From ff97d602e21f22ee9ecf5e50435fb03ec086b5c1 Mon Sep 17 00:00:00 2001 From: 405c0956c969b6c077ce47aa9c09d17a <405c0956c969b6c077ce47aa9c09d17a@app-learninglab.inria.fr> Date: Mon, 15 Jun 2020 13:56:38 +0000 Subject: [PATCH] essai1 --- module2/exo1/toy_document_fr.Rmd | 46 +++++++++++++++++++------------- 1 file changed, 28 insertions(+), 18 deletions(-) diff --git a/module2/exo1/toy_document_fr.Rmd b/module2/exo1/toy_document_fr.Rmd index 7eece5e..a0691e4 100644 --- a/module2/exo1/toy_document_fr.Rmd +++ b/module2/exo1/toy_document_fr.Rmd @@ -1,33 +1,43 @@ --- -title: "Votre titre" -author: "Votre nom" -date: "La date du jour" +title: "À propos du calcul de pi" +author: "Arnaud Legrand" +date: "25 juin 2018" output: html_document --- +# En demandant à la lib maths -```{r setup, include=FALSE} -knitr::opts_chunk$set(echo = TRUE) -``` +Mon ordinateur m’indique que \pi vaut *approximativement* -## Quelques explications +```pi +``` -Ceci est un document R markdown que vous pouvez aisément exporter au format HTML, PDF, et MS Word. Pour plus de détails sur R Markdown consultez . +# En utilisant la méthode des aiguilles de Buffon -Lorsque vous cliquerez sur le bouton **Knit** ce document sera compilé afin de ré-exécuter le code R et d'inclure les résultats dans un document final. Comme nous vous l'avons montré dans la vidéo, on inclue du code R de la façon suivante: +Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** : -```{r cars} -summary(cars) +```set.seed(42) +N = 100000 +x = runif(N) +theta = pi/2*runif(N) +2/(mean(x+sin(theta)>1)) ``` -Et on peut aussi aisément inclure des figures. Par exemple: +# Avec un argument “fréquentiel” de surface -```{r pressure, echo=FALSE} -plot(pressure) -``` +Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $`X∼U(0,1)`$ +et $`Y∼U(0,1)`$ alors $`P[X^2+Y^2≤1]=π/4`$ -Vous remarquerez le paramètre `echo = FALSE` qui indique que le code ne doit pas apparaître dans la version finale du document. Nous vous recommandons dans le cadre de ce MOOC de ne pas utiliser ce paramètre car l'objectif est que vos analyses de données soient parfaitement transparentes pour être reproductibles. +(voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait: -Comme les résultats ne sont pas stockés dans les fichiers Rmd, pour faciliter la relecture de vos analyses par d'autres personnes, vous aurez donc intérêt à générer un HTML ou un PDF et à le commiter. +```set.seed(42) +N = 1000 +df = data.frame(X = runif(N), Y = runif(N)) +df$Accept = (df$X**2 + df$Y**2 <=1) +library(ggplot2) +ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() +``` +Il est alors aisé d’obtenir une approximation (pas terrible) de \pi en comptant combien de fois, en moyenne, $`X^2+Y^2`$ est inférieur à 1: -Maintenant, à vous de jouer! Vous pouvez effacer toutes ces informations et les remplacer par votre document computationnel. +```4*mean(df$Accept) +``` \ No newline at end of file -- 2.18.1