Add new file

parent 50ce1663
#+TITLE: À propos du calcul de π
#+AUTHOR: Konrad Hinsen
#+LANGUAGE: en
#+CREATED: [2019-03-28 Thu 11:06]
#+OPTIONS: toc:1
* En demandant à la lib maths
Mon ordinateur m'indique que π vaut /approximativement/:
#+begin_src python :session :results value :exports both
from math import *
pi
#+end_src
#+RESULTS:
: 3.141592653589793
* En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la *méthode* des [[https://fr.wikipedia.org/wiki/Aiguille_de_Buffon][aiguilles de Buffon]], on obtiendrait comme *approximation* :
#+begin_src python :session :results value :exports both
import numpy as np
np.random.seed(seed=42)
N = 10000
x = np.random.uniform(size=N, low=0, high=1)
theta = np.random.uniform(size=N, low=0, high=pi/2)
2/(sum((x+np.sin(theta))>1)/N)
#+end_src
#+RESULTS:
: 3.128911138923655
* Avec un argument "fréquentiel" de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\sim{U}(0,1)$ et $Y\sim{U}(0,1)$ alors $P[X^2+Y^2\leq1]=\pi/4$ (voir [[https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80][méthode de Monte Carlo sur Wikipedia]]). Le code suivant illustre ce fait :
#+header: :noweb strip-export
#+begin_src python :results output file :session :var matplot_lib_filename="figure_pi_mc2.png" :exports both
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
np.random.seed(seed=42)
N = 1000
x = np.random.uniform(size=N, low=0, high=1)
y = np.random.uniform(size=N, low=0, high=1)
accept = (x*x+y*y) <= 1
reject = np.logical_not(accept)
fig, ax = plt.subplots(1)
ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)
ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)
ax.set_aspect('equal')
plt.savefig(matplot_lib_filename)
print(matplot_lib_filename)
#+end_src
#+RESULTS:
[[file:figure_pi_mc2.png]]
Il est alors aisé d'obtenir une approximation (pas terrible) de π en comptant combien de fois, en moyenne, $X^2+Y^2$ est inférieur à 1 :
#+begin_src python :session :results value :exports both
4*np.mean(accept)
#+end_src
#+RESULTS:
: 3.112
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment