Executed file upload

parent b5e17210
......@@ -9,7 +9,7 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
......@@ -28,7 +28,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
......@@ -60,26 +60,974 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 7,
"metadata": {},
"outputs": [
{
"ename": "FileNotFoundError",
"evalue": "File b'incidence-PAY-3.csv' does not exist",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-4-87fe69d17eff>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mraw_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_csv\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata_filename\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mskiprows\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mraw_data\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36mparser_f\u001b[0;34m(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, escapechar, comment, encoding, dialect, tupleize_cols, error_bad_lines, warn_bad_lines, skipfooter, skip_footer, doublequote, delim_whitespace, as_recarray, compact_ints, use_unsigned, low_memory, buffer_lines, memory_map, float_precision)\u001b[0m\n\u001b[1;32m 707\u001b[0m skip_blank_lines=skip_blank_lines)\n\u001b[1;32m 708\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 709\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_read\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 710\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 711\u001b[0m \u001b[0mparser_f\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__name__\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m_read\u001b[0;34m(filepath_or_buffer, kwds)\u001b[0m\n\u001b[1;32m 447\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 448\u001b[0m \u001b[0;31m# Create the parser.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 449\u001b[0;31m \u001b[0mparser\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mTextFileReader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 450\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 451\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mchunksize\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0miterator\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, f, engine, **kwds)\u001b[0m\n\u001b[1;32m 816\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptions\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'has_index_names'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'has_index_names'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 817\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 818\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_make_engine\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mengine\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 819\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 820\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mclose\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m_make_engine\u001b[0;34m(self, engine)\u001b[0m\n\u001b[1;32m 1047\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_make_engine\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mengine\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'c'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1048\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mengine\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'c'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1049\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mCParserWrapper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptions\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1050\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1051\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mengine\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'python'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, src, **kwds)\u001b[0m\n\u001b[1;32m 1693\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'allow_leading_cols'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex_col\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1694\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1695\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_reader\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mparsers\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTextReader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msrc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1696\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1697\u001b[0m \u001b[0;31m# XXX\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32mpandas/_libs/parsers.pyx\u001b[0m in \u001b[0;36mpandas._libs.parsers.TextReader.__cinit__\u001b[0;34m()\u001b[0m\n",
"\u001b[0;32mpandas/_libs/parsers.pyx\u001b[0m in \u001b[0;36mpandas._libs.parsers.TextReader._setup_parser_source\u001b[0;34m()\u001b[0m\n",
"\u001b[0;31mFileNotFoundError\u001b[0m: File b'incidence-PAY-3.csv' does not exist"
]
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>week</th>\n",
" <th>indicator</th>\n",
" <th>inc</th>\n",
" <th>inc_low</th>\n",
" <th>inc_up</th>\n",
" <th>inc100</th>\n",
" <th>inc100_low</th>\n",
" <th>inc100_up</th>\n",
" <th>geo_insee</th>\n",
" <th>geo_name</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>202406</td>\n",
" <td>3</td>\n",
" <td>212524</td>\n",
" <td>197757.0</td>\n",
" <td>227291.0</td>\n",
" <td>319</td>\n",
" <td>297.0</td>\n",
" <td>341.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>202405</td>\n",
" <td>3</td>\n",
" <td>217508</td>\n",
" <td>204749.0</td>\n",
" <td>230267.0</td>\n",
" <td>326</td>\n",
" <td>307.0</td>\n",
" <td>345.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>202404</td>\n",
" <td>3</td>\n",
" <td>213196</td>\n",
" <td>200547.0</td>\n",
" <td>225845.0</td>\n",
" <td>320</td>\n",
" <td>301.0</td>\n",
" <td>339.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>202403</td>\n",
" <td>3</td>\n",
" <td>163457</td>\n",
" <td>152276.0</td>\n",
" <td>174638.0</td>\n",
" <td>245</td>\n",
" <td>228.0</td>\n",
" <td>262.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>202402</td>\n",
" <td>3</td>\n",
" <td>129436</td>\n",
" <td>119453.0</td>\n",
" <td>139419.0</td>\n",
" <td>194</td>\n",
" <td>179.0</td>\n",
" <td>209.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>202401</td>\n",
" <td>3</td>\n",
" <td>120769</td>\n",
" <td>109452.0</td>\n",
" <td>132086.0</td>\n",
" <td>181</td>\n",
" <td>164.0</td>\n",
" <td>198.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>202352</td>\n",
" <td>3</td>\n",
" <td>115446</td>\n",
" <td>103738.0</td>\n",
" <td>127154.0</td>\n",
" <td>174</td>\n",
" <td>156.0</td>\n",
" <td>192.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>202351</td>\n",
" <td>3</td>\n",
" <td>148755</td>\n",
" <td>136546.0</td>\n",
" <td>160964.0</td>\n",
" <td>224</td>\n",
" <td>206.0</td>\n",
" <td>242.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>202350</td>\n",
" <td>3</td>\n",
" <td>147971</td>\n",
" <td>136787.0</td>\n",
" <td>159155.0</td>\n",
" <td>223</td>\n",
" <td>206.0</td>\n",
" <td>240.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>202349</td>\n",
" <td>3</td>\n",
" <td>147552</td>\n",
" <td>136422.0</td>\n",
" <td>158682.0</td>\n",
" <td>222</td>\n",
" <td>205.0</td>\n",
" <td>239.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>202348</td>\n",
" <td>3</td>\n",
" <td>124204</td>\n",
" <td>113479.0</td>\n",
" <td>134929.0</td>\n",
" <td>187</td>\n",
" <td>171.0</td>\n",
" <td>203.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>202347</td>\n",
" <td>3</td>\n",
" <td>110910</td>\n",
" <td>100658.0</td>\n",
" <td>121162.0</td>\n",
" <td>167</td>\n",
" <td>152.0</td>\n",
" <td>182.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>202346</td>\n",
" <td>3</td>\n",
" <td>83853</td>\n",
" <td>75096.0</td>\n",
" <td>92610.0</td>\n",
" <td>126</td>\n",
" <td>113.0</td>\n",
" <td>139.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>202345</td>\n",
" <td>3</td>\n",
" <td>72003</td>\n",
" <td>63178.0</td>\n",
" <td>80828.0</td>\n",
" <td>108</td>\n",
" <td>95.0</td>\n",
" <td>121.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>202344</td>\n",
" <td>3</td>\n",
" <td>49952</td>\n",
" <td>42813.0</td>\n",
" <td>57091.0</td>\n",
" <td>75</td>\n",
" <td>64.0</td>\n",
" <td>86.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>202343</td>\n",
" <td>3</td>\n",
" <td>44982</td>\n",
" <td>38170.0</td>\n",
" <td>51794.0</td>\n",
" <td>68</td>\n",
" <td>58.0</td>\n",
" <td>78.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>202342</td>\n",
" <td>3</td>\n",
" <td>56842</td>\n",
" <td>49277.0</td>\n",
" <td>64407.0</td>\n",
" <td>86</td>\n",
" <td>75.0</td>\n",
" <td>97.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>202341</td>\n",
" <td>3</td>\n",
" <td>58357</td>\n",
" <td>51032.0</td>\n",
" <td>65682.0</td>\n",
" <td>88</td>\n",
" <td>77.0</td>\n",
" <td>99.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>202340</td>\n",
" <td>3</td>\n",
" <td>68894</td>\n",
" <td>60069.0</td>\n",
" <td>77719.0</td>\n",
" <td>104</td>\n",
" <td>91.0</td>\n",
" <td>117.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>202339</td>\n",
" <td>3</td>\n",
" <td>72003</td>\n",
" <td>63452.0</td>\n",
" <td>80554.0</td>\n",
" <td>108</td>\n",
" <td>95.0</td>\n",
" <td>121.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>202338</td>\n",
" <td>3</td>\n",
" <td>63218</td>\n",
" <td>55227.0</td>\n",
" <td>71209.0</td>\n",
" <td>95</td>\n",
" <td>83.0</td>\n",
" <td>107.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td>202337</td>\n",
" <td>3</td>\n",
" <td>49085</td>\n",
" <td>42079.0</td>\n",
" <td>56091.0</td>\n",
" <td>74</td>\n",
" <td>63.0</td>\n",
" <td>85.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>202336</td>\n",
" <td>3</td>\n",
" <td>38247</td>\n",
" <td>32237.0</td>\n",
" <td>44257.0</td>\n",
" <td>58</td>\n",
" <td>49.0</td>\n",
" <td>67.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23</th>\n",
" <td>202335</td>\n",
" <td>3</td>\n",
" <td>31695</td>\n",
" <td>26013.0</td>\n",
" <td>37377.0</td>\n",
" <td>48</td>\n",
" <td>39.0</td>\n",
" <td>57.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>202334</td>\n",
" <td>3</td>\n",
" <td>26663</td>\n",
" <td>21057.0</td>\n",
" <td>32269.0</td>\n",
" <td>40</td>\n",
" <td>32.0</td>\n",
" <td>48.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25</th>\n",
" <td>202333</td>\n",
" <td>3</td>\n",
" <td>19144</td>\n",
" <td>13161.0</td>\n",
" <td>25127.0</td>\n",
" <td>29</td>\n",
" <td>20.0</td>\n",
" <td>38.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26</th>\n",
" <td>202332</td>\n",
" <td>3</td>\n",
" <td>14641</td>\n",
" <td>10285.0</td>\n",
" <td>18997.0</td>\n",
" <td>22</td>\n",
" <td>15.0</td>\n",
" <td>29.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>27</th>\n",
" <td>202331</td>\n",
" <td>3</td>\n",
" <td>15286</td>\n",
" <td>10705.0</td>\n",
" <td>19867.0</td>\n",
" <td>23</td>\n",
" <td>16.0</td>\n",
" <td>30.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>28</th>\n",
" <td>202330</td>\n",
" <td>3</td>\n",
" <td>13205</td>\n",
" <td>8647.0</td>\n",
" <td>17763.0</td>\n",
" <td>20</td>\n",
" <td>13.0</td>\n",
" <td>27.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>29</th>\n",
" <td>202329</td>\n",
" <td>3</td>\n",
" <td>11122</td>\n",
" <td>7113.0</td>\n",
" <td>15131.0</td>\n",
" <td>17</td>\n",
" <td>11.0</td>\n",
" <td>23.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2020</th>\n",
" <td>198521</td>\n",
" <td>3</td>\n",
" <td>26096</td>\n",
" <td>19621.0</td>\n",
" <td>32571.0</td>\n",
" <td>47</td>\n",
" <td>35.0</td>\n",
" <td>59.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2021</th>\n",
" <td>198520</td>\n",
" <td>3</td>\n",
" <td>27896</td>\n",
" <td>20885.0</td>\n",
" <td>34907.0</td>\n",
" <td>51</td>\n",
" <td>38.0</td>\n",
" <td>64.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2022</th>\n",
" <td>198519</td>\n",
" <td>3</td>\n",
" <td>43154</td>\n",
" <td>32821.0</td>\n",
" <td>53487.0</td>\n",
" <td>78</td>\n",
" <td>59.0</td>\n",
" <td>97.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2023</th>\n",
" <td>198518</td>\n",
" <td>3</td>\n",
" <td>40555</td>\n",
" <td>29935.0</td>\n",
" <td>51175.0</td>\n",
" <td>74</td>\n",
" <td>55.0</td>\n",
" <td>93.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2024</th>\n",
" <td>198517</td>\n",
" <td>3</td>\n",
" <td>34053</td>\n",
" <td>24366.0</td>\n",
" <td>43740.0</td>\n",
" <td>62</td>\n",
" <td>44.0</td>\n",
" <td>80.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2025</th>\n",
" <td>198516</td>\n",
" <td>3</td>\n",
" <td>50362</td>\n",
" <td>36451.0</td>\n",
" <td>64273.0</td>\n",
" <td>91</td>\n",
" <td>66.0</td>\n",
" <td>116.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2026</th>\n",
" <td>198515</td>\n",
" <td>3</td>\n",
" <td>63881</td>\n",
" <td>45538.0</td>\n",
" <td>82224.0</td>\n",
" <td>116</td>\n",
" <td>83.0</td>\n",
" <td>149.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2027</th>\n",
" <td>198514</td>\n",
" <td>3</td>\n",
" <td>134545</td>\n",
" <td>114400.0</td>\n",
" <td>154690.0</td>\n",
" <td>244</td>\n",
" <td>207.0</td>\n",
" <td>281.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2028</th>\n",
" <td>198513</td>\n",
" <td>3</td>\n",
" <td>197206</td>\n",
" <td>176080.0</td>\n",
" <td>218332.0</td>\n",
" <td>357</td>\n",
" <td>319.0</td>\n",
" <td>395.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2029</th>\n",
" <td>198512</td>\n",
" <td>3</td>\n",
" <td>245240</td>\n",
" <td>223304.0</td>\n",
" <td>267176.0</td>\n",
" <td>445</td>\n",
" <td>405.0</td>\n",
" <td>485.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2030</th>\n",
" <td>198511</td>\n",
" <td>3</td>\n",
" <td>276205</td>\n",
" <td>252399.0</td>\n",
" <td>300011.0</td>\n",
" <td>501</td>\n",
" <td>458.0</td>\n",
" <td>544.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2031</th>\n",
" <td>198510</td>\n",
" <td>3</td>\n",
" <td>353231</td>\n",
" <td>326279.0</td>\n",
" <td>380183.0</td>\n",
" <td>640</td>\n",
" <td>591.0</td>\n",
" <td>689.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2032</th>\n",
" <td>198509</td>\n",
" <td>3</td>\n",
" <td>369895</td>\n",
" <td>341109.0</td>\n",
" <td>398681.0</td>\n",
" <td>670</td>\n",
" <td>618.0</td>\n",
" <td>722.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2033</th>\n",
" <td>198508</td>\n",
" <td>3</td>\n",
" <td>389886</td>\n",
" <td>359529.0</td>\n",
" <td>420243.0</td>\n",
" <td>707</td>\n",
" <td>652.0</td>\n",
" <td>762.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2034</th>\n",
" <td>198507</td>\n",
" <td>3</td>\n",
" <td>471852</td>\n",
" <td>432599.0</td>\n",
" <td>511105.0</td>\n",
" <td>855</td>\n",
" <td>784.0</td>\n",
" <td>926.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2035</th>\n",
" <td>198506</td>\n",
" <td>3</td>\n",
" <td>565825</td>\n",
" <td>518011.0</td>\n",
" <td>613639.0</td>\n",
" <td>1026</td>\n",
" <td>939.0</td>\n",
" <td>1113.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2036</th>\n",
" <td>198505</td>\n",
" <td>3</td>\n",
" <td>637302</td>\n",
" <td>592795.0</td>\n",
" <td>681809.0</td>\n",
" <td>1155</td>\n",
" <td>1074.0</td>\n",
" <td>1236.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2037</th>\n",
" <td>198504</td>\n",
" <td>3</td>\n",
" <td>424937</td>\n",
" <td>390794.0</td>\n",
" <td>459080.0</td>\n",
" <td>770</td>\n",
" <td>708.0</td>\n",
" <td>832.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2038</th>\n",
" <td>198503</td>\n",
" <td>3</td>\n",
" <td>213901</td>\n",
" <td>174689.0</td>\n",
" <td>253113.0</td>\n",
" <td>388</td>\n",
" <td>317.0</td>\n",
" <td>459.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2039</th>\n",
" <td>198502</td>\n",
" <td>3</td>\n",
" <td>97586</td>\n",
" <td>80949.0</td>\n",
" <td>114223.0</td>\n",
" <td>177</td>\n",
" <td>147.0</td>\n",
" <td>207.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2040</th>\n",
" <td>198501</td>\n",
" <td>3</td>\n",
" <td>85489</td>\n",
" <td>65918.0</td>\n",
" <td>105060.0</td>\n",
" <td>155</td>\n",
" <td>120.0</td>\n",
" <td>190.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2041</th>\n",
" <td>198452</td>\n",
" <td>3</td>\n",
" <td>84830</td>\n",
" <td>60602.0</td>\n",
" <td>109058.0</td>\n",
" <td>154</td>\n",
" <td>110.0</td>\n",
" <td>198.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2042</th>\n",
" <td>198451</td>\n",
" <td>3</td>\n",
" <td>101726</td>\n",
" <td>80242.0</td>\n",
" <td>123210.0</td>\n",
" <td>185</td>\n",
" <td>146.0</td>\n",
" <td>224.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2043</th>\n",
" <td>198450</td>\n",
" <td>3</td>\n",
" <td>123680</td>\n",
" <td>101401.0</td>\n",
" <td>145959.0</td>\n",
" <td>225</td>\n",
" <td>184.0</td>\n",
" <td>266.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2044</th>\n",
" <td>198449</td>\n",
" <td>3</td>\n",
" <td>101073</td>\n",
" <td>81684.0</td>\n",
" <td>120462.0</td>\n",
" <td>184</td>\n",
" <td>149.0</td>\n",
" <td>219.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2045</th>\n",
" <td>198448</td>\n",
" <td>3</td>\n",
" <td>78620</td>\n",
" <td>60634.0</td>\n",
" <td>96606.0</td>\n",
" <td>143</td>\n",
" <td>110.0</td>\n",
" <td>176.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2046</th>\n",
" <td>198447</td>\n",
" <td>3</td>\n",
" <td>72029</td>\n",
" <td>54274.0</td>\n",
" <td>89784.0</td>\n",
" <td>131</td>\n",
" <td>99.0</td>\n",
" <td>163.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2047</th>\n",
" <td>198446</td>\n",
" <td>3</td>\n",
" <td>87330</td>\n",
" <td>67686.0</td>\n",
" <td>106974.0</td>\n",
" <td>159</td>\n",
" <td>123.0</td>\n",
" <td>195.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2048</th>\n",
" <td>198445</td>\n",
" <td>3</td>\n",
" <td>135223</td>\n",
" <td>101414.0</td>\n",
" <td>169032.0</td>\n",
" <td>246</td>\n",
" <td>184.0</td>\n",
" <td>308.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2049</th>\n",
" <td>198444</td>\n",
" <td>3</td>\n",
" <td>68422</td>\n",
" <td>20056.0</td>\n",
" <td>116788.0</td>\n",
" <td>125</td>\n",
" <td>37.0</td>\n",
" <td>213.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>2050 rows × 10 columns</p>\n",
"</div>"
],
"text/plain": [
" week indicator inc inc_low inc_up inc100 inc100_low \\\n",
"0 202406 3 212524 197757.0 227291.0 319 297.0 \n",
"1 202405 3 217508 204749.0 230267.0 326 307.0 \n",
"2 202404 3 213196 200547.0 225845.0 320 301.0 \n",
"3 202403 3 163457 152276.0 174638.0 245 228.0 \n",
"4 202402 3 129436 119453.0 139419.0 194 179.0 \n",
"5 202401 3 120769 109452.0 132086.0 181 164.0 \n",
"6 202352 3 115446 103738.0 127154.0 174 156.0 \n",
"7 202351 3 148755 136546.0 160964.0 224 206.0 \n",
"8 202350 3 147971 136787.0 159155.0 223 206.0 \n",
"9 202349 3 147552 136422.0 158682.0 222 205.0 \n",
"10 202348 3 124204 113479.0 134929.0 187 171.0 \n",
"11 202347 3 110910 100658.0 121162.0 167 152.0 \n",
"12 202346 3 83853 75096.0 92610.0 126 113.0 \n",
"13 202345 3 72003 63178.0 80828.0 108 95.0 \n",
"14 202344 3 49952 42813.0 57091.0 75 64.0 \n",
"15 202343 3 44982 38170.0 51794.0 68 58.0 \n",
"16 202342 3 56842 49277.0 64407.0 86 75.0 \n",
"17 202341 3 58357 51032.0 65682.0 88 77.0 \n",
"18 202340 3 68894 60069.0 77719.0 104 91.0 \n",
"19 202339 3 72003 63452.0 80554.0 108 95.0 \n",
"20 202338 3 63218 55227.0 71209.0 95 83.0 \n",
"21 202337 3 49085 42079.0 56091.0 74 63.0 \n",
"22 202336 3 38247 32237.0 44257.0 58 49.0 \n",
"23 202335 3 31695 26013.0 37377.0 48 39.0 \n",
"24 202334 3 26663 21057.0 32269.0 40 32.0 \n",
"25 202333 3 19144 13161.0 25127.0 29 20.0 \n",
"26 202332 3 14641 10285.0 18997.0 22 15.0 \n",
"27 202331 3 15286 10705.0 19867.0 23 16.0 \n",
"28 202330 3 13205 8647.0 17763.0 20 13.0 \n",
"29 202329 3 11122 7113.0 15131.0 17 11.0 \n",
"... ... ... ... ... ... ... ... \n",
"2020 198521 3 26096 19621.0 32571.0 47 35.0 \n",
"2021 198520 3 27896 20885.0 34907.0 51 38.0 \n",
"2022 198519 3 43154 32821.0 53487.0 78 59.0 \n",
"2023 198518 3 40555 29935.0 51175.0 74 55.0 \n",
"2024 198517 3 34053 24366.0 43740.0 62 44.0 \n",
"2025 198516 3 50362 36451.0 64273.0 91 66.0 \n",
"2026 198515 3 63881 45538.0 82224.0 116 83.0 \n",
"2027 198514 3 134545 114400.0 154690.0 244 207.0 \n",
"2028 198513 3 197206 176080.0 218332.0 357 319.0 \n",
"2029 198512 3 245240 223304.0 267176.0 445 405.0 \n",
"2030 198511 3 276205 252399.0 300011.0 501 458.0 \n",
"2031 198510 3 353231 326279.0 380183.0 640 591.0 \n",
"2032 198509 3 369895 341109.0 398681.0 670 618.0 \n",
"2033 198508 3 389886 359529.0 420243.0 707 652.0 \n",
"2034 198507 3 471852 432599.0 511105.0 855 784.0 \n",
"2035 198506 3 565825 518011.0 613639.0 1026 939.0 \n",
"2036 198505 3 637302 592795.0 681809.0 1155 1074.0 \n",
"2037 198504 3 424937 390794.0 459080.0 770 708.0 \n",
"2038 198503 3 213901 174689.0 253113.0 388 317.0 \n",
"2039 198502 3 97586 80949.0 114223.0 177 147.0 \n",
"2040 198501 3 85489 65918.0 105060.0 155 120.0 \n",
"2041 198452 3 84830 60602.0 109058.0 154 110.0 \n",
"2042 198451 3 101726 80242.0 123210.0 185 146.0 \n",
"2043 198450 3 123680 101401.0 145959.0 225 184.0 \n",
"2044 198449 3 101073 81684.0 120462.0 184 149.0 \n",
"2045 198448 3 78620 60634.0 96606.0 143 110.0 \n",
"2046 198447 3 72029 54274.0 89784.0 131 99.0 \n",
"2047 198446 3 87330 67686.0 106974.0 159 123.0 \n",
"2048 198445 3 135223 101414.0 169032.0 246 184.0 \n",
"2049 198444 3 68422 20056.0 116788.0 125 37.0 \n",
"\n",
" inc100_up geo_insee geo_name \n",
"0 341.0 FR France \n",
"1 345.0 FR France \n",
"2 339.0 FR France \n",
"3 262.0 FR France \n",
"4 209.0 FR France \n",
"5 198.0 FR France \n",
"6 192.0 FR France \n",
"7 242.0 FR France \n",
"8 240.0 FR France \n",
"9 239.0 FR France \n",
"10 203.0 FR France \n",
"11 182.0 FR France \n",
"12 139.0 FR France \n",
"13 121.0 FR France \n",
"14 86.0 FR France \n",
"15 78.0 FR France \n",
"16 97.0 FR France \n",
"17 99.0 FR France \n",
"18 117.0 FR France \n",
"19 121.0 FR France \n",
"20 107.0 FR France \n",
"21 85.0 FR France \n",
"22 67.0 FR France \n",
"23 57.0 FR France \n",
"24 48.0 FR France \n",
"25 38.0 FR France \n",
"26 29.0 FR France \n",
"27 30.0 FR France \n",
"28 27.0 FR France \n",
"29 23.0 FR France \n",
"... ... ... ... \n",
"2020 59.0 FR France \n",
"2021 64.0 FR France \n",
"2022 97.0 FR France \n",
"2023 93.0 FR France \n",
"2024 80.0 FR France \n",
"2025 116.0 FR France \n",
"2026 149.0 FR France \n",
"2027 281.0 FR France \n",
"2028 395.0 FR France \n",
"2029 485.0 FR France \n",
"2030 544.0 FR France \n",
"2031 689.0 FR France \n",
"2032 722.0 FR France \n",
"2033 762.0 FR France \n",
"2034 926.0 FR France \n",
"2035 1113.0 FR France \n",
"2036 1236.0 FR France \n",
"2037 832.0 FR France \n",
"2038 459.0 FR France \n",
"2039 207.0 FR France \n",
"2040 190.0 FR France \n",
"2041 198.0 FR France \n",
"2042 224.0 FR France \n",
"2043 266.0 FR France \n",
"2044 219.0 FR France \n",
"2045 176.0 FR France \n",
"2046 163.0 FR France \n",
"2047 195.0 FR France \n",
"2048 308.0 FR France \n",
"2049 213.0 FR France \n",
"\n",
"[2050 rows x 10 columns]"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
......@@ -96,9 +1044,73 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 8,
"metadata": {},
"outputs": [],
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>week</th>\n",
" <th>indicator</th>\n",
" <th>inc</th>\n",
" <th>inc_low</th>\n",
" <th>inc_up</th>\n",
" <th>inc100</th>\n",
" <th>inc100_low</th>\n",
" <th>inc100_up</th>\n",
" <th>geo_insee</th>\n",
" <th>geo_name</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1813</th>\n",
" <td>198919</td>\n",
" <td>3</td>\n",
" <td>-</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>-</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n",
"1813 198919 3 - NaN NaN - NaN NaN \n",
"\n",
" geo_insee geo_name \n",
"1813 FR France "
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"raw_data[raw_data.isnull().any(axis=1)]"
]
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment