From 406dcb82b1deeaf577223492e40befd02f0d8bc4 Mon Sep 17 00:00:00 2001 From: 408798857b9e9b78bf182b621fb56452 <408798857b9e9b78bf182b621fb56452@app-learninglab.inria.fr> Date: Tue, 18 Aug 2020 14:08:25 +0000 Subject: [PATCH] Un premier essai avec Jupyter --- module2/exo1/toy_notebook_fr.ipynb | 190 ++++++++++++++++++++++++++++- 1 file changed, 187 insertions(+), 3 deletions(-) diff --git a/module2/exo1/toy_notebook_fr.ipynb b/module2/exo1/toy_notebook_fr.ipynb index 0bbbe37..1503ddd 100644 --- a/module2/exo1/toy_notebook_fr.ipynb +++ b/module2/exo1/toy_notebook_fr.ipynb @@ -1,5 +1,190 @@ { - "cells": [], + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Titre du document" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "2+2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "10\n" + ] + } + ], + "source": [ + "x=10\n", + "print(x)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "20\n" + ] + } + ], + "source": [ + "x=x+10\n", + "print(x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Petit exemple de complétion" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "mu, sigma = 100, 15" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 71.58479787, 129.24346877, 113.22449086, ..., 99.02181597,\n", + " 93.23619228, 104.60198482])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.random.normal(loc=mu, scale=sigma, size=10000)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + " x = np.random.normal(loc=mu, scale=sigma, size=10000)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAD8CAYAAACYebj1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAEI1JREFUeJzt3X+s3XV9x/HnS+oY6oiwFoZtXZmp24AoStexkS0o26hiLP5hUjKFZCQ1BDdd3I+iyXRLmrDNHxvJYEFhwFRIoziIgJN1ZsYEwQtDS8GOTjq4tKN1bpNtCQq+98f58NlZObf39t7be++pz0dycr7n/f31eaftfd3vj/NtqgpJkgBetNgDkCQtHYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1yxZ7ANNZvnx5rVmzZrGHIUlj5f777/92Va043PWWfCisWbOGiYmJxR6GJI2VJP8ym/U8fSRJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqlvw3mqXprNlyx6Lsd8+VFyzKfqUjySMFSVLnkYI0S4t1hAIepejI8UhBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkddOGQpLVSb6U5JEkO5O8p9U/lOTJJA+215uH1rkiye4ku5KcP1Q/K8mONu+qJDkybUmSZmMmD8R7FnhfVT2Q5MeA+5Pc3eZ9rKo+PLxwktOATcDpwCuAv0vy6qp6DrgG2Ax8FbgT2ADcNT+tSJLmatojharaV1UPtOmngUeAlYdYZSNwS1U9U1WPAbuB9UlOAY6vqnuqqoCbgAvn3IEkad4c1jWFJGuA1wH3ttK7k3wjyfVJTmi1lcATQ6tNttrKNn1wfdR+NieZSDJx4MCBwxmiJGkOZhwKSV4GfBZ4b1V9l8GpoFcBZwL7gI88v+iI1esQ9RcWq66tqnVVtW7FihUzHaIkaY5mFApJXswgED5VVbcCVNVTVfVcVf0A+Diwvi0+CaweWn0VsLfVV42oS5KWiJncfRTgOuCRqvroUP2UocXeBjzUpm8HNiU5NsmpwFrgvqraBzyd5Oy2zYuB2+apD0nSPJjJ3UfnAO8EdiR5sNXeD1yU5EwGp4D2AO8CqKqdSbYBDzO4c+nyducRwGXADcBxDO468s4jSVpCpg2FqvoKo68H3HmIdbYCW0fUJ4AzDmeAkqSF4zeaJUmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSumlDIcnqJF9K8kiSnUne0+onJrk7yaPt/YShda5IsjvJriTnD9XPSrKjzbsqSY5MW5Kk2ZjJkcKzwPuq6meBs4HLk5wGbAG2V9VaYHv7TJu3CTgd2ABcneSYtq1rgM3A2vbaMI+9SJLmaNpQqKp9VfVAm34aeARYCWwEbmyL3Qhc2KY3ArdU1TNV9RiwG1if5BTg+Kq6p6oKuGloHUnSEnBY1xSSrAFeB9wLnFxV+2AQHMBJbbGVwBNDq0222so2fXBdkrREzDgUkrwM+Czw3qr67qEWHVGrQ9RH7WtzkokkEwcOHJjpECVJczSjUEjyYgaB8KmqurWVn2qnhGjv+1t9Elg9tPoqYG+rrxpRf4Gquraq1lXVuhUrVsy0F0nSHM3k7qMA1wGPVNVHh2bdDlzSpi8Bbhuqb0pybJJTGVxQvq+dYno6ydltmxcPrSNJWgKWzWCZc4B3AjuSPNhq7weuBLYluRR4HHg7QFXtTLINeJjBnUuXV9Vzbb3LgBuA44C72kuStERMGwpV9RVGXw8AOG+KdbYCW0fUJ4AzDmeAkqSF4zeaJUmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdTP5T3YkLTFrttyxKPvdc+UFi7JfLRyPFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktRNGwpJrk+yP8lDQ7UPJXkyyYPt9eaheVck2Z1kV5Lzh+pnJdnR5l2VJPPfjiRpLmZypHADsGFE/WNVdWZ73QmQ5DRgE3B6W+fqJMe05a8BNgNr22vUNiVJi2jaUKiqLwPfmeH2NgK3VNUzVfUYsBtYn+QU4PiquqeqCrgJuHC2g5YkHRlz+U923p3kYmACeF9V/TuwEvjq0DKTrfb9Nn1wXUeJxfpPXyTNr9leaL4GeBVwJrAP+Eirj7pOUIeoj5Rkc5KJJBMHDhyY5RAlSYdrVqFQVU9V1XNV9QPg48D6NmsSWD206Cpgb6uvGlGfavvXVtW6qlq3YsWK2QxRkjQLswqFdo3geW8Dnr8z6XZgU5Jjk5zK4ILyfVW1D3g6ydntrqOLgdvmMG5J0hEw7TWFJDcD5wLLk0wCHwTOTXImg1NAe4B3AVTVziTbgIeBZ4HLq+q5tqnLGNzJdBxwV3tJkpaQaUOhqi4aUb7uEMtvBbaOqE8AZxzW6CRJC8pvNEuSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpmzYUklyfZH+Sh4ZqJya5O8mj7f2EoXlXJNmdZFeS84fqZyXZ0eZdlSTz344kaS5mcqRwA7DhoNoWYHtVrQW2t88kOQ3YBJze1rk6yTFtnWuAzcDa9jp4m5KkRTZtKFTVl4HvHFTeCNzYpm8ELhyq31JVz1TVY8BuYH2SU4Djq+qeqirgpqF1JElLxGyvKZxcVfsA2vtJrb4SeGJouclWW9mmD65LkpaQ+b7QPOo6QR2iPnojyeYkE0kmDhw4MG+DkyQd2mxD4al2Soj2vr/VJ4HVQ8utAva2+qoR9ZGq6tqqWldV61asWDHLIUqSDtdsQ+F24JI2fQlw21B9U5Jjk5zK4ILyfe0U09NJzm53HV08tI4kaYlYNt0CSW4GzgWWJ5kEPghcCWxLcinwOPB2gKramWQb8DDwLHB5VT3XNnUZgzuZjgPuai9J0hIybShU1UVTzDpviuW3AltH1CeAMw5rdJKkBeU3miVJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKlbttgDkDQ+1my5Y1H2u+fKCxZlvz+MPFKQJHWGgiSpMxQkSZ2hIEnq5hQKSfYk2ZHkwSQTrXZikruTPNreTxha/ooku5PsSnL+XAcvSZpf83Gk8IaqOrOq1rXPW4DtVbUW2N4+k+Q0YBNwOrABuDrJMfOwf0nSPDkSp482Aje26RuBC4fqt1TVM1X1GLAbWH8E9i9JmqW5hkIBX0xyf5LNrXZyVe0DaO8ntfpK4ImhdSdbTZK0RMz1y2vnVNXeJCcBdyf55iGWzYhajVxwEDCbAV75ylfOcYiSpJma05FCVe1t7/uBzzE4HfRUklMA2vv+tvgksHpo9VXA3im2e21VrauqdStWrJjLECVJh2HWRwpJXgq8qKqebtO/BvwRcDtwCXBle7+trXI78OkkHwVeAawF7pvD2DXCYj2GQNLRYS6nj04GPpfk+e18uqq+kORrwLYklwKPA28HqKqdSbYBDwPPApdX1XNzGr0kaV7NOhSq6lvAa0fU/w04b4p1tgJbZ7tPSdKR5TeaJUmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1yxZ7AJI0nTVb7li0fe+58oJF2/di8EhBktQZCpKkzlCQJHVeUzgCFvP8pyTNhUcKkqRuwUMhyYYku5LsTrJlofcvSZragoZCkmOAvwDeBJwGXJTktIUcgyRpagt9pLAe2F1V36qq7wG3ABsXeAySpCks9IXmlcATQ58ngZ8/Ujvzgq+kuVqsnyOL9aW5hQ6FjKjVCxZKNgOb28f/SrLrENtcDnx7Hsa21NjXeLGv8bOke8sfz3rV5/v6ydmsvNChMAmsHvq8Cth78EJVdS1w7Uw2mGSiqtbNz/CWDvsaL/Y1fo7W3uba10JfU/gasDbJqUl+BNgE3L7AY5AkTWFBjxSq6tkk7wb+FjgGuL6qdi7kGCRJU1vwbzRX1Z3AnfO4yRmdZhpD9jVe7Gv8HK29zamvVL3gOq8k6YeUj7mQJHVjFwpJjknyj0k+3z6fmOTuJI+29xMWe4yHK8nLk3wmyTeTPJLkF46Svn47yc4kDyW5OcmPjmtfSa5Psj/JQ0O1KXtJckV7lMuuJOcvzqinN0Vff9r+Ln4jyeeSvHxo3tj2NTTvd5JUkuVDtbHuK8lvtrHvTPInQ/XD7mvsQgF4D/DI0OctwPaqWgtsb5/HzZ8DX6iqnwFey6C/se4ryUrgt4B1VXUGgxsLNjG+fd0AbDioNrKX9uiWTcDpbZ2r2yNelqIbeGFfdwNnVNVrgH8CroCjoi+SrAZ+FXh8qDbWfSV5A4MnQ7ymqk4HPtzqs+prrEIhySrgAuATQ+WNwI1t+kbgwoUe11wkOR74ZeA6gKr6XlX9B2PeV7MMOC7JMuAlDL6TMpZ9VdWXge8cVJ6ql43ALVX1TFU9Buxm8IiXJWdUX1X1xap6tn38KoPvE8GY99V8DPg9/v+XZse9r8uAK6vqmbbM/lafVV9jFQrAnzH4A/3BUO3kqtoH0N5PWoyBzcFPAQeAv2qnxT6R5KWMeV9V9SSD31geB/YB/1lVX2TM+zrIVL2MepzLygUe23z5DeCuNj3WfSV5K/BkVX39oFlj3RfwauCXktyb5B+S/Fyrz6qvsQmFJG8B9lfV/Ys9lnm2DHg9cE1VvQ74b8bnlMqU2vn1jcCpwCuAlyZ5x+KOasHM6HEuS12SDwDPAp96vjRisbHoK8lLgA8AfzBq9ojaWPTVLANOAM4GfhfYliTMsq+xCQXgHOCtSfYweLrqG5N8EngqySkA7X3/1JtYkiaByaq6t33+DIOQGPe+fgV4rKoOVNX3gVuBX2T8+xo2VS8zepzLUpbkEuAtwK/X/923Ps59vYrBLyhfbz9DVgEPJPkJxrsvGIz/1hq4j8GZlOXMsq+xCYWquqKqVlXVGgYXT/6+qt7B4DEZl7TFLgFuW6QhzkpV/SvwRJKfbqXzgIcZ874YnDY6O8lL2m8t5zG4gD7ufQ2bqpfbgU1Jjk1yKrAWuG8RxjcrSTYAvw+8tar+Z2jW2PZVVTuq6qSqWtN+hkwCr2///sa2r+ZvgDcCJHk18CMMHog3u76qauxewLnA59v0jzO48+PR9n7iYo9vFv2cCUwA32h/wCccJX39IfBN4CHgr4Fjx7Uv4GYG10a+z+AHyqWH6oXBqYp/BnYBb1rs8R9mX7sZnIt+sL3+8mjo66D5e4DlR0NfLQQ+2f6dPQC8cS59+Y1mSVI3NqePJElHnqEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqftfX9qIa+I3E3cAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "plt.hist(x)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Utilisation d'autres langages" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext rpy2.ipython" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAMAAABKCk6nAAAC9FBMVEUAAAABAQECAgIDAwMEBAQFBQUGBgYHBwcJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUWFhYXFxcYGBgZGRkbGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7///+WLN6DAAAXMElEQVR4nO2deWAUVbaH4Y0zvPGJqDg4oujgE0d4M+NbTDqk01kIYUsMssqmLLKp7CAYQBYViCKo7AIjghJkkV2RLYAgSAIigRAEJOyEJSGGrH3/eVUdGDrdTXVX1721nP59f9wOVbdOHfPZldruPdUYIE01oxMAYoFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HE0SD4chowAV+VihK8tONsYDy248IEfxL8toAb3bULLs7OzCnzXgzBpkCz4HOta9R58uE/drvquQKCTYFmwbEjrkvtxT6Jnisg2BRoFvxAueuj5CHPFRBsCjQLfibd9bGpkecKCDYFmgWvfyjmtWH9oh/e5LkCgk2B9rPo60snjJy4vMBrOQSbAg6XSZXkeS6AYF24clF5vWbBRxx1O5yVPmt4roBgHchrmdQu5oRSD82CbSkZk+rnQLAxdNrB2NF4pR6aBd9XwdiGBufdBP/wnovEvgEmCYInSm4Sryv00Cy4wU6pWdzo5B3Bpze5SE4KKEWgBZfghCKFHpoFr6i5TG7rVvdcMaCd322BVgbPZmxtB6Ue2s+ic8/I7ZX5nsshWAeKh9vtvZWO0Pwuky54LoBgU8BNsNdZNASbAs2CL98Cgs2JZsHVf1eJV08INgWaBQ8ZW/mJb7A50Sy4LDHT9QnB5kTcwwYINgXcBHsBwaYAgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiSOurA4EmwJxZXUg2BSIK6sDwaZAXFkdCDYF4srqQLApEFdWB4JNgbiyOhBsCnCZRBxcJhEHl0nEEXCZ9FWsi8ejtWUGuIDLJOLgMok4uEwiDsrqEAdldYiDsjrEQVkd4qCsDnFQVoc4KKtDHLxVSRwIJg4EEweCiQPBxIFga3My9b2fFTtAsKXZEr1qQ8vFSj0g2NJEX2OsJMyp0AOCLU3UZwnx09tcVOgBwZbmqf6Fxe/+Gd9gsjSM376nfYNShR4QbGmiDr01fHdrr+cAbkCwpWkp6ctrrNQDgi3NMduocbY9Sj0g2NqUpG8uVOwAwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMjKw+L35Q7PZvCKbFQXvG5U9bub3DA8G0ePmo1PTLuLMAgsVwuKU9cp4B+21SIjVTV91ZAMFCuGE7yUq7r/LfkTfD1ktNi1N3FkCwEDZNkJrz7fXf8XX72wtbT3FbAMFCWJMqNVdfMGDPZRsWZLv/G4KFkBd5g7Hxc41Og0GwKL4Lf8k+TGnEgV5AsCjOlBidgQtM6U8cTOlPHEzpTxxUPvPBbxVGZ8APTOnvxaHYZrYh5UZnwQtM6e9JiS2XsdRUo9PghYAp/X+a7SKmhcbUDGL/IKkpjTM6DV7wuQ6uyHW7TspOc9G8lYa0DCRzIINgN4456nQ6/p9/qJ3uucKqh+jSiBOMTZxmdBq80CzYMfXQuLrL2Mb/9VxhVcHsSLO4iBQy59GaBT/FmPOBys+qWFawdJ5ldAIc0Sz42VNs/z2n2KWnPVdYWDAlNAteWqvhI4ue7FhvkucKCDYF2s+iz2zPZwenfuu1HIJNAR4XCqL8xA2jU3ABwWLYEPZy3OtmOBWHYCFcshcxNnmm0WkwCBbE6vel5lqS0WkwCBbEd+Ol5mxHo9NgECyIQls2u9llndFpMAgWxbHkaPvnRichA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAsKVxLmjaZKpS4TMItjbvD/qtZMobSj0g2NLY5ZdGolG7kCxRcoPahXRplcPY5UilHhCsF1fXbbrJPWiObeTbth+UekCwTmyNmDzOdox72JIdm39T7ADBOhGWz9gvBoyohWB9qJy3Mkr/HUOwPpRES02ZXf8dQ7BODHinMK/nHP33C8E6UT6r2QvLVW5ztE1UwhaN+4Vg83JFOuvOa5rhv6MSEGxevpwhNfsGawsCweZl9hKpyemhLQgEm5cjiRWMpXyhLQgEG0b+kjnKv3w2L3JgwiCNewlM8GlXq3jP0wsIVuZY2CeLm/9Tuc+NDKUHRQERmOBnXXurpSoyBCuTnMNYWXix/47aCETwgjrVa0j8m7rp/SBYGddty/6HRO8moG+wM+myxHV1kSFYmSb5txuhBHaILtrJCidPUTdtDAQr823TA6feGih8N4EJ7jiEdY3tqs4YBPthf79uX4gvvBOY4Ccqbta86qyvKjIEm4LABNd3rnUwZ13ffVBWx8wEJrhT3KPLWYrPKdxRVsfcBCa4ZNlOxqZd8tUDZXXMDcrqeLNt7PTLRufAjUAE179cvxJfPeiV1Rn96tYvns8xOgteBCJ4X9m+Snz1IFdW50KC1BwxwyR1XBBQVmfpcy7qxGhMzSDSU+TWgPcfxRDQIfoWT9y1W56P25hW/Qafk19ePm7R5L0JRHBm5oTOG/euSfrAV4+MLuxwwz/8/n+8Xtq3qmA2eODeNeGHjc6CF4Edov8h31IrfcZXj/9awBwflJdPtXuusKxgtn7oe2eNzoEbgQl+7LzUnHnEV497y1g9563SOlWwrmBSBCZ4Yq1WXRNrjfbVIyrV2X0LY3P/23MFBJuCAM+is2ZOnHHAZ49fGz/m+Pe/13va68k1BJsCDi/dnVi5YMV+7/oTEGwK8FalGMoX9hl7TrlL1vD+a8QnAsFiaJt6ZEPYCaUe22N2HhowSngiECyE/X2kZl8/pS5N5QesMQVKXXgAwUJY9rHU3Gyq1MV1M/S1n0RnAsFCONJBajYNVeqS9CtjFTb+87J4AMGBcPaM2i0G9173kU1xWMLhsH+uSp6tMmzFCbVDHSDYP7lxHV6K/VXlRjumLCpS7pE3Z6ra19732boltlWeVccTCPZP0gHGfm5pdBYS5WGXGFupbjgaBPulLFZu44WPIvLP4b5yq+5RNQT7xemQ25hyo/Ng7FRXqSmPVrUNBPun7wLGPu9ldBYyTXaw8pEfqdoEgv1TNCwqaoi6U5tASO/aeo7Kw8KFbo7ID9QNd4Fgo1iTdDzvvd7CdwPBRhFXKDXNroneDQQbhZkGgAcFBCvTNouxkrAS0buBYD7kpl9QucXJ8Elz4pYJScYdCObCkMSUpuNVblO0eonqW9zqgWAerB4iNd13Gp2GLyCYB0P3Ss037xidhi8gmAfvrpeaxbOMTsMXEMyDk5Gn2NEItadZugDBXDjQOqrjUZXbLEuIHe/nkTEHINgoPnuloHxhB+G7gWCjiJHvcbwgfK4ICDYK163KvsKHqUKwUXSVLq0Kn/cxwRhfIJhlfZWpx26urPm2yinVRfugcRFeM5twB4IHd/yoZ2fvsXO82dw4dYIt231J+d7vhI9rgGC2TR5f8u7nwvcj1y48YcCrmSEvePI6qTnUX/RuzrkuiFC7UH8WyTcY1wq/jVwiv5qJ2oUGkG/bWrrPJn7SlUETCi51nyt8N16EvGB2fmBsH8WBvHwon92i9Urxu/ECgokDwcSBYOJAMHEgWBA/frxc+CuxgQDBYnjr5bTJjYUPWwgADoJRdcWb7DZSs36E0WkwDoJRdcUXrll2ihKMToNxEIyqK77Y95rUZIgfO+gfVF0RgjNpxultNq9J0g1As2B6VVcCINUWlVSlLsuaSEf0FvcFpTM7Dz+lb1K+0SyYXNWVAJg3rIIdbex2FXSgeSG7FvOLcRndHQFVV35Jc9Hc668yGZrJ8zkMcasyNHar1KyYZlA6inC6DnafF3ffey4imgedlNlpIn95R+66s8D189opRuWjhGbBR1zUPnLEcwXhQ/QU6bt62eb2Ct2OTuWsNFH4xKLBoFlwtTrPStzz7LOeKwgLLu/vaBO5133JrLD2zy8xKh1FNAve+vfRNxmr472CsGDpqtCzEmvFefHFvINC+9/g4jENN4WcYOvA4yQrO7pTbe+lEGwK+JxFL0zyXgbBpgCPC31QKGTi0SJDng9DsBcHo1s0HsRd8enmCbGddRiq4gkEe1IivyT94WTeYZseZGz1q7yj+geCPflxMLs9CThHrr0gtxi6YgIODJCakiaco+a77sxDsAkobZzDnOPUzbodAK12Mfb5G7yj+oeY4DV9hqq9I3wluUGzKk9us1tE297mfl/qQnuHvZ/4SXW8oCV49Os/74n/TtUm+Q/0+GZwzarP5sWUZzCm6AMpwUXy37j8OFXbDJAHZQ9oJSQfM0BKcLarcoa6M5kEeZLYVV4vHJGBlODSsDLGcluo2masTWo6dBKTkAkgJZjNb7ViYbi6s6yKx58fE1v7hsodXTnm8Re18Ij6MpMXj4uf+4WYYJY1fa7a6o0VE1uOUHmXuLRLyx7h29yXTIrsHTFTXZAbycmvROxXt00QEBOsD+PnM1ZgK7yz4Lue0v8o7X5UFaT/OunaySb8OwzBQRBXKjUp6XcWjNgtNesnqQriOhfsle2vm1YgOAhayH+yB2bcWTBevvZO+1hVEIf85e0ofPYXCA6CJb1L2P4otxGVWXF57Jz9tKogU9+qYFuacc7MGwgOhrl2R6dc9wXbmjia7b1bb984UyMdPYXPJgzB1IFg4kAwcSCYONQFl2fs8XgIm7P9ijGpGANxwWftr71p2+22oKzDS2Mc8w3LR3+IC26XydgVm9uCqbMYq0gwxdh7fSAu2HU/sLPbHYhk+fg880uD0jEA6oLl+4HN3B4G9pTrk72t7q0eS0Nc8LRBJc753dwW7G52me2OVP/s1rLQElw0PqZplXHYznmxjnFVTqO3trD3Pue+4ES3qA5V3hHIHxHdfK37gvKP4+KmCy9wJAhagjvNLy/srW7e/Cu2AyynsduU787mK51X265265IytqR0ohmmJQwGUoKvy29IlkWr2mbhp1LzjVt59mPdpSbf/cWuSLmxm3QEvz9ICT4uu1H5VuUU+Wh88PU7C3aNlBqn486CUtd7uAkGvLTOA1KCK54vYCzjJVXbfP+K1IxOu7OgIKKEsY0D3brE/8rYGd6j0fSClGC21TZ6kP28YhfnzmVVZ6Qb22pC277uC1ZEvt0vPt9twWHbmyNth7glqS+0BLMbW/cpjxApShj0cVLVGctyv/GoqnNtc2bVP7jFu3YWc0nPAIgJ9stE+SrqBTNMA6sToSY4SZ5mf7Y55ywTQqgJ7ntQakZuNzoN/Qg1wYfsPxeviLXqbakgMLHgWVH2Xp4zBmrnp1eajsn3340M5hU87/VStq2JRe8fmQfzltWJk0eEdc/x2w8oYt6yOg75yztI/PA74pi3rM6QlYxdDzdFeTgrY96yOoXJbfradmqL4YOSZdN/ULvN2blzz3BPRCfMXFbnbFap1hBeXLdPWd5jqLpttkR+tijKq6qMRQi1sjop8pP8l35WtY39GmMFjcXkIxwBZXWWPueiTozG1ISQKJ8xzFmsZpPK58GuUjoWhNt1sNfUGOb8Br+xR2oG7vLbz50I6SKwPFxMPsLRXlbHUbeDPEy9hucKcwo+Ebb51IxW6m6fzOt4OKuLyilWTINmwbaUjEn1c0wi+FzbqIjhymdmuSO7zlR77ra1T+/NwSdlLJoF31fB2IYG580hOF66Apo+Wv/9mhjNghvIl6qLG500g+AL7eW2ykt35ft3W/TsiBOaBa+ouUxu61b3XGGA4NOd5dZd8Bn762+Gf697IiZC+1l0rusmzxWvIZlGHKLt0n/NV+6zbrc7IKVm1RNgLpj3caE3RXNHfqk8M9yxuKS4Lu6HZK/RhSGHhQQXRM7Z9W6Sn7n/rlUdV+Y1ujDksJDgVPlVuZT1qraZNrDY+Wk3//3oYiHBPeWXXVe/r2ob56dxUeMtOuiEDxYSnCqPyx+9jnNU6lhIcEHEpz9MaaV5/t2K6zySsQwWEsx+mzl0sebSJePDkhqH0GvRlhLMg8+HOVl+pPg5QE1DqAnuII89/HCl0WnoR6gJds0CnLrG6DT0I9QEr+pVxs5HXDM6Df0INcFsRnh0k1B62TrkBDMWWqNhQlBwaAHBxIFg4ugluDCr8G4dNVCcFVr3HYNAJ8EfRvaNVPccKBDSbL2bDAitcybV6CN4V2cnc76cfvfOQfGrXGJu3ELOUYmhj2BX6bf0lOCD+WTJHKk5q25iu5BDH8FTV0nNOnXFG/3ztXzQP/oq56jE0EfwiagL7GK08q7Uk2/LYTeSeR/4iaHTSdbuZo4EdSO+AuHoi/bYr7lHpQWug4kDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxDGx4BUJjlGhPLKXD+YVnNYp37nMaw5boBLzCo6Xh/V2DqFa3WIwr2DX9BpD9mkLAswruO8Wxm6Gh/TofB7oJThzSabK7a/G9hvTWN2MHMAbnQT36j6zR3eV7z86M7cV+O8FlNFH8Oo3pSZlRfDBQLDoI3i0PGnCbqtWSbc0+gie9ZnUfPFR8MFAsOgj+Gr49pvp4V6TwgPx6FT57NzAhAFnVSUG+GDeymeACwIqn1360UWHZK25AQ4IqHy2fbiL2B7aMgNcEFf5bOknQaYEeCKu8hkEmwIBlc9uAcGmQNx1MASbAggmDgQTR5zgjX+LVeRPDzwogHvvFxG15n0iot5/r4ioD9Su8mtuoHwDUYNgf4gpdjNmq4ioi+aKiPr9myKiXmyrpjcEu4DgIIBgCA4CCIbgIIDgIIBg4oK7nhERdZyQabOWeNVW5cGeUSKiXm6vprdAwWJeiS3UXDjLFyXFIqI6RUzAq/IXK1AwMAMQTBwIJg4EEweCiQPBxIFg4kAwcUQJLq5Wo0aNNnxjlg2tLtcF3tDwwfjzvKPyzvfrZ+63Z3PPtTKqqlxFCT5fm3/MxDG/k1Rcr/192agXeUflnG/u/TsrRjl453orqqpcRQk+Wp9/zEwmq0iLlyTX4HdrsTIq53xz0xjLeJR3rreiqspVlOA9f3Y8HJvNO6qsYsJr0g91eIaWowrId1I7AbnKUVXlKkrw4V5Hbo7wGu2iFVnFyGHSD0+qnfHFX1T++W58MldArnJUVbmKPIsu/QPvEcOyion9pB8ezuEcVYZrvosb5AjI1RVVJuBcRQk+d1g6M739m+OGHHB5JGNn/uhjQLqmqLzzXdVIPnnmnWtlVFW5ihK8/vGT5W/9H++o8n9VQe3NZX268I7KOd+rdU/KH5xzvRVVVa7CDtHvPvpQ/EmuEfNq1JAuAC+wb//6YAt+s4Hcjso33/nVpUvVGnmcc70dVU2uuJNFHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBbmQKGG9jNBDsBgRbnZJOf3miY9Hehv0d/0hnbE2jv8Rc+tfHO3X/NgGCLc6yOGfF4J2Z1daz9U+zMw8eZKlJtz+yap2r6AjBFmfHo2tvSkfiWoyVVb80O46xG78vvfUxsxVjGyHY6qTZa75cmFlP+une7En31qtXr9a5Wx8TuzK2F4KtT17M5Mz/cLKb1S4vqqzGeOtjRpL01xiCLc60MU5ntymZ96Sxz/7KLvwpm+3tf/vjQK2zZckQbHEuNX/siTY3Mp8a/HSDnYytbfTUczv+9ZHyyDMfPGF0gvwJLcGVULzcvSsQTBwIJk4oCg4pIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4vw/C6hxe08+0jwAAAAASUVORK5CYII=\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%%R\n", + "plot(cars)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], "metadata": { "kernelspec": { "display_name": "Python 3", @@ -16,10 +201,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 } - -- 2.18.1