+ "\n"
+ ],
+ "text/plain": [
+ " \n",
+ " Alive Dead Sum \n",
+ " No 502 230 732\n",
+ " Yes 443 139 582\n",
+ " Sum 945 369 1314"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "global <- table(data$Smoker,data$Status)\n",
+ "addmargins(global)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nous avons un tableau de fréquence décrivant le nombre de femmes vivantes/décedées selon leur tabagisme.\n",
+ "\n",
+ "Calculons maintenant le taux de mortalité."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ " \n",
+ " Alive Dead\n",
+ " No 0.6857923 0.3142077\n",
+ " Yes 0.7611684 0.2388316"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "mortality <- prop.table(global, margin=1)\n",
+ "mortality"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Le taux de mortalité des fumeuses est de 31% et celui des non fumeuses de 24%. Ce résultat est surprenant car le tabagisme est un facteur de risque pour de nombreuses maladies cardio-vasculaires et respiratoires.\n",
+ "\n",
+ "### Représentation graphique"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Smoker Alive Dead Mortality_rate\n",
+ "1 1 443 139 0.3142077\n",
+ "2 0 502 230 0.2388316\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAADAFBMVEUAAAABAQECAgIDAwME\nBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUW\nFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJyco\nKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6\nOjo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tM\nTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1e\nXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29w\ncHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGC\ngoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OU\nlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWm\npqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4\nuLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnK\nysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc\n3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u\n7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////i\nsF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO3dC5yVdZnA8WcYzgwzMCLITeSq\nkrVdQLTElELHvCumhmIWCOYNk1p00byglrpB3lattFpNd83FxMrNXFnCsswbyxZKKaItKuKl\nIQO5zsy773uu7zlz5n3zzH9mnued3/fzYc7Le97L/z3n/OZcZ0Y8AB0m3T0AIAkICXCAkAAH\nCAlwgJAABwgJcICQAAcICXCAkAAHCAlwgJAABwgJcICQAAcICXCAkAAHCAlwgJAABwgJcICQ\nAAcICXCAkAAHCAlwgJAABwgJcICQAAcICXCAkAAHCAlwgJAABwgJcICQAAcICXCAkAAHCAlw\ngJAABwgJcICQAAcICXCAkAAHemBI94vUdtvOF0/sU7fnlpKZD4pUd+koht7paEPZy7JbL1Id\nkh/S90RkY2ayUeSI7r3Wn5TAppK5nR/Sc/uL7JGZfPOfPlIn1cOmrfAyl418PzP/rmD6e+9z\nu4SU0wNDWnPjjbe0WWpDtfyxCwZztkj/G+/eUTK3bEgOR9R8bY3kQvrjYMlIPZQN6djMQifG\nhVRuQNmCchdppWPuoku/M/XAkMr6F+mSq/IokbPbzi0bkrsRveLfHfXKhXSIyKCLGo4YJTJ0\nSyakPpuD+dv6xYVUbkAld0WVjrmLLv3OREgZB3XNVemPYF7buWVDcjeie0Rmfysb0l+rRFb7\nz5HeHChyX3DZjBB5IDjjYX+B6JDKDagkpErH3EWXfmfqgSHlrvydtzcO7j14/2vf9rxjMo92\n5vpz373mgAGpIYf/a3NmlX/dr37gMc+87J+51fN+IPKpnRcMGuJ5rT86fHDvhk/8S7CUP3ey\nd/+EutGX7vBWH7dr3888F959eHtnZx9VFZ4j3blf/YCjn/lJNqTQVgsjCu+qxJ/O3ru2Yf+b\nd3reUr+PX/pzmoaWOYp79vplcCmkQ1orUpd+seHiwy74dTD3xGr5YnDGOVJ9fDakopVzx1x+\nQEXPkXKLnCHy4fT4fujP3lg04rKXYOjSLxyRNT03pB1TsjfrPV8KXZX/u0d27oHvBGt8NT1d\ne5v/xf/fvSIfuz59o/98dqljWz3vPpGPLK4K/jfn5UHByeC/FvZetL02Ic3LbP6ybEihrRZG\nFN5VsQf6ZM45dGt6oHv7J7P9sWwtPYo/b/HyIb3rD3RZ/lU7f+7pk2RgkMQIOfDkTEjFK+eO\nufyAyob0W//LC8HmPyfyueIhl70EC5sOH5ExPTek74h88EdPPHKSyKe953/qL/Tvj7/sNfk3\norHf+cn83iLH+Ms87c+e8L17Ptkvc0v31xwzMjVhH+8h/0nHt1f9wF9qcXru7iOOP7+/v9mj\nhs89wF/lxvzOi7f30uP+s5VTH3+8JXvuU8FtZsnPjuyd2Xx4q/kRFe2qyMt1Ihe98MynRS7x\nn+J8NDhZXiW1vy/da+5SyDxH8h9Fpb7Y8N383GkL0vdlK0QWnJAOqWTl3DGXH1BRSPlF/kHk\nOn/uDv8i+c/iMZe9BPPrFR2RMT0jpIJCSDNFrvdPdkw//59bvDck8yj9KpFdXvfSTyvkWc87\nS2RX/9vyltH5kGTcq/7ErcccEzwQ8R8LfTEz1//G+4B/0mett30fkePyOy/ZXslzpC/5917+\nM/2dH8xsvmiruREVzSxyvsgU/+TtftLgfwP/Q630fuoDIjeU2asXCunpuuBiqNrvGxszc096\nOn1f4Of09NR0SCUr54+57ICKX/7OLeLf53zcP1kmMqTkQVr5SzC3XvER2dJzQ7pAZNTdG7IL\n5a7K8SIzg/83DxC52gu+tX4h+O/lhZDuDW36yyKHZ+Y+7RdZKzLdn3mhfyeWX6JkeyUhfUhk\nVnD69aIXGzJbzY2oaGaRvUQu3er7lMh/+/+9QaRe5LDWMnv1QiF5Kz+ZuSQG3JkJqXUPGeN5\n+8oerZmQSlbOH3PZAZUP6e0akXXph5tfLRlz+Uswt17JEZnSM0IaOTqtTziklfXBzWmv2Q8E\nzxCyV2Vr78zdlOcdmK7CX+Ta4H8/LoSUSW/p1D1r0zfHxszc4LMKIzIPaPxvx3vl9l26vZKQ\n6jJreEuyIYW3mr/dhmeGtfYqfHu4Ofj/Yf7EwNfL7dULh+R5zyxIPxWpejQdkneeyO9f9Z/g\neemQSlfOH3PZAZUPyZuWHtI4kZUlV0b5SzB36ZcckSk9I6Syr9ot/3DmOhvzRP6q3Oyf3J5e\n9LDgjcrW3DX6SD6k6vTzm2/7Z/T90PhB4RtT8P30O/7JLaGQSrZXElLp5ou2mrtRFs0M2xy6\nn10QzLjDnziy7F694pA8b+jN/+o/EzokE9KjIt/y97I0E1LpyvljLjugdkJ6NHji+aLIx0qv\njPKXYOjSLzoiS3pwSF7rE1cf6T8fDp6nhO6RFqXPO0Dk855Xm73LuD8fUnrNTf491Wn+ndB5\ncSGVbq/kHqlP9g5vcXrzxVvNjqh4ZlhrtchNof+vHxjcAO8ut1cvHNLrb6Vf/v6VSL9MSDt2\nlaNPkl13FO6RwivnL62yA2onpNYxUv2Wf9f8rdIro/wlmLv0S47IlJ4cUqD5p/5TgYfzN4EJ\n2VvejgaRb3re3tnnSJcVh/RryTxoaYwLqXR7JSF9IPsKwiXpzRdvNTui4plFPpB56yXnSJHj\nq6T/ujJ79Qoh3TRMLk+H9Hawz3RI3mnSMDBYIfMcqWTl0pDKHntpSN7V/qYOkeo3Sq+M8pdg\nbr2SIzKlx4a05dqZx6cfZBwu8qC3wV/ocS99A+gbvKjkP0yqesHzThfp/7b//XNkcUhLMy8v\nPO8/pv9UdEgl2ysJaYbIrk3+5kekN1+81eyIimcW8Z+oD3/P/1Zw2hkXv5Z+rPSBbWeKHNra\ndq9eIaSf+HfAbwQh3SsyLhvS4uCu7P5cSCUr50MqO6DikHKXoue9Vi0HpeSoNldG+Uswt17x\nEdnSY0MKvvOe9PCzv74qJbVves0pkcmL/8vb6N+m977tgYv8x3RneukXcOVjd/3g432LQ3rd\nv/6PW/WzPfYR2eV3b0aFVLK9kpAe8ze/330//Hg/kV6lW82OqHhm0YGtrRM56Of/daLIh5u9\nF/0hLk9/sOHGNnv97XXXXecvtYt/8sC2D4oMu3CXabP9h5VXZkPa5C/XZ1MupJKV8yGVHVBx\nSLlL0cu+OXtfmyuj/CWYW6/oiIzpuSGtGpF9XtvrB17606TpNyDzb+ufmH4nY0Z6uv6bxSEF\n3zp9w18ZHjwtjgqpdHsln7U7I31W31v9Ly0lW82NqHhmkfszL3vJHn/0mieJnOGlPznQ5/nS\nvX698Bx+qvf8gNz0kduzIXlHZ957nVryyYb0yoUHwuUGVPJjFLlLMf3xQenf9s2g8pdgfr3Q\nEVnTc0PyNnx9/6Gp+g+e9fvgP6+dsGufsdf4E+9+4+P9U7t/9meZNVoW7VM75OQ/PFzyYzc7\nvvkPdXuc+bq3dJ/eI+6LDKlkeyUhtVy/T82Qk5973h/i30q2mhtR8cxiq2eNra3/yKVN6VYG\n/yWYdYTIxB0ley0KyXv9Hz9UJ9WDDr+nxcuF9L1MQVNzn7ULr1wIqdyASkLKX4rezsHZ++Bi\n5S/BwnqFI7Im+SG58EP/m2d3j8ElZz8h264NNSK/6eydaEJIUVZfd96pwYdcjhc5obvH4tL0\nRzt7D1/yn/119j5UIaQoa6r8gh77zVf8B0WdftOL9+RuYZd293Dad8+3PutfYr8IJs2MuaMI\nKdKVuScXl3f3SCz5dHCJndXdo+hahBRt2ckjUrWjT3msu8dhysm1vfe5viV+uSQhJMABQgIc\nICTAAUICHCAkwAFCAhwgJMABQgIcICTAAUICHCAkwAFCAhwgJMABQgIcICTAAUICHCAkwAFC\nAhwgJMABQgIcICTAAUICHCAkwAFCAhwgJMABQgIcICTAAUICHCAkwAFCAhwgJMABQgIcICTA\nAUICHCAkwAFCAhwgJMABQgIcICTAAUICHCAkwAFCAhwgJMABQgIc6EhIrWuXLlmybJ2zsQBm\nVR5S07whkjbq6i0OBwRYVHFI68fKuJkLFi68bPpwGd/kckiAPRWHNDu1ODvVfFvVXEejAYyq\nOKRhswrTp4x0MRTAropDSl1TmL6yxsVQALsqDmn0tML01DEuhgLYVXFIc6sWbctMbb5C5rsa\nDmBTxSFtnCgNjTPPnzNjSr1M3uRySIA9lb+PtP2GCdXB20ipSXc0OxwQYFGHPiK09cUVK9Zs\ndzUUwC4+awc4QEiAAy5CeqmxsWROy/KleY/+W3vrrV+aRP/r4BJV53+7+1LtFOsdXkIuQlop\npVt5efCAvAbZ0c56s2sGJE+//g4uUXX69+vuy7UT1Mx2eAm5CGnrqlUR5/5W2ns5YuZMBzvX\n5j/7dvcIOkPf/+zuEXQCp7e/zn+OREgJQEhxnIT0zpqIMwkpAQgpjpOQ5kdthZASgJDiEJJj\nhGQGIWlGSGboCGm/kGGElEdIZugIqVev2rxqQsojJDN0hDS/ofBSHQ/tCgjJDB0h7dh3//wn\nFgipgJDM0BGSt7ruwtwkIRUQkhlKQvLe/Utu6rHrIhYjpAQgpDh8RMgxQjKDkDQjJDMISTNC\nMoOQNCMkMwhJM0Iyg5A0IyQzCEkzQjKDkDQjJDMISTNCMoOQNCMkMwhJM0Iyg5A0IyQzCEkz\nQjKDkDQjJDMISTNCMoOQNCMkMwhJM0Iyg5A0IyQzCEkzQjKDkDQjJDMISTNCMoOQNCMkMwhJ\nM0Iyg5A0IyQzCEkzQjKDkDQjJDMISTNCMoOQNCMkMwhJM0Iyg5A0IyQzCEkzQjKDkDQjJDMI\nSTNCMoOQNCMkMwhJM0Iyg5A0IyQzCEkzQjKDkDQjJDMISTNCMoOQNCMkMwhJM0Iyg5A0IyQz\nCEkzQjKDkDQjJDMISTNCMoOQNCMkMwhJM0Iyg5A0IyQzCEkzQjKDkDQjJDMISTNCMoOQNCMk\nMwhJM0Iyg5A0IyQzCEkzQjKDkDQjJDMISTNCMoOQNCMkMwhJM0Iyg5A0IyQzCEkzQjKDkDQj\nJDMISTNCMoOQNCMkMwhJM0Iyg5A0IyQzCEkzQjKDkDQjJDMISTNCMoOQNCMkMwhJM0Iyg5A0\nIyQzCEkzQjKDkDQjJDMISTNCMoOQNCMkMwhJM0Iyg5A0IyQzCEkzQjKDkDQjJDMISTNCMoOQ\nNCMkMwhJM0Iyg5A0IyQzCEkzQjKDkDQjJDMISTNCMoOQNCMkM3SFtOO5Z7dFLkBICUBIcSoP\nadmUMUc96T0yXGSX26KWI6QEIKQ4FYf0RG/ZpVffJ3YZ+cVpA+QXEQsSUgIQUpyKQzpu2O+9\ntw4ZNX6L5zWNOTJiQUJKAEKKU3FIu33d//KM3BVMf2NgxIKElACEFKfikHrf7X9ZLz8Ppn/Q\nO2JBQkoAQopTcUhDF/hfHpObg+mvDY1YkJASgJDiVBzSqQN/uf0PH/3QqNc8b/WAkyMWJKQE\nIKQ4FYf0xwYRGbh6dP0hB/aufipiQUJKAEKKU/n7SKumHzDzT96qT1TJnj+JWo6QEoCQ4nT8\nI0Kb3oo+n5ASgJDi8Fk7xwjJDELSjJDMUBfSS42NJXOazjsrbyoh2UdIcVyEtFJKt0JICUNI\ncVyEtHXVqohzeWiXAIQUh+dIjhGSGWpCal27dMmSZetiliKkBCCkOJWH1DRviKSNunpL1HKE\nlACEFKfikNaPlXEzFyxceNn04TK+KWJBQkoAQopTcUizU4uzU823Vc2NWJCQEoCQ4lQc0rBZ\nhelTRkYsSEgJQEhxKg4pdU1h+sqaiAUJKQEIKU7FIY2eVpieOiZiQUJKAEKKU3FIc6sWZX+f\n3eYrZH7EgoSUAIQUp+KQNk6UhsaZ58+ZMaVeJm+KWJCQEoCQ4lT+PtL2GyZUB28jpSbd0Ry1\nHCElACHF6dBHhLa+uGLFmvYyySGkBCCkOHzWzjFCMoOQNCMkMwhJM0Iyg5A0IyQzCEkzQjKD\nkDQjJDMISTNCMoOQNCMkMwhJM0Iyg5A0IyQzCEkzQjKDkDQjJDMISTNCMoOQNCMkMwhJM0Iy\ng5A0IyQzCEkzQjKDkDQjJDMISTNCMoOQNCMkMwhJM0Iyg5A0IyQzCEkzQjKDkDQjJDMISTNC\nMoOQNCMkMwhJM0Iyg5A0IyQzCEkzQjKDkDQjJDMISTNCMoOQNCMkMwhJM0Iyg5A0IyQzCEkz\nQjKDkDQjJDMISTNCMoOQNCMkMwhJM0Iyg5A0IyQzCEkzQjKDkDQjJDMISTNCMoOQNCMkMwhJ\nM0Iyg5A0IyQzCEkzQjKDkDQjJDMISTNCMoOQNCMkMwhJM0Iyg5A0IyQzCEkzQjKDkDQjJDMI\nSTNCMoOQNCMkMwhJM0Iyg5A0IyQzCEkzQjKDkDQjJDMISTNCMoOQNCMkMwhJM0Iyg5A0IyQz\nCEkzQjKDkDQjJDMISTNCMoOQNCMkMwhJM0Iyg5A0IyQzCEkzQjKDkDQjJDMISTNCMoOQNCMk\nMwhJM0Iyg5A0IyQzCEkzQjKDkDQjJDMISTNCMoOQNCMkMwhJM0Iyg5A0IyQzCEkzQjKDkDQj\nJDMISTNCMoOQNCMkMwhJM0IyQ1VIzX/47broJQgpAQgpTuUh/XaO/+WeoSIy/leRyxGSfYQU\np+KQltf0a/Xul36fO+8zvWqfjViQkBKAkOJUHNKUIWs8b+zo9f7kk3XHRSxISAlASHEqDmmX\nCz3vr3JzevpLu0YsSEgJQEhxKg6p7+Wet63qgfT0VX0iFiSkBCCkOBWHdNC49zzvkxcGk9vG\nj49YkJASgJDiVBzSQzLxv3au2P2H7+148lC5PWJBQkoAQopT+cvf3+srdf8wWqqrpeofWyOW\nI6QEIKQ4HXhDdsOiI0Y31O623wUrIhcjpAQgpDh8RMgxQjKDkDQjJDMISTNCMkNdSC81NpbM\neXnwgLwG2dbOeoRkBiHFcRHSSindSsvypXk3cY9kHyHFcRHS1lWrIs7loV0CEFIcniM5Rkhm\nqAmpde3SJUuWxfxcHyElASHFqTykpnlDJG3U1VuiliOkBCCkOBWHtH6sjJu5YOHCy6YPl/FN\nEQsSUgIQUpyKQ5qdWpydar6tam7EgoSUAIQUp+KQhs0qTJ8yMmJBQkoAQopTcUipawrTV9ZE\nLEhICUBIcSoOafS0wvTUMRELElICEFKccEiTvvvXv3/FuVWLsh/92XyFzI9YkJASgJDihEPq\nLXXTH235O1fcOFEaGmeeP2fGlHqZvCliQUJKAEKKEw7pndsbq2XkpWv+vjW33zChOngbKTXp\njuao5QgpAQgpTslzpLe+c0gvOfj7f/v7Vt764ooVa9rLJIeQEoCQ4rR9sWH9jeOl/pwXnO2B\nkBKAkOK0CWnL/SfVyahU6sqoX2jyfhBSAhBSnJKQfnPmLlL3+eXeupNkgaM9EFICEFKccEjr\nvjFOZN9bNwbTrYcNcbQHQkoAQooTDqmX9D8n/3clbq1ytAdCSgBCihMOafJdoZ+HWLPE0R4I\nKQEIKU7xc6Tn3g6+/I/D7RNSIhBSnHBIO2bJcv/kFpkZ+Q7r+0RICUBIccIhXS/HvOyf/OkU\nucnhHggpAQgpTjikjx6bnTh6b4d7IKQEIKQ44ZDqrs9OLEw53AMhJQAhxQmHNPTL2Ynzhjrc\nAyElACHFCYc0q/7nwcmOO3p/weEeCCkBCClOOKT1u8uozxx78EDZ/f8c7oGQEoCQ4hS9j7Th\nnN1EZPCXXnO4A0JKAkKKU/Kh1dbXX9rscOsBQkoAQorD7/52jJDM6LSQWhcfO+HDGQ73QEgJ\nQEhxwiEtEqnvn+FwD4SUAIQUJxzSiCPWOtxyDiElACHFCYeUetLhhvMIKQEIKU7RPdLvHG44\nj5ASgJDihEO66DyHG84jpAQgpDjhkDYdcdojq9ekOdwDISUAIcUJhyQFDvdASAlASHHCyUyf\nMTvH4R4IKQEIKQ6fbHCMkMzozJD+9txGhxtPI6QEIKQ4RSE9tp/ILzzvuP92uANCSgJCihMO\n6amahiP8kN4aVvNsu8u/f4SUAIQUJxzSMaNefSO4R3pz1FSHeyCkBCCkOOGQdrvOS4fkXTvA\n4R4IKQEIKU7Rn778t2xId/JbhCpGSGZ03mftLs2GdMZoh3sgpAQgpDjhkM4asCIIqelr4vJD\nd4SUAIQUJxzSGyN7T5QJE2pl1AaHeyCkBCCkOEXvI715bvBbhAad+6bDHRBSEhBSnNLfIrRh\njct7owAhJQAhxeGzdo4RkhmdFlJj3mSHeyCkBCCkOGV/HqlhuMM9EFICEFKccEg709577sJP\nvetwD4SUAIQUp+xzpIvPcbgHQkoAQopTNqTf8dCuYoRkRueH9Gi9wz0QUgIQUpxwSBsz3lo+\ngd/9XTFCMqMLfovQPQ73QEgJQEhxin6wL+OEc/lR88oRkhl8skEzQjKDkDQjJDM6LaTxnzgg\nzNEeCCkBCClOOKShdSJS5f+rqw442gMhJQAhxQmH1HTwnP/Z6r37qxMP5yNCFSMkMzotpDNy\nGz7yTId7IKQEIKQ44ZAG/yA78a0hDvdASAlASHHCIdVek534p1qHeyCkBCCkOOGQ9h2e+SOy\nvxk03uEeCCkBCClOOKSfVsvYw447bE+p+rHDPRBSAhBSnOK/RnFEHxGpOXSpwx0QUhIQUpyS\nTza0vPbiq80ON+8RUiIQUhz+0JhjhGQGf2hMM0Iygz80phkhmcEfGtOMkMzgD41pRkhm8IfG\nNCMkM/hDY5oRkhn8oTHNCMkM/tCYZoRkBn9oTDNCMoM/NKYZIZnReZ/+fs7hhvMIKQEIKU44\npD7/7HDDeYSUAIQUJxzSYUe1ONxyDiElACHFCYe0YfqR9z67Js3hHggpAQgpTvlfou/y968S\nUgIQUpxwMqd8YdbsLId7IKQEIKQ4/O5vxwjJjM4J6ZbH0ycrX3O48TRCSgBCipMPSeZmTuY4\n3HgaISUAIcUhJMcIyQxC0oyQzCAkzQjJDELSjJDMICTNCMkMQtKMkMzopJAOWBCQj6dP3scW\n3p3/x8jzCSkBCClOIaQi72MLr8pDkecTUgIQUpx8MvcUiV8x96m82dPl8MjP5hFSAhBSnIo/\na/d334MRUgIQUpyKQ/pq9YRHNgael/s2Rv0JC0JKAEKKU/mnv5+ZUHXuXz2eI5UgJDOUhOTt\n/Oe64T8mpBKEZIaWkDzvpUY5bh0hFSEkM/SE5Hl3Duy3gJDCCMkMTSF5b54qhBRGSGaoCsnz\nHp63OvJ8QkoAQorD72xwjJDMICTNCMkMdSG91NhYMqdl+dK8mwjJPkKK4yKklW0+IvTy4AF5\nDbKtnfUIyQxCiuMipK2rVkWcy0O7BCCkODxHcoyQzFATUuvapUuWLFsXsxQhJQAhxak8pKZ5\nQzI/QjHq6i1RyxFSAhBSnIpDWj9Wxs1csHDhZdOHy/imiAUJKQEIKU7FIc1OLc5ONd9WNTdi\nQUJKAEKKU3FIw2YVpk8ZGbEgISUAIcWpOKTUNYXpK2siFiSkBCCkOBWHNHpaYXrqmIgFCSkB\nCClOxSHNrVqU/cTC5itkfsSChJQAhBSn4pA2TpSGxpnnz5kxpV4mb4pYkJASgJDiVP4+0vYb\nJlQHbyOlJt3RHLUcISUAIcXp0EeEtr64YsWa9jLJIaQEIKQ4fNbOMUIyg5A0IyQzCEkzQjKD\nkDQjJDMISTNCMoOQNCMkMwhJM0Iyg5A0IyQzCEkzQjKDkDQjJDMISTNCMoOQNCMkMwhJM0Iy\ng5A0IyQzCEkzQjKDkDQjJDMISTNCMoOQNCMkMwhJM0Iyg5A0IyQzCEkzQjKDkDQjJDMISTNC\nMoOQNCMkMwhJM0Iyg5A0IyQzCEkzQjKDkDQjJDMISTNCMoOQNCMkMwhJM0Iyg5A0IyQzCEkz\nQjKDkDQjJDMISTNCMoOQNCMkMwhJM0Iyg5A0IyQzCEkzQjKDkDQjJDMISTNCMoOQNCMkMwhJ\nM0Iyg5A0IyQzCEkzQjKDkDQjJDMISTNCMoOQNCMkMwhJM0Iyg5A0IyQzCEkzQjKDkDQjJDMI\nSTNCMoOQNCMkMwhJM0Iyg5A0IyQzCEkzQjKDkDQjJDMISTNCMoOQNCMkMwhJM0Iyg5A0IyQz\nCEkzQjKDkDQjJDMISTNCMoOQNCMkMwhJM0Iyg5A0IyQzCEkzQjKDkDQjJDMISTNCMoOQNCMk\nMwhJM0Iyg5A0IyQzCEkzQjKDkDQjJDMISTNCMoOQNCMkMwhJM0Iyg5A0IyQzCEkzQjKDkDQj\nJDMISTNCMoOQNCMkMwhJM0Iyg5A0IyQzCEkzQjJDX0hNr0ScSUgJQEhxKg/p90ePPvi25vTk\n/KitEFICEFKcikP6Ta3Up+TTTcE0IRUQkhk6Qjom9WDrthtSH9/sEVIYIZmhI6SRpwdfl9Uc\n3UxIYYRkho6QUlekT+6WCwgpjJDM0BHSiOMzp5fIQkIKISQzdIR0QdUtO4LT1hnylS8TUh4h\nmaEjpHdGyWHpidYLRAgpj5DM0BGS9/Z5X8lOPbAXIeURkhlKQvp7EVICEFIcQnKMkMwgJM0I\nyQx1Ib3U2Fgyp+m8s/KmEpJ9hBTHRUgr27xqR0gJQ0hxXIS0ddWqiHN5aJcAhBSH50iOEZIZ\nakJqXbt0yZJl62KWIqQEIKQ4lYfUNG+IpI26ekvUcoSUAIQUp+KQ1o+VcTMXLFx42fThMr4p\nYkFCSgBCilNxSLNTi7NTzbdVzY1YkJASgJDiVBzSsFmF6VNGRixISAlASHEq/8G+awrTV9ZE\nLEhICUBIcSoOafS0wvTUMRELElICEFKcikOaW7VoW2Zq8xUyP2JBQkoAQopTcUgbJ0pD48zz\n58yYUi+TN0UsSEgJQEhxKn8fafsNE6qDt5FSk+5ojlqOkBKAkOJ06CNCW19csWJNe5nkEFIC\nEFIcPmvnGCGZQUiaEZIZhKQZIZlBSJoRkhmEpBkhmUFImhGSGYSkGSGZQUiaEZIZhKQZIZlB\nSJoRkhmEpBkhmUFImhGSGRokYe8AAA2sSURBVISkGSGZQUiaEZIZhKQZIZlBSJoRkhmEpBkh\nmUFImhGSGYSkGSGZQUiaEZIZhKQZIZlBSJoRkhmEpBkhmUFImhGSGYSkGSGZQUiaEZIZhKQZ\nIZlBSJoRkhmEpBkhmUFImhGSGYSkGSGZQUiaEZIZhKQZIZlBSJoRkhmEpBkhmUFImhGSGYSk\nGSGZQUiaEZIZhKQZIZlBSJoRkhmEpBkhmUFImhGSGYSkGSGZQUiaEZIZhKQZIZlBSJoRkhmE\npBkhmUFImhGSGYSkGSGZQUiaEZIZhKQZIZlBSJoRkhmEpBkhmUFImhGSGYSkGSGZQUiaEZIZ\nhKQZIZlBSJoRkhmEpBkhmUFImhGSGYSkGSGZQUiaEZIZhKQZIZlBSJoRkhmEpBkhmUFImhGS\nGYSkGSGZQUiaEZIZhKQZIZlBSJoRkhmEpBkhmUFImhGSGYSkGSGZQUiaEZIZhKQZIZlBSJoR\nkhmEpBkhmUFImhGSGYSkGSGZQUiaEZIZhKQZIZlBSJoRkhmEpBkhmUFImhGSGYSkGSGZQUia\nEZIZhKQZIZmhJqTWtUuXLFm2LmYpQkoAQopTeUhN84ZI2qirt0QtR0gJQEhxKg5p/VgZN3PB\nwoWXTR8u45siFiSkBCCkOBWHNDu1ODvVfFvV3IgFCSkBCClOxSENm1WYPmVkxIKElACEFKfi\nkFLXFKavrIlYkJASgJDiVBzS6GmF6aljIhYkpAQgpDgVhzS3atG2zNTmK2R+xIKElACEFKfi\nkDZOlIbGmefPmTGlXiZviliQkBKAkOJU/j7S9hsmVAdvI6Um3dEctRwhJQAhxenQR4S2vrhi\nxZr2MskhpAQgpDh81s4xQjKDkDQjJDPUhfRSY2PJnJcHD8hrkB3trDe7ZkDy1Fd19wg6Q1V9\nd4+gE9TMdnDjz3ER0kop3UrL8qV5j/5be+utX5pAv7i9u0fQGW5/pLtH0BnWO7jx57gIaeuq\nVQ62AhjW+c+RgB6g83+wD+gBOv8H+4AeoPN/sA/oATr/B/uAHqDzf7AP6AE6/wf7gB6g83+w\nD+gBOv8H+4AeoPN/sA/oATr/B/uAHqDzf7AP6AH4rB3gACEBDhAS4AAhAQ4QEuAAIQEOEBLg\nACEBDnRnSJME6EaTHN6YuzOk0457NnluquvuEXSGupu6ewSd4LjTHN6YuzMkftOqGfym1TiE\n5BghmUFImhGSGYSkGSGZQUiaEZIZhKQZIZlBSJoRkhmEpBkhmUFImhGSGYSkGSGZkZiQzjqr\nG3feWR4d0N0j6AwDHu3uEXQCp7e/7gypKYl/xKLlle4eQWd4paW7R9AJnN7++DEKwAFCAhwg\nJMABQgIcICTAAUICHCAkwAFCAhwgJMABQgIcICTAAUICHCAkwAFCAhwgJMABQgIc6MqQNs4d\nndp99vrCjKZ5o2rGTP1d2fOsiDioO7N/9ODr3Ta4SrU5qLVf2rNm0NSnyp5nRsRRdfyq6sKQ\ntk+Uk66ZlRqb/7nEv4yRYy7/fO8+fyhznhVRB3WjTJ8f+GV3DrASbQ7qT7vVnL7g86nUE4av\nqcij6vhV1YUh3SDf9L/+h8zLzZgjt/hfH5Cjy5xnRdRBLZBnum9gHdHmoD5T9Sv/6xKZZvia\nijyqjl9VXRjShIZtwcneQ1qzM77SuMP/2lo3usx5VkQd1FxZ023j6pA2B3XZJcHX5tR4w9dU\n5FF1/KrqupC2VjemT2fK2qL521IHtXueelEH5c2Qt5tffbs7htUx7R3Ua3KC3Wsq8qgcXFVd\nF9KLkvk1YgtkadH8m/3HQu2dp17UQXknyKUDRD7w790xsI4of1DvLf9YwzN2r6nIo3JwVXVd\nSCtkTvp0kSwJz36s5uCd7Z2nX9RBeVNkz+vuvmQX+W63DK1yZQ+qv8jpa9s9YAOijsrBVdWV\nIZ2fPl0oD4bm3ls78S/tnWdA1EF5y3682f/6fO3A7d0xtMqVPaiLz/pkr4PX2r2mIo/KwVXV\ndSGtkRnp08vkv/PzWq+QI//WznkmRB1Uzmfl6a4dVEe1d20s7/uxFrPXVORR5aY7cFV1XUjb\ne09Jn06X/8vNap0lX25u5zwbog4q52wx9kZSu9fGabLa7DUVeVS5yQ5cVV348vcB9e/5X1uG\nj8zPmSvXtnueEREHtenb96ZPDzb3AlfpQb32sS+kT0+UZ+xeU1FH5eCq6sKQ7pAr/a/fkas8\nb+vKl7zgXcu5Zc6zJeKgWvbo90f/5Ceyb/cNrzJtDmpEzZP+1xf69dtq95qKOioHV1UXhtQ8\nWaZedWrVR/3vC6skeE1/L/ly+nMZ85vC59kSdVA/reo7+/LPVu2yorsH+X61OagHq1OnXjqz\nr9zq2b2mIo+q41dVV35oddOFo1N7zAlez8ociOS8Ej7PmKiDeuKoXXsP/6LBjzeUHpT35AmD\nq3c97GfF51kTdVQdvqr4MQrAAUICHCAkwAFCAhwgJMABQgIcICTAAUICHCAkwAFCAhwgJMAB\nQgIcICTAAUICHCAkwAFCAhwgJMABQgIcICTAAUICHCAkwAFCAhwgJMABQgIcICTAAUICHCAk\nwAFCAhwgJMABQgIcICTAAUICHCAkwAFCcq/6gM7acv+lFa96irzq/3vD4WAQRkjulYZ0XUf+\n+OWOi3vtl5n6j8mDpPee1271vHtEHsmePVdkZ9n1SncahHTdEU3vczQdGnqPQkjulYS0Xn5R\n+bZWT2zIhnSdTLq6buaBcmoQUvWpmbN3DqkuH1KbnQYhve/RdGjoPQshuVcS0k87cGt8t27/\nNbXpkN6rPag1eGh3ojzjh3Rgn43p8x+SfcuH1GanuZDe12g6MvQehpBc+vnEPoNnb0yH9NQJ\nu6VGn/6K5x0T/Inzx0Mzimw4b1Rq0NSnPW9p1fTg/0f18hf988zhqd2Oe8r/71/m7fAyIa2V\nr6SfIz13w0t+SFfJd9Ornzzq1HRIhTVOkTcP6/PTtjvNPkfKnHFwr3XB2u/0nhQeS2bVMkPP\nDxLtIiSHHq8efu33Tp+c8kN6ts/wq++4uGHIO97vviBXPPiX0Iywt0b3n3/PtSNqH/O8c2Sp\n5/1Yvup564b0u+iua/aofTyzTO4e6SNbci823CMPjU0nsLH2olOCkEJrfEFOO+raVW13mg0p\nc8Zd8o1g9duzOWZlVm079NAg0R5CcuhICb5rnyd+SN+euNyfvEVuCZ7cBI+PQjNCzu39jP91\nXcP+nrdpzLhtm0d+YIvnzZAl/szV1dm7i0xI3hWyz6198yFdKX/yJ74rq9IhhdaYJYe3eGV2\nmnvVLn3Ge/3HBdtp7PPX8GCyq7YZemiQaA8hudNSt1dwslKyz5F2bF0m83K3xtCMgtZBE98I\nHCGbPO+XVQsu7PWEP7P/0NbgzIMlc++VDan15qEiw2Ys99IhvVJ1sT9x4H5eEFJ4jdny78Fk\nm50WheTf/f3Gvzusnl40/uyqpUMvGiTaQUjuvCafCU62pkO6+1O7Bs8w5uZv04UZBRsk53n/\nf+fVpi7ygpfKDk2fOVueSJ9mQ/K85sfq9uwl07YHIXlT9mjx1si/pEMKrzFbng0m2+y0OKRn\n5UzP+448WjT+7KqlQy8eJMojJHdelOPSp1V+SJfI/nc+9rvvF0IKzShYIxN+kRG8CLdCZFV6\nZmYz50vmgVw+pODFhj8fJTenQ/qhPOJdnno7HVJ4jdmSfuunzU6LQ/L23WWLd8jIlqLxZ1ct\nHXrxIFEeIbnzauYeaZN/j7S1bmTwOOiR/K0xPKNgg0wo/KflwKG7TfYfor2RvX85Q55MnxaF\n5L1bfXQ6pPcaTm0dc4KXDim8Rjik8E5LQrpV7n+j16XF48+s2mboRYNEOwjJnZ01ewcnv/VD\nekU+G0xekr81hmeEDMq8H/RW8GWR3Hen3ORPDNw9/YzngKrMPUAmpCuHbcx8RKj/wemQvDP6\n/loezIQUXiMcUninJSFtrDv5Jin52EJm1TZDLxok2kFIDk1Jv2p3mh/Slqp9/amVe8jZnrcw\neEktPCPkXPma//WtYcd63gt1R3veIfUvet6ZQSDeyqrGzDKZkO6Ss9NvyC6WeZmQfi2fGrQj\nG1JojWxIbXaaCyl9hu/z9RMOLhl+ZtU2Qw8PEu0hJIcerhpy8aJjD+3vP0c6Vs7+0eUDHu49\n4t7NP5ZPXP90eEZojTdHyRl3XTsq9aj/wK7vn/2aag9q8V4f1u9rP7xqSMPvPe+x+fPnVw/z\nv7zTfKSM/8c+px1fNXJDJiRvL/mylw0ptEY2pDY7zYWUOcPzlot8v2T42VXbDL0wSLSLkFy6\n76M1g2dtHOl/S3/rtMH9D33cu6rfsDd2nFQ34P7wjPAab5w7sveuxz/led+SG4L/Xy3Xe966\nM3bvPeTU1V7w2Cprjbft5v0GSO/RczZ42ZC+nn6RLR1SaI1sDW12mgspc4ZvVP3fSkafXbXN\n0AuDRLsIyZIO/BhFqXWpc5xtC4Rky3VrnW3qc6kXnG0LhNT1dm4s2NFNY1hz2+GyQMtgkoGQ\nutpDUvCjbhrDA1WDr23VMphkIKSu1vR4wdsMJikICXCAkAAHCAlwgJAABwgJcICQAAcICXCA\nkAAHCAlwgJAABwgJcICQAAcICXCAkAAHCAlwgJAABwgJcICQAAcICXCAkAAHCAlwgJAABwgJ\ncICQAAcICXCAkAAH/h8d0pN87ss1HAAAAABJRU5ErkJggg==",
+ "text/plain": [
+ "Plot with title “Histogram of data_exo1$Mortality_rate”"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "Smoker <- c(1,0)\n",
+ "Alive <- c(global[2,1],global[1,1])\n",
+ "Dead <- c(global[2,2], global[1,2])\n",
+ "Mortality_rate <- c(mortality[1,2], mortality[2,2])\n",
+ "\n",
+ "data_exo1 <- data.frame(Smoker, Alive, Dead, Mortality_rate)\n",
+ "print(data_exo1)\n",
+ "\n",
+ "#ggplot(xdata_exo1, aes(x=Smoker, y=Mortality_rate)) + geom_point(alpha=.3, size=3) + theme_bw()\n",
+ "plot (x=data_exo1$Smoker, y=data_exo1$Mortality_rate, ylim=c(0,0.5), type='h')\n",
+ "#mortality_smoking <- c(smoker, no_smoker)\n",
+ "#mortality_smoking\n",
+ "#bp <- barplot(mortality_smoking, ylim=c(0,0.5))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [
+ {
+ "ename": "ERROR",
+ "evalue": "Error in ggplot(data = mortality_smoking): could not find function \"ggplot\"\n",
+ "output_type": "error",
+ "traceback": [
+ "Error in ggplot(data = mortality_smoking): could not find function \"ggplot\"\nTraceback:\n"
+ ]
+ }
+ ],
+ "source": [
+ "p<-ggplot(data=mortality_smoking) +\n",
+ " geom_bar(stat=\"identity\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [
+ {
+ "ename": "ERROR",
+ "evalue": "Error in xy.coords(x, y, xlabel, ylabel, log): argument \"x\" is missing, with no default\n",
+ "output_type": "error",
+ "traceback": [
+ "Error in xy.coords(x, y, xlabel, ylabel, log): argument \"x\" is missing, with no default\nTraceback:\n",
+ "1. plot(data = mortality_smoking)",
+ "2. plot.default(data = mortality_smoking)",
+ "3. xy.coords(x, y, xlabel, ylabel, log)"
+ ]
+ }
+ ],
+ "source": [
+ "plot(data=mortality_smoking)"
]
},
{