{ "cells": [ { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import isoweek" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-7.csv\"" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
02021257920559751243514919FRFrance
1202124711949883215066181323FRFrance
220212379116642011812141018FRFrance
320212274817275268827410FRFrance
420212176092345887269513FRFrance
52021207748546011036911715FRFrance
6202119766544370893810713FRFrance
72021187391221105714639FRFrance
820211774686287864947410FRFrance
920211674780289166697410FRFrance
10202115711215762714803171222FRFrance
11202114711197799414400171222FRFrance
1220211379714628913139151020FRFrance
13202112711520841514625171222FRFrance
1420211179386667812094141018FRFrance
1520211079056645211660141018FRFrance
16202109710988793814038171222FRFrance
17202108711281836114201171321FRFrance
182021077135611031516807211626FRFrance
19202106713401981016992201525FRFrance
20202105712210898815432181323FRFrance
21202104712026882615226181323FRFrance
222021037891363751145113917FRFrance
232021027779554301016012816FRFrance
24202101710525775013300161220FRFrance
25202053711978840615550181323FRFrance
26202052712012828515739181224FRFrance
27202051710564757413554161121FRFrance
28202050770634744938211715FRFrance
2920204975026314569078511FRFrance
.................................
15651991267176081130423912312042FRFrance
15661991257161691070021638281838FRFrance
15671991247161711007122271281739FRFrance
1568199123711947767116223211329FRFrance
1569199122715452995320951271737FRFrance
1570199121714903897520831261636FRFrance
15711991207190531274225364342345FRFrance
15721991197167391124622232291939FRFrance
15731991187213851388228888382551FRFrance
1574199117713462887718047241632FRFrance
15751991167148571006819646261834FRFrance
1576199115713975978118169251832FRFrance
1577199114712265768416846221430FRFrance
157819911379567604113093171123FRFrance
1579199112710864733114397191325FRFrance
15801991117155741118419964271935FRFrance
15811991107166431137221914292038FRFrance
1582199109713741878018702241533FRFrance
1583199108713289881317765231531FRFrance
1584199107712337807716597221529FRFrance
1585199106710877701314741191226FRFrance
1586199105710442654414340181125FRFrance
15871991047791345631126314820FRFrance
15881991037153871048420290271836FRFrance
15891991027162771104621508292038FRFrance
15901991017155651027120859271836FRFrance
15911990527193751329525455342345FRFrance
15921990517190801380724353342543FRFrance
1593199050711079666015498201228FRFrance
15941990497114302610205FRFrance
\n", "

1595 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202125 7 9205 5975 12435 14 9 \n", "1 202124 7 11949 8832 15066 18 13 \n", "2 202123 7 9116 6420 11812 14 10 \n", "3 202122 7 4817 2752 6882 7 4 \n", "4 202121 7 6092 3458 8726 9 5 \n", "5 202120 7 7485 4601 10369 11 7 \n", "6 202119 7 6654 4370 8938 10 7 \n", "7 202118 7 3912 2110 5714 6 3 \n", "8 202117 7 4686 2878 6494 7 4 \n", "9 202116 7 4780 2891 6669 7 4 \n", "10 202115 7 11215 7627 14803 17 12 \n", "11 202114 7 11197 7994 14400 17 12 \n", "12 202113 7 9714 6289 13139 15 10 \n", "13 202112 7 11520 8415 14625 17 12 \n", "14 202111 7 9386 6678 12094 14 10 \n", "15 202110 7 9056 6452 11660 14 10 \n", "16 202109 7 10988 7938 14038 17 12 \n", "17 202108 7 11281 8361 14201 17 13 \n", "18 202107 7 13561 10315 16807 21 16 \n", "19 202106 7 13401 9810 16992 20 15 \n", "20 202105 7 12210 8988 15432 18 13 \n", "21 202104 7 12026 8826 15226 18 13 \n", "22 202103 7 8913 6375 11451 13 9 \n", "23 202102 7 7795 5430 10160 12 8 \n", "24 202101 7 10525 7750 13300 16 12 \n", "25 202053 7 11978 8406 15550 18 13 \n", "26 202052 7 12012 8285 15739 18 12 \n", "27 202051 7 10564 7574 13554 16 11 \n", "28 202050 7 7063 4744 9382 11 7 \n", "29 202049 7 5026 3145 6907 8 5 \n", "... ... ... ... ... ... ... ... \n", "1565 199126 7 17608 11304 23912 31 20 \n", "1566 199125 7 16169 10700 21638 28 18 \n", "1567 199124 7 16171 10071 22271 28 17 \n", "1568 199123 7 11947 7671 16223 21 13 \n", "1569 199122 7 15452 9953 20951 27 17 \n", "1570 199121 7 14903 8975 20831 26 16 \n", "1571 199120 7 19053 12742 25364 34 23 \n", "1572 199119 7 16739 11246 22232 29 19 \n", "1573 199118 7 21385 13882 28888 38 25 \n", "1574 199117 7 13462 8877 18047 24 16 \n", "1575 199116 7 14857 10068 19646 26 18 \n", "1576 199115 7 13975 9781 18169 25 18 \n", "1577 199114 7 12265 7684 16846 22 14 \n", "1578 199113 7 9567 6041 13093 17 11 \n", "1579 199112 7 10864 7331 14397 19 13 \n", "1580 199111 7 15574 11184 19964 27 19 \n", "1581 199110 7 16643 11372 21914 29 20 \n", "1582 199109 7 13741 8780 18702 24 15 \n", "1583 199108 7 13289 8813 17765 23 15 \n", "1584 199107 7 12337 8077 16597 22 15 \n", "1585 199106 7 10877 7013 14741 19 12 \n", "1586 199105 7 10442 6544 14340 18 11 \n", "1587 199104 7 7913 4563 11263 14 8 \n", "1588 199103 7 15387 10484 20290 27 18 \n", "1589 199102 7 16277 11046 21508 29 20 \n", "1590 199101 7 15565 10271 20859 27 18 \n", "1591 199052 7 19375 13295 25455 34 23 \n", "1592 199051 7 19080 13807 24353 34 25 \n", "1593 199050 7 11079 6660 15498 20 12 \n", "1594 199049 7 1143 0 2610 2 0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 19 FR France \n", "1 23 FR France \n", "2 18 FR France \n", "3 10 FR France \n", "4 13 FR France \n", "5 15 FR France \n", "6 13 FR France \n", "7 9 FR France \n", "8 10 FR France \n", "9 10 FR France \n", "10 22 FR France \n", "11 22 FR France \n", "12 20 FR France \n", "13 22 FR France \n", "14 18 FR France \n", "15 18 FR France \n", "16 22 FR France \n", "17 21 FR France \n", "18 26 FR France \n", "19 25 FR France \n", "20 23 FR France \n", "21 23 FR France \n", "22 17 FR France \n", "23 16 FR France \n", "24 20 FR France \n", "25 23 FR France \n", "26 24 FR France \n", "27 21 FR France \n", "28 15 FR France \n", "29 11 FR France \n", "... ... ... ... \n", "1565 42 FR France \n", "1566 38 FR France \n", "1567 39 FR France \n", "1568 29 FR France \n", "1569 37 FR France \n", "1570 36 FR France \n", "1571 45 FR France \n", "1572 39 FR France \n", "1573 51 FR France \n", "1574 32 FR France \n", "1575 34 FR France \n", "1576 32 FR France \n", "1577 30 FR France \n", "1578 23 FR France \n", "1579 25 FR France \n", "1580 35 FR France \n", "1581 38 FR France \n", "1582 33 FR France \n", "1583 31 FR France \n", "1584 29 FR France \n", "1585 26 FR France \n", "1586 25 FR France \n", "1587 20 FR France \n", "1588 36 FR France \n", "1589 38 FR France \n", "1590 36 FR France \n", "1591 45 FR France \n", "1592 43 FR France \n", "1593 28 FR France \n", "1594 5 FR France \n", "\n", "[1595 rows x 10 columns]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data = pd.read_csv(data_url, skiprows=1)\n", "raw_data" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
\n", "
" ], "text/plain": [ "Empty DataFrame\n", "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n", "Index: []" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
02021257920559751243514919FRFrance
1202124711949883215066181323FRFrance
220212379116642011812141018FRFrance
320212274817275268827410FRFrance
420212176092345887269513FRFrance
52021207748546011036911715FRFrance
6202119766544370893810713FRFrance
72021187391221105714639FRFrance
820211774686287864947410FRFrance
920211674780289166697410FRFrance
10202115711215762714803171222FRFrance
11202114711197799414400171222FRFrance
1220211379714628913139151020FRFrance
13202112711520841514625171222FRFrance
1420211179386667812094141018FRFrance
1520211079056645211660141018FRFrance
16202109710988793814038171222FRFrance
17202108711281836114201171321FRFrance
182021077135611031516807211626FRFrance
19202106713401981016992201525FRFrance
20202105712210898815432181323FRFrance
21202104712026882615226181323FRFrance
222021037891363751145113917FRFrance
232021027779554301016012816FRFrance
24202101710525775013300161220FRFrance
25202053711978840615550181323FRFrance
26202052712012828515739181224FRFrance
27202051710564757413554161121FRFrance
28202050770634744938211715FRFrance
2920204975026314569078511FRFrance
.................................
15651991267176081130423912312042FRFrance
15661991257161691070021638281838FRFrance
15671991247161711007122271281739FRFrance
1568199123711947767116223211329FRFrance
1569199122715452995320951271737FRFrance
1570199121714903897520831261636FRFrance
15711991207190531274225364342345FRFrance
15721991197167391124622232291939FRFrance
15731991187213851388228888382551FRFrance
1574199117713462887718047241632FRFrance
15751991167148571006819646261834FRFrance
1576199115713975978118169251832FRFrance
1577199114712265768416846221430FRFrance
157819911379567604113093171123FRFrance
1579199112710864733114397191325FRFrance
15801991117155741118419964271935FRFrance
15811991107166431137221914292038FRFrance
1582199109713741878018702241533FRFrance
1583199108713289881317765231531FRFrance
1584199107712337807716597221529FRFrance
1585199106710877701314741191226FRFrance
1586199105710442654414340181125FRFrance
15871991047791345631126314820FRFrance
15881991037153871048420290271836FRFrance
15891991027162771104621508292038FRFrance
15901991017155651027120859271836FRFrance
15911990527193751329525455342345FRFrance
15921990517190801380724353342543FRFrance
1593199050711079666015498201228FRFrance
15941990497114302610205FRFrance
\n", "

1595 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202125 7 9205 5975 12435 14 9 \n", "1 202124 7 11949 8832 15066 18 13 \n", "2 202123 7 9116 6420 11812 14 10 \n", "3 202122 7 4817 2752 6882 7 4 \n", "4 202121 7 6092 3458 8726 9 5 \n", "5 202120 7 7485 4601 10369 11 7 \n", "6 202119 7 6654 4370 8938 10 7 \n", "7 202118 7 3912 2110 5714 6 3 \n", "8 202117 7 4686 2878 6494 7 4 \n", "9 202116 7 4780 2891 6669 7 4 \n", "10 202115 7 11215 7627 14803 17 12 \n", "11 202114 7 11197 7994 14400 17 12 \n", "12 202113 7 9714 6289 13139 15 10 \n", "13 202112 7 11520 8415 14625 17 12 \n", "14 202111 7 9386 6678 12094 14 10 \n", "15 202110 7 9056 6452 11660 14 10 \n", "16 202109 7 10988 7938 14038 17 12 \n", "17 202108 7 11281 8361 14201 17 13 \n", "18 202107 7 13561 10315 16807 21 16 \n", "19 202106 7 13401 9810 16992 20 15 \n", "20 202105 7 12210 8988 15432 18 13 \n", "21 202104 7 12026 8826 15226 18 13 \n", "22 202103 7 8913 6375 11451 13 9 \n", "23 202102 7 7795 5430 10160 12 8 \n", "24 202101 7 10525 7750 13300 16 12 \n", "25 202053 7 11978 8406 15550 18 13 \n", "26 202052 7 12012 8285 15739 18 12 \n", "27 202051 7 10564 7574 13554 16 11 \n", "28 202050 7 7063 4744 9382 11 7 \n", "29 202049 7 5026 3145 6907 8 5 \n", "... ... ... ... ... ... ... ... \n", "1565 199126 7 17608 11304 23912 31 20 \n", "1566 199125 7 16169 10700 21638 28 18 \n", "1567 199124 7 16171 10071 22271 28 17 \n", "1568 199123 7 11947 7671 16223 21 13 \n", "1569 199122 7 15452 9953 20951 27 17 \n", "1570 199121 7 14903 8975 20831 26 16 \n", "1571 199120 7 19053 12742 25364 34 23 \n", "1572 199119 7 16739 11246 22232 29 19 \n", "1573 199118 7 21385 13882 28888 38 25 \n", "1574 199117 7 13462 8877 18047 24 16 \n", "1575 199116 7 14857 10068 19646 26 18 \n", "1576 199115 7 13975 9781 18169 25 18 \n", "1577 199114 7 12265 7684 16846 22 14 \n", "1578 199113 7 9567 6041 13093 17 11 \n", "1579 199112 7 10864 7331 14397 19 13 \n", "1580 199111 7 15574 11184 19964 27 19 \n", "1581 199110 7 16643 11372 21914 29 20 \n", "1582 199109 7 13741 8780 18702 24 15 \n", "1583 199108 7 13289 8813 17765 23 15 \n", "1584 199107 7 12337 8077 16597 22 15 \n", "1585 199106 7 10877 7013 14741 19 12 \n", "1586 199105 7 10442 6544 14340 18 11 \n", "1587 199104 7 7913 4563 11263 14 8 \n", "1588 199103 7 15387 10484 20290 27 18 \n", "1589 199102 7 16277 11046 21508 29 20 \n", "1590 199101 7 15565 10271 20859 27 18 \n", "1591 199052 7 19375 13295 25455 34 23 \n", "1592 199051 7 19080 13807 24353 34 25 \n", "1593 199050 7 11079 6660 15498 20 12 \n", "1594 199049 7 1143 0 2610 2 0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 19 FR France \n", "1 23 FR France \n", "2 18 FR France \n", "3 10 FR France \n", "4 13 FR France \n", "5 15 FR France \n", "6 13 FR France \n", "7 9 FR France \n", "8 10 FR France \n", "9 10 FR France \n", "10 22 FR France \n", "11 22 FR France \n", "12 20 FR France \n", "13 22 FR France \n", "14 18 FR France \n", "15 18 FR France \n", "16 22 FR France \n", "17 21 FR France \n", "18 26 FR France \n", "19 25 FR France \n", "20 23 FR France \n", "21 23 FR France \n", "22 17 FR France \n", "23 16 FR France \n", "24 20 FR France \n", "25 23 FR France \n", "26 24 FR France \n", "27 21 FR France \n", "28 15 FR France \n", "29 11 FR France \n", "... ... ... ... \n", "1565 42 FR France \n", "1566 38 FR France \n", "1567 39 FR France \n", "1568 29 FR France \n", "1569 37 FR France \n", "1570 36 FR France \n", "1571 45 FR France \n", "1572 39 FR France \n", "1573 51 FR France \n", "1574 32 FR France \n", "1575 34 FR France \n", "1576 32 FR France \n", "1577 30 FR France \n", "1578 23 FR France \n", "1579 25 FR France \n", "1580 35 FR France \n", "1581 38 FR France \n", "1582 33 FR France \n", "1583 31 FR France \n", "1584 29 FR France \n", "1585 26 FR France \n", "1586 25 FR France \n", "1587 20 FR France \n", "1588 36 FR France \n", "1589 38 FR France \n", "1590 36 FR France \n", "1591 45 FR France \n", "1592 43 FR France \n", "1593 28 FR France \n", "1594 5 FR France \n", "\n", "[1595 rows x 10 columns]" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = raw_data.dropna().copy()\n", "data" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "def convert_week(year_and_week_int):\n", " year_and_week_str = str(year_and_week_int)\n", " year = int(year_and_week_str[:4])\n", " week = int(year_and_week_str[4:])\n", " w = isoweek.Week(year, week)\n", " return pd.Period(w.day(0), 'W')\n", "\n", "data['period'] = [convert_week(yw) for yw in data['week']]" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", " delta = p2.to_timestamp() - p1.end_time\n", " if delta > pd.Timedelta('1s'):\n", " print(p1, p2)" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsfXm8HUWZ9vOec+6SfSMbCRCWABKQQELYkVXADVBxojMCiqKI4+AyCo7jMsKgwyjfoIKAIIuyibLIoiCE1ZAY1pBASAIhCQlJyE6Wu536/uiu7urqt5Y+t++W08/vl9w+1dVV1dVV9da7FgkhUKBAgQIFCqgo9XQDChQoUKBA70NBHAoUKFCgQAoFcShQoECBAikUxKFAgQIFCqRQEIcCBQoUKJBCQRwKFChQoEAKBXEoUKBAgQIpFMShQIECBQqkUBCHAgUKFCiQQqWnG1ArdtppJzFhwoSebkaBAgUK9Ck899xz7wohRrry9VniMGHCBMyZM6enm1GgQIECfQpE9JZPvkKsVKBAgQIFUiiIQ4ECBQoUSKEgDgUKFChQIIWCOBQoUKBAgRQK4lCgQIECBVIoiEOBAgUKFEihIA4FChQoUCCFgjgU2CHxjyXrsOCdzT3djAIF+iz6rBNcgQI2nPnrmQCAJT/5cA+3pECBvomCcyhQoECBAikUxKFAgQIFCqRQEIcCBQoUKJCCkzgQUTMRzSail4hoHhH9KEz/IRG9TUQvhv8+pDxzMREtIqIFRHSykj6FiOaG964kIgrTm4jojjB9FhFNyP9VCxQoUKCAL3w4hxYAxwshDgQwGcApRHRYeO8KIcTk8N+DAEBE+wGYDmASgFMAXEVE5TD/1QDOAzAx/HdKmH4ugPVCiL0AXAHgp51/tQIFChQoUCucxEEEeC/82RD+E5ZHTgNwuxCiRQjxJoBFAKYR0VgAg4UQM4UQAsDNAE5XnrkpvL4LwAmSqyhQoECBAt0PL50DEZWJ6EUAqwE8IoSYFd76KhG9TEQ3ENGwMG0cgGXK48vDtHHhtZ6eeEYI0Q5gI4ARTDvOI6I5RDRnzZo1Xi9YoECBAgWyw4s4CCE6hBCTAYxHwAXsj0BEtCcCUdNKAD8Ls3M7fmFJtz2jt+NaIcRUIcTUkSOdBxkVKJAZz721DsvWbe3pZhQo0OPIZK0khNgA4HEApwghVoVEowrgOgDTwmzLAeyiPDYewIowfTyTnniGiCoAhgBYl+lNChTIAZ+4eiaO/p8ZPd2MAgV6HD7WSiOJaGh43Q/AiQBeC3UIEmcAeCW8vg/A9NACaXcEiufZQoiVADYT0WGhPuEsAPcqz5wdXn8SwGOhXqJAgQIFCvQAfMJnjAVwU2hxVAJwpxDifiK6hYgmIxD/LAHwJQAQQswjojsBzAfQDuACIURHWNb5AG4E0A/AQ+E/ALgewC1EtAgBxzA9h3crUKBAgQI1wkkchBAvAziISf+s5ZlLAVzKpM8BsD+Tvh3Ama62FChQoECB7kHhIV1gh8elD8zHzx5e0NPNKFCgT6EgDgV2eFz31Jv4xWOLeroZBQr0KRTEoUCBAgUKpFAQhwIFChQokEJBHAoU6AEsX78VX7vtBbS0d7gzFyjQAyiIQ4ECPYAf3DsP9720Ak+9/m5PN6VAARYFcShQoECBAikUxKFAgQIFCqRQEIcCBQoUKJBCQRwKFChQoEAKBXEoUKBAgQIpFMShj2DR6vewYsO2nm5GgZxQhBwu0NvhE5W1QC/AiT9/AgCw5Ccf7uGWFChQoB5QcA4FCvQAigPSC/R2FMShQIECBQqkUBCHAgUK7NB4cO5KLFy1uaeb0edQEIcCBQrssGhp78BXfv88zrxmZk83pc+hIA4FChTYYVGtBn83bG3r2Yb0QTiJAxE1E9FsInqJiOYR0Y/C9OFE9AgRLQz/DlOeuZiIFhHRAiI6WUmfQkRzw3tXEhGF6U1EdEeYPouIJuT/qgUK9B70lCnrhIsewPfumdtDtXc/RGE0XDN8OIcWAMcLIQ4EMBnAKUR0GICLADwqhJgI4NHwN4hoPwDTAUwCcAqAq4ioHJZ1NYDzAEwM/50Spp8LYL0QYi8AVwD4aQ7vliuWrduKB15e2dPNKFCg0/jds0t7ugndBlHQhprhJA4iwHvhz4bwnwBwGoCbwvSbAJweXp8G4HYhRIsQ4k0AiwBMI6KxAAYLIWYKIQSAm7VnZFl3AThBchW9BR/95dO44Nbne7oZBXYQ9KrBXaAAAy+dAxGViehFAKsBPCKEmAVgtBBiJQCEf0eF2ccBWKY8vjxMGxde6+mJZ4QQ7QA2AhhRywt1FQqZZYE8UWxouwdFP9cOL+IghOgQQkwGMB4BF7C/JTu3KRKWdNszyYKJziOiOUQ0Z82aNa5mFyhQoM4hCrlSzchkrSSE2ADgcQS6glWhqAjh39VhtuUAdlEeGw9gRZg+nklPPENEFQBDAKxj6r9WCDFVCDF15MiRWZpeoBfjnY3b0dpe7elmdCu6Sqz01MI1eGfj9i4qve+hIA21w8daaSQRDQ2v+wE4EcBrAO4DcHaY7WwA94bX9wGYHlog7Y5A8Tw7FD1tJqLDQn3CWdozsqxPAnhM9FKSf9dzy/HXee/0dDN2GLS2V3HYZY/iW394yfuZyx56Fdc9+UYXtqrv4rPXz8aHr3yqp5vRa9A7V5G+AZ/Ae2MB3BRaHJUA3CmEuJ+IZgK4k4jOBbAUwJkAIISYR0R3ApgPoB3ABUIIeYr6+QBuBNAPwEPhPwC4HsAtRLQIAccwPY+X6wrIRSyPAHjVqsBLyzfgoF2HuTPvoGgPDdEfnu9PcK95IiAMXzxmjy5pU3cgzzVrS0s7XntnM6bsFoyjtVtacyy9QL3CSRyEEC8DOIhJXwvgBMMzlwK4lEmfAyClrxBCbEdIXOoJVz+xGJf/dQHu/NLhmLb78J5uTo+AQgFLV+3weikDmisuvONFPDJ/FZ7/z5N6uim9Dzv+5+8yFB7SPYjXw3gv9XxOgzRY7qo5/O57vXMXnafOYf6KTQCAra3t1nz1QCh1FE5wtaMgDj0IuUBU63DSptBFXdBY6Z1DvCte1zWM6nGY1eM754XeOXPqBNLPrxjAXbjDq4O+jbgvF3HQfrd3VPGdu17GsnVbu6RdvQF18Pm7DAVx6EF0tUilL0AuaF2mc+ilvZunWKkkNxmWd21p78Bba7ck0mYvWYc75izLZCnW11CPorS8UBwT2oOQyth6Fit19eLdW7s2z2bJTUbVUug373wJ92uxwWTflEtFMI8CaRScQw+iFIkD7EvF5u07buiOiHPoovJ7O+HNI4JYxDlY3vXxBemIArJvSr0rjFmu6N1fv3ejIA49CDkpbTs+ALjnxRX2DDsA8mT/1bJ6++KQx2vHhg3ZnpP5d2Da0Gs5x76Agjj0IEph79fzABba31zKFPx1b0Ku63FUmPllufrqg3PopQOgD6AgDj2KQucgd/l5doFIXPfOvs2zVSUPqzfuloiIQ46N6W3onZ+/T6AgDj2Iwlqpa6CKlapdEM/vydfXYMJFDyQC3K3YsA3PvrE2/8o8ULNYKeybHZlzKFA7CuLQg4h2bPXMOXRxmZ+57tncy//ds28BAF5ctj5KO/HnT2D6tf51ZVmOt7a24/K/voaW9o7UvT/MWYaFq9+L8mWpT3KsvexcrVxRvzOr8yiIQw8iNmXt4Yb0ILqCLnYoHfrGu1ssOWsDt5ZubU0v3DZkee2rZizGr2Ysxq2z0sd73jzzrej6jKv+nqk+2U07slipjvddnUZBHHoQpcg+vY5HsOHVr3licc2eu+0ZqO1ba7dgYRjjatHq9xy584fPpn1bW0B42jvS79WZTX+hkC5gQ0EcehDkacpab1i1aTsue+g1nPPb2TU938EsoiZ84PLHcdIVTwIIREPdDSGA3zz1Bh57bZU1D8ATAt9lXc+3va0jIg47shNcPe+7OouCOPQgfJyXdiTc+MybeHn5hkQat7OTi9aWlmyiGom2rtBC5wx1Ob7kgVfx+RvnGPPadr+++gK9hH3/8y/14efQ0w3owyjCZ/QgfAOm7Sj44Z/nA0gelNTVOofeiiwtjDmH9CremU3/1257ISxjB6YOCp54fQ2qVYHj9h3V003pEyiIQw8iMlaq4/0N9+bRAUA19ktbR/dwDt1N1DlCkIel0Q4sVUpw5WffEIgp8zjFsR5QiJV6EKVSEbKbQ2c5qq7mHCgH/2ZZwlML0zGPdEQmp8y9PBb2HZlzKOZW7XASByLahYhmENGrRDSPiP4tTP8hEb1NRC+G/z6kPHMxES0iogVEdLKSPoWI5ob3rqRw20NETUR0R5g+i4gm5P+qvQ+1Oi/tSOgKfUtbBoV0V7bDWl/49ybFFNWElraAE+K4hFwIVU7EYdm6rVj7XksuZRXoefhwDu0AvimEeB+AwwBcQET7hfeuEEJMDv89CADhvekAJgE4BcBVRFQO818N4DwAE8N/p4Tp5wJYL4TYC8AVAH7a+Vfr/YitleqXOtjevNZeaa9BId1agyiqu77aHXOWATAojnPhHDpfBgAc/T8zMOWSv+VTWE6o46nVaTiJgxBipRDi+fB6M4BXAYyzPHIagNuFEC1CiDcBLAIwjYjGAhgshJgpgm3azQBOV565Kby+C8AJlNd2phfDN2R3vaGzjuOcP4AL21v9iUNPjcy8FdIS3WXK+vTCd/GRXzzVbTqhAp1DJp1DKO45CMCsMOmrRPQyEd1ARMPCtHEAlimPLQ/TxoXXenriGSFEO4CNAEZkaVtfRL1ZK3Fg372Ta5WPzqG9o4qbZy6Jfm9nQlP0NrAK6V4kVnLh23e9hFfe3oTVm7tP9FTPxh6dhTdxIKKBAP4I4EIhxCYEIqI9AUwGsBLAz2RW5nFhSbc9o7fhPCKaQ0Rz1qxxK/J6O8rhpOzoY9Th5plLsGrTdmc+H9gnb2394iOmu232Unz/3nnR720Zw1/0BDhCYFrXb3nWrcuQ6C5rpdaQo2voRvOoPja1ehW8iAMRNSAgDL8XQvwJAIQQq4QQHUKIKoDrAEwLsy8HsIvy+HgAK8L08Ux64hkiqgAYAmCd3g4hxLVCiKlCiKkjR470e8NejIZy0P21iEF6Cm+t3YLv3zsPX/n98/kUyLx6ZMpaY7f4PLZpezJI3eMLVmevp5s/G0cITJZG/3nPK97ldpdYSeqC/vbqarwehizpavSdmdX74GOtRACuB/CqEOLnSvpYJdsZAORovA/A9NACaXcEiufZQoiVADYT0WFhmWcBuFd55uzw+pMAHhN1IIhvqATdX4sytDswd/lG/NM1M7Fa4RKk1/KWFnME0J5GLSNHOuj5IA8pTC1F8H4OnW5Kt5myyk3Qd++eiw+GIUu6ErfOWoozfz2zy+vZUeHjBHckgM8CmEtEL4Zp3wXwaSKajIA4LwHwJQAQQswjojsBzEdg6XSBEELy7OcDuBFAPwAPhf+AgPjcQkSLEHAM0zv3WtmxetN2vPHuFhy2R/epOhpDzqG13U4cekozf91Tb2DWm+sw8421OG1yoB6SykTJ9XQW7CE0nd7v9f59RS0t5MVKeegcOl2EF7p7E/Tdu+d2a307GpzEQQjxNPj16UHLM5cCuJRJnwNgfyZ9O4AzXW3pSnzqmplYsnYr3rzsQ92moPPlHHpqqZPdoMrwZVsbKzkRh4ynl3W2TIk+aQvHipU6X2z3cQ7+xKGjKvD6qs1439jBXdiiAjYUHtIhlqwNwkNv6UbFpFTMtTk4h56SsHEmpZLLaVQ4h7aOKu5+YXl+7RSy3trK6/18Q23oIjeHblNIZ3H2/L+/vY5T/+8pvLpyU9c1qIAVBXEIMaAx8NNbv6W12+qUc8Vl991T2heOg4qIg8I5/GrGInz9jpfw4Nx3MtfBiZA6LVTqA9ShFsLH7fDzia3U+9iol5ZvBAC8k5NVXIHsKIhDCLnYtSi7+MMvexTH/+/jXV63K9xDT8fbT3AOjM5h1abAbn3DtuyEtWvESt1DHTqjG6klZApvrVRzE5Ryex9xiA7CqufYMj2MIiprCMFcrdzYtbsWuYb5KuqacpLz+yKOGhtDtjnLorS9rQM3/n0Je49VSIvk365AZ5zH8nA8yy9kiud5Dpb6emNUVrkhKmhDz6HgHELIHUp3iSRmLFgd7bRd1ko9oXN49NVV+NMLb+dS1lWPL8ZPHnrNO39nrZV6cj3x/Va1fFJuoewuU9Y5S9Z1q/xfcjN94WyOHRUF5xAi2q0y91Zs2JZrXRu3tuFzv/1H9Nulc+iJE7uuffKN6Dq54MXXHVWBlRvdfWPzibAtpjUrpLtpPeHqEcLvO9XCOXDP2Hb91aqIwsLbREc+nMMnQ3+B7joLQUYPqAN3p16LgnMIIYcgNxaP+MljudbV0pG0iHJxDnE8/57h/9nwRwT87OEFOOqnM5wEwqpXMCywpnp90OXxdCyfwbfmWojD0H4NTFPMjVHDsljFSr1MrrS9rSMaUzbG4ZL752fiSCUKguOHgjiEkJPVd2GpdYCt29KKU//fU4m03sg5COOPMEkATy96FwCwJmMgNVffdWbqCiHw55dWdqKE7kEt0hITkTbBVyTTlZuO1vZq5vHxtdteiKyVbHHHfvP0m/j1E4szt6kQVfmhIA4hIuLgOW5q3Xw8MHcl1mrmsi5rJRFxDj2DJMGMW6GLKkx9oi9gc95ab6+vEzu7Xzy2CLfNXprpmT1HDqipLl6Znu/mYp0yVrJ2S29YBL/1h5dwyKV/c7ble/fMxYSLHgAAPKmcjtcVu/y+Fuiyp1AQhxByvPiy+7UOr+2Mk53LWikSK/UY68Cj1nMXVDGa9dkaOvnnj7ye+Zmsdv623P5iJb98f5ijRr9PP2RrertnJSZueWtrOzZua/Mqw4QH5wZcnIs4/O7ZmKAPbIrFZz7z8eAfP4Ltbf7OqzWcBVWXKIhDCJvOgc1f4+5jK0McXBNA0o4e4xwMMqboPIrOlM05wXVS5+ADdVHN04/Ed1jUonPoDBGupdyjfzoDB/7oYc8y+EJq2c8MbCpH1z4L+botrZnMzuv55MUsKIhDiKyLfa3Dq4Mb7Y7CYs6hxkprgLpom0woY87B/gK9S92ZRq0ewtx7++qsctM5WHrXdzdtaoou/rThbofZcxYjAVVB7isCyiJCK8RKfiiIQwg5tnzHzczFa2uqh7MMcVUpekCspPaDaadFkbmh/N25etL3umcS9wTnUMu7bW3twNZW/1DpLb6n2+XQz+schMTXxBdIbiZ8v0yW/uS8rjdvb8NlD73qzW3VAwriEEIOLt8dzowaDocBYvttrm4TesJaKVm/gTiEf7OajqrF8Upd8728oHZlraacnSHWvjvdd9+LLX2+9YeXsN/3/+pdx/Y2T7GS4/5jr61yl+EoJAv9qaVfs3ADXN9f8chCXPPEG/jj88uZJ2rD0rVb+zSxqXvi8ODclTjovx7OzDnUilo4h9jPoWdgim/jewa2ba53RjSTF8o1dmxnOBtfKch1T71pz2BpexYlrQ2fv3FOKm3Ju1vw98XvOp+VYq+qEDWNX19CkUWsxGVtDX2PsoQVt2HT9jYcc/kMXPynvnumRN0Thx/9eR7Wb40tMrp6WeJEGK41ptoNO2kdal0mS9voOM/w94atfpYtvhvD7hINZxUr2RasPMVKXsTHkqWzCmkbjv3fx/GZ62YpzXD7rvgu9LWIlbJYINkU0n9+eSUemtt5Pxl5JvlTC/vuWfd1Txx0hV5XWzJUWM7Bz8+huxbLxWvew3OKL4K6SCXaQMn7l/91gVf5/mKl7nnhPENW+7S5WhV47R33GcrXKCFMaoHvZro7+jkLl1XL5+isWEmuA7PfXIfz8zofvY+jIA7aQOxysRKrc7A/Ezvo2TMuW7cV5/x2NiZc9ADefHeLMd+WlnYsDQ834vCRK59O/J7PBFwjhawuXmOuC8i+0+5uW5LuVki/smKjM8/GbW1+oSGsoTw8/Rxy6HC1jIRoJjpN0J8LqMVjO8umjiUOXSSz7ct2UXVPHNLo2s/JrUN5iZXOumE2Hl8QsLEvLdtgzPcv18/CMZfPMN7fpsmq//zSiuhaPXzFXzyUbLnrue6OfZNZrGS552r5ig3bsMCDa/jlYwsztYmDP+fQeahlXPrgq52qRB0fvo+t3uQfoqM7/Bx6u/m2D5zEgYh2IaIZRPQqEc0jon8L04cT0SNEtDD8O0x55mIiWkREC4joZCV9ChHNDe9dSeGWkoiaiOiOMH0WEU3I/1UN76f99h033RkEryr8qIPqzWpbgF9YaiYcHNo6BH737FsAgB/9eX5cR419YHKqs+fLF2r/cKI+G+5TiKUOF2E7+4bZ+Pe7XnbW0dxQduZxwdvbP2fO4YnXgw3K+i2t0S69KkSNps5+jfvy757zLrMXRBXpE/DhHNoBfFMI8T4AhwG4gIj2A3ARgEeFEBMBPBr+RnhvOoBJAE4BcBURyZF+NYDzAEwM/50Spp8LYL0QYi8AVwD4aQ7v5oVUfCDv52qrj5exu3QO5mdVdGVwzd8+k7SaEfCf7LWKlWqZw/uOGZT5maaK/0L81lq7CM2Fhavf88rnSxysn6CHdA6EIJjkQT9+JCIOAv6bCVUf0xUbBF7n0DXoy/52TuIghFgphHg+vN4M4FUA4wCcBuCmMNtNAE4Pr08DcLsQokUI8SaARQCmEdFYAIOFEDNFsBrerD0jy7oLwAlkW1G6EF39Mbldi9OUNTqIyJ5TFY/k3X1ceXlUYVNI14L9dh6c+ZnGDCfsVZTjUbl2djYWkcSzb9TmZKnCW3yS85gvEaUiDdcqyjERrs6ZEXM6h3znSx+mCREy6RxCcc9BAGYBGC2EWAkEBATAqDDbOABqtLDlYdq48FpPTzwjhGgHsBHACKb+84hoDhHNWbOma0zEulrezdr1O6qUlhiulqkOdl1NWSmhku4i1PAparE8yuJ17Bofl9VwvgCHpxa6fQhc6F6dQ1wK9wlEwDo48b+axZupu5evr/0Aru6IVtuXOQYJb+JARAMB/BHAhUII23mB3BAwDQ3ZhbZ7cYIQ1wohpgohpo4cOdLVZC/oA7kn5JFuU9bkXxNKCc6hs61KgiuulnAIOvh3ksQw+8eoRbT25Ov+C7HrG7T1Io/YhAmyZ77a64qvS5TeOAhPJ7hfzliU+G2ajy2d6OfuUEjvCMH9vIgDETUgIAy/F0L8KUxeFYqKEP6V8SSWA9hFeXw8gBVh+ngmPfEMEVUADAGwLuvL1IKUKavngmQb6Fta2jHhogdScnqAHzTepqyOtuVpktldsEVlrQW+3IyaL2+RR2+Ba6Nz6v5j0L+x84pvH9TaU10iVuoG+h2Pqd49RmzwsVYiANcDeFUI8XPl1n0Azg6vzwZwr5I+PbRA2h2B4nl2KHraTESHhWWepT0jy/okgMdEF8p3Pn7VM7jq8WCHklpMcqhVxsO5gSEOtdj1y4HmmuxJsVJ2QmHrcm4B3caEH88TtYyAUg3G2VkcqFyEpKfiX/HIhyPNCk5+XxWipt2+acxnbfIPP7pfdM1977y/m6zivZZ2LF7jZ4TQ2+AzlY4E8FkAxxPRi+G/DwH4CYCTiGghgJPC3xBCzANwJ4D5AP4C4AIhhFxFzgfwGwRK6sUAHgrTrwcwgogWAfgGQsunrkC1KvD80g34n78Ess0059B5RFFKmQW6FgVspNtzNU6pjhvs1arAI/P5IGpCCOx+8YO4jLNRRzDIdbhOdOPala6XSdP+mrBpO6f8zT7LzzpsN++8anu570sgnParZzDlx49kbkctsClSfUSkhLzGfFwKx8C2eAYBZApmkzkibYuL1KhYpNk8pPOCbN72tipO+NkTuZbdXai4MgghnoZ5xp1geOZSAJcy6XMA7M+kbwdwpqsteUBfUDZp1iWuhbpfQznlJKaitb0aeRSzCzRbgb1SeQaEr24C4D/YrbOX4nv3vMI+Kw8hunnmW+x9PZpsXjstljh4rlarN7VgcHODlho/fM4RE3Dj35c4y/nw+3fGTYb3TrUtcZ1u6IwFqzslD88TLi4nMEem3P0cSkSpvtnuGz5cL9ejPon2qoDJKlm1SOsOJ8u60TnsSNB3Deu1YHG2BfigXYfiK8fuCQAYM6Q5Sq9WRVTuj++fj6+EsVl8Q2W4xlF7ZMpqz+cakMvWJ0NmqJNEcgYDmvj9gl7yQ6+8Y2+MgpRyUimN1Tl47mVP/PkTmHDRA4mosWoXfObQXb38HhoyhGV19XFvIQwA8Poqtzgj4BxyUEgr1yVKj9VaRZCmiMDcd7B9G5U4dCZ8xm2zl+LMX//dmU+v4Ud/nudXQS9C3REHt3zffK9MhE8dEuja+zfGi+gnf/137PndBwEAzy+NRS2+S46rTe0dwiufOjm4wd6hhVdV59LmkKNSj2g05e0s8oxcCgBvvBsvgi7uiUND2T0NPnjFE7h11tJuMVHMcgaA7R2vfNQegqNSKgHMQl4LEhw4M/hs3LYNWTgHm4lqo7IB6MxJcBf/aS7+scQtTtUJ1W+fWVJznT2F+iMOjnFhW5BKRNG4Vz/+80o4isTiZJD7Z6kTiAe981CgxJqSrlw/cF79JQ+GMXkL53m0otp3arF/X/QuHl+wOvNhP+pu3WVvz93zsfJ6fdV7+O7dcxOt6ipC0dWKfolyKT9Ju36Gs941tZ4tYVRIM+k2KySVc+DyZSVe650n3xVipT4Hn7jzJpRKsajI9PHVVE5ZmF3jALRHOgc73t4QOwZxC6PutcqF4jYtqHkOdlO46s/8ZhbO+e0/Mi+65vzk5fmaRayk1nXLs3Y9xZrNLTj5iiexbJ05Ai6Hlo7uIQ6VMoU6h85/21Z1bAmRKnNba23iNvM8S6fbNjCN5bI1X1anuqmX/s16X68iixd+b0Hfa3Fn4ZoHlvsloog4mHc0gr2O07hn0mlf+f1z+NnDgUVVh4fOYcWG5ODmljud7VZ/OZWXzO1aldJeoagNdbry6ZybTxN9xEoSahe6Ahje88LbWLBqc3aRQjdtOiulgBPuTHVfvHkOfvbwgoQVnEC6zJrFSobGcfPPJlaqKBuAPJTFLi/rHSG4X90RBzdtMOcolygy0/MZYNwA8VVpBb5tAAAgAElEQVSkPTj3HfziscAXQxcHcTjiJ48587RZdA5Z9Bnc8zb8+onFxnu8KWu2mZVUcMfwpV0VC3HYsLUVP7wvViZmaVtLjRY6+ufef1z2eFE+qJRLgULa8Eo7DWxylvHI/FXROJXgyvvWH16qoYXm/uY2XrY5qYoOOdFurUfFmqC3pTtCduSN+iMOTp2D+R5RLKbwkYV6xQQBsHl7u8FmP0BHwhrHb5Bx4pR2TdiaWFRd+gyPamvx0M7DQ1ptW5JzoAR3s2ErLyfmz9gICvrwlU8nzGGztG17jbb9ep98ZtpuXs/9+l+mGO9tZfQYAedg/mYm4wQXBERu+pi8OAd1bHL58jwNEEi3uyAOfQBZfAV0lCleSEyLadVJHfjnrnjkdWO97R3qIm5unwqu6pTZbic5Bx21yK7zsbHnCyEkRV+20/F0yMn8tiauy6I/qFUJm0Verb7fkXulYlVaIRdM05yodT1raavmJhozt4HROVg2Ueriz0dl1ert5GJe+Dn0QXTGVyCpc3B/fG6BNo0524Ez6qDPMujeWrslIdJZt8V8WlZnOCqJvDZHizzPPJAQiev4lz7hTbtkzmbHJMo775b4UJkzDhrH5pHI6vglTVj1mn0V5oOaG3D/vx6VbgdDpIb1b8DXjp9oFCvd88LbKcLoi21tHbnFncpCuNS5oXNtKrFgw+ZraZ1d3DlOra+h/ohDJ+6TQhxMnvpCy5++z9cwtH+jsV5VHOQ7ZKtC4J9/Mws/eeg1rNvSissefBWvvJ0Mppsc/y6xkl/NPtzDWYfHYhIu94V3vOhVF1tngnHzCyvO0QwfPY8raF1WsdJnr58FIN2Hqk+NC5xoj3uXn//TZAwb0MgqpFvbq7jwjhdrFoX4ckw+/hym4eTyc9DFtOqrcO+lp3TGdPux11bhU9fMrPn53oL6Iw41WOVItLR3RFYPHYyx9NfveNFpo24qf2h/PQxEgA1bWzV22Vp8nA9BdNjgGYFrnnyDyWPfTSXy+tbrka+hnG8oA5t4zEeUzFp2dXS+XVnFSrPeDAIR610ywCL719vOEQeuj2MxSzp8Rmd3/S1tVa9x8OirfJyvRFt8xLch1Hmi932Sc+D0XEL77Wwai43b2lIK+r6KOiQO9vt/ftl8PnCJCJXQYonbFd6tseJZxEoDDWErJv/XIwkrI9+Jqw52kzjFZALKoSoEFq7i/RMSZXq0LeEE55G/1jp9TVlVSG6gzSOus6vt3BhRP8Wnpo5P3QcY4pCBc2BDtrD51PaYF8ZPHMy30YZ/OmQXr+9qI9z/ddokANmc4NTdfprgKfl8OAcPrknXS6zevB0H/ujhzGe091bUHXFQsff3HkqlPfDySuszRITmhrKXmSJ7IpZh2tisJVTZte+Opirci9ejr62Orn04qpOueNKjXncD5yjhB/LgHKoWRaQXGG/p9g7hXCBcVcndq/pp1a/8sQPHYdzQfulytS/X1OA/TX0txuR443QO6u+h/RtwwzlTvesHAgLr9x3MbZ262/BUW1Rw5Sc4bO1eNaG348rTyvJo/+lXPZOoc/N2/xMF+wLqjjio3zxLDBsgHnBNlZKXPJmVd5sGu6Wc7TUot3zm5tduewEbQwsmV3Z/nYM7z9y3N0bENQ8ltlrEPS/GnB/p5koKVG5K/U7SMKC9Wk15lNtrToMTK6mbANM6nlKOZhimevRcrjwgXpaJia2kfutKmTAoFfnWjCxOdTbOQYpvMymkE07aQYaLT90X9331yERASTaEjfZ7hrJxMuHl5Rtx+z+WRr+b+qAXtA071tt4IIs8dYCmcJQDrqlSO+dgWmRtO62tyiIzb4XthFa+HlvZi8Ogda5F3bWTkjtWXyKyaZvUh3hlt8Lqm+LxfDLOUjAl2juEkzio9e4xckDqPmetlFhAiP82MkU6oTVn4BzYw4444hBxDunw2uqvhlIp09GrkhPp7Gd1RiJwhM+QoefHDGnG+8cPxf7jhuD7H9kvlS8qT0u77qm0jo7DBsU8fAewXk2g/ohDhg9oktU3N/hxDp2tX0IdgI8vSO9onmMO3amK2BHJZ3feGf8PILsDXHy6XR4Kab4MXSzk08I9w0W+vVrNJFbiym5nlNrNDfGGwyRKVHe99//rUdhj5EBHq2NUGOrAfdukziEJnXPwiU8lQeFZDj6f1VZqOQztYSrIZsq6fP3WyHFRbftHDhwLwE+f0NaefVwWxKGPI8v30wev/PilEtVs6mZ6yrc4dXGR+MTV9vjytgU4utXJgd2QkXOQEzQP4vB/htDUbR3CKLogw/XZR0wAEJh/dsYnBuC/qfr9AqlXuoFy7aqUCfuPGwIAOG3yzql8Kzduw9OL1ibSOM6BFSsp9aZ0Dsq+pyEMseGLmHNwf1ebnq0UGhP4xDDT09RTC9UabD5KelLF07fEZQXVl1F/xMHxAafuNizOqz8bppQ8Baums3TZdikFvrrSLDrylWuq9fjY7MsspoipLkTetp7z41ppWpvDfJImoDraOqqeYqU4l6qQdjWtFj2N6tBm3pGL1P39dx6SyvWRK5+OziuX4HQOS9amPcPlPCCk3yPBOZQoU2iJvHQOpTBUjVkMG1/vMjxQ6kspYIKjU0WGkjgw80GvJ0swRlMZfR3OHiCiG4hoNRG9oqT9kIje1s6UlvcuJqJFRLSAiE5W0qcQ0dzw3pUUjnwiaiKiO8L0WUQ0Id9XTML2+QY1V6zHCUp5dLCjqZFzMO6E4uuZi9fymQA0MZwDh2o1bv+R1qB8Ivzf/j6TdrYHf5OTybdfJNvflSFnhvRrSCqeLVzE4986Frd+4dDEQtgZnxgAWMh4eqvOji6FtHqb+z5rmTMFdPGeEAJnXGXmLLljQtVv2FgpZSMOstWd/K6lEqHMcOgbt7Vh5cZtUX/c+sVDcdkZ70+121QmAHAuLPqju43on8rzN8P561EZ1rt9Dz7k8UYApzDpVwghJof/HgQAItoPwHQAk8JnriIiuZpdDeA8ABPDf7LMcwGsF0LsBeAKAD+t8V28YBs/5VI8UT597bPYolkJ7RXKfkvKhLI5OnEcwNy3N7rbaLk3bmiz5W6yDJ/BKt/D1i8Dmyo4YFx656oijtOTDV2123r8W8diZ8ZM1IQJOw3AEXvtlIi66+Qcami7rlxmndbCv+qa7FtVSSuvFn2T+kz/xnLm0Oy+Cmk75xCIKnW9zbGXz8Dhlz0WWSYNbKpEIiA5lkx9FRlNsNZKybR7X1wRWfJJfOHmOannnnh9TVxGvXEOQognAfB8exqnAbhdCNEihHgTwCIA04hoLIDBQoiZIujBmwGcrjxzU3h9F4ATyMxv5wDzBywrB6PPfCO9e5cTmygeiD+41342rG7x8rpBbOMaV4NCUzzdrDGLB6kNttzlEjlFU5JzEBn19F01nSbsFCiWs1orqVYyri5Uby9e4xfUL2FK3VHFbz93iDGPamIrEvftY1iFSfmaIEC6zkEpv39jJRtxIBgV0vpu3BbapEyESrmEdm3+rNdMrxPxzhxjT/YNb62Uzn/TzCX2AoHEkaF9MPCqFZ3ROXyViF4OxU5SUD8OwDIlz/IwbVx4racnnhFCtAPYCCBbeMkM8OUcJC49Y3984ajdAcRx/wOLjACvObyG9cnZVq1i+iG74EMHjEm2K9HGdCNLBoWvTWHn45QT6aMtHUPktvBwRfg0oavltEkHNIPPg5JOCc7B3jbZ9heX+XvEqiW2tFex58iB+NIH9tDySN2Wkib4ax06J+L6bpyOQOccsomVYKT4/37yPv7lEKGhTGgztF8dN1I94BpL3BG/EtyTAwxRC0zYwRiHmonD1QD2BDAZwEoAPwvTuVEkLOm2Z1IgovOIaA4RzVmzZg2XxQnXDlm/P2JAU6SHkBY5gUVGkLPZoSDWd9xVAQwb0Ihdhyft4l0sacVIHNwKOxsisZIlD8G9yMSsffqe7i+SrL/7ZpQxYivDOQgP2Yhs+otL3QfOK42I0CI9qLUpIHfApjXZ91AbwOyfonInqbhCSiP7NWQTK0liwxFWPfKwrdxyiVAppTmHqI1h8VJxDShiJcOHM4mVqlWB2YxRw6BmnjhMUYxWEuXsYNShJuIghFglhOgQQlQBXAdgWnhrOYBdlKzjAawI08cz6YlniKgCYAgMYiwhxLVCiKlCiKkjR46spenWRZOzQurfWI4W+IZKLFaS5bjOhtUDuAkhAjM9bWK4hlXMOWjlG3dWjgJ1OPrFZbpbKSmLqgbO/FYii/dvLcgalTUhVnI8JxeDlgye9urCJX1lzIszMWnxt+X0Fb5iJQkX51ApZ1dIC8GLlfRybNLjEgUbDs5XBABueXZJWIZK0O1ti8RK2ue6TfFyVqGOWzWg5v4G44yCOAAIdQgSZwCQlkz3AZgeWiDtjkDxPFsIsRLAZiI6LNQnnAXgXuWZs8PrTwJ4THThdtJ1DKiASAyEfo1ljBgQWJiMGhR4rJYUE7tGh8mbfvpaVYS7nXTDrChru6O4vHx0Drb8RO4opdL5yvdoVIkun04ZtVeR6MHDz0GVe/tCLXNIvyAshd4/0a7eIFaS+TniUCoR/vaNY+K8Rp1DkC79EiQ2bm3DL5WoouWS2aqKg9w4cbXq7bUVWyoRlq/fhj+98DY2bkufkvhM6N8R6ByCNO6sdfU6tlZKtu7dzfwJgSqh3dIai2hNG8IdjDbAKVQjotsAHAtgJyJaDuAHAI4loskIxsASAF8CACHEPCK6E8B8AO0ALhBCyJX2fASWT/0APBT+A4DrAdxCRIsQcAzT83gxE3x0DsdcPiNK69dQxrlH7Y4xQ5rxsQMDRyR1tzW4nz3ujL5zqwoReZEm2uVYJuXE0sszKhw9R6rMZ8/uwTlYYuHYNq/PMor/rkJCt5BIV64VS0y317hIPOMDAeCwPYbjS8fsiWP3GRmWY2pvDO40wEqJwC1re40aFF27vpu+e/+Pe+bifiX4ZGC+nU3nYKpRt6TyXUsXrX7PKMpROQcfr/tgjifvq8166tvH4ej/mRHmjdN1814OdUcchBCfZpKvt+S/FMClTPocAPsz6dsBnOlqR16wi5WCAbtmc+xY1K+xjEq5hNMmx6d+qbbhrlO6VIWaZLdLlH0gmZzMTGIZX1GHbJ6pOcHkcx+bWDG0L6jD/Oz1T7/p00wv1MpwqgukutA4OYdoh5+FcxColMo4bt9RUZretVy5ici8MHMOOpZ6HGuqVr9BM98sKztzH8i5wX2LBs192/a9VG7MdkYKISkKVP9yqJQIrZpcSSVauwyPLaoS31Ups7HMi0kLsVIfh1OspH3gfoy8nKDuUuz1dTA7vhLHOTBiAxUmhbRpZ9jmeVhNbBvO5ycEBMJlyirFSnox77W0d1soY+4VfCLvqmufKr/21TlkkVwJpDmNlFiJsVZS/Wmqyjhy4eMmBzhJgJD89umFM5vYLOAceMKq77iXr+ePIb31C4cmzjeZ+ca7xvqaKuUoZIjsR5ueZVBzQxT00QX1rdUSTZxDQRz6OFwKaf02RxzUSesaEKrOQeYtUXBGb6JdyvV/P/haqhyTWMlUv8nKQ0ds4cGDKDhq0zThZORQ3RFJ4ucPv+7VDhMSsWuqwhoNl2uhuqj6rHEJJzjHt42JfTJd5yYTiwxTpF6P7GpKEAd+HHUamkJa98uJAuBlKc/QbXq/fO+eV9h8R+y1U+L3OxvNZ583N5RS+jjbnBzSr4JNmg7DRPxUzkEt0yQtyEoa2jqquH32UidX7hr3XYW6Iw42VMppP4d+jBmmGvPFtVlQF9V40hNWbUoOeKelhVGsZOIc/IgDp8RTEbDtWfwckrjhmc6JjVQO6KI/vYx9vvcXY15uUfA5qjPhC+HpBNfcUIp38NoqbRP3CKTFUClZfMSRxOmqA5l0NMwaCZcDyUaF0MdNlthKHz94nJWL4iLG+mCngebz1ZsayolvBtgP/RnYVEkE5gP8Ng3qWDDFN+M2E7o/k4rfPPUmLvrTXNw5Z5kxDwB8484XreO+q1B3xMGqkGY4B24gqDoDF+egLm7xji89Gl3KT1NESaNYybCYf/ygcYnfcXl8/gFNFRClOQedo4rEXjm7iar9cuec5Zac/LfNeiiTyjnYsOfIgZB9pn9NLvid2kj97oUn7g0AOGbvUEEdNyzCF4/eI1po4rbVThzGhqFFdOMIPVR14EfgLm/M4GZc/skDQ50DL1aqNe6B7Uv0ayjH30xG+rWNQWaOm2Nc8UTmjXd5b3iu2veNMcckW7cl2CBu2p62xlKhHmDVnag/4mAZaiVGU8wpGwkx5+CytlHFSpwYQobkcHEOUmyjEwPTjt4kVuqvHVYviZdpPsn4RHq9ereUa9gVqpPveEVBm8yToTzm25o4KFNAPtUJzlZ3EEIlXZZaRtyu5LXed0P6NWC/sYPRKC2+FH2ARLlEOHT3EYnyamUcnrnoeOyuhBdR35MXK7kr6t9YjkRQAvy3qJk4hA3kvmVDmVIHTVlpA9I7fOO5Gsq1SnB2HZ4Oyhe0M532leP2woQR/dlAfllVFN0du6n+iEMGzmH6Ibuw+VQnOF08pGNLi6pIjDmHkyeNBhDErvGB6WQsk7WSSSGte1hIqyZTvzRVSiiV0gcKxaUED/qGMJCYutuwxLuYFrosSj5WIe0pXpOI/RwcGwmKjRfSzl3JvCqhFoLf71NiX8KXq3M1JQOBc0E9tzpZL6OQ9rVWoviP6ZPVurbJ5zgRIamxlaRYyVJRJrNjppivn7g3zjp8ApufG6vlEuGgXYfxuibZJk8OsLtjN9UfcbDcK2mxlXRZsIQ+oWyYuTi2tIisWwi47ONBmOFPHDzO2S4gDpmt7x5ME0F3vpPQJ4eccLaQA9zg1XeTJmslE/YeM0jjevi+zjIhuLpNHrYqVNl9xDkYypMgqJyDdk9LSJgzQ/DcqKIYdpXLKaStoiwL9GNC9f6qlP10DjKP7SS4LJ7kKmRR2zTi0KhELAB4sZI+XzjiZX6/tEh4/LB+Rl2PaSMTcJnpe8LwnU0wzemuQrbIUjsAXBEt1Yli2jGViNABvw915WOL8I0PBgHHVBPE4QMaseCSU7BpWzuue+pNdiV65qLjMai5goWrNmO3EQPw+1lLM1gr+a2qLs6hbJA5yyT5HHeG9N8X8yaIw/o3QAjhxRVk4Ry4vD7Pqwe7RAuNsGuB1OCLehU2zuGVtzfhkAmcBVzMicRiJV5cFS8q8f3D9qgtVqW+0Xln0/bEfV+iI8elXHy5vvM1ktARhSnR9EdN4XfT9XE24wnOAdX0imq/+Czkv3h0EZsehBRhys9o3+RzvGmeKDgHBXpUVrOJm7RmMZemBxkD4h2NvNVUiYOacSWNG9oPg5sbMGW34cphOnyZEvIMZF9xSkvEOfAw2rlrSZETnJK2mDnsBgjeOziMSE3lW5AlBDhXQlZRRlLnYBdPCCHw7Btrcf/LdoWhVN5Lnws1zHNUHuJv+9hrq6M69DoB3jflms9OsbbBB6+9kz5/pOSpc3gzVNJGOgem7zifk9WbtkfPmiDHuC5Wagr1dfHGJEhXuWm97Vk4B8Fc27goPcz/nO+dGD5jXyt8nSh9TnTME/VHHCz9q4uVTJ+MCy524C5DE3n2GjUQE8N/EpE4QCEc+g7c2DZJRBxipZs+H8RANHEOHz94fOK35ByeWRjv8tWjUgOxkhvyndT2mSyFSiGbrbbdGHo8w+6K21mZxG6m+cgF3jtpv9FsPiGA6dc+i79rJ/fpRY8e0hyWaZNTxZzIr59YzJYTj4HgryquyhpeWoUshXNWrFZFRsU3v0sGeNPbaf/9KI7738etJbZHxEHjHCoB0bURzZRYiREJ++i7VJGwL6QPUBCLLX0/68bFFd8sb9QdcbDxDhUtZLeJoscWGTHuveDIVL6dh/ZDf8VPgrNuIUovqhzkouWKrRSdgWyQT07WiJjcjd2h2FqrC2qJiKWSpOVt0Cxt1LJTz4aTRZ18JpFDls3SLTOXMM9nm1BJJ7hkmgrKULbM5tJhpMaAQ+eQh5hBDQXDtW9QcwM7D0xydxsnfMSeSdHXJ7SNignR+2oNlDqHtFjJXJauY0k0WgMnVuLz2b+DSecQt8lc7iX3z49+t1cDbnbeCvdpknmg7ogD942G9g+C56lyX8C8S+AWNx2tHdUoVpPEK+ERoeq8ijgHR7t11lkvM8oXNto3fAanJFRFVWXGCeqcIyZEC4ZcoBoZsZdJAVkqhWIb5bYuT47a4ph4Y4c04+iJgUftK2+nxSJZd2dJh6rgYTb6KZl3yCPD6L1xG0RYpl1MxdXB/ZbF+HrB25AWBibRr7HMEke7A57JzyF+ZszgZugBjU+eNBr3/+tRqefaO/j+kz5IkYd0lSciyUb4cw6C+cX6KDnGmKqfUuHydN+4rQ2/UWKPdVQFbv/HMnz4yqcxY8Fqe6U5oP6IA5P2v588EC99/4Opj2QSqJRCwaVtUGxv7Uh4UgPA5278R6pcXzZVZ50lvvPHuYnf8q5t4TjxfbFPAbe7/8LR8clkXHjxjx64c8pCJDomVOlhbpLe/ZUjopDn6n3d/0JCvu/y9XwAubFD4jO1Xa4WanO+bzjeVRXfyfyssteyG7z584ey9dqIA0dsTGIlSZBr4Rx++NH9knWQytkky7vjvMPCPOlByunUAFWm7+KE04vq4XuMwP7MWeVynOj505xDkG5zgiNny4BrQ/1NInRLxPWn87si35p0DpxhgQpdb9herWJBeMzwEoeeJg/UH3FgvmNTQwlD+jek5JEmii6Vh7bJvq2tw2jzzYl8hGNgl7TdkQmjBzc7A+UdtGusU+B27B89cGd886S9o3o5xWhKrBROVPlqr67clIhuq9ZdYjivIYbQ5zLLUT+dwd5Xz9bwVez5KAdVa6XhA9LhG3SuUMUYhWAFZSX/svUiPZ7094lFhiLx1xdfO2Eizjlyd60O83vI+ny4mkR5Api3Is3FJfOl5fBNhkOh5JjXv5vkHChD4D1iqIOefU9FTyjxeLhT5zaMrrNdpAGLtU0MdAW+OgeycsS1oA6JQ7pXo0mgySNtSkuXonTnof0S8lwV6kcnjbFvC1dX1VFJ1gnEg2zhqs3YosWIaVRM+2zRSM//wJ54+OvHYLcR/ROhoFXsFU6QsiMqpyQGjQrnsHTtVpz6f0/hruf4cBdSBvudu16O0lZu3M7mdYmVtrV14JlFa7F07VanPb78ZlajhIgjMpuUyjTvMzPAL26J8pidtP46kjuTi59UeHqDqV99Dz18ujQy4EUp/LvIOfRvt79obYq09lJhWlwlEdRrlAppPfCe1QmO0TnoGy7dSKS1vRoFw+Q2jHIOnH3EbmydurhawrWGcKJhGYCvG2hDHRIHJk06cKU5B/PuqFo1L1zXfHYKbvzcNKMiKiGL16yQ5MT/7OHJgaYqSqtVgZOueBJfvHlOIo/kSAj2XWWpRNh79CA0VUpGWb+cYJxsmRDvamU+yeILAXzqmpnGuoN3CYjmo6/FctN3jMTBWlS0Q7384QVOqxpf8Q4gDQ4kR5LOxy3mJuicw5c/sGe6PGbR0quV30Iq7yfvOhSdheQclq3biofnr0rcq0TEIf2c6buUHLvkOF9aDu8Kha0v4mWNeEVnk2QkwiaOTX6PSx6Yr9wzt89UbaVUYjdr8eaDB2ekcdvsZeGzXU8e6o84MH2qss+J2xaFtDCUBQAnTxqDkYOajB9dJQ76YJO7hfRh7BTttmS1ugml6mTno6wsl0rGXZYkUuoB7irk0Y39Q1FAxDkIYP1W/thFiRJDNEcN4nfBvoH8CP7nDviw+Kq1Elcqt7gZy9MU0uOGNjMZfTiHWKy0cVsbXlq2waMFjvaFzeM2E5HXM9MDpl2vrmeT0COrcmPAdcKa3kQ5RWQ/xboYtpgor946XQylmwzPfjM+0p7rp47o+/J1DmyuYEtrR6qe6JdJ51CjR3leqD/iwAzqiipWUq2VDMt7MKFEymJgghZcS1cySiI0bcLwRFlA2gKlgWGxSxQc12na+cr6ifyslWzOOeo5xSlFPRGOC4+4lMekRpyDh2dCiVlAfv3ZKbj589NS5o3+u3OBu7UzMnSI6K8H56ASBwPn4GPKKvVTso3Bs+kCOR2GXrzkcDuqVZx1w+zosJxHvn4MaoYmklFh0zmYFkLdkVRi/LDk3GB1Dhpx+P0XDk20Tf9usn1xOPvA1HNrq/kwH04cqC/4ct7LZJV75vQZ0urONB4GNwc+KHqo8Fo4h+6EkzgQ0Q1EtJqIXlHShhPRI0S0MPw7TLl3MREtIqIFRHSykj6FiOaG966kcIYQURMR3RGmzyKiCfm+ogYL56AffGILnyFE2l3+3q8ehb9ceHT0W19Apuw6DIdMGIajJu6k5EmysHLwVZgDRcrhhOLG4Ken7Yo7v3R4VK9PHBZOUfb//mkygID7OfF9o/HtU/ZlF4dffuZgzPruCfjlZw7CqfuPiaK3+mz0uYVhp4FNOGbvkRg+IKmYti3A5xwxIbpeppwqtvMQZmeOmBDadQ7xwhAvRoxozWLKqpen6zo4DodbtCYqZ0ED8SamrUMkuIaJo5P5siLggs2bJpYjs4iVuAWUM2pI6Rw04nDkXjth3zGDFHGRXldarPSrGYtwyQOvxs1kuDG9dfoOPfLVEGkuXpY3QjFSiK2p+E4ZZCAOen06bBu83qKQvhHAKVraRQAeFUJMBPBo+BtEtB+A6QAmhc9cRUTSBOFqAOcBmBj+k2WeC2C9EGIvAFcA+GmtL+MDrk/lQkxaBrOfQ7BobdbisA/p14B9lfjt+kDc3t6R8mTVq5Ber5ypoKyXWzA/sPdIjBocLIqBWMmHcwgWpFdXxpYlJ4Rmrv0bK/jN2VMxbmi/FAdFAJobyhg9uBkH7ToMV//LlKgPhRBObZmNY9F31Tbi0FCmSJyl0lJ1bXrf2Ph7iOi+jXOI85g4h5s/P4/mak4AACAASURBVI13WmOgEmCbXbsqCx/UXMHnjpyAIf2ThLKiKaSzgntKvgf3KiWrzoFvQ6mU5Ao/euDOAIBdQs5h1ndPwOPfOpY13eXPTjE76cXEIfjdURX40/N27pErx7RDl9kqChdvi99l+iyS6KXFRPbvaBMNZ43LVAucxEEI8SSAdVryaQBuCq9vAnC6kn67EKJFCPEmgEUAphHRWACDhRAzRTCjbtaekWXdBeAE0leIHMHqHJQdiPrxreZ6ADYbdgJxvng32FEVWPteK5orvLmeLlbiTs0qERll8OpCtbW1w3ggid6+qkie5cvJfX3CJ8gsyR03D1M4AQCJs4NleSbst/PgaEFRv9XE0bEp4u2hrb4K25qunyoGBO/2L4ftGv0eO6TZaMr6mUODfFd++iB8+ICxiaBrqk4oXa8i9hJ8Hsnh/sfdc1P3dOjhXGS5XL0A/y4xcUy3xUgctDk0cdRAXPPZKbjs4wcACEytJ+w0gDXdbSxzpy7GY1vPH4u9lI2JY6xyDmkmzkFmLDOcg4ooGqyhT6SIWCdCksjrusPofnewBxbUqnMYLYRYCQDhX+lVNQ6Aeubd8jBtXHitpyeeEUK0A9gIoLYQkx6wLVw2m+9kvmACmCx9onyIB9P3730Fb2/YlhIX6ZMzUkhzYqWS2TO7ls2kVAqq5bHmhMS3OVlWPKNcY5pTRkqcc+SExG/T7vzHp++P0yePi/wr1Fw/UBy9VP8JP2uluF51cbzk9AOwRxjUkEIlvV7O3B9+EJectj8A4GMH7oxf/fPB4ZgKFw8ZuZTpv9b2ahSArir4eEZSIb1kLe8QqELqhFyQY5TrEima1Nvyoz/PQ1UA+44ZlPJoLhMlzhjpqAqcPGlMimPmOIeGCqeLISPHp/ajnBuufUwgHYjL2bitDVtCHcUfvizFsklRr8rF2+aeOgenKPHJTMRB6joeeHkl21bbnO4OupF3yG7u2whLuu2ZdOFE5yEQTWHXXXflsjjBdaqk0KTdN30AObDlcxMZp5mwvdGL/CG0+U9ZIUk/hzBjpHNgOAcpVuLapRK9fccMwmuhJ6UN8j1UboQ/+c6N2MqH/3jTdh+OM8IjSnWdw4UnToyuBzfrOgdgA2P9NHHUQAQHvQS/VaVik4E7ky2zzauIc6iKKNpqRPainT/v4dtUKafOAFHFRTadgxqpNSAO6TxcYDzje3geICNDWHOLnhRNEhFGDWrC6tCp8bfPLAEAnDl1l8gfJi4vuYBmOeOACw8ebWCqIiWDV3f8pg2HzkHpG8ADf/QwgECHcEhoKJL+3mnOQW0qp3P44tG7R9eNEXGI7986aynudRz/abPU6w6eolbOYVUoKkL4V5rtLAegHp82HsCKMH08k554hogqAIYgLcYCAAghrhVCTBVCTB050m9nlCqDSZM7HT3Wu4mtq5SCM5XlQj51wjA2nxyw/3nPK9FAHqE5LsWcQ1CW3F1wnIMUK3GTYBfFGkSP7WOCZO1dXIePWEmN+8Pt9n/+qQPx6Wm7RuWpeT53xO6p/BJVIayHxMQBCc3mwTpsYcDlu25vr+KaJ99IlKea93ZUBRauSoYkN3FUuliEC/NxtGKkUBU8kT54V36ccfAVzMoNETem5FGiQKA7GNCYJLrvGzMoVY8uVjITh7RokT1cK8z3zT+8lPLrUQ//odCST8WCS05JvAOQ3ACqi68qTtW5efUdOUdKXqwUP8RxDt+9e65Td2TjcHuLQprDfQDODq/PBnCvkj49tEDaHYHieXYoetpMRIeF+oSztGdkWZ8E8JjoQg8Prmhpg61zDrZQFuqHNbWWEOy+bnn2rSjNtHBHOocoVpFZrMRVp+6QuIXlzi8dnhC3yPdQOSATfFRAsc6BF9ypVaR0O5ZRWBUCT7y+xng/Jg7u9vqIlfSAgkFa8rkSEWYsWJOKfcPVGhDg9PM6DtplaMJKhlsn+zWWcfbhu0WBIm3g2fH0e0vORu+Sk/YbnRAFlUvpxbfEBGWUY1TCpFMN3s+PcxCCN1MerIgMy4yYiitP3QCqmw5VGa4HOFQh3238sH5Kmkjc0yHncltGv4XuPtxHh48p620AZgLYh4iWE9G5AH4C4CQiWgjgpPA3hBDzANwJYD6AvwC4QAghyfv5AH6DQEm9GMBDYfr1AEYQ0SIA30Bo+dRVULt7r1EDMed7J0ZWProjksnLWHIOLhCl86Wd2+Lr+Ss24cpHF4b5eMVwVQjnATgMXcG03Yfjc0xcHcmy26AXZzs21CS/1hX9qlzaFuFTCODbSpgNifePH5J4VuUcXFE2bW8rn1V3ebroz0TMuEVfla3HwdsMi1bIdVWFzRgi4B53Gd6PvR/ns96O84EXK/37yfuk3oOzjtbb2dLegcVrYo7KbJXGObXxIk0TLf/v0w9Qng02c2rfmrz7hQgOJ7ruqTeidFXko250dMi06885BAeFHup/fmmFMT8QWztlPc/cqnPoBsGSU+cghPi04dYJhvyXAriUSZ8DYH8mfTuAM13tyA1Kn1ZKlIhPoy96JgJQLlOCcBg5B8pmcXDar542ekgH5VG4M0+WKcU1Er6ewpIDcjlz+ZSn7no56DtxH6swgJ9wwwc0on9jJVFve2Jy8+WZQj+rkG1JmAKHxckdoM2KLZ2ohleQnEM6W0zkgu9h6hK505+y6zAsW7eNzwSDiIYtMCjv8r8uSCTvrflOlEvpscwZB72uidpsVk36WOGIri2OmWrqKx1E1fYYz+oWwBlXPYMNW2NT9Lc3KH2ZEiuldQ47DWzCxFED8cLSDfjds0vx1eMnGtcBTufgg74qVuqzSAbW45SH8X2TI1nAOcT3jHJVuDmMeFeaVLhVGKshaQmiV3fm1KRXse/CIBdpJxekFWezVjKVtNuIAYm86jvYOAeuaWp2Wa+6KzMtrN/548thmR7EQSVm4d8bPzcNXzt+r0SYcBW853OcZjNlVc/rEMIsGovDnRtfISiPeZ57bZnrqYX8ed9qefo4GTe0n5NDMQ0tVudgWMw9/DlTpziaERiJqIQhnSPa6YS/Y6jrg25ZqI4r9VWkFVZWj2fbvPzo+3fOVFYtqD/ikFiUkvcIycXN9HFKRF7hkoncB7JQchxG4BXSvBOczmX4bhqlmaBrUvkUp8vlJZ773ol4/ZJTEwSgVErmsx1izy/kSlnhZaslXpXE0nWhCajlfWNOJC5vW2sgGZ2w0wB844P7eOlg1PJimbSZc0grvfnypH9Fh2PFjN7VAz5rqtxwVKsCJ08ajWH9G7DriP7OvjDNoUAXo+kcDNyyjwhFzg3Xp9E3gKY8QNwvqs5LfR252DeWS5i3YmPC+khthsmUVWLa7sPZdLV/7v/XoyJPawAYMTAdRj5v5G3K2uuhK0ZVqGaHgHlgV0pJZzTTUPOJUClbILT8Dawpa8A660WaTgxzIdI55CBW0oOVSejWWbI80y5LBzeR1fxy0VIPLXKZcdq+Ccc5mMIe+CCpcwh3ohznEKa1Rb4Fds7BJaLY2poOxc6SWbJbb+nt6xACHVVg7BC7ziOq0yhW4tJMGyJ3PVJEauMIAPNG56XvfzCVh2t6QrKgcA4fvvLpRD71DJA8xErNDaVE/9hP4ssH9cc5KNcp4qCFTTZxB946B1BKNJUWZUmxUvIe9/FlULNnFr2bSlfhK1aSnspuayWf0tKstbm8pEjBtvvkPoGaW37DLa2qWaO9fpcjJOAXm8oH6g45UmhbxEryEHnjQVNh323aZl8EfcFZIXGQY6qjKtBerbKcLYdDDLtiLvgiy1ExMadM7asKEflimKBvACXUkwj1c93ViLLqeJw+LbDaP2qvpFn9TZ+fhqlKcE0X52CSLqhDsKlSTozrDMxrzag/4pBQhCbv+XIOuvzVHL44LS/Vv2nMOSTNFzlTVsk66wep1Mo5SDNBt59DmsPiygI8RRQEvOgZbpqzpFLrj3a0VfW7dp5z6PDgDFV855R92XTVEdIuVgoSn31jbeJ3un3BN1u3xR4W3XftaKqUU+EjOHPrWCcS6Kh8dq5nHb4bPmKQjXNzgz2ru8Qv5r/93CHJfASveGLcuRlAUjSrcvM61DTpBa3roD6wd5JYRKasBiJgWmdUot1U0TiHbqAO9UcclGtWrKT8tpmyJu4ZlW7ZduXqgsArYnkFt6478TZUkcpNT72IqyzALc8F/IkXYO4HW9v0pHOP2j1ZpoU6RB7XykLjUtgfPXEnnH9s+gAf2b7YCc7cZrkXOP/3z4ft4PuIQjGLFHWpznPJjNYmR2iqlNDS3oFDlR3+n84/gmmfwjl0CFbsqWOk5aQ6TpfAe+enOYxHv/kBHLfPqERaichL4WviHNS6dT+HpIe0oiuT3JRjzDcYA+8FaDUQNZEgDmWWY+5K1B9xUL7DEXvpEytp8WBaRMraxDANDc7PwdYudVHfe3Q6JIfJIiPliJSJc8h+FjEn0zfpHEz1+oIjNuqRoiYLFxWHGkQbHOQiofZJ1v5RoYbZkEpkffwEaTr3ZyovELN0VAU+PW0X3HLuoWw+3/AZAXGoYp8xsemqqviM6o0U0vDmHGzDUOoSmhvivuAV0un5xRVbIvLyI+DKS2cK/kii1F/xDD950phEnUBy8yCj0Kqw6RyG9W/ANsP5E+rrNFSSZ7l7myp3AnWnkJZD45rPTsFJ7xuduBN0fvwBTQokX3krl0ufMHGQL31HbBYr6dAnla81jZRfuxRlLjNHIF6MfNZRtX3DGG/fx775AbyyYhO+dtsLbpEXGycw+f56GW4FfFIE4OaszP2t7nxlPzcYrHJUmBZf+c06qnz8JQnuce61mypltLRVPcyog78dItA5NDW4lw5XvwhRTRAx3kPaz+S1VAJa2z3FShl1bB1C4IyDxuGK8KyTqL2KBZeEHlUYUM/hCMaRevb7kH4NrPEAEI/Twc0VNFfKUX92A10I6umeanoP5LjYdXj/dJA0QNM58IuCPjhtXqBZGubKbhIrpUMYyL/2EqX82udIUYlzj9od+45JHy4Tmf8pffHJKeNT+YDkIqDLZwFgj5EDo6M0XQs5HyJBT0mW4aNj6cjAOdh6WeUcYusWN+fAOUHK8mSbbN+XG3ucrL2pIRArqWOdq1t10vPlHKzEqySNMOxt5kxPeZ2Xn1hJP9ALCOJ+aVkAKOFWqgYjAsWCS2L1pvRZ6LKv5Dyb9IO/RvcGNTdEptI65Nh/7FvHBgr3KIYTmz131B3nIPvVOBCV36YNtT55TN8qi0mpzjmYyuMGRlokQVH6Vf98cCIoX7o8EU2qI/a0R0ovlwj/+ZH92Huy6W8p4aTV07IS9Spro2l3GZ+r4NrlcXLqJNQiFq1+z7nzaq8KPPTKO4nf9jbY2ycfl2aqplP+VHAEBFBMbTuqduLgKVZqKAdiJVXHwh1RW46OKBVor4rEHHjf2MH4xMFBxN1bv3AoPvObWWFbzfVy1kqsQprSolRTmBKfM5c14QAA4IOKqAiI31+KqQJimC5L9f0Y3FzBpu3t2MBYkcnowdwwGtyvEoUM1yE3KHJsrHUYIeSNuuUcuMlTKZUSu2gT56APYrMpq1+atH5y0ZJgt+UvVioT4eRJY7DfzoNTzwT5ggErT5+74ZxD2HwSPp7Flz4YH9FoOjBeXdBN72wLfqZi/3Hpd9MXD3VSfvq6Z61RXjnII1BNsH22tzdswx+fD8K1t0diJT4cuwoX59DWIay6Je7WYbuniX85NAFVCSBvRh387RCBQlrN89C/HY0vHL1H6lnXeK4K3iw58R6wn+MQP+vngcwd9tOsjdPmhjJGDGjEstCRsEOYOSVpCizFSSYTY9nPOvo1lFEVvH4z8qjvLjmShvojDuHQ4AaYboVkMo3Td342hbQP2qsCVz2+2DkIZPwYLl2FnMimBUZtnxQr9W8so7mBPwfhv06bBMC+UHOvyu1A9faadriR5zMz4Q8Mg+4BvAmp3hZVnLJmcwtO/b+n2DpN+Oj7x1rve39nSzh2ffGx6RyAwA8jq1jpuH1HpdJkQD2XX0d0TrP0czBYK6nvZteJUIpbNpn46uumKUyJF3FAeoPFcWmD+zVgS2sHXnl7I9ZsbrE4JQaL+LgwSqse3NL2HkB89gg3ryXB6CHaUIfEIeIc0qiUS14mjHKgyI/2bS2CpURWa7ONDsemrGIlH2IjRMCu2giJaZFXwfWV6TnVGsZmlQMAb69PBpc754gJ+P0X46M/uTp0gtNZGa1r8ff9zJJDM4VjV2EyepBNqQqXTsmvVTKgnssoQdb1ytsbsXjNFmP7VEssW79JfZfaTFOgPF0nZvKufoeR93PlqW9q4m5LFCzOH/lF4Pls6mt5xkpzQxkH7To0OiaWK4/j+mX93PyZGfq8+My/rkChc1DQUKZILgzY/RyCvyV8+P1jsctwXqZvC23Nts2pKOUHmD5u5cLq4hxKBLzx7hbnedPs0aEaOIsLbhEEgDGDY6chU3fIdN3Za9fh/RMWIT6mrJ05HkRyTTZk5hwMoVFUmHbmviEURg/2O/BJijRdJteyLumHYYI65mzDT/rYuHquRMAqbdHn5tWCVe6TD4Nnk/PM1E/lEnk5Vsp8ptP71Oe5PpbnSHAip8deWx3V0ROoQ84hIg+pe5VSKTFwjtyLV9DKj9XqUgrm/E2N1ko1cg6+zWsw7K5UcCy9aRfFHayig4u2CnCmwOln08SBrcILJsLvaoOOaug8BvgppM07VfXaXPGXP8A75aXK08wsjfm0ukwWNgmdg7W84Lu4Ps1jr63GJu14VA//O2vkXFXMaBt/qqjHtMEoh/mqVbt/UTnk+hOhwRHPBZvRg2uT11WoO+IgweoclEl72uSd8Y2TeHGRms/24bhbPiyiKUojZ+EBpAelrNfNOfgNukYPvw6p7JQBx3582qTozAVbvS6FtG6Bko5Ay8ufVdhiKT30b0en0tSjJb3OsnDmCE4dk1wpbw2U/G0iaGp7bN+3yYOgA/HYaWmzEwedWL1u2KknOAfrxomi8OQ2cOIuE1clceD4IbhVET0m6oU9+KZEuZQMrmnyYpYmpq6IsIHxh8CRP3kskS7FSjav/SxRgPNE3REHm85BFYMcMG6IVc4oYecc0vdMtv8+CEJdp9NNgfdcC5vvoPMhaKUS4eiJO0UiKJMsN6jX3Qb5SrplUZOmNGeVmNpv2wKkHjUpoSq8TbvB3yqWXbZuPHlS4GhZFSJagLmFW+8Hn8B/rsXXB7KMlnaeE4jyaeWZQoInrZUs7YOM65WdrXNFALjwxL1TZ0erFatVmorSAxKaOCuZL4hwYNkolnjnO8kx9PSRoBzqjzhE1kq8WCm+Nn9o33x6FReeONG6aLpQIsIaJuqkaTft8uT25VZ921wiwvZwkbERlIQpqyOPzjmkHaLceh3bvOMmrGq9YtqkHrfvKBwcHhNp8ymYutvwsA0iInTSQkWFvuC9+x5v05532GZZxkvLN3rlkzD1qTo3XH4OQvhF8U096xiONq5J/1ZWsVLCctHsENtRDd7D1i6TpaH0QSqIQy+A3VpJmXiWxU2dKLo8VIVuz95Zq4MSUcID80cfm4S/X3R8yhRPNs+1w/IVK/m2u0TxuQo2guIjNzeZsnLsvV6EvihlPW4xqVS1Kxm5+rm2CcS7c27x0hffDx0wJpUnqJNvZ63wjcOlD4GvHb8Xn0+ZQzaiKQ98qmVNdBFFnbtUQWSPzKzWoS7YJmuucikQCXV4KKT1d33+P09Cv0azKWtPo1OrFREtIaK5RPQiEc0J04YT0SNEtDD8O0zJfzERLSKiBUR0spI+JSxnERFdSV0oZIuIA6dzUBZzq3JJGVFPLzLHHVKJzan7j8HnDTbQviiVCNuUQ20qZWIdtGT7XJPIt5f9iQNhe1t8OpaxXo82yInWpnEOcreuQp9XqeGTcd6p/WbrQymSsROH4KaoBiKyxnKJFQepZZxzxATjYTolT8Lliyxnf0iMGdyMb3zQoI/ztVYKY07ZZO1AYJ1mawsHO+dgj8wskToW1UREpELaJVaiNJc6fEAjG3K+tyAPzuE4IcRkIcTU8PdFAB4VQkwE8Gj4G0S0H4DpACYBOAXAVUQkSfzVAM4DMDH8d0oO7WIR2yqlP6S6ntnFSvE92yKo5vvhxyZFu4RaobvgGz2zyZc4+C0MvspNtTwr56C0y3YAPZDkHF778SmYtPMQNj8Q7Lb/8OXDU+ldxzkEf6075IhzELj68cXGyKG+nsVqeBKTqXAW+DIfvgSz7Nl3RMCydducoUl++ZmDrHVwUCO9cvUmdQ4G4qB5NBs53FAhLYSw9qV0NpSQYeTVmFUqOmN+nRe6Qqx0GoCbwuubAJyupN8uhGgRQrwJYBGAaUQ0FsBgIcRMEfTIzcozuUN2Om8CqQxszwlgm6AJ2XUOu7w31iT9EVxHMLoWf9+FIYtYSWJQc1rRK6FW+8j8VXweKVZSOAeTB/f7QwXyiAFNOGRC2tLLNs04S6ayp9y87MM5hH9dG0OVU7WNlaOU8xtM8ZeywFdvobbP9kzFk8j5hti2BbwzgdPpRG1CrBcLyufzpf0cLPmEj59DUnTULxzLJuLQmTDxeaGzo0sAeJiIniOi88K00UKIlQAQ/pU+++MALFOeXR6mjQuv9fQUiOg8IppDRHPWrFnDZfFqsAm+ZoKVBHHw4xyyKA/PNFg06RYihxsC5cnJ46rRK4ol/Heoav9NGOH2D7AhIg4ebZT9XIuCltv1NznOGJCIdQ5u0ZMzPIWnOGb3EbEVTh46B99Ni9oPtnq9rZW0Ww9+LW1SbGqfSxTGnWSn1qs6bNo4AtVSzmQ+K8VP1ap7HKhKbbn4R8H7tI2e79zsSnSWOBwphDgYwKkALiCiYyx5uZ4TlvR0ohDXCiGmCiGmjhyZDvXsBYvOIaEo9ZA1A3bxSUPZbweq4t4LjsSZU3dx5rvvq0dir1Hp0Nlq+1xWHeu2xOE6xg8zB5fz5hyUbKZdPuAbviAUK4UT9Pqzp7L51LymhfyMg9i9Bs4/dk/sMjz93g2JhdqDOBhzmK2uTGW56lRFk3mEVdD7bJRhYU3ETPK05HOJWVSYgkPWQvBtY48ouUs3iRzLBMxbsSn6ffGH+GNg5dnVVQ+xUlsiNI/0lpebB404hGdTfN8QBbk70KnRJYRYEf5dDeBuANMArApFRQj/rg6zLwegrnrjAawI08cz6V0Cmylr7pyD54S647zYYYdTwEmoEUi5Q0UkZLiBV97eZMwDJAnkTZ+fZsxXi87B90AkV3A+uageMN6sa3ARh+aGMqbuNiyV/u2T92HHQYOnODAW3xmzRITDHbtIecZSoLrw+XBVEofvYecyAeD4fUfhb9/8AJvP13zbW+egXlsXVfO9WqCbqJqkN/pY2slw5KkafsTOZSa/V8Q5GBTSMi8XneDhr9v24PmhZuJARAOIaJC8BvBBAK8AuA/A2WG2swHcG17fB2A6ETUR0e4IFM+zQ9HTZiI6LLRSOkt5JnfYTFnVQWob2OogsCmkGzytnxIe15ZF9fTJ8Q54xAAz6/zcW+uN91QkdAQWYpPFWil6xifGAWBUMMvHo0liKU/eyhrKxLQIq7J8H+Wrbf2SffL9e1+x5NI5B3M+VdlqCmGh42dnHojbzuM9hluUBWv8sH4YbNAV+UZb9dU5qH1v2+jkHa5a51RNxfuK2wLOIVjsbTog/byJ6KwGKVbS6PwP75sXtFfpd/ntTd8ob3Qm8N5oAHeHH7kC4FYhxF+I6B8A7iSicwEsBXAmAAgh5hHRnQDmA2gHcIEQQo7u8wHcCKAfgIfCf10CW+A98uYc/BaPLOGLJXx1GIP7WSaU58D2sdoA/GIrBfXKsvwn9SWn728oK8k52IimT6BB38NvgKSOxUc0YlsUZLe6jlr1FSupRNLXosU2HNQjUG1jucGTYJYSxMHNdQF24uDrh+ELfTNnC5/hgxIFfg5tHVX2+NcoX4mw4J045IjkHOSY1f0cHpi7EkCy35sqZWxvq3rFlsoDNRMHIcQbAA5k0tcCOMHwzKUALmXS5wDgV4mcYTvsR/229gngV5ePpy2QJDY24iDbVCI/JagLVQ9nIMAvKmtQRlCIL9cABOfj2sqSxMHucZ18hs/k3aSkWMlDIZ01vhYHdby98e575vKUfL4WLbZ+GaAszL4bE3+PefM99fSzL4YHBfFldC3nYCre9x2ltVJ7h3BsYJAIKd7RkVRIqweLtRkIdnNDCRu3dZ9PRP15SFsO+/ENTeAK/CXhq9j0tyEP6h3anz9+M8rnOZ/UQWbfNfoVKF/RV99w9MSdnLGVWjuSijsOksbZOQd/+IrRfJwN9U3IvxvO/lDHx4at9nM9JHyJg+19Tj0gPsjI90wPXx2Urd4H58bHsH4+tPnnkPcuWd/omDY+M15bzabreHn5Rjy+YA3e2bQdcyziXH3+y28XO8HF95YoIfTV82WmHxJEOR5g4bTyRP0RB4vOwZdzUO/ZIn4mZNeexMEGWVw/izUG4L/bUhcXu9mhL4sd5OPOdlAhv8GEEYbgaIh3VC2hR7itjyQHlJd8WiVuNtFNRAwz6DqGe5yr7TseTFZYOmy74IFNFZz4vsDa3Pc9bNZAvvX6Iu+zDNQ2jRzUhCv+aTKbzxYWxwTdD0mFPockp8D5OajGC2OHxqHHLzxxIl79r1O6TedQf8RBXjh0DrbdkTpgv3bCRGM+X2slf+JQCttpz1eLWCmPSZg1iJrLSQoIJkqlRF6HJOUV917dTdpeSYq8ypbtrd5uU3nq5sGXcxk9mD+zQIfvIu1SqEblebbPJ98gg1iRqzcPqH3x49MmeZ3XkQd0gw+5/nPEQfrEXHjiRByxZ+z0SESdjrKQBXV3EpycnbzOIU4znUUQ5Iuv1Y+nw1f27ruo+Tp7+a6RqoWE65lPHDwex+1r9y0xnbldC1Sxki0cAhAvuFmsle7+yhHGvMfuE7+nTXLz3vgnAAAAEBVJREFUcOjd/V6LWQykN8m0UKvV5L5bdizSktPrb1l41Lnx1/nvGPMl6vUgSrece6j1ft7EYUCj/RTBrsIo7cQ56RAnP00yPHhwfdCuafPr7kTdcg4uJzjbjsZXH+Qre/e2jIgU0vb8vuV1JBTS9md+9qkD8ZH372zNk9Wr07Yrz2IWK0V7WWT/tok3tH8j9h0TOBj6cEO28aB3q4kjVf1b8oiZpMK1SL/7XhAGfpSFE1Gt41xdMrR/IPbw4YAm75IOpKgib0KpimlsZR8wzuxXo2IcE/iSgx5OJtI5hGNbDUDY7qFn6w7UH3Gw6BxUGbyN3fS1FvD9tL4TQA4Wp1jJc0ekDsg8dlEuR6+oXqkj8BArAW4i66WQVm6ZHJpUfOfUfTGkXwN2s4QBueC4PRP1c9D71SSvV9NtYqpa4FIgb2kJOAeT5Rhg56R1yP6wcSxHGEK/pOv1E6OYjqTVMbRfrPOxzTubR76KH34sPmPcdm63/g06NIV0e0KslDRz7SnUnVgpDryX7nhfkbncGbnga03iOwiis6FzYofV9uUxEDs8Ti8D4p22rx28K8Dc2i3BwTg2XUt7ghC623jcPqPw0g8+aM0jFeo2owT9HY/Z2yyGlLDZy9cCF+cgiXUe4TiS9Zrf47efO8TLic9X+X3p6fvj1llLnfkSZ7ZY+tlkOKBD7bIblNMBdejEIY6tFPyWxOKFpeuxZO2WsK09u3evP+IQ/uWGha9T0U4DmzD7P06weikD/mKWrJyDK/tx+4zCUwvfxW2Gc3Ql5KJwzwVH5mLp4ytuk/3sE9QOcBOuN0PTPzWctQ7VOzVL2AkbojbaxErh3xEDGrHnqIHWiKESXz9p7843ToHLuq0j407VpcPYtD3QwQyzmFw3VcpefaFj+iF83LFajry1zU9/J7g4n40jlQR6xIBGrN3Sio+EJsSRh3Q4J8646u/RMwXn0M2wHfaTxbdk1CC3pYivglYOEJflxvCBwWRzeft+7sgJOP2gcc7dj87adha+1kqyXtvYpwTn4KlDsXxANcKmKwieLzxoQ8KZz9fKJ28LGpdoRnabq58bKyW0tldx+Znvt+a7/uypuOeFFRjhIb7LgmcvPsEquvGB+g1s/kIqsbnqnw825lOJyEjL+0rOYezQZsz67gnRc6bAe4D/uO8q1B9xCP9yC2zeR/Ud7SFCUNviGgr7jR2MiaMG4qwjdrOXR+TFFlcthLIW+HafrNd+GIy/QlrCttNqVWL4t+REHHzeV75Ga0c1t8l+zN4jscdOZh8RHS59gSTqLufOxnJAHKYyZ2aoOH7f0Th+39He7fNFY6XkzSGY0KCIug72tAY6eRJ/ZCugncNhGX+Sc+io8ue8cCfi5S3my4r6Iw4WjXTepy95s81hW1yej80NZTzyDT5qZi2QAzKvRctXUV+16H04+K4HNlHAlN2GYXHopJRX+AF5aIxNLq6a5Pp61rtwsyWCLgeXKXDVQ8ynoqfEHXlYLtWy4Po6xNog1wKdCJgO+8lSdleh7qyVJHixUvfELNExpF8DLjp1X9zq0BHkDelsk7dY6dYv2G3XY52DX7l5HCn+Y0OAv85AKlTti2/QdiHyN1H1hav/sm4SemrRyqP/shKHY/a2+/b4nAYIxJyDfuiTbA+n//BVxncV6pBzCP7yCun86/vnQ3f12ml9+QN75l+5A5F4J6fJHvuQ2MuT8yBvJyQbQ1CL8tOFMUMCvdM+o/lDl4CkXqWnxQQmxKbA+Tpt5g0fouQiIL56HwB4/ZJT3Q6n4X3Xt5U6B32MSmOBbW0diZPiAKA5h/AjnUH9EQfLYT9dEezw0jMOyL/QnJC3QtrHCgnILlbyRXdzfh8+YCxGfLEJh+1hlsGr7+hq348+NgkPvLwyt/bNvPj/t3fvwVaVZRzHv79zAUUQL3EUIeAUiCKawskrXgODasIJm7xyUmfURgtratLKmslp0qacVJohCgjLsmmyCclyzFEZy1JJvCDgtckL42US5CYC8/THehfszr6tfc46e611eD4ze84673732uvZ79773e+71vu+ZyW6KCJuMdT70o/LN+01FpKqV3mt+e7MuvsY3NbC8H3buejE+uMikozwjj87Sde17tl9FE+HsfX9XbvHm8S85dBktVoO8Yd3fMfQ5h1QhuL3c1rdBElPcO/+kkn4tG9t2p4oX71zCSOGDU68ryQkVV3HO1Ya4/Kn1jP/gup5u08eR/fJ49I5OGDk8GSjd4cMauOdrTsSt+Sy6gmv935JMu9QS4tY9e0Zqf0w6XnVUdXnDXf3XAd+cFsLLYq6KO9f+0bZfVnKZzu3H9WaPiP+0poypvaQ/oFiUXcXl03rrLl+dCMODdMvJL10MmmLZeO22lNYn3VENKvo56pcAx9b8bUzEz1fmpo5f09vxV+q7+2sPSjt8tOirs+sftGm9YWeZot19xK1dbqzNlR5D0ti3/ZWtu3Yxesbtv3ffT4IrslmTT6Uww+pPBgpySWWA8n4jmFcn+IC5t+fczQfO7Kj6tKfsV0pd0/UGplaKv4STDofTipKQixdAzxPFlw0lZ+teIkPj6jdYp43fQLzplefhbi/fGXG4WW/uPNi95oedb4zap3r2PL+LhY9/HKqx5WGva5yGHvwfoytso5APNnWGRM7mnlIA8b++7TzmSmjE+WL/iZ7+33ymJH1MyX0wFfP4MCE05+kofSHxl1fOKVpz9uI8R1Duenc2gPbslRrWvysxQNXt+2o3eo657hRvL15O+cnnANq+Ren9fnY+io3lYOkmcAtQCvwczO7sdnHMHnUcNbeMDPzE0ED3WXTOhkyqJULTqg9mC929qT0BlR1NjB4LA2lvyfTWPzG5UvHsGhUdHzlWjWtLeKKBFckHjN6OMuuzr5igJycc5DUCvwEmAVMAs6XlF5/RwO8Yuh/g9pa6D55XN0T4VefOR7Ycy6jiOIYk04B7YqlrbWFX1zyUe6oM7YnqZmTq4/Gbra8tByOB14ws5cAJN0JzAaezfSoXKbmTZ/A8Z0HccKHkk3vnEfxNCb1Jr9zxdXXbuh92lt4b0c0xqGp58PqyEvlMAp4peT/V4F0qmJXWO2tLXVHqObdEYcO45rpE5iT4FyM2zutvWEWAM++/i5Hjqw+oLLZ8lI5VBywXJZJuhy4HGDMmGQndpzLkiSumZ7uFNxuYJp0WL6uZsvFOQeilkLpReqjgdd7ZjKzhWbWZWZdI0YU+xelc87lWV4qh8eACZI6JQ0CzgOWZXxMzjm318pFt5KZ7ZR0NXAv0aWsi81sdcaH5Zxze61cVA4AZnYPcE/Wx+Gccy4/3UrOOedyxCsH55xzZbxycM45V8YrB+ecc2VkGa2b3FeSNgHrKtw1BvhPgl0MBzbmOJ/HkZ98AyEG8Djyli+rOI4ys/rzdJhZIW/A41XS30r4+IU5z+dx5CTfQIjB48hlvqziSPS8A7FbaUPCfHfnPJ/HkZ98AyEG8Djyli+rOBI9b5G7lR43s66k6UXjceTHQIgBPI68ySqOpM9b5JbDwgbTi8bjyI+BEAN4HHmTVRyJnrewLQfnnHP9p8gtB+ecc/2kEJWDpMWS3pT0TEnaRyQ9IulpSXdL2j+kD5K0JKQ/KemMksdMDekvSLpVUu11KvMZw4OS1klaFW59W4aq8Tg+KOkBSWskrZY0L6QfJOk+Sc+HvweWPOa68Jqvk/TxkvRMyiPlGDIrj0bjkHRwyL9Z0vwe+8rys5FmHEUqjxmSVobXfaWks0r2lVl57Jbkkqasb8BpwBTgmZK0x4DTw/alwA1h+ypgSdjuAFYCLeH/R4GTiBYX+jMwq4AxPAh0ZVgWI4EpYXsY8BzRut8/AK4N6dcCN4XtScCTwGCgE3gRaM2yPFKOIbPy6EUc+wHTgCuB+T32leVnI804ilQexwGHhe3JwGt5KI/4VoiWg5mtAP7bI3kisCJs3wfMCduTgPvD494kumyrS9JIYH8ze8SiV/924Jz+PvZYGjE04TDrMrP1ZvavsL0JWEO0zOtsYGnItpQ9r+1s4E4z225mLwMvAMdnWR5pxdCMY62l0TjMbIuZPQy8V7qfHHw2Uokja72I4wkzixc1Ww3sI2lw1uURK0TlUMUzwKfD9mfZs5Lck8BsSW2SOoGp4b5RRCvOxV4NaVlqNIbYktBkvj6T5mYgaRzRr59/AoeY2XqIPiRELR6ovD74KHJSHn2MIZZ5eSSMo5pclAX0OY5YEctjDvCEmW0nJ+VR5MrhUuAqSSuJmnDvh/TFRC/m48CPgb8DO0m4TnWTNRoDwIVmdjRwarhd3NQjDiQNBX4PXGNm79bKWiHNaqQ3TQoxQA7Ko4E4qu6iQlrTPxspxAEFLA9JRwE3AVfESRWyNb08Cls5mNlaMzvbzKYCvyHqB8bMdprZl83sWDObDRwAPE/0ZTu6ZBcV16lupl7EgJm9Fv5uAn5NBt0bktqJ3vx3mNldIfmN0ByOuyneDOnV1gfPtDxSiiHz8mgwjmoy/2ykFEfhykPSaOAPwFwzezEkZ14eUODKIb4KQVIL8C1gQfh/iKT9wvYMYKeZPRuac5sknRiamnOBP2Zz9JFGYwjdTB8I6e3Ap4i6ppp5zAIWAWvM7OaSu5YB3WG7mz2v7TLgvNCX2glMAB7NsjzSiiHr8uhFHBVl/dlIK46ilYekA4A/AdeZ2d/izFmXx27NPgPemxvRr+r1wA6iWvUyYB7R1QDPATeyZ0DfOKLZWtcAfwXGluyni+jN8iIwP35MUWIgukpjJfAU0QmsWwhXzTQxjmlETdyngFXh9gngYKKT6M+HvweVPOab4TVfR8lVF1mVR1oxZF0evYzj30QXRmwO78NJOfhspBJH0cqD6AfhlpK8q4COrMsjvvkIaeecc2UK263knHOu/3jl4JxzroxXDs4558p45eCcc66MVw7OOefKeOXgXD+QdKWkuQ3kH6eSGXudy1pb1gfg3EAjqc3MFmR9HM71hVcOzlUQJk77C9HEaccRDVScCxwJ3AwMBd4GPm9m6yU9SDQH1inAMknDgM1m9kNJxxKNfh9CNKjpUjN7R9JUonm0tgIPNy865+rzbiXnqpsILDSzY4B3idbZuA0416L5sBYD3yvJf4CZnW5mP+qxn9uBr4f9PA18J6QvAb5kZif1ZxDO9Ya3HJyr7hXbM+fNr4BvEC3Kcl+YCbqVaEqU2G977kDScKJK46GQtBT4XYX0XwKz0g/Bud7xysG56nrOLbMJWF3jl/6WBvatCvt3Lje8W8m56sZIiiuC84F/ACPiNEntYS7+qsxsI/COpFND0sXAQ2a2AdgoaVpIvzD9w3eu97zl4Fx1a4BuST8lmlHzNuBe4NbQLdRGtBjT6jr76QYWSBoCvARcEtIvARZL2hr261xu+KyszlUQrlZabmaTMz4U5zLh3UrOOefKeMvBOedcGW85OOecK+OVg3POuTJeOTjnnCvjlYNzzrkyXjk455wr45WDc865Mv8DLVLY4SHWUVQAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'].plot()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmYI1d97/09VaUqrd1q9TLT092zL97GY+PBG9jYMdiYQAwvkBhyg8l1XhNCtpvkTSDvDSHve50ANwmB3EBilgBOgDjAxQ6bYxvwgtcZe+wZL7Mv3dM905tarbVKpTr3j6pTKu1qtVoqSefzPPNMd7VKXaqWzu98fyuhlILD4XA4HCdCuy+Aw+FwOO6DGwcOh8PhlMCNA4fD4XBK4MaBw+FwOCVw48DhcDicErhx4HA4HE4J3DhwOBwOpwRuHDgcDodTAjcOHA6HwylBavcFNMrQ0BDdvHlzuy+Dw+FwOor9+/fPU0qHaz2uY43D5s2bsW/fvnZfBofD4XQUhJDT9TyOu5U4HA6HUwI3DhwOh8MpgRsHDofD4ZTAjQOHw+FwSuDGgcPhcDglcOPA4XA4nBK4ceBwOBxOCdw4cHqOh185j5lYut2XweG4Gm4cOD0FpRQf/tf9+Nenz7T7UjgcV8ONA6enyOYosjmKhKq3+1I4HFfDjQOnp1D1HAAgk821+Uo4HHfDjQOnp9B0AwCQ5saBw6kKNw6cnkK1jANXDhxOdbhx4PQUqq0cjDZfCYfjbrhx4PQUdsxB48qBw6kGNw6cnkK1FENG58aBw6kGNw6cnsJ2K3HlwOFUhRsHTk/B3Eo8W4nDqU5N40AImSCE/JQQ8ioh5GVCyO9ZxyOEkIcIIUet/wcc53yMEHKMEHKYEHKL4/gVhJCD1s8+Rwgh1nGFEPJv1vFnCCGbm/9SORyHW4kbBw6nKvUoBx3AH1JKLwRwNYCPEEIuAvBRAI9QSncAeMT6HtbPbgdwMYC3Avg8IUS0nusLAO4CsMP691br+J0AopTS7QA+A+BTTXhtHE4J+VRWnq3E4VSjpnGglM5QSp+3vo4DeBXAGIDbAHzNetjXALzT+vo2AN+ilKqU0pMAjgG4khAyCqCPUvoUpZQC+HrROey5vg3gJqYqOJxm4nQrmW9DDodTjhXFHCx3z+UAngGwjlI6A5gGBMCI9bAxAJOO06asY2PW18XHC86hlOoAYgAGV3JtHE49MOWQM8weSxwOpzx1GwdCSBDAdwD8PqV0udpDyxyjVY5XO6f4Gu4ihOwjhOybm5urdckcTgmsfQbA01k5nGrUZRwIIR6YhuFfKaXftQ6ft1xFsP6ftY5PAZhwnD4OYNo6Pl7meME5hBAJQD+AxeLroJTeQyndSyndOzw8XM+lczgFqA6DwAvhOJzK1JOtRAB8GcCrlNK/dfzoAQB3WF/fAeB+x/HbrQykLTADz89arqc4IeRq6zk/UHQOe673APgJ5Q5hzhqgOgLRPJ2Vw6mMVMdj3gDg1wAcJIQcsI79KYBPAriPEHIngDMA3gsAlNKXCSH3AXgFZqbTRyil7FP4YQBfBeAD8CPrH2Aan3sJIcdgKobbV/m6OJyyqDo3DhxOPdQ0DpTSJ1A+JgAAN1U4524Ad5c5vg/AJWWOZ2AZFw5nLSlwK/F0Vg6nIrxCmtNTFCiHOmMOqp4rCGRzOL0ANw6cnsIZc6i3SvoP7nsR/+2+A7UfyOF0EfXEHDicrsHpVqo35nBiLglF4vsoTm/B3/GcnkLVDcjWQl+vcoilNO5W4vQc3DhwegpVN9Dv8wCoXznE0llouULj8Mr0MnIGz7bmdC/cOLiclKbjxr/+GZ46vtDuS+kKVD2HMDMOdQSkszkDSa0wIH1wKoa3fe5xPPLq+TW7Tg6n3XDj4HLOL6s4OZ/EobOxdl9KV6DpBsJ+0ziodbiKYumsfR7jwZfPAQBmYpk1uEIOxx1w4+BykqoOIL9IcVaHqhsIKBJEgdSlHJZSlnFwuJUethQD+xmH041w4+ByuHFoLmrWgFcS4ZWEumIO7L6r1mMnF1N47VwcABBNaWt3oRxOm+HGweWkrN1tOePw7f1TOL2QbPUldTSqnoPiEeCTxTqNg2kAmHJgcQavR8ASNw6cLoYbB5eTsJTDUpFxeO3cMv7o31/EN549047L6lhU3YAiCfB6xLpSWZlRzuYoDIPimZOL2BjxY8dIqORvwuF0E7wIzuVUcit9/anTAIBoku9eV4JpHMS6jYMzrqDlDCRUHYNBGUFFQpTHHDhdDFcOLidpuZWWHcZhOZPF9144CwB8gVohajYHWRLg84h1BaSdRlnLGVCzpvIY8MvcrcTparhxcDnllMMDB6aR0nIYCipcOawQ5lbyecS6urIWGAfdQEbPwesREfZ7eLYSp6vhxsHlJLW8cWDzj07NJ+GXRVy1JcIzZlaAnjOgGxSKJELx1JmtlCo0Dkw5hP0yljNZXiXN6Vq4cXA5TDnkDGoHp+MZHSGvxHevK4RlHCkephxW5lZSHcphwO8BpTzFmNO9cOPgclJqfgFjC1FC1RHyeky/dzoLg+9e64JVOStS7VTWY7NxTC6mCjKSCpWDWWXNlRunW+HZSi6HqQXANA7jA2ZAOqiYyiFnUMQzOvqtxYpTGdU2DiK8UnXl8DvfPIABvwexdBayKEDLGUUxBxkAr5LmdC9cObgcFnMAipWDhAFrgeK71/pgg35s5VAhW4lSijMLSTx/JoqFhIrhkAIA0HI5s8LaI9r3nmcscboVbhxcTlI1s5KAfHCUxRwiAW4c6uX+A2cxtZQCYMYcvFWylZbTOpJaDpmsgWgqaxsHFnMwU1mZW4krB053wo2Dy0mqOsbCXgAO5ZDRbbcSwF0bAPDd56fwxcdOlP1ZQtXxe986gC8/fhKA5VbymK6ictlGZ5fSBd+PWMYhqeZAKUy3ko8rB053w42Dy0lpOWwI+wDkjUM8k7UD0gBXDgDw/Zdm8K3nyrcSiWfM+8Ya5imSgIBshtucMR3GtGUcBGJ+P9JnGgdWiKhIAkJeCQLhhpnTvXDj4HISqo6RkAJRIIilzbz6pJZDUMnHHBZ5IRyyOcNuUlhMImMaAKYIFEmwDe7ZaLrk8dMx89i124YAAMNBU7ktW0ZG8YgQBIKwX+aGmdO1cOPgclKajoAiod/nwVI6a+90Q16pK3evL0/H8GffO7Ti4jJNN+yakGKK1YHiEbEx4gcAnFlMlTz+7FIasiTglovXAcgrh7hlZBRrBnXY+ptwON0INw4uRtVzyOYoAoqEsM9Mq3QaB0EgGHDsXlOajodf6ezRlT87PId7nz6Nl6dXNvmOKQdWRe6kxDhIAiYipnKYipYah+mlDDb0e/G23aP45b3jeP3mAQB5t5LXIwKAVYTIlQOnO+HGwcUkrQK4gCyiz+fBcjpru0iCihmMdlZJ//PPT+E3vr4Ps8udO76S1SI8cWx+RedlcxS6QQsmtjGKFYUsCej3eRBSJEw6lMM//PQYvv/SNM5GU9gQ9mEwqODT79lju++KlcOAX0Y0yZUDpzvhxsHFsEWNuZVi6awdXA15zYDqgF+2Yw6PHpkDkPeNF/PZh4/isw8fXevLXhWqbhrEJ48trOi8rGUUnBXljETRMUUSQAjBRMRf4Fb62pOn8OkfH8bZpbQdkwBMYwLk7ytTDuxvwuF0I9w4uBhWAFdgHCyDEbSMAwuKJlQdz5+OAihdDBmPHZ3DY0fnWnDljcNaXDx3arGu3kf2eZZxKJd9lCgylopkLu4TER8mHQHpeEbHmcUUzi+rGKtiHJhyUDyirXQ4nG6DGwcXY7uVFAkDfg8Wk5rt2uizlYPpVnr6+AJ0K4hbKTCr5wx7Z+5W2GKr6gaePxOt+zxbOZTJWGIzMdiCr3jMt/3GiB+TiylQSpHNGQW9lgqMg2g+nt17phwUSYDm8vvJ4TQKNw4uxnYrySJGwz7EMzrOWWmWLOYQCchYTGm2Swkov3sGAC1H7RYSbkXNGgj7PRAFgkdena37vKxuGUat9LXHMzpkUcDOdUEA+Z3/RMQPVTcwF1fte81qG5xuJUIIZFEoqHMATCPDlQOnW+HGwcWkHG4ltpNlhVws5jAcUqDpBu59+jS2DgUKzismmzNcv5ipeg6RgIxf3D2Kf3n6dEHAuBrVYg5JVUfQK2HLUBCiQGwlMDFgprNORlO2KnjHng0IyKJtSBiyJJQqB9E0DuUypDicTocbBxeTsLOVJIwNWMZhJg5CAL9sLlC/etUm/PV79+DX37AZf3LrBQXnAcDzZ6I4ct40KNkOcSspkoiP3noBCAE++aPX6jqPxRzKKYeEqiOgiLjzui34+/ddDkJMeTDhqHVg8YRbLxnFwU/cgpE+b8FzKJLgCEjnYw7O383hdBPcOLiYfLaSiHHLOBybTSCoSPYC55NFvOeKcfz5Oy7GdTuGCs4DgD/73iH8zX8eBgBk9U5QDoZdwXznG7fgBwdnMBdXa56XjzlUMA6yqb7etnvUPs7u6eRiuiCWIzDfkgNZEpDNmQqBBbSZe8nt95TDaQRuHFwIpRQ/eGkG8wlzUQwoEoYCCmTJbBbX5y0/u8HnEUFIoXFIaTk7SNsZMYecvejuGAkByPdGqgZbuJMV3ErMDefE6xExFFQwE8sbh2CZxwH5jCXzPEs5MOPg8nvK4TQCH/bjQo7NJvCRbzwPr0eAKBA7L3887MOJ+SSCSvk/GyEEAVkqWCDVbM5OD2VuJUqprTzchqob6POZxs9nuc4q9Uxi5Axqt9sol6mVUHW7vXkxgwGzTiShsvqR8oaXxSkAp3IQrWt2t6uOw2kErhxcCCtqy2QNBGTRXshZ3KHcLpgRUMSCBTKjG7bLJZszYFDYKa9uRNUNeyH2WT79auM8gbxLCcinrTpJqHpFgzoQ8CCazNrKodK9ZcrBIxKIltuJpcRq3K3E6UK4cWgjL00t4cq7Hy6ZH8CqbiWBIOBY1JiPvJLrAzBdUAmH313N5uyAKVtE3ewjV/WcveiyoHuliW0Mp3FIlS2Cq2wcIgEZC0m1buPA1IL5NY85cLoX7lZqI1954iRm4yqOnI8XFF0x4/BX/9duSGLe/cMeU2mhA2C5lRzGQTeQ1alV6GUqBjWbw1JKg6ob2DYcrPRUbUHNGvaiW69bib0uoLxySFZRDpGAjGgqi+VMFrIkFCz+Ttg1sXgDkDcY3DhwupGayoEQ8hVCyCwh5JDj2CcIIWcJIQesf29z/OxjhJBjhJDDhJBbHMevIIQctH72OWL5SgghCiHk36zjzxBCNjf3JbqTaFLDDw+ds792smztYm++aD3edfm4fTzvVirvFwdMtxLL9ddzht2MzrmAqrqBv/zhq/jtb7zQnBfTRLScYS/QzK1Uq41GgXIoylYyrPkXgUrGwS9jKaVhOZ1FqIrRlYviDM6v1RW0+eBwOoV63EpfBfDWMsc/Qym9zPr3QwAghFwE4HYAF1vnfJ4Qwj5NXwBwF4Ad1j/2nHcCiFJKtwP4DIBPNfhaOorvvnDW9lUXD+uJpbMgpNTFMW4VbVWLOQQVya6QZjtazRF3YMeXUlmcXki6roDLma3kt6a11VIOTp9/cbYSq3uoHHOQYVBgKpquel9ZHETxOAPTXDlwupeaxoFS+hiAxTqf7zYA36KUqpTSkwCOAbiSEDIKoI9S+hQ1V6OvA3in45yvWV9/G8BNxK2pNE3k3/dNYs94PySBYKFYOaSzCCql+fbMrVRth+uXJXtBtI1Drtg45JDOmimuUZcNClJ1w16A826l8hXfjGrKgRmLSnEalsV0eiFVVZEpZWMOLFuJGwdO97GagPRvE0JestxOA9axMQCTjsdMWcfGrK+LjxecQynVAcQADJb7hYSQuwgh+wgh++bm3N1dtBqn5pN47Vwcv3TZGAYCcqlbKZ1Fv690oVrf58VvvHEL3mJNKCtHQMnHHFiKZTZnFFTxqlnDDvKWG5PZLiildoU0sBK3kiPmUBSQZimqFd1KlnE4u1RDOZSJOTAjxlNZOd1Io8bhCwC2AbgMwAyAv7GOl9vx0yrHq51TepDSeyileymle4eHh1d2xS7iwZfNWMPNF63DYEAuVQ6ZbNlCN0Eg+O9vvwgXrO+r+NxBRbR3y5ms062Uv6WaowPp2aX6ehe1AmbA2C5dlgRIAqkjIG2eJ4tCSUCatRKppLbYIJ+cQasG+m23klTqVuKprJxupCHjQCk9TynNUUoNAF8EcKX1oykAE46HjgOYto6PlzlecA4hRALQj/rdWB3Jgy+fwyVjfZiI+K1pYqUxh3LKoR4CioR0NoecQQuUQ1YvVA5swZ1ykXJg7hnnAuyTxdoxB8s49Ps9JamsbHJeJeUwGMwXx1V1K3mYcuBuJU5v0JBxsGIIjHcBYJlMDwC43cpA2gIz8PwspXQGQJwQcrUVT/gAgPsd59xhff0eAD+hbouSNpHzyxk8f2YJt1y0HgAQCcplA9J9vsayjANWEDep6XZbh2yOFixgqp5Dxo3GwbpexbEA+zxibbeS9drCPk8Z5VAjIO13GofaysFbrs6BZytxupCaKxAh5JsAbgAwRAiZAvDnAG4ghFwG0/1zCsCHAIBS+jIh5D4ArwDQAXyEUso+OR+GmfnkA/Aj6x8AfBnAvYSQYzAVw+3NeGFuZb81re2GXSMAUN6tlNZXpRwA0/fuXFSdgdpM1kDKdiu5yDhYSsepHPx1KAfmMhvwyzi1kCz4WbKGcfB6RPt39NURc1B4nQOnR6hpHCil7ytz+MtVHn83gLvLHN8H4JIyxzMA3lvrOroFFghmi/+AX0YsnYWeMyBZu9NYunzMoR4CirmzTaq5gkXLucAmVd3uReQq5VDWrSTVHXPo93uQzVFoumEv3Am1ekM9wAxKp7R01cfYAWleIc3pEXj7jBbDFjKPZMbhmc+bpZRquhksblQ5BB3KQS3I/88rh2jKVCoCAc5G3ROQtt1KktOtJNR0K7GYQ9i6Z06VlHC0Pa8Ey1iqFnMopxwk0WyMyLOVON0INw4thi1kHkslsIWJxR3YQJl+f2PGgRWOmcbBoRYcC+aS1Z5jY8SP5Yxu/852Y7uVPE63klR3nUPYumfOMakJVYdHJBXbYgD5uENdMQdP4fMoksBbdnO6Em4cWgxLe2Q70Yi/yDhYC3ejbiWmHBKqbqeyAoWVw0uWcthuzUtwS62DViFbKV1j8c0bB/Ne/seLM/jKEycB1OeiG6xDObAgufPa2Pd8EhynG+HGocWw4CnbiUaChcaBNd1rPCCdb1ZXoBwcu+kly4W1w5qT7BbjUDbm4BGRrqUcdPOesnv2Px98DZ995CgA4Hwsg3VFIz+LGbCMQ7U6B6WichC5cuB0Jbwra4thu+NSt5I59Y0Zh0ZTWZ3KoaDnkCOoy2IOWwYDAIDZOsZwtoK8ccgvwPVkK2lFbiWDmvcxqeqYiWUw2l/dOLC/QV3ZSsXKwSPwmAOnK+HKocVkcwZEIT8wZsB2K5lGgXVkbVQ5+J2prDWUA5sPwcaRtptyqaymW6m+bCV2L5kqm4mlMRNLYzRc3ThsHgxAlgQMh5SKj8kHpAuVgywKPFuJ05Vw49BitJwBj2NGg0cU0OeVSpVDgzEHv4elsuoF7g6nccirEw/6vBIW3GIcymYriXUP+9k6HMCudSH8/lt2AACOzyURTWUx2u+rdjpuvWQ9nvjjG+2YRTnKtc8AmHLoDuPw1PEFfOOZM+2+jI6kG+t2uXFoMZpjDCZjMKhg0drNLzsW7kYQBIKALCKpFdY5MLcSIXm3kk8WMRRSMJ/Qyj5Xq7HdSgXZSqI5k6LMAvzi5BJenFyy4ziDAQUP/rfrcdtlZk/H562Cw1puJUEgGKkRl8g33isTc+gSt9I3nj2Dz1mxGk59ZLI5/Oa9+/H+Lz7T7ktpOjzm0GKyuXyBFmMwIOOxI3P4zENHsJTSIEtCySK0EvxWZ1bW8hpwVArLEuLW1z6PiKGA4nK3kvkWTWdzJfftj7/9Evp9HlyzzWziyxTZupACgeSr0dfXMA71oFSKOXRRKmuxK5JTnZxB8aF79+PRI3NV41WdClcOLUbTDTsYzfiTWy/ApeP9+OwjR3Hv06cbjjcwQl4J8UxxKmtppbBfFjEUkl1kHMq7lYDSOdKxVBaHz8exnMkia7nq2BgQSRSwvs+Ll87GAAAbariV6mG03wdJIJiwBi4xuimVNVHUcoVTnVeml/HokTmMhX1YzuS7DnQL3Di0mHLK4fWbI7j3zqvwqXfvhkGrZ83UQ7/Pg1g6W7YIzpmu6fWIGAwoJb2d2gXbgctFvZWA0iE++8+YjXuTmm4Zh8J7uiHss11RzVAOGwf9OPQXt+CiDYXt0rsplTVp1cZ0o/98LWB9vK7fOQQgH8vrFrpPC7kcrcxCxviV12+ELAl23n6j9Hk9iKY09Ps9EAWCnEHtudJMOQjE3PUOBRUspbJlF9hWo+o5eMR8JheQnwZXnLH03CnTZZRUc8jmaMm1j4Z9wOkoBvyeVbnonJR7nm5KZU06xss26551M2cWzdYzl46H8c1nJ7GU0uy06G6AG4cWo+m0JCDt5F2Xj1f8Wb30+zw4tZDESDaHkFfCUiqLhKpDIPmduM8jghCCoZD5Zl5IaE3ZYa8G5xQ4RiW30n7bOOjQyqixDVb6aq1MpdWiSN2TrWTPHs9y41APp+aTGAkpdsKD20burhbuVmox2ZwBj7S2tz3vVjLsfkEpLQePKORHcFpGYjBg5va7Ie6g6rmSgK+/jHJQ9RwOTC1ZTe8MZLRcicFl87ZrZSqtFrkLjUOtuhKOyenFFDYN+u0U6FjaHe7ZZsGNQ4sxU1nLTUZtHv0+D5bTWaS1HEKKGdxOajpkUbAXX2Ychi3l4AbjoOlGiXHwyfl2IIxDZ5eh6Qau2GiOLo+mtILaESAfhK5VALdazJhD5y+mes6wExh4ULo+ziyksDESsLsBR5NcOXBWQbmAdLPp80kwqNmvicUYKAU8ksM4eAqVw0Ibax1i6SwOTsVMt5Kntlvp1ZllAMDVWyMATDlfLiANcLdSvTjbq/B01tpksjmcW85g86Dfrsxf6rKANDcOLaZaQLpZsFTY2bhakPnkbF3N6geGQu13K33tyVN49z8+ieV0toxbKV/nwDhyPo6gImH7OrOr7FJKK7mnW4cDuHJzBNdaNRBrhSKZRXqdnsborKDPdEn21VrCgtEbB/0IeSUIBIilusutxAPSLaZcnUOzYcYhoerwyxIIsZSDKNjVxz7r/4AswusR2mocllJZaLqBI+cTGAoWZnuUcysdPhfHznVBBK0OtNFUFv1FrS+8HhH3/eY1a3zl+WpuTTcKig47jULjwJVDLU4vmMZh02AAgkDQ7/PwgDRndbTGrZQvovN6BDtYWxBzsNw1hBCz1qGNbiXmxji7lC65N3m3krl4UUpx5Hwcu9aHELBUxXImu+ZxnErkR4V29oKa4MZhRZy2ahw2D5pFkWG/zN1KnNWh5Up7KzUbZ9M+RRLt3+fMVmLuGsB0Lc21UTk4F6PiVFZZEiAJxHYrzSVURFNZ7FwXQkBxxFPaVKPBrrfT4w7OYVDcrVSb0wsp9HklO1Op3+exh2h1C9w4tJhsjTqHZuBsv6FIgr0b90jE3uk689iHg3JblYOzwrg45gCYriXmVjpyLgEA2LUuVFDt3T7jYCmHDl9Qncqh01XQWvPqzDK+98JZ7B7vt48N+D12K/xugRuHFqPlDHikNU5l9TvdSqK9cDpjDn6Hfzzsl+1Ore3AGWx2dmRlONt2Hz4fBwDsXJ9XDkD7jIPcJW4lHnPIc/+Bs/i7h4/gyePzJT9bzmTxwX9+FgFFwqffs8c+brqVuks58IB0i8m2ICAdlM3sCYMWKYcyRXCAGZSuNW1tLanmVgKAgCI5lEMcgwEZQ0GloN+SvMYGtxL5mEP3KIdedyv9/99/1U7QeOQP34Rtw0H7Z69OL+P8sop7fu0Ku9ASMKcQLq1xncM/PXocz52K4kt37F3T38PgyqHFlGv10GwEgdhBacUj2AVizoC0063kV6SaA3XWkkLjUHpvzFGh5uJ1dDaO7SPmh9XnEcHaMLXNreTpjpgDD0ibqHoO8wkV1+0wm+mdsbKSGKyBZfH8j7BPRlzV7cFTa8GBySXsP724Zs9fDDcOLYRS2pKANJAPSns9ImRrNy6JpKxbye8RoeWMsgN1WkEmm6+MLmccArJkL15Lqaw9zpMQYmcstT3m0AVuJdbwsJeVw7lYBgBw5WazwHI6li74eTxT2t0YyM8vX8vOrPGMjuWM3rKuudw4tJCcQVuWWcOC0ook2GmeBW6lIuUAlDa3axWZbA4XrDcL2oorpAEgoOTdXglVL/hgsrhD+41DZy+oSeu+ekTS0xXS00umcbh0IgxRIJixvmewrK5KxmEtg9LxTBY5g7as9xU3DmvMd5+fsts9sKEwa+1WApzGQbR/X7neSoAZcwCAVFZHO8hkc9g2EsSwo8OlEzbZDjCNgzMQ7bcK4dpX52C5lTp8t51QcwgqEryS2NNupRlLKYwP+LAupJQoh4RqLv5Bb7FxqNx875f+1xP49v6pVV8bm+DI1Mtaw43DGnJsNo4/uO9FfPJHrwGAPaeh1cohn61EyioHZiicue6tJKMb8MsifvpHN+AD12wu+XlAFpFUczAMipSWKzAOwXYrB0/3uJUCigjF0+vGwVQKG/p9GA37SpRDwvqM+IsU7oC/fPO9tJbDS1MxPH8muuprY0YhnmlNyiw3Dk1iOZOFUdRf5x8fPQEA+PmxeSyltJYqhz6fuWiaMYfSVFancWB+++Jpa60ireXglUQEFalg0A8joEhIarpjml3pta91G/RKsPhRx7uVNFOReT1CT8ccppfSCPs98MkiRvu9tpJgJDKm+00oep+GfeW7Gy9aKeJzcfO4YVDMxVXMxguNTj0woxBLc+XQMWSyObzhkz/Bv++ftI9NL6XxvRfO4sotEegGxX++fD5vHFrgAukrpxwkAbvH+nHHNZtwpdXRFMi7ZtqRzkopRUbPVe1LFJBNtxJTNgEXxRzCfg8EAkxF07Uf7GJYLMfHlYPdyXdD2IeZWKYgAMwUVjGjYS/Gwj58/aljVJzsAAAgAElEQVTTBU0Yo9YIXmY03vWFJ/H6ux/GtX/1E8RWEJ/IOlqqc+XQQURTGuIZHQcmY/axHx6cgW5Q/PV79mB8wIcfHJxB1tpdttSt5BEKYg5ej4i/uO2SghYb/jYqBy1ngNLyIzgZAcVsQc4+YIUB6fbGHEJeDy4dD+Pxo3Nt+f3NIqnqCMgSvD1uHKaX0tjQz6YIeqHqBhYdM9aLEyIYHlHAn9x6AV6ZWcZ3ns/HF1hx6XxChaYbeGlqCUNBGbpBV1Q054wz8JhDB7FsybyT8wn72FIqC4EAExEffnH3KH5+bN5+o7Q8IO2IOZQj0MaYA9sNlUthZTADwKR5QHaPcgCA63cO48XJpRXtBN1GUs1xtxIs5VA0YpbFIYDKxgEA3nHpKC6bCOPvf3LUPsYMy3xcw/nlDCgFdlmZeSupiXCqhWWuHDoHltt8aj5fMMPeRIQQ7Fofgm5QO02uFQvZlsEAPCLBcEgpaLxXjnamsrJdajXlwJTN+WXz/rkpIA0Ab9o5BIMCTxwrbbfQKcQzWQQV0VQOHR5cb5SUpiOWzjrcSqaRmF7KuwwTql6SqcQghOBNO4cxuZiGbi38LLU1nc3h+Jy5edwYCQBYWZyKK4cOhRmHc8sZ2zWTUHWELNcNW8BYcKoVRXDXbh/Cvv/3LVjX57V7OVU0DtbCnGyDW4kZB18V48AC0LPxMm6lNgekAWDPeBghr4THjnSma4lSiqSVBaZIYs8qB7Z521CkHM4t55UDc79Vgs0jYbMdnC6pQ2dNt/Mmq813Nld/MVuhceDKoWNYdlRFMvWQyOQDV2ynsZhonVsJyDfgk0Wx6u9tZ0CaLUT1KAeW4eEMCLY75gAAkijgjduHOlY5qLqBnEFtt1I3zMRuBJaZxIzCYECGLAq20QDMRbqScgCAwaA1djdpbmScDS1fmrKMQ8Q0DivpSFDgVuLZSp2Ds2T+5Lw5BMTpmwwpVg609UZptQskrxzKL6CyaM5MaEdAOu9Wqh1zOL9cLiDdfrcSAOwYCWImlu7IcaGsNUlQ6e2ANGudwQoxBYFgfVE6a1KrHHMAgEjAVA6sBX6xcgjIov2YlRkH828kEK4cOgqncTi14DAOzK3ElEOytcqBodSIORBC4LMKzVpNug63EjMAzK3kplRWxnBIgUELF4NOgVWf2wHpDq/ZaBS2ADvnoQwFZftvSim16xwqwdxKLLNuKZXFRMRUItOxDEbDPvvz30hAen2f1z0xB0LIVwghs4SQQ45jEULIQ4SQo9b/A46ffYwQcowQcpgQcovj+BWEkIPWzz5HCCHWcYUQ8m/W8WcIIZub+xLXnuVMFiFFwro+BSfmnMrBcisphcah0g5+rfDUMA6A6btvp3Io11OJwXy8s8sZEFLYNJDdYzcYByCfUdVJsIVsMCD3dPsM9v53TkkMeT2221jVDeiW+60SgwHzfcA+64tJDduGgyDWR3603+uYAbJy5bAh7HNVttJXAby16NhHATxCKd0B4BHrexBCLgJwO4CLrXM+Twhhn+QvALgLwA7rH3vOOwFEKaXbAXwGwKcafTHtIpbOos/nwebBQF45OHYYoWLl0OKFzFnnUAm/0p6ZDvmYQzW3knn/5uIqArKZAWb/zPogt2ueA2PI8jW3c9xqo7BUzdGw13YrPXdqEf/06PE2X1lrSWo5eERSoOz7fB57YWbut1CVmEO/zwNRILZbKZrSMBRUELF6L432e+3P4YqUg6pDkQREArJ7lAOl9DEAxU3EbwPwNevrrwF4p+P4tyilKqX0JIBjAK4khIwC6KOUPkXNcsOvF53DnuvbAG4izk9/B7Cc1tHn82DrcKAo5pCvUpYE0ja3Ur5CuvJt9bdp4E99qazmz8xdW+HjLh0P4/1XbcQVGyPlTm0ZTDnMd6ByYP2DRvt98HoEGBT46pOn8DcPHWlZe2g3kFL1AtUAmIaA7dRt91uVbCVBIBjwywUB6Yg1nAoA1vfn3UorDUiHvB6EvB73GIcKrKOUzgCA9f+IdXwMwKTjcVPWsTHr6+LjBedQSnUAMQCDDV5XW1hOZ9HvkzAW9mExqSGTzZmBK2uHQQhB0CvZqaytdoE4eytVwi9LBaMiW0U9qayKJNg9l4olvU8W8Zfv2l0wGrUddLJymI6lEZBF9Hkl20gfPheHphttnRDYapJazi4IZZjGobAbarVsJcCMOywkNKS1HDJZAwN+2d48jPZ77c/hymIOOkJeCX0+qSA7ci1p9ipVbmtKqxyvdk7pkxNyFyFkHyFk39yce3LKY+ks+n0eDFhZCFPRNCgtbBAXVCR7p9Bq5VCrCA4wq6Rb1SfeST3KwRzqUxi/cRsBRYJfFl2lHCYXU3Zvn2rMLGWwvt8LQoj9d2AKuBMD7I2S0nS7IJTR5/VA0w1zw+fI6qrGYFDGQlKzN4ORgMcOVDtjDloDxiHk9SCh6SVNPteCRlep85arCNb/s9bxKQATjseNA5i2jo+XOV5wDiFEAtCPUjcWAIBSeg+ldC+ldO/w8HCDl958ljNZ9Hk9GLSMw5lF84PF3Erm1/k3VLuUQ9WYQ7uUg1475gDkFUM1Sd9uhoKKq5TDr3/1OXz6wddqPm5mOYMN1jxkZhxYSm4vGYekWqoc+iyVEM/oBSm/1RgMKFhIqLZhDvvzbqXRfp/9+V+5W0lCn1cCpUCiBckjja5SDwC4w/r6DgD3O47fbmUgbYEZeH7Wcj3FCSFXW/GEDxSdw57rPQB+QjvM0WkrByvoxObOOuWnM4jV6oB0PdlK7Yo5sJYdXqmycgDyxqGWpG8nwyHFNdlKlFJMRVOYi9ejHNJ2bn+xkV5M9Y5xSGmlMQfW3Xg5k7WNQ7VsJcCsdVhIaHZdUyQgY+OgH7IoYEPYa/cRW7FyUDx2w8xWuJZqftIIId8EcAOAIULIFIA/B/BJAPcRQu4EcAbAewGAUvoyIeQ+AK8A0AF8hFLKVpwPw8x88gH4kfUPAL4M4F5CyDGYiuH2pryyFpHNmX7ZPp8Hg0GmHMyimVCZHkBAG9xKdsyhckA6oEjtCUjrOciSUNIfvxi3u5UA09fM3DHtJmX5u2upQU03MJdQ7argYiNdj1uqW0iqOWwIF8auQmWUQ7VsJcB8H8RV3S6qG/DL+JXXT+DabUMIeT22KmPDv+oh71bKX89aU/OTRil9X4Uf3VTh8XcDuLvM8X0ALilzPAPLuHQizIL3+zyIWDnOzK1U0CDOsvgCQdmBNmvJ+j4vCMln1JTDJ4ttqXNQswa8dRhLtqMr10vfLQyHFDx7sqxHtOWwVMpa/bJYp9C8cii8v73kViqnHFh/tHgmW1AsWA3WQuOY1WhvwO+BIonYPhIEYH7+RYFAy9W/GXNmK5nfu9etxLFg1dF9Pgn9Pg8IAc4sWm4ll3QP3T3ej/3//S3YOhys+JiALCKbo3jy2Dy+9PiJll1bJpurGoxm2DEHFyuH4aAX0VR2RVkoawWLfdRSDqyp3KgdczDfn4MBuSD9uhcwmw8WxxyYG0dHIqObRZg13q8s9rjvVBSiQAoqrhkekdTdeC9nmI0RWbaSeT1r71bixmGVLDtK7kUrx5kZh1CZmEOrXUoM1s+lEj5rx/S5nxzF3/znkVZcEgCzfUZ9xsFyK7k5IB0q7KvTThZs41B+d3pmIYUr734YDxww80I2FCmHzUMBDATkgsZx3U6lOgfA3Lkn1BwCcumI0GKYcth/Oopf2rMBUpkNoSwKdQekne4sWzmo3Di4npjDrQSYEpJV/ZZTDq0ORtcL8+m/cGYJ6WyuZbvfTDZXtcaBkXcrudc4DAfd00JjwdrxV1IOTxybx2xcxb1PnwZQqhw2DfoR8cuuMHStwDAoUtky2UoFAelsXTEvphwEAvz2L2wv+xhZEuoOSLO+Sq6LOXCqw+Qdk5+DAQXH58rEHJT2KodasPxu1u8lkdHtuo21JJM1aqaxAijpU+VGhliVtAvSWW3loOmglKK46cALZ6L21yFFsu+rYgWkN0UCmF5K94xyyOg5UIqSOoeALFqdUHVrWl7tjcxQSAEhwDv2bMC2Cq7clSgH5+z0iF/GwU/c3JKUbvd+0jqEYuXA3DeyJBQYApaC2e4GcZUo9qMuZ7ItMQ7pbK5q0z0GVw4rY97a8RvUNMC+oh3xgcklvGnnMM7FMpAcWWzr+ry46YIR3HThCI6cj+O1c8stve52YS/ARfeJEIKgYlYlxx2dlqsRVCT88wdfj8smwhUf45GEutU5KxT1yyIEgdiupbXGvZ+0DoCNFQTy8pMtqKGiRSxkB6Td2TbKX7QjalX/FjWbQ9hf2wgF7YC0u7OVgMLJYe3CqV4Sql5gHJYzWRybS+Dtl27A+66cKKiMlyUBX/7g6wEAAwGPPdGs2ynXkZXBmu+dj2Xs9tu1uGHXSNWfr0Q5sL9PrVqgZsONQ4MsZ7K46u5HoOUMyJJgB/KYv7F4hxu0A9LuXNyKZWqz2gJ/Z/8UZuMqPnzDtoLjU9EUTi+k6nYr+TvAreT1iBgOKZiKpmo/eI1xxgqSql6QxvzSZAyUApdvDGOkz1vxOSJ+MyCdM2jL069bTd51U/r5DHk9WEpncWohiet3DjXl93nE+pWDbRzk1q4d7vRxdABzcRXpbA5bhwJ4+6Wj9nHmVipexPIBaXd+yFjn061D5vDzZo0ifODF6bKpsV/42XH8+j8/h8WUVle2EpPSrZLUjTIx4MPkYrr2A9eYhaQKyVrQE0VB6QOTZrxhTxW3B2CqYEoLh1l1K9WUQ8gr4ehsHKpuYLP1+VgtsiTUPc8ho9VuTrkWcOPQIAnL7fLRWy/A3/7yZfZx2zgUVVGGXB5zYIvutdvNhrjNGkWYzuawkNRKgrTnYhloOQNzcbUuufzmC0fwl+/ajZ3rKtdquIGJiN9OZW4nCwkN4wOmC6S48v35M0vYOhwom3/vhL2Xe6HWIalVVg59Xo9t8Lc00TjUHXPQuXHoKCo14YpUiDmwJnxuzVZa3+/FZ2+/DL/5JtP9s9ykmAMLph05Fy84fj6e98sXB0vL4ZclvP+qjSVZN25jY8SPmVi6rYVwOYNiMaVhwhpk70xnTWk6fn5sHtdtr+0eYe/lXshYSqlVYg6Ojd7WoeZsTlYUc9BYc0puHDqCSr3dIzViDm5VDgBw22VjWG/5oJulHNiu9fD5IuOwnFcSSh0xh05hYsAPg+YH6LSDxaQGSs1aBaDQrfTYkTmouoFbLllf83lYI8leqHWwlUOFgDRg7tzX9VVuQbMSTOVQX4V0PXPW14Lu+VS2GLtqUSmU5pXcSn6PCELcqxwYkiggIItNizmwrqtHHMZBzxlYSKj2B63VWRhrybiVzTLZxqA0m0K2KWK6QJzK4ceHzmHA78GVm2tPzusp5cBiDmUD0uZnefNQoGnK1SOSupWDPfNEbu3a4e6VysUkrJ11JeVQ7FYSBIKgLLm2QtqJOYqwOcqBvbEPO9xKC0kNBgXe/TpzxEdfDd93J7HRcuW0M+7AdvobLeXAdsWabuCRV2fx5gvXlW3pUMxgUIZAgOml9gfY15p8nUP5gDQAbBnyN+33yZK4ojoHgbS+u4J78wJdTr63e+FOw+sR8aHrt+Lmi0tle5/P0xEulD6f1LQ6h5StHBJ2pe55qw7g8o0DuO9D1+CC0VBTfpcbGO33QRIIJttoHFjwf2NRzOGFM1HEVR1vuWhdXc/DOokePBtbmwt1ESnNbKpXLq2adT9oVjAaMJVDvdlKac1sMdPqeBs3Dg2SUM05BEoZl8jH3nZh2XM++e7dWFclr9wthLyeptQ5UEqRzuYwFJQxn9AwHctgLOyz4w3r+hRcOl49nbLTEAWCDWEfJqPt222z7KJ1feZISmYcWHFete68xVw6HsZPX5st24Kjm0haTfXKvUaWybd5sHnGQVlBtlK9zSmbjfu3sS6l3iZcTq7bMYyd69y/S+7zNkc5sAaEeywD8OLkEgBg1spU6gRD2QgTEV9blUM0qUEgZkuXoCLZKpe5m2p16HWyZ7wfC0kNZ7vctWTOcii/AG+M+CEQs/V9s/CI9Tfe48ahw0hkdFdX666GZikHlmVx1dYIJiI+/O1DR6DpBs4vqyAkX03ebWyM+NtqHBZTmt1CPqDkx79GU6bRCK8gxsOU3UtT3e1aMmc5lP88s3koF6zva9rvW0kqq1qmN1Yr4MahQRJqNxuH5igHZhzCPhmfeMfFODabwJeeOIHZ5QyGgkpdQdFOZCTkNYPuxtqMQs8ZFL/25Wfw5LH5sj+PJvNNEwOyQzkkNQz45ZrzCJxcMBqCRyR4cWpp9RfuYsxZDpUX4GY3oazWeO/o+XhBdl+6zrb2zaY7P50tIJ7RXT3sfjX0+TxYTmdB6eoWt7SVHuiVRdx04Tq8+cIRfOFnx3F6IdW0fHE3whYZZ0O7ZpLI6Hj86DyePL5Q9ueLSQ0Rf77ehsUcFhPailxKgBmUvmB9Hw52vXLQW9IGmyGLZp1DuQ3EH337JXz0Oy/Z37OAdKvhxqFBEqpekq7aLYS8EnSD2jGDRmGVneyN/cFrtyCe0fH0yQWsC3VnvAHIV3yvlXFQrXYKCxXaWkRTWl45OI1DcuXGAQAuHe/veuOQ0nJlaxzWClbvlDUKP2OabuDV6eWChAazrX3rl2puHBokoXaxcnAMVV8NaUcfegC4ZtsgNvR7QSmqdgPtdJgxTGtrYxyY0V5Mlp8bEU3llUNQEe06h8VUY8ZhQ9iHuKrbRqkbSaqtVw4ASuIOR2fjds8xdr/rnZbYbLhxaJBkl8ccgNW37WZVpyzTQhQI3vW6MQDASKh73UqtUg7lGuJRShFNZhEOmAbeL69eOTDjnqowj7obSGm5qjGHZsPmuhS30DjkqCk5FzOz+jLZHA9IdxLxLs5WYsphtc33MmV6wrznigl4RIKtw83LGXcb9mK6xsqhnFspqeWg5QyHcjAD0jmDIprSGsoQYzvqpNaaAVDtIJ7RWzplkM11KVYOh87mJ++dtVxLPCDtUubiKm77X08UpCZqugFVN7rXOPgs5bDKPv7FbiXArDJ9/I9/AW+/dMOqntvN+Dzm/VsztxKLOZRpiBe1DEY+5iAiqepYSpnN+BpSDsraGrt2o+o5JFS9panVeeVQaBwOno1hQ7/pcmW1JWmN1zm4ktfOLePFqRieObloH2MyvVtjDiE75rC6nSJbTIol8fp+b1dPFsu7ldZmp61ayiGWzpYsLszV5MxWMigwbXWJjQRX7s5jO+qk2p3KIZo0N0GRYOuMAwtIO1to6DkDr84s481WexP2NzOnJXLj4DqWrBm6zkZqlWY5dAt5t9IqlYNlHNrxxm4na+9Wyj9vNKVh36lF2yiwDqrOOgcg3yU2Use87mLYc3STcqCU4n33PI0HXpy2u9g2cm8aRWHZSg7jfmwuAVU38LqNAxgOKZheSiNnUGg5oy1upe5c3ZoIG5HodCuxHXWoa5WD+bpWqxwyZdxKvcBaZys5d5vnYhm8/4vPYOtwAN/58LW2cSieK8Lev6sJSBePG+1kEqqOp04sYPNQwDYKjdybRvGUyVaackyb2xD2YTqWzsftWtyuG+DKoSbljENeOXRPq2knPmv2RGqVi0FKy0ESiKsHHK0Fa52t5FQOL5xZgpYz8Nq5OP7gvgN2HGLAb743Ry3/9bOWW3SwAdcJMzCpLgpIz8VV6/+MrRwauTeNIpdRDkyp9/k8GAt7cTaabtugH4Arh5ow41DoVio/y6FbEAQCvyefH98o7cqyaDfNUA6ZbA66Qcu6Lp3K4blT5qJ/y8Xr8ODL50FAIJC8a/CKTQPweUT87MgcgPx0t5UQsIxdsotSWWct43B+Wc0H8VvoViqnHJweiQ39Pjzy6qz9HlJ4zMF9LFkyfTau2ju2hPUhCbaworLV+B2VtY2S1tqTn91umHFYjY/+z753CHd+9bmyP3Mqh32nogCA33/zTgDATw7PFvRP8npEvGH7EHIGRcgrNTSJsBuVAzMOs/EMFpMaCAHCLTQO7O/g7MzKik5DXgkbwj6oumEPWuKprC4k5kjnnLKCeolMd7uVADPY3hTl0IPGQRAIFEkoWMRXyqmFZMncbUbGUal8bjmDkZCCC0f7sGUoAE03SprE3XjBMIDGfepsYeoq5WDNtphPaJhLmA0JW5lBV65COp7RoVgzYsYGzHGzx+eSALhxcCVLqaydWcBcS93uVgLMIGRTlEMPupUA8/6tRjksJjUspbJlXVMslTVsxRVYQeF1O4YAlGbd3LBrxDzeoHEQBNKU94ObYDGHnEFxbDZux2haRT7mkK+QXs5k7TTysbBpHI7OmhsEXiHtQmLpLC7aYPZxn7SyCRIZc6Sgv4sXvkAz3Eo9qhwAc6e3moA0S6GejpUO2cno5hRCVrTFJrtdt8NUCAOBwoVuLOzDnokwtqxikplfXr2SdBPMrQQAr52LYzDQ2nYudswhl7+nyxndLkCdGDBHvB6bTQBoTzo4Nw41iKWz2DoUhM8j2sohruoIytKK+uJ3GgFZXHW7hF5WDj5ZbDggbVitLgBgxiqEcqJmDSiSYC9oW63ZxldvjUASSFmF8C93Xom737W7oesBYA0N6h7lMBvP2K6deEYvMahrja0c9LxyiGd0Wzn0+z0IeSV7rkO52dZrDTcONYilsxjwe7Ax4s8bhxb3YWkHAUVadaO1Xs1WAsyddqPKYTmTBWvzP72Uxv988DX88j89Zf9c1c12CswIbLOUQ8jrwd+/73Lc+cYtJc8Z8npWpeICstRlMQcVu9bnR/ZGWq4czI2l6kxlTWfR53BVTwz47XnrPObgMjTdQErLod/nwcZBP07MmRLv+FwCGwf9bb66tSUgS81RDj3sVmp0px1N5ZMgpmNpPH50Hs+fjiJnWQyznYJgt3twNjG8dfcoto80f0559ykHFZeM5cd+tnpkrSKan4usXpitxFKQAXMWOYPHHFwGy1QK+z3YM96P43NJLCRUvDK9jD1NHDbuRsyYA1cOjbIat5KzFfdUNI3D5+LQDYoZK/6g6jkokojtw0EMBWWMD6z9RqWbYg6ZbA6xdBZjYZ8d1G/2GNBaeCRTORSmsuoFXRcmHH9XrhxcRixtfkj7fB5cvnEAAHDfvimouoHd1uD1biWgmDGH1YwK5QHpxhZTVlvjEQmeOr5gF70xtyZTDndcuxk/+39ubEkKJuvu2g2wTKWRkNeeSNhq5cDiHU7lYGYrOYxDJG8cOi4gTQg5RQg5SAg5QAjZZx2LEEIeIoQctf4fcDz+Y4SQY4SQw4SQWxzHr7Ce5xgh5HOEEFdEelnGSNgvY89EGIQA//L0aQDApWPdrRz8sgRKV9cCItXDbqXVpLIy5bBzXchu2wzkW7gw5SAKpGXNH/2ytOp2Km6BZSoN9ykYsWaZt7KvEmAOviIkrxyyOQOZrFHWrURIvlFfK2nGb7yRUnoZpXSv9f1HATxCKd0B4BHrexBCLgJwO4CLAbwVwOcJIWzl+AKAuwDssP69tQnXtWpst5LPg6AiYZf1YQ15JWzq8pgDq/5u1LWUMyg0vT3dJN2AVxYbLoJjm5KLRk2fuCQQiAIpUQ6txMxe6w630lzczAAbCSkYsZRDq40DIQSyKNjGoVwzT+ZW8koi2rFfXot32G0AvmZ9/TUA73Qc/xalVKWUngRwDMCVhJBRAH2U0qeo6cP4uuOctsI+pP0+05oz19Kl4/1t+WO1Er+8uh7+5abA9RJ+zyqUQ0qDJBDsXGcGlrePBDEW9uHMYmHMoZUEFKlrAtKzDrdSu5QDYLqWWIV0vnVGXjmwWFK71PdqjQMF8J+EkP2EkLusY+sopTMAYP0/Yh0fAzDpOHfKOjZmfV18vARCyF2EkH2EkH1zc3OrvPTynJxP2oE/Z0AaAF630Ywz7B7r7ngD4Bjw0uCCwBbGXmvXzfDJZsyhkZhNNKlhICBjNGzuai8a7StIpW6LclAkZHO0ZKxlJ3J+OQPRqge5cksEl473Y7gNM81lSbC7si6nzc9Zny9vHHyyiKGg0rYN1modlm+glE4TQkYAPEQIea3KY8tttWmV46UHKb0HwD0AsHfv3sYjpVX43W++gImID5//1SuwlC605ldvHYQsCXjD9sG1+NWuIrDK0ZBMOfTaoB+GTxZBqdlBdaX3IJrSEPHLGO03fc4XjvZB8STx4MvnAJj31tti5eC3O7PqkKXW77KbyeRiGmNhH0SB4MZdI7hx10jtk9YAT1nlULgkT0R8qx7X2yirMg6U0mnr/1lCyP8GcCWA84SQUUrpjOUymrUePgVgwnH6OIBp6/h4meNtYSaWtoM/rCiFZYNMRPx48eM390SQlSmHRge8VBoR2is423av2Dgkswj7Pbh4Qx/edfkY3nrJenz/pRksJjXEM1mougGl5TGHvJJsddpnszmzmMLGSPtjhkMhGT8+dA67x/oxbMU+io3DrZesx7mYWu70NafhdxghJEAICbGvAdwM4BCABwDcYT3sDgD3W18/AOB2QohCCNkCM/D8rOV6ihNCrraylD7gOKelmG0LsrZiWEpp6C9qyNUri509GrLBgDTzT/dszIGNCm0gKB1NaYgEZHg9Ij7zK5dhIuK3F7PJRXM6WKtjDv5VKkk3MbmYKkgTbRd/9yuX45KxfvzZ/S/jyePzAFCQrQQAd12/DR9/x0XtuLxVxRzWAXiCEPIigGcB/IBS+mMAnwTwFkLIUQBvsb4HpfRlAPcBeAXAjwF8hFLK3mkfBvAlmEHq4wB+tIrraphYOoucQe1AdCydRdjX2bukRnG6ERqheJZxr+GzjGsjhXDRlFYyW4AZhzOLqfYoB2V1CQpuIanqWEhqBdXH7WL7SBB//d49AIBHrWFMxcahnTTsVqKUngCwp8zxBQA3VTjnbgB3lzm+D8AljV5Ls1iw8suX01lQaqqIcItb+bqF4CoD0rPLLCOk9YE+N9DoNHHDmGYAABZzSURBVDj2vosUd1a1+vtPRVPQdKPlMQdbSXaQcphcTOG+fZNYTmfxf1+/FeMDfkxaM1nc4FYCzDGuIyEFpxfM63LTGAD3XIkLYMVHWs5AOpvDYlLr+nqGSqzWjWAXGvWocfA3OEd6OaMjZ9CSkZVhnweiQDATM3P0Wx3oX62SbDWUUnzkG8/j0NkYDGpmAf3hzbtwZsFdxoEQgj0TYTz0ynkEFamlA4dqwdtnOFhM5gM/sXQWCwm1LfnPbkCRRHhE0nBAejaeQdjvablv3C147VGh9d+/T/34Nbz/i08DKJ1nLFipl2ejZpp1qytmV5va3Gr2n47ipakY/uK2S7B7rN+etc3SgSda0I+qXi6bMFPji4PR7YYbBwcLjoZn55dVJLUchoK9ufMFVtcyYXZZ7VmXEuBQDitQXj94aQYvTy8DgF3j4GQoqGBqyVzcWq0cArZy6Ay30ld+fhJ9Xgnvft0Y9m4ewAtnlqDpBqaiaYQUyVXuYm4cOoDFRN44sPbcvaocADPukGhwMZiNq3Zrgl7EjjnU6VZS9Rymoin81g3b8N3fuhbXbC2tpRkKtl85uL1K+rEjc/jVLz2NHx86h/dduRF+WcKVmyNQdQOHpmM4Y2UquanDwe7xfhDirmA0wI1DAU7lcMIa7N3LxsFsHqcjpen2LIFqxDNZfPJHryGt5TAXV3s23gA4UlnrVA6nF1IwKLBrfQiv2zhQdvEaCir2rIdWKwdm7BrdLLSKLz1xEgenYvjgtVvwkV/YDgDYuzkCANh3atEyDu3PVHLS5/Vg17qQ67wU7tIxbWYxqUGWzKrFk/OmcRgK9rBxUCQsJjVc/+mfQhYF/Nc3bsFvXLe14uMfPTKHf3z0OC7fGMZcvLfdSl7LONTbfI8p1a1DwYqPcb4XW90+QxAI+rwSYimt9oPbyEJCxes3RwpqA4ZDCrYMBfCDl2ZwZjGFG3cNt/EKy3PPr+21R4e6BXddTZtZTGrYbGUnHbfdSr27wAUVEc+fiWLecrf9jx+8apf5l2PSagz39IkFaDmjp5WDz7My5XDcUqpbHFPdinHuLNsR6B8MKgXq2o3MJ1QMltnQXbUlghenYvBKAm5oU7uMamwc9GN9v7vcsFw5OFhIapgY8OPEXNJWDr3tVjKbrcmSgLuu34pP/McrWHYMQS+G5ZA/ZhX0jPS5683eSjyigOGQgn2no3U9/vhcAuv6lKrzGQYdxqEdA+cHA3LBlDq3QSnFQkIr657547degF/aswF7N0dct0N3Kz13l548No+P33+obLfMxaSZuhr2e6DqBjwiKRj43WuwheqqLRF7oa+uHEzjwHbBvexWAoAPXrsZjx2Zw6GzsZqPPTGXrOpSAgrdSu1QDpGAjIWEe43DclqHbtACI8qIBGRcu32IG4YV0HN36rVzcXz9qdMFQ9wBc9exmNQQCcr2/IZIQHZVVkOrYUHVN+0ctg1FIlM5W2Uqmi74vteNw3+5ehOCioR/fPR41cdRSnFiLoGtVVxKQKFbqS3KweVupbmEWafUy3HCZtJzxmHU8uuxmQ2MuKojm6MYDDiNQ28vbswg3LBrxM7BjlcwDoZBcTaaxjbHAtfLbiXAHBL1visn8MODM1UV10JSw3JGx9bhWsrBaRzaEHMIyIimNBh1ZK61gwXbOPT257ZZ9JxxYEGfc1YbAgarcYgEFLvpWauHjruNmy9ej9944xZsGw7YcYblCovc+XgGWs7AzRevB2CqjlbNN3Yzl00MwKD5YH0xh87G8PH7DwFATeUwWOBWav1HNxKQkTOoPQTLbTBVUy4gzVk5PWcc2ACVc8tFxsFK0StUDr39Jrti0wD++9svAiH52Esl5cAWv6u3DiKkSD3vUmKwnHoWrC/mT77zEh49PIcPXLMJ120fqvpcHlGwK3uVdigHa9FdSLZnvkAt5i3lMNjjir9Z9JxxGA4pEAVSRTnkjQPfgeRh3SIr9VpiweiNET8u2xjG5qHqu+BegfXwKY7HMOYTKt5+6Qb8f7ddAkms/XFkarYdyoEtum4NSs8nNBDCN3XNoud0vygQDAcVu7sl4+isWdcwEfHbu7Nedys58XlEiAKp6DufjKZACLAh7MXfv+/yFl+dewn7PQjIom08nVBKEU1mVzTzYiio4MR8sj3GwVYO7jQOCwkVEb/sqs6mnUzPKQfAjDsUK4cDk1FsGvQXKIdeD0g7IYQg5JWqupXWhbxQJBFhv1wyrKZXIYRgIuLHVBm3UlLLQcsZJbMbqjEUUqBIQluy6NhmqRXGIaHqdifVeqlUAMdpjJ40DqP93pJspQOTS3Z3RKYcuDwtJKhIZVNZDYPiyPm463rWuIXxAX/ZgHTUWmSL23NXY9tQAOvalAXGFM5iC9xK33jmNH7ln57C0gradVQqgOM0Rk8ah/X9XpxfzgfVZmJpnF9WbeOwzuomuqFM2+ReJuT1YLmMcfjUj1/DwbMx/OLu0TZclfuZiPgwGU2VFF6yauOVbEI+8gvb8b3fekNTr69ePKKAfp+nJQHpU1YjwkqxmnIsJLWyBXCcxui5mAMArO/zIqHqeGV6Gd87cBa71oUAAJdvHAAAXLNtEP/+m9fg0vFwOy/TdZhupcKYw09fm8U/PXYCH7hmE+64dnN7LszlTAz4kdJy1vjPvCFYbGDOtiKJbR2gNBiQW+JWYkbh7FIal4z113XOfFzlccIm0rPKAQD+7P5DuOexE/jzB16GLAq4cNQ0EoQQvN5q88vJE1JKYw73HziLAb8HH7dSXjmljFvzn4uD0sytFOmg+MxgULaLzdaSs1aM5mw0jYNTMfyXLz1T0uE2lsriEw+8jKSqI5PNIa7qPd3ssdn0pHFgtQ77T0fR7/Mgoeq4aENfz460rJeQVypIZVX1HB55dRZvuWhdXWmYvcqENa+4uNaBuZVWohzaTaQFzfcopTi7lFcOD71yDk8cm7c7JTO+f3AaX33yFJ4+sWBfE1cOzaMnP9Gjjta4f3f7ZXj7paN4zxXjbbyiziDk9RS4lZ48voC4quOtl6xv41W5H9s4FAWloykNotBZzR0Hg8qa1zksJjVksgYAUzmwNPOZpcIMw2dO5OdCz8VV+/o4zaFz3pVNZKTPfAMNhxRcv2MYN7qwv7sbCVqprJRSEELw4KFzCCoS3lCjsrfXCSoSBvwee7g9YzGZxYC/s5o7sv5KOYOuWT0BizdIAsF0LI2kpVadGYaUUjxzcgGAOUWPZXyxeSyc1dOTxkGRRFy8oQ83X7SeF8ysgJBXgm5QqLoBr0fE40fncf3OIe6Oq4MtQwF72hsjmtRWVOPgBkZCCgwKzMXVNRtOw1xKl4z14+R80nZlTjtqk04tpOyMwzOLKQQVCaJAsGmQV+Y3i540DgDw/d95Y7svoeNwNt8TBYKZWBrvft1Ym6+qM9g2HMTPrCFIjMWUtqIaBzfAFt9TC8m1Mw6WcrhqSwQHJpfs4zNLeeXwzAlTNewYCeL0QhKyKGBTxM/nNTSRnr2ThJCOkvNuwNl871wsA4OaBV6c2mwdDmIurhbEbEzl0FnGYYvVM+v0QnLNfsfZpTRCioQLrOxBwGx/7lQOz5xcxFBQwY0XjGAymsbR2Ti2jVRvec5ZGT1rHDgrh7Xgjmd0O/NmbIBXRdcDa8d9Yi6/qEZTWkdlKgFmModHJDi1UL7LbDOYiqYwNuDDWNjceAgEuGbroB1zoJTimRMLuGpLBBsjfmi6geNzSWznxqGpcOPAqRvmVkpkdFv6j3PjUBdsCNKJeTPuYBgU0VQWA/7OijlIooCJAf+aKIej5+P4u4eP4NhsAmNhn73x2BjxY/NQwFSrBsVUNI3pWAZXbY1gkyMAvb3GsCTOyujZmANn5eSnwWUxFU2DkHzNCKc6GyMBiALBibkkvr1/CiGvhJxBOy7mAACbBv04Od985fDZR47i+y/NAACu3zmMdVZ7/R3rQtgQ9iKbo5hPqnjaijdctWUQPsdcC+5Wai7cOHDqxulWmoqaXVh5ALA+ZEnAxIAPjx+dx+d/dhyyVTTYaTEHwAxKP3Ny0U5pbgbZnIFHj8zhzReuw851QbxjzwZIooBfu3oTrt4agSiY92tmKYNnTi5iwO/BjpEgDEohCQS6QQtG1HJWDzcOnLrps9xKcVXH2aUUdymtkK3DQfzktVkIBEhbrSA6LeYAmEHplJbDXELFSKg5GUvPnVxEPKPjvXvHccvF+aLKT/zSxQDMcaoAML2UxjMnF3DllggEgUAAwfiAD5msYbs9Oc2Bb/s4dRMscivxYPTK2Gpl+rzr8nHcuGsYQGf1VWIwP//pVQSlo0kN7//i03jMSu99+NVZyJKA63aUL6jcEM63vJlcTOOqLYP2z964Ywg3WPeT0zy4cuDUjSgQ+GUR8wkVM7EMVw4rZPd4PzwiwYfetBWSQNDvO4pd60O1T3QZm1mtw3wSr98cwXefn8JY2Iertg7i8Lk4FEmoOSb2s48cxZPHF3BsNoHv/+4b8dCr5/CGbYPwy+WXpAG/B4ok4Cs/PwlCTIPA+B/v3N28F8ex4caBsyKu3BLBt/dPIWdQXuOwQt5x6QZcs23QdsX83e2dOU51bMAHUSA4OZ9EJpvDx757EBeO9uF//9a1+K9ffQ7ZnIEf/t51FQfvHJtN4N6nT+MN2wfx1PEFXP/pnyKTNfCxWy+s+DsJIXjdxgHMJ1T86S9eiJ3rOs+odhrcrcRZEX/4ll12U7SxMFcOK0EQSNN89O3EIwq4ZKwfjx+dx1MnFqDqBg5MLuGRV2dxdimN2biKP7zvRRgGLXv+P/z0GHweEZ+9/XL89o3bMRLy4t47r8TbagyL+uZdV+OhP3gT74XWIrhx4KyI3eP9eNtuM2DI3Uq9y9t3j+Lg2Ri+/uQpsPZkf/7AyxAFgj+6eScePTKHB16cxvG5BG77h5/jp4dnAQApTcePD53DbZdtwFBQwR/cvAuP/fGNuG4Hjxm4DW4cOCvm42+/GH/6tgvsVgqc3uNtl5q7/J8ensP1O4cxPuDD2aU0rtk6iN+6YTsuWB/C5x45ik888DJenFzCh+7dj58dnsVDr5xHOpvDbZfxnlxuxzXGgRDyVkLIYULIMULIR9t9PZzKrO/34q7rt/HeVD3MWNiH1200x+jesHMYb75wHQDglkvWQxAIfu+mHTgxn8TjR+fxuzftwPbhIO66dz8+98hRbOj3Yu+mgXZePqcOXGEcCCEigH8AcCuAiwC8jxByUXuvisPhVOOdl49BFAhuvGAE7907jj3j/bjVGvx0y8XrsWe8HxesD+F3fmE7/vU3rsL24SCOzyXxjss2QOCt8l0PobR80KilF0HINQA+QSm9xfr+YwBAKf2rSufs3buX7tu3r0VXyOFwijEMitOLqYruxbRmFvr5ZLPFRTSp4R8fPY4737gFI32dH5jvVAgh+ymle2s9zi2prGMAJh3fTwG4qk3XwuFw6kAQSNW4EzMKjIGAjI+9rXK6KsdduMKtBKCcxiyRNISQuwgh+wgh++bm5sqcwuFwOJxm4BbjMAVgwvH9OIDp4gdRSu+hlO6llO4dHuapbxwOh7NWuMU4PAdgByFkCyFEBnA7gAfafE0cDofTs7gi5kAp1Qkhvw3gQQAigK9QSl9u82VxOBxOz+IK4wAAlNIfAvhhu6+Dw+FwOO5xK3E4HA7HRXDjwOFwOJwSuHHgcDgcTgmuqJBuBEJIHMBhAP0AYk162mY+l5MhAPNNeJ5mX99avN5mP2ez7h3D7feQ3z/3PF+33Tv2ejZRSmvXAlBKO/IfgH3W//c08Tmb9lzlrtVt17cWr3cNrrEp965T7iG/f+55vm67dyt9Pd3gVvoPlz7XWtDs61uL18vvobuer9m4/fW6+f511GvtZLfSPlpH8yg30EnX6jb4vVsd/P41Trfdu5W+nk5WDve0+wJWQCddq9vg92518PvXON1271b0ejpWOXA4HA5n7ehk5fB/2ru/EKnKMI7j3x+tFP7L/6FkSDeVSWgGaRlB4YXdFBiURG52kxVUd2kEdeOFS0moFxZpaEVYWGRFhklJVhaYom4L/glJRZLI1FWKoqeL9x0adnbddvbMzuzs7wOHc/adc17e92H2POecmXlfMzOrESeHKkiaKukLSR2S2iU9ncvHSdou6XBej83l4/P+nZLWdqlrkaQDkvZL2iZpQj36NFAKjt0DOW7tktrq0Z+BVkX85kvak99jeyTdVVbX7Fx+RNJqNfm8rwXHboWk45I669Wfmivyq1VDZQEmAzfn7VHAIdL0pm3Asly+DFiZt0cA84ClwNqyelqA08CE/HcbaUa8uvdxEMRuPPAzMDH/vRG4u979a8D4zQKm5O0ZwMmyur4H5pLmU/kUWFDv/g2i2M3J9XXWu1+1WnznUIWIOBURP+Tt80AHaTa7e0knKfL6vrzPhYjYBfzRpSrlZUS+ahtNN/NYNJMCY3ctcCgiSrM+fQ4srHHz666K+O2NiNJ7qh24QtLlkiYDoyPi20hnu02lY5pVUbHLr+2OiFMD2f6B5uTQT5Kmka4wvgOuKr1h8nrSpY6NiL+Ax4EDpKQwHVhfw+Y2lP7EDjgCXC9pmqQW0j/01F6OaSpVxG8hsDci/iSdFE+UvXYilw0J/YzdkODk0A+SRgJbgGci4lwVxw8jJYdZwBRgP7C80EY2qP7GLiLOkGK3GfgKOAb8XWQbG1lf4yfpRmAl8FipqJvdhsRXFwuI3ZDg5FClfGLfArwdEe/n4l/y7Tp5fbqXamYCRMTRfGv/LnBbjZrcMAqKHRHxUUTcGhFzSeNsHa5VmxtJX+Mn6WrgA2BxRBzNxSdI0/GWdDs1b7MpKHZDgpNDFfLnA+uBjohYVfbSVqA1b7cCH/ZS1UlguqTSIFjzSc9Bm1aBsUPSpLweCzwBvF5saxtPX+MnaQzwCbA8Ir4u7Zwfn5yXNCfXuZj/EfPBrKjYDRn1/kR8MC6kb88E6THQvrzcQ/oGzQ7SFewOYFzZMceA34BO0lXb9Fy+lJQQ9pPGShlf7/4Noti9A/yYlwfr3bdGjB/wPHChbN99wKT82i3AQeAosJb8o9hmXQqOXVt+L/6T1y/Wu39FL/6FtJmZVfBjJTMzq+DkYGZmFZwczMysgpODmZlVcHIwM7MKTg5mNSBpqaTFfdh/mqSDtWyTWV+01LsBZs1GUktErKt3O8z6w8nBrBt5YLZtpIHZZpGGd14M3ACsAkYCvwKPRMQpSV8C3wC3A1sljSIN5/ySpJnAOmA46Qdnj0bEGUmzgQ3ARWDXwPXOrHd+rGTWs+uA1yLiJuAc8CSwBrg/Ikon9hVl+4+JiDsj4uUu9WwCns31HABeyOVvAE9FGhvKrKH4zsGsZ8fjvzF13gKeI036sj1PmnYZUD6m/+auFUi6kpQ0duaijcB73ZS/CSwovgtm1XFyMOtZ17FlzgPtl7jSv9CHutVN/WYNw4+VzHp2jaRSIlgE7AYmlsokDctj/fcoIs4CZyTdkYseBnZGxO/AWUnzcvlDxTffrHq+czDrWQfQKulV0oida4DPgNX5sVAL8AppCslLaQXWSRoO/AQsyeVLgA2SLuZ6zRqGR2U160b+ttLHETGjzk0xqws/VjIzswq+czAzswq+czAzswpODmZmVsHJwczMKjg5mJlZBScHMzOr4ORgZmYV/gXuUgz3H+7dDwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'][-200:].plot()" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", " for y in range(1990,\n", " sorted_data.index[-1].year)]" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [], "source": [ "year = []\n", "yearly_incidence = []\n", "for week1, week2 in zip(first_august_week[:-1],\n", " first_august_week[1:]):\n", " one_year = sorted_data['inc'][week1:week2-1]\n", " yearly_incidence.append(one_year.sum())\n", " year.append(week2.year)\n", "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD8CAYAAACLrvgBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAG9ZJREFUeJzt3X+QlVV+5/H3B9oBNeIAgssPtU3JsgGs4NAFZs3u6pgBZpMSZqOTzhjtSthiYkgyyW6VQsIWs0rV6tbWmrCWrtSYEXX8QbljyUYZpwdjxd1lgWbUMOgQ2pVBRsbuSRPF2ZKdxu/+8ZwOt3ua289t7u/7eVXdus89/Zxzn8PT9Peen1cRgZmZWR4Tan0BZmbWOBw0zMwsNwcNMzPLzUHDzMxyc9AwM7PcHDTMzCw3Bw0zM8vNQcPMzHJz0DAzs9zaan0B5XbJJZdEe3t7rS/DzKyh7N+//8cRMWOs85ouaLS3t9PT01PryzAzayiSfpDnPHdPmZlZbg4aZmaWm4OGmZnl5qBhZma5OWiYmVluDhpmNqa+Dz/miw/vpu/kx7W+FKsxBw0zG9OWXYfZd2SALd85XOtLsRprunUaZlY+8zfu5NTgJ//w+ok9R3liz1EmtU3g0ObP1/DKrFbc0jCzs3r1zhu4afFsJp+X/amYfN4EVi2ezat33VDjK7NacdAws7OaOWUyF01q49TgJ0xqm8CpwU+4aFIbMy+aXOtLsxpx95SZFfXjj05x67Ir+NLSy3ly71H6PRje0hQRtb6Gsuro6AjvPWVmVhpJ+yOiY6zz3D1lZma5OWiYtTCvv7BSOWiMg/+jWbPw+gsrlQfCx6HwP9rmL1xd68sxK5nXX9h4eSC8BCP/ow3xfzRrNH0ffszmF9/i2wd/xMc//YTJ501gxcJ/xJ/+6i94Om2L8kB4BXihkzULr7+w8XL3VAn8H82aiddf2Hg4aJTI/9GsWTx825meiM2rF9XwSqyR5BrTkPTHwL8GAjgA/DZwAfAM0A4cAb4YESfS+RuANcBp4A8j4qWUvgR4FDgfeBH4SkSEpEnAY8AS4O+A34iIIylPF7AxXcrmiNhW7Fq9uM/MrHRlG9OQNAf4Q6AjIhYBE4FOYD2wKyLmAbvSayQtSD9fCKwEHpQ0MRX3ELAWmJceK1P6GuBERFwF3A/cl8qaBmwClgFLgU2Spo5ZezMzq4i8A+FtwPmS2shaGO8Bq4ChT/3bgNXpeBXwdEScioh3gF5gqaRZwJSI2B1Z8+axEXmGynoWuFGSgBVAd0QMpFZMN2cCjZmZVdmYQSMifgj8J+AocBz4ICK+DVwaEcfTOceBmSnLHODdgiKOpbQ56Xhk+rA8ETEIfABML1KWmZnVQJ7uqalkLYErgdnAhZJ+q1iWUdKiSPp48xRe41pJPZJ6+vv7i1yamZmdizzdU78CvBMR/RHxU+CbwD8F3k9dTqTnvnT+MeCygvxzybqzjqXjkenD8qQusIuBgSJlDRMRWyOiIyI6ZsyYkaNKVg3ebsWs+eQJGkeBayVdkMYZbgTeAnYAXemcLuD5dLwD6JQ0SdKVZAPee1MX1klJ16Zybh+RZ6ism4GX07jHS8BySVNTi2d5SrMG4H2NzJrPmOs0ImKPpGeB7wKDwGvAVuDngO2S1pAFllvS+QclbQfeTOevi4jTqbg7ODPldmd6ADwCPC6pl6yF0ZnKGpB0D7AvnXd3RAycU42t4ryvkTWTvg8/5vefeo0HvnSNF/LivaesAryvkTWTjc8d4Bt7j3Lr0subeoPSvOs0vCLcys7brVgzcIt5dN6w0CpiaLuV537vOm5ddgX9H52q9SWdlQfsbTTeoHR0bmlYRTTSvkb+fhQbjVvMo3PQsJbl7gcbizco/VkeCLeW5QF7szP8JUxmY3D3g1np3D1lLc3dD2alcfeUmZm5e8rMzMrPQcOsyXjdiVWSg4ZZk/FGkVZJHgg3axJed2LV4JaGWU713u3jbS+sGhw0zHKq924frzuxanD3lNkYGqnbx+tOrNK8TsNsDN5uxFqB12mYlYm7fczOcPeUWQ7u9jHLuHvKzMzcPWVmZuXnoGFmZrk5aJhZ3av3hZWtxEHDzOpevS+sbCVjBg1J8yW9XvD4UNIfSZomqVvS4fQ8tSDPBkm9kg5JWlGQvkTSgfSzLZKU0idJeial75HUXpCnK73HYUld5a2+WeNoxU/b8zfupH39Czyx5ygR2cLK9vUvMH/jzlpfWssaM2hExKGIWBwRi4ElwP8FngPWA7siYh6wK71G0gKgE1gIrAQelDQxFfcQsBaYlx4rU/oa4EREXAXcD9yXypoGbAKWAUuBTYXByayVtOKnbe+nVX9KXadxI/B2RPxA0irg+pS+DXgFuAtYBTwdEaeAdyT1AkslHQGmRMRuAEmPAauBnSnPV1NZzwIPpFbICqA7IgZSnm6yQPNUyTU1a1CNtI1JuXlhZf0pdUyjkzN/sC+NiOMA6XlmSp8DvFuQ51hKm5OOR6YPyxMRg8AHwPQiZZm1jFb/tD20sPK537uOW5ddQf9Hp2p9SS0td0tD0qeAm4ANY506SloUSR9vnsJrW0vW7cXll18+xuWZNZZW/7T98G1n1pttXr2ohldiUFpL4/PAdyPi/fT6fUmzANJzX0o/BlxWkG8u8F5KnztK+rA8ktqAi4GBImUNExFbI6IjIjpmzJhRQpXMGoM/bVu9KCVo/CbDxxJ2AEOzmbqA5wvSO9OMqCvJBrz3pi6sk5KuTeMVt4/IM1TWzcDLke1v8hKwXNLUNAC+PKU1nVacGWP5PXxbB5tXL2LB7ClsXr1o2Kdvs2rKFTQkXQB8DvhmQfK9wOckHU4/uxcgIg4C24E3gW8B6yLidMpzB/A1oBd4m2wQHOARYHoaNP83pJlYaQD8HmBfetw9NCjebGo9M8ZBy8zy8IaFNTZyZsyQas+M2fjcAb6x9yi3Lr2czV+4umrva2b1Ie+GhQ4aNVbrL/ipl6BlVg59H37M7z/1Gg986ZqWmShQLt7ltkHUemZMq0/ntOZS627eVuAvYaoDtfyCn1oHLbNyaOUFkNXmoFEHaj0P3d9KZ43u1TtvOGs3r5WXg4aVFLTcZ2z1yC3m6vGYhpXEfcbl5anO5eMFkNXh2VOWi2dZlSZvi8xTna1eePZUnWiWT5L1MsuqUf49x2qR+XsirFE5aFRYJbpzavGHs176jOu9eyxvMKiXIGxWKg+EV0glpwAW/uGsZpdGLWdZNcqUyryzeOolCFeCJ0s0NweNCqnEFMBa/+Gs5dTgRplSWUowaNapzrX6UGPV4aBRIZX4JNkofzgroZE+mecNBrVen1Nutf5QY9XhoFFB5f4k2Uh/OCuhUT6ZN1swyKuVP9S0EgeNCqrEH49G+cNZCa36x7hRtPqHmlbhoNFg/IfT6lkrf6hpFV7cZ2ZmXtxnZmbl56BhZjXRKKv7bTgHDTOriXpf3W+j80C4mVVVvazn8Mr18XFLw8yqql723XJLZ3zc0jCzqqr1eo56aek0Krc0rOY8INp6avmFSfXS0mlUuYKGpE9LelbS9yW9JemXJE2T1C3pcHqeWnD+Bkm9kg5JWlGQvkTSgfSzLZKU0idJeial75HUXpCnK73HYUld5au61Qt3E7Seh2/rYPPqRSyYPYXNqxcNW7RaabVu6TS6vN1Tfw58KyJulvQp4ALgT4BdEXGvpPXAeuAuSQuATmAhMBv4jqR/HBGngYeAtcD/Bl4EVgI7gTXAiYi4SlIncB/wG5KmAZuADiCA/ZJ2RMSJstTeasrdBFYrXrk+fmOuCJc0BXgD+PkoOFnSIeD6iDguaRbwSkTMl7QBICL+QzrvJeCrwBHgryLin6T030z5vzx0TkTsltQG/AiYQRZ8ro+IL6c8D6f3eeps1+sV4Y2j78OPz7rBnT/1mVVXOVeE/zzQD3xd0muSvibpQuDSiDgOkJ5npvPnAO8W5D+W0uak45Hpw/JExCDwATC9SFnWBNxNYNZ48gSNNuAzwEMRcQ3wE7KuqLPRKGlRJH28ec68obRWUo+knv7+/iKXZvWmlgOiZla6PGMax4BjEbEnvX6WLGi8L2lWQfdUX8H5lxXknwu8l9LnjpJemOdY6p66GBhI6dePyPPKyAuMiK3AVsi6p3LUyeqEd+01K67eFiGO2dKIiB8B70qan5JuBN4EdgBDs5m6gOfT8Q6gM82IuhKYB+xNXVgnJV2bZk3dPiLPUFk3Ay+n8ZOXgOWSpqbZWctTmplZS6i32YV5Z0/9AfCNNHPq/wC/TRZwtktaAxwFbgGIiIOStpMFlkFgXZo5BXAH8ChwPtmsqZ0p/RHgcUm9ZC2MzlTWgKR7gH3pvLsjYmCcdTUzaxj1OrvQ36dhZlaHqj270N+nYWbWwOp1dqH3njIzq1P1uAjR3VNmZubuKTMzKz8HDTMzy81Bw8ysTFphm38HjSbWCr/AZvWk3hbiVYJnTzWxwl/gzV+4utaXY9a06nUhXiV49lQTGvkLPKQZf4HN6kEzbPPv2VMtzF9naVZd9boQrxIcNJpQK/0Cm9WLUrb5b+TxRo9pNKl6XElq1sxK2ea/kccbPaZhZlYl9Tze6DENM7M60wzjjQ4aZmZV0gzjjR7TMDOrokYfb/SYhpmZeUzDzMzKz0HDzMxyc9AwM7PcHDTMzCw3B40Cjby038ysGhw0CrTCXvhmZuciV9CQdETSAUmvS+pJadMkdUs6nJ6nFpy/QVKvpEOSVhSkL0nl9EraIkkpfZKkZ1L6HkntBXm60nscltRVrooXmr9xJ+3rX+CJPUeJyPbCb1//AvM37qzE21kVuNVoVhmltDRuiIjFBfN41wO7ImIesCu9RtICoBNYCKwEHpQ0MeV5CFgLzEuPlSl9DXAiIq4C7gfuS2VNAzYBy4ClwKbC4FQuzbC034Zzq9GsMs5lRfgq4Pp0vA14BbgrpT8dEaeAdyT1AkslHQGmRMRuAEmPAauBnSnPV1NZzwIPpFbICqA7IgZSnm6yQPPUOVz3z2iGpf2WaaVvUDOrhbwtjQC+LWm/pLUp7dKIOA6Qnmem9DnAuwV5j6W0Oel4ZPqwPBExCHwATC9S1jCS1krqkdTT39+fs0rDlbIXvtUvtxrNKitvS+O6iHhP0kygW9L3i5yrUdKiSPp485xJiNgKbIVsG5Ei13ZWpeyFb/XLrUazysrV0oiI99JzH/Ac2fjC+5JmAaTnvnT6MeCyguxzgfdS+txR0oflkdQGXAwMFCnL7KzcajSrnDE3LJR0ITAhIk6m427gbuBG4O8i4l5J64FpEXGnpIXAk2SBZTbZIPm8iDgtaR/wB8Ae4EXgv0TEi5LWAVdHxO9K6gT+VUR8MQ2E7wc+ky7nu8CSoTGO0XjDQjOz0uXdsDBP99SlwHNpdmwb8GREfCsFgO2S1gBHgVsAIuKgpO3Am8AgsC4iTqey7gAeBc4nGwAfmtP6CPB4GjQfIJt9RUQMSLoH2JfOu7tYwDAzs8ry1uhmZuat0c3MrPwcNMzMLDcHDTMzy81Bw8zMcnPQMDOz3Bw0zMwsNwcNMzPLzUHDzMxyc9AwM7PcHDTMzCw3Bw0zM8vNQcPMzHJz0DAzs9wcNMzMLDcHDTMzy81Bw8zMcnPQMDOz3Bw0zMwsNwcNMzPLzUHDzMxyc9AwM7PcHDTMzCw3Bw0zM8std9CQNFHSa5L+Mr2eJqlb0uH0PLXg3A2SeiUdkrSiIH2JpAPpZ1skKaVPkvRMSt8jqb0gT1d6j8OSuspRaTMzG59SWhpfAd4qeL0e2BUR84Bd6TWSFgCdwEJgJfCgpIkpz0PAWmBeeqxM6WuAExFxFXA/cF8qaxqwCVgGLAU2FQYnMzOrrlxBQ9Jc4FeBrxUkrwK2peNtwOqC9Kcj4lREvAP0AkslzQKmRMTuiAjgsRF5hsp6FrgxtUJWAN0RMRARJ4BuzgQaMzOrsrwtjT8D7gQ+KUi7NCKOA6TnmSl9DvBuwXnHUtqcdDwyfVieiBgEPgCmFylrGElrJfVI6unv789ZJTMzK9WYQUPSrwF9EbE/Z5kaJS2KpI83z5mEiK0R0RERHTNmzMh5mWZmVqo8LY3rgJskHQGeBj4r6Qng/dTlRHruS+cfAy4ryD8XeC+lzx0lfVgeSW3AxcBAkbLMzKwGxgwaEbEhIuZGRDvZAPfLEfFbwA5gaDZTF/B8Ot4BdKYZUVeSDXjvTV1YJyVdm8Yrbh+RZ6ism9N7BPASsFzS1DQAvjylmZlZDbSdQ957ge2S1gBHgVsAIuKgpO3Am8AgsC4iTqc8dwCPAucDO9MD4BHgcUm9ZC2MzlTWgKR7gH3pvLsjYuAcrtnMzM6Bsg/0zaOjoyN6enpqfRlmZg1F0v6I6BjrPK8INzOz3Bw0zMwsNwcNMzPLzUHDzMxyc9AwM7PcHDTMzCw3Bw0zM8vNQcPMzHJz0DAzs9wcNMzMLDcHDTMzy81Bw8zMcnPQMDOz3Bw0zMwsNwcNMzPLzUHDzMxyc9AwM7PcHDTMzCw3Bw0zM8vNQcPMzHJz0DAzs9wcNMzMLDcHDTMzy23MoCFpsqS9kt6QdFDSv0/p0yR1SzqcnqcW5NkgqVfSIUkrCtKXSDqQfrZFklL6JEnPpPQ9ktoL8nSl9zgsqauclTczs9LkaWmcAj4bEb8ILAZWSroWWA/sioh5wK70GkkLgE5gIbASeFDSxFTWQ8BaYF56rEzpa4ATEXEVcD9wXyprGrAJWAYsBTYVBiczM6uuMYNGZD5KL89LjwBWAdtS+jZgdTpeBTwdEaci4h2gF1gqaRYwJSJ2R0QAj43IM1TWs8CNqRWyAuiOiIGIOAF0cybQmJlZleUa05A0UdLrQB/ZH/E9wKURcRwgPc9Mp88B3i3IfiylzUnHI9OH5YmIQeADYHqRskZe31pJPZJ6+vv781TJzMzGIVfQiIjTEbEYmEvWalhU5HSNVkSR9PHmKby+rRHREREdM2bMKHJpZmZ2LkqaPRURfw+8QtZF9H7qciI996XTjgGXFWSbC7yX0ueOkj4sj6Q24GJgoEhZZmZWA3lmT82Q9Ol0fD7wK8D3gR3A0GymLuD5dLwD6Ewzoq4kG/Dem7qwTkq6No1X3D4iz1BZNwMvp3GPl4DlkqamAfDlKc3MzGqgLcc5s4BtaQbUBGB7RPylpN3AdklrgKPALQARcVDSduBNYBBYFxGnU1l3AI8C5wM70wPgEeBxSb1kLYzOVNaApHuAfem8uyNi4FwqbGZm46fsA33z6OjoiJ6enlpfhplZQ5G0PyI6xjrPK8LNzCw3Bw0zM8vNQcPMzHJz0DAzs9wcNMzMLDcHDTMzy81Bw8zMcnPQMDOz3Bw0zMwsNwcNMzPLzUHDzMxyc9AwM7PcHDTMzCw3Bw0zM8vNQcPMrAn0ffgxX3x4N30nP67o+zhomJk1gS27DrPvyABbvnO4ou+T55v7zMysTs3fuJNTg5/8w+sn9hzliT1HmdQ2gUObP1/293NLw8ysgb165w3ctHg2k8/L/pxPPm8CqxbP5tW7bqjI+zlomJk1sJlTJnPRpDZODX7CpLYJnBr8hIsmtTHzoskVeT93T5mZNbgff3SKW5ddwZeWXs6Te4/SX8HBcEVExQqvhY6Ojujp6an1ZZiZNRRJ+yOiY6zz3D1lZma5OWiYmVluYwYNSZdJ+itJb0k6KOkrKX2apG5Jh9Pz1II8GyT1SjokaUVB+hJJB9LPtkhSSp8k6ZmUvkdSe0GervQehyV1lbPyZmZWmjwtjUHg30bELwDXAuskLQDWA7siYh6wK70m/awTWAisBB6UNDGV9RCwFpiXHitT+hrgRERcBdwP3JfKmgZsApYBS4FNhcHJzMyqa8ygERHHI+K76fgk8BYwB1gFbEunbQNWp+NVwNMRcSoi3gF6gaWSZgFTImJ3ZKPvj43IM1TWs8CNqRWyAuiOiIGIOAF0cybQmJlZlZU0ppG6ja4B9gCXRsRxyAILMDOdNgd4tyDbsZQ2Jx2PTB+WJyIGgQ+A6UXKGnldayX1SOrp7+8vpUpmZlaC3Os0JP0c8N+AP4qID9NwxKinjpIWRdLHm+dMQsRWYGu6zn5JPxhxyiXAj892wQ2q2erUbPWB5qtTs9UHmq9O51KfK/KclCtoSDqPLGB8IyK+mZLflzQrIo6nrqe+lH4MuKwg+1zgvZQ+d5T0wjzHJLUBFwMDKf36EXleKXatETFjlOvvyTP/uJE0W52arT7QfHVqtvpA89WpGvXJM3tKwCPAWxHxnwt+tAMYms3UBTxfkN6ZZkRdSTbgvTd1YZ2UdG0q8/YReYbKuhl4OY17vAQslzQ1DYAvT2lmZlYDeVoa1wG3AQckvZ7S/gS4F9guaQ1wFLgFICIOStoOvEk282pdRJxO+e4AHgXOB3amB2RB6XFJvWQtjM5U1oCke4B96by7I2JgnHU1M7Nz1HTbiIxG0to07tE0mq1OzVYfaL46NVt9oPnqVI36tETQMDOz8vA2ImZmllvDBg1JfyGpT9L3CtJ+UdLutFXJf5c0JaV/StLXU/obkq4vyDPq1ibVVsb6vJK2b3k9PWaO8nYVV43tZxq8TjW/T6XWR9L0dP5Hkh4YUVZD3qMx6tSI9+hzkvane7Ff0mcLyirPPYqIhnwA/xz4DPC9grR9wL9Ix78D3JOO1wFfT8czgf3AhPR6L/BLZGtCdgKfb/D6vAJ01MH9mQV8Jh1fBPwtsAD4j8D6lL4euC8dLwDeACYBVwJvAxPr7B6Vs041v0/jqM+FwC8Dvws8MKKsRr1HxerUiPfoGmB2Ol4E/LDc96hhWxoR8ddkM60KzQf+Oh13A7+ejheQ7Y9FRPQBfw90qPjWJlVVjvpU4TJzi+psP1NV5apTda/67EqtT0T8JCL+BzDsG34a+R6drU71Yhz1eS0ihta/HQQmK1v+ULZ71LBB4yy+B9yUjm/hzCLDN4BVktqUrR1Zkn5WbGuTelBqfYZ8PTWn/12tugkKqXLbz9TMOdZpSN3cp5z1OZtGvkdjaeR79OvAaxFxijLeo2YLGr9DtgvvfrKm3P9L6X9B9o/UA/wZ8L/I1pDk2qakhkqtD8CtEXE18M/S47aqXvEIGrH9TLFTR0nLvZVMNZWhTlBH96mE+py1iFHSGuUeFdOw90jSQrLdwr88lDTKaeO6R00VNCLi+xGxPCKWAE+R9SETEYMR8ccRsTgiVgGfBg5TfGuTmhtHfYiIH6bnk8CT1LA7REW2n0k/P9ftZ6quTHWqm/tUYn3OppHv0Vk16j2SNBd4Drg9It5OyWW7R00VNIZmN0iaAGwE/mt6fYGkC9Px54DBiHgzim9tUnOl1id1V12S0s8Dfo2si6sW116N7Weqqlx1qpf7NI76jKrB79HZymnIeyTp08ALwIaI+J9DJ5f1Ho1n9LweHmSfvI8DPyWLomuAr5DNLvhbsm1OhhYvtgOHyAaRvgNcUVBOB9kvw9vAA0N5GrE+ZDNB9gN/QzYI9uek2To1qM8vkzV//wZ4PT3+JdmW97vIWka7gGkFef403YdDFMzsqKN7VJY61ct9Gmd9jpBN2Pgo/Z4uaIJ79DN1atR7RPbh8icF574OzCznPfKKcDMzy62puqfMzKyyHDTMzCw3Bw0zM8vNQcPMzHJz0DAzs9wcNMzMLDcHDTMzy81Bw8zMcvv/6H97Wi1V5+gAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "yearly_incidence.plot(style='*')" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2020 229363\n", "2002 502271\n", "1991 507329\n", "2018 543281\n", "1996 553859\n", "2017 557449\n", "2019 584926\n", "2000 605096\n", "2015 613286\n", "2012 620315\n", "2011 645042\n", "1995 648598\n", "2001 650660\n", "1993 653058\n", "2005 654308\n", "2006 657482\n", "1998 660316\n", "2014 673458\n", "1997 679308\n", "1994 682920\n", "2007 701566\n", "2013 708874\n", "2004 736266\n", "2008 745701\n", "2003 770211\n", "2016 780645\n", "1999 784963\n", "1992 821558\n", "2009 822819\n", "2010 848236\n", "dtype: int64" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "yearly_incidence.sort_values()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }