Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mooc-rr
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
40b4b9646ff373fd7a7b82d082e9f49d
mooc-rr
Commits
30e70174
Commit
30e70174
authored
Jan 28, 2024
by
40b4b9646ff373fd7a7b82d082e9f49d
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
calcul challenger mis à jour
parent
1e3f2d58
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
89 additions
and
107 deletions
+89
-107
exo5_fr.ipynb
module2/exo5/exo5_fr.ipynb
+89
-107
No files found.
module2/exo5/exo5_fr.ipynb
View file @
30e70174
...
...
@@ -40,7 +40,7 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 1
2
,
"metadata": {},
"outputs": [
{
...
...
@@ -287,7 +287,7 @@
"22 1/12/86 6 58 200 1"
]
},
"execution_count": 1,
"execution_count": 1
2
,
"metadata": {},
"output_type": "execute_result"
}
...
...
@@ -314,15 +314,15 @@
"metadata": {},
"source": [
"## Inspection graphique des données\n",
"
Les vols où aucun incident n'est relevé n'apporta
nt aucun information\n",
"
On pourrait penser que les vols où aucun incident n'est relevé n'apporte
nt aucun information\n",
"sur l'influence de la température ou de la pression sur les\n",
"dysfonctionnements,
nous nous concentrons
sur les expériences où au\n",
"moins un joint a été défectueux.\n"
"dysfonctionnements,
et se concentrer
sur les expériences où au\n",
"moins un joint a été défectueux.
C'est ce qui est montré dans le tableau ci-dessous.
\n"
]
},
{
"cell_type": "code",
"execution_count":
2
,
"execution_count":
13
,
"metadata": {},
"outputs": [
{
...
...
@@ -425,35 +425,49 @@
"22 1/12/86 6 58 200 1"
]
},
"execution_count":
2
,
"execution_count":
13
,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = data[data.Malfunction>0]\n",
"data"
"data
1
= data[data.Malfunction>0]\n",
"data
1
"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Très bien, nous avons une variabilité de température importante mais\n",
"la pression est quasiment toujours égale à 200, ce qui devrait\n",
"simplifier l'analyse.\n",
"Le tableau indique une variabilité de température importante et\n",
"une pression quasiment toujours égale à 200, ce qui devrait\n",
"simplifier l'analyse. La température serait-elle plus impactante \n",
"sur les dysfonctionnements ? \n",
"\n",
"En réalité, il est nécessaire, si l'on veut obtenir la dépendance\n",
"réelle des dysfonctionnements sur les paramètres environementaux,\n",
"de prendre en compte tous les cas expérimentaux, notamment ceux\n",
"pour lesquels aucun dysfonctionnement n'apparaît. \n",
"C'est d'ailleurs absolument nécessaire si l'on veut pouvoir dire \n",
"quelque chose sur la probabilité qu'un dysfonctionnement \n",
"apparaisse : sans prendre en compte ces cas expérimentaux, on\n",
"quantifie simplement l'influence de la température sur la\n",
"probabilité conditionnelle qu'un dysfonctionnement arrive, sachant\n",
"qu'au moins un dysfonctionnement est survenu.\n",
"\n",
"Conservons cependant l'approche en fonction de la température,\n",
"mais sur l'ensemble des données expérimentales. \n",
"Comment la fréquence d'échecs varie-t-elle avec la température ?\n"
]
},
{
"cell_type": "code",
"execution_count":
3
,
"execution_count":
14
,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uID
MuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAFaNJREFUeJzt3X2QZXV95/H3p2cGGASFwGZiMSAQWFdKCWALGtxkiMRCqxzWwgfYSjRGnWwJlTImRuK6hLCmaiUxJlaIOroaYUuRh1Vnd3ERNK3REmHUCY/BzCJCgwHFUWkY5oH+7h/3zvFOd0/37aHPvUz3+1XVNfec+zvnfvvL4X76PNxzU1VIkgQwMuwCJElPH4aCJKlhKEiSGoaCJKlhKEiSGoaCJKnRWigk+XiSh5Pcvofnk+SDSTYnuTXJKW3VIknqT5t7Cn8PnDXL868Aju/+rAM+1GItkqQ+tBYKVfVV4MezDDkbuLw6bgIOSfLstuqRJM1t+RBf+wjg/p7p8e68H0wdmGQdnb0JVq5c+cIjjzxyIAU+VZOTk4yMeNqmlz2Zzp5MZ09m9lT68t3vfvdHVfVv5ho3zFDIDPNmvOdGVa0H1gOMjo7Wxo0b26xrwYyNjbFmzZphl/G0Yk+msyfT2ZOZPZW+JPl+P+OGGcXjQO+f/KuBB4dUiySJ4YbCBuAN3auQXgz8tKqmHTqSJA1Oa4ePknwaWAMcnmQc+FNgBUBVfRi4DnglsBl4HHhTW7VIkvrTWihU1XlzPF/A+W29viRp/jy9L0lqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqtBoKSc5KcneSzUkunOH5o5L8Q5LvJLk1ySvbrEeSNLvWQiHJMuAy4BXACcB5SU6YMuw9wFVVdTJwLvB3bdUjSZpbm3sKpwKbq+qeqtoOXAmcPWVMAc/sPn4W8GCL9UiS5pCqamfFyWuAs6rqLd3p3wZOq6oLesY8G/gicCjwDODMqvrWDOtaB6wDWLVq1QuvvPLKVmpeaBMTExx00EHDLuNpxZ5MZ0+msyczeyp9OeOMM75VVaNzjVu+V2vvT2aYNzWBzgP+vqren+QlwBVJnl9Vk7stVLUeWA8wOjpaa9asaaPeBTc2Nsa+Uuug2JPp7Ml09mRmg+hLm4ePxoEje6ZXM/3w0JuBqwCq6hvAAcDhLdYkSZpFm6FwC3B8kmOS7EfnRPKGKWPuA14GkOR5dELhhy3WJEmaRWuhUFU7gQuA64G76FxldEeSS5Ks7Q77Q+CtSf4J+DTwO9XWSQ5J0pzaPKdAVV0HXDdl3kU9j+8ETm+zBklS//xEsySpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqthkKSs5LcnWRzkgv3MOZ1Se5MckeST7VZjyRpdsv7GZTk+VV1+3xWnGQZcBnwm8A4cEuSDVV1Z8+Y44E/AU6vqi1JfnE+ryFJWlj97il8OMnNSd6W5JA+lzkV2FxV91TVduBK4OwpY94KXFZVWwCq6uE+1y1JakFfewpV9dLuX/W/C2xMcjPwiaq6YZbFjgDu75keB06bMubfAiT5OrAMuLiq/u/UFSVZB6wDWLVqFWNjY/2UPXQTExP7TK2DYk+msyfT2ZOZDaIvfYUCQFX9S5L3ABuBDwInJwnw7qr6nzMskplWM8PrHw+sAVYD/9g9VPWTKa+9HlgPMDo6WmvWrOm37KEaGxtjX6l1UOzJdPZkOnsys0H0pa/DR0lOTPIB4C7gN4BXVdXzuo8/sIfFxoEje6ZXAw/OMObzVbWjqr4H3E0nJCRJQ9DvOYW/Bb4N/EpVnV9V3waoqgeB9+xhmVuA45Mck2Q/4Fxgw5QxnwPOAEhyOJ3DSffM71eQJC2Ufg8fvRLYWlVPAiQZAQ6oqser6oqZFqiqnUkuAK6nc77g41V1R5JLgI1VtaH73MuT3Ak8Cbyzqh55ir+TJGkv9RsKNwJnAhPd6QOBLwK/OttCVXUdcN2UeRf1PC7gHd0fSdKQ9Xv46ICq2hUIdB8f2E5JkqRh6TcUHktyyq6JJC8EtrZTkiRpWPo9fPR24Ooku64eejbw+nZKkiQNS78fXrslyb8Dnkvn8wf/XFU7Wq1MkjRwfX94DXgRcHR3mZOTUFWXt1KVJGko+r0h3hXALwOb6Fw6Cp1PJxsKkrSI9LunMAqc0L2EVJK0SPV79dHtwC+1WYgkafj63VM4HLize3fUbbtmVtXaVqqSJA1Fv6FwcZtFSJKeHvq9JPUrSZ4DHF9VNyY5kM79jCRJi0i/t85+K3AN8JHurCPo3OFUkrSI9Hui+XzgdOBn0PnCHcDvU5akRabfUNjW/Z5lAJIsZ/q3qEmS9nH9hsJXkrwbWJnkN4Grgf/VXlmSpGHoNxQuBH4I3Ab8Hp3vSNjTN65JkvZR/V59NAl8tPsjSVqk+r330feY4RxCVR274BVJkoZmPvc+2uUA4LXALyx8OZKkYerrnEJVPdLz80BV/TXwGy3XJkkasH4PH53SMzlCZ8/h4FYqkiQNTb+Hj97f83gncC/wugWvRpI0VP1efXRG24VIkoav38NH75jt+ar6q4UpR5I0TPO5+uhFwIbu9KuArwL3t1GUJGk45vMlO6dU1aMASS4Grq6qt7RVmCRp8Pq9zcVRwPae6e3A0QtejSRpqPrdU7gCuDnJZ+l8svnVwOWtVSVJGop+rz768yRfAP59d9abquo77ZUlSRqGfg8fARwI/Kyq/gYYT3JMSzVJkoak36/j/FPgXcCfdGetAP5HW0VJkoaj3z2FVwNrgccAqupBvM2FJC06/YbC9qoqurfPTvKM9kqSJA1Lv6FwVZKPAIckeStwI37hjiQtOv1effSX3e9m/hnwXOCiqrqh1cokSQM3555CkmVJbqyqG6rqnVX1R/0GQpKzktydZHOSC2cZ95oklWR0T2MkSe2bMxSq6kng8STPms+KkywDLgNeAZwAnJfkhBnGHQz8PvDN+axfkrTw+v1E8xPAbUluoHsFEkBV/f4sy5wKbK6qewCSXAmcDdw5Zdx/BS4F/qjfoiVJ7eg3FP5P92c+jmD3u6iOA6f1DkhyMnBkVf3vJHsMhSTrgHUAq1atYmxsbJ6lDMfExMQ+U+ug2JPp7Ml09mRmg+jLrKGQ5Kiquq+qPrkX684M86pn3SPAB4DfmWtFVbUeWA8wOjpaa9as2YtyBm9sbIx9pdZBsSfT2ZPp7MnMBtGXuc4pfG7XgyTXznPd48CRPdOrgQd7pg8Gng+MJbkXeDGwwZPNkjQ8c4VC71/7x85z3bcAxyc5Jsl+wLn8/Et6qKqfVtXhVXV0VR0N3ASsraqN83wdSdICmSsUag+P51RVO4ELgOuBu4CrquqOJJckWTu/MiVJgzDXieZfSfIzOnsMK7uP6U5XVT1ztoWr6jrguinzLtrD2DV9VSxJas2soVBVywZViCRp+ObzfQqSpEXOUJAkNQwFSVLDUJAkNZZMKDwysY1/uv8nPDKxbdilSNK8PTKxja07nmz9PWxJhMLnNz3A6e/7Mr/1sW9y+vu+zIZNDwy7JEnq2673sO/98LHW38MWfSg8MrGNd117K0/smOTRbTt5Ysckf3ztre4xSNon9L6HPVnV+nvYog+F8S1bWTGy+6+5YmSE8S1bh1SRJPVv0O9hiz4UVh+6kh2Tk7vN2zE5yepDVw6pIknq36DfwxZ9KBx20P5ces6JHLBihIP3X84BK0a49JwTOeyg/YddmiTNqfc9bFnS+ntYv1+ys09be9IRnH7c4Yxv2crqQ1caCJL2Kbvew27+xtf4+tqXtvoetiRCATppaxhI2lcddtD+rFyxrPX3sUV/+EiS1D9DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSY1WQyHJWUnuTrI5yYUzPP+OJHcmuTXJl5I8p816JEmzay0UkiwDLgNeAZwAnJfkhCnDvgOMVtWJwDXApW3VI0maW5t7CqcCm6vqnqraDlwJnN07oKr+oaoe707eBKxusR5J0hyWt7juI4D7e6bHgdNmGf9m4AszPZFkHbAOYNWqVYyNjS1Qie2amJjYZ2odFHsynT2Zzp7MbBB9aTMUMsO8mnFg8lvAKPDrMz1fVeuB9QCjo6O1Zs2aBSqxXWNjY+wrtQ6KPZnOnkxnT2Y2iL60GQrjwJE906uBB6cOSnIm8J+BX6+qbS3WI0maQ5vnFG4Bjk9yTJL9gHOBDb0DkpwMfARYW1UPt1iLJKkPrYVCVe0ELgCuB+4CrqqqO5JckmRtd9hfAAcBVyfZlGTDHlYnSRqANg8fUVXXAddNmXdRz+Mz23z9peSRiW2Mb9nK6kNXcthB+7e+3GJmT4Zr80OPsuXxHWx+6FGOW3XwsMtZcloNBQ3G5zc9wLuuvZUVIyPsmJzk0nNOZO1JR7S23GJmT4bros/dxuU33ccfvmAnf/CBr/KGlxzFJWe/YNhlLSne5mIf98jENt517a08sWOSR7ft5Ikdk/zxtbfyyMTs5+z3drnFzJ4M1+aHHuXym+7bbd7l37iPzQ89OqSKliZDYR83vmUrK0Z2/8+4YmSE8S1bW1luMbMnw7Xp/p/Ma77aYSjs41YfupIdk5O7zdsxOcnqQ1e2stxiZk+G66QjD5nXfLXDUNjHHXbQ/lx6zokcsGKEg/dfzgErRrj0nBPnPEG6t8stZvZkuI5bdTBveMlRu817w0uO8mTzgHmieRFYe9IRnH7c4fO+YmZvl1vM7MlwXXL2C3jDi4/mtm/dxI1/8GIDYQgMhUXisIP236s3sL1dbjGzJ8N13KqDGT9whYEwJB4+kiQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUqPVUEhyVpK7k2xOcuEMz++f5DPd57+Z5Og265Ekza61UEiyDLgMeAVwAnBekhOmDHszsKWqjgM+ALyvrXokSXNrc0/hVGBzVd1TVduBK4Gzp4w5G/hk9/E1wMuSpMWaJEmzWN7iuo8A7u+ZHgdO29OYqtqZ5KfAYcCPegclWQes605OJLm7lYoX3uFM+V1kT2ZgT6azJzN7Kn15Tj+D2gyFmf7ir70YQ1WtB9YvRFGDlGRjVY0Ou46nE3synT2Zzp7MbBB9afPw0ThwZM/0auDBPY1Jshx4FvDjFmuSJM2izVC4BTg+yTFJ9gPOBTZMGbMBeGP38WuAL1fVtD0FSdJgtHb4qHuO4ALgemAZ8PGquiPJJcDGqtoA/HfgiiSb6ewhnNtWPUOyzx3yGgB7Mp09mc6ezKz1vsQ/zCVJu/iJZklSw1CQJDUMhQWS5N4ktyXZlGRjd97FSR7oztuU5JXDrnPQkhyS5Jok/5zkriQvSfILSW5I8i/dfw8ddp2DtIeeLNltJclze37vTUl+luTtS3k7maUnrW8nnlNYIEnuBUar6kc98y4GJqrqL4dV17Al+STwj1X1se5VaAcC7wZ+XFX/rXtPrEOr6l1DLXSA9tCTt7PEtxVobo/zAJ0Pup7PEt5OdpnSkzfR8nbinoJak+SZwK/RucqMqtpeVT9h99ubfBL4D8OpcPBm6Yk6Xgb8v6r6Pkt4O5mityetMxQWTgFfTPKt7m05drkgya1JPr6Udn+7jgV+CHwiyXeSfCzJM4BVVfUDgO6/vzjMIgdsTz2Bpb2t7HIu8Onu46W8nfTq7Qm0vJ0YCgvn9Ko6hc5dYc9P8mvAh4BfBk4CfgC8f4j1DcNy4BTgQ1V1MvAYMO0W6kvMnnqy1LcVuofS1gJXD7uWp4sZetL6dmIoLJCqerD778PAZ4FTq+qhqnqyqiaBj9K5c+xSMg6MV9U3u9PX0HlDfCjJswG6/z48pPqGYcaeuK0AnT+ovl1VD3Wnl/J2sstuPRnEdmIoLIAkz0hy8K7HwMuB23dt0F2vBm4fRn3DUlX/Ctyf5LndWS8D7mT325u8Efj8EMobij31ZKlvK13nsfthkiW7nfTYrSeD2E68+mgBJDmWzt4BdA4PfKqq/jzJFXR28wq4F/i9XcdIl4okJwEfA/YD7qFz9cQIcBVwFHAf8NqqWjI3QtxDTz7IEt5WkhxI5zb6x1bVT7vzDmNpbycz9aT19xRDQZLU8PCRJKlhKEiSGoaCJKlhKEiSGoaCJKnR2jevSYPWvYTxS93JXwKepHNLCeh8mHD7UAqbRZLfBa7rfn5BGjovSdWi9HS6Q22SZVX15B6e+xpwQVVtmsf6llfVzgUrUOrh4SMtCUnemOTm7j3o/y7JSJLlSX6S5C+SfDvJ9UlOS/KVJPfsuld9krck+Wz3+buTvKfP9b43yc3AqUn+LMktSW5P8uF0vJ7OB5E+011+vyTjSQ7prvvFSW7sPn5vko8kuYHOzfSWJ/mr7mvfmuQtg++qFiNDQYtekufTuSXAr1bVSXQOm57bffpZwBe7NzPcDlxM59YTrwUu6VnNqd1lTgH+Y5KT+ljvt6vq1Kr6BvA3VfUi4AXd586qqs8Am4DXV9VJfRzeOhl4VVX9NrAOeLiqTgVeROcmjEftTX+kXp5T0FJwJp03zo1JAFbSuX0AwNaquqH7+Dbgp1W1M8ltwNE967i+qrYAJPkc8FI6///sab3b+fmtTwBeluSdwAHA4cC3gC/M8/f4fFU90X38cuB5SXpD6Hg6t4OQ9pqhoKUgwMer6r/sNjNZTufNe5dJYFvP497/P6aefKs51ru1uifsuvew+Vs6d0N9IMl76YTDTHby8z34qWMem/I7va2qvoS0gDx8pKXgRuB1SQ6HzlVKe3Go5eXpfLfygXS+Eezr81jvSjoh86Pu3XTP6XnuUeDgnul7gRd2H/eOm+p64G3dANr1nb4r5/k7SdO4p6BFr6puS/JnwI1JRoAdwH8CHpzHar4GfIrOF5xcsetqoX7WW1WPpPO9zLcD3we+2fP0J4CPJdlK57zFxcBHk/wrcPMs9XyEzt1DN3UPXT1MJ6ykp8RLUqU5dK/seX5VvX3YtUht8/CRJKnhnoIkqeGegiSpYShIkhqGgiSpYShIkhqGgiSp8f8B+Q9eu+sB8EwAAAAASUVORK5CYII=
\n",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uID
IuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAF9JJREFUeJzt3X2UXXV97/H3d5IACYlAg02VQAFJsVyBCOFJtDfx6Qa7JPUCBbyCl940ZUlul9y2htvVa6m1a1V8qHpFY+SiQldNVRBom14e1Ii0IASM4UHBuYBhEhogBshASGYy3/vH2bN7Mkxmzhlmz5lzeL/WmpWz9/mdne939pz5zN5nn9+JzESSJICuVhcgSZo8DAVJUslQkCSVDAVJUslQkCSVDAVJUqmyUIiIqyPiqYh4YC/3R0R8PiK6I2JDRJxQVS2SpMZUeaTwNWDxCPefAcwrvpYBX6qwFklSAyoLhcy8HfjlCEOWANdkzV3AgRHxuqrqkSSNbmoL/+9DgCfqlnuKdU8OHRgRy6gdTTB9+vQTDz300AkpsFEDAwN0dXXmyzOd2pt9tZ9O7W2i+nrkkUeeyczXjjaulaEQw6wbds6NzFwFrAJYsGBBrlu3rsq6mrZ27VoWLlzY6jIq0am92Vf76dTeJqqviPhFI+NaGbs9QP2f/HOBzS2qRZJEa0PhJuDC4iqkU4HnMvNlp44kSROnstNHEfENYCFwcET0AH8OTAPIzJXAGuA9QDfwInBRVbVIkhpTWShk5vmj3J/AJVX9/5Kk5nXeS/mSpDEzFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklSqNBQiYnFEPBwR3RFx2TD3HxAR/xARP4mIByPioirrkSSNrLJQiIgpwJXAGcAxwPkRccyQYZcAD2Xm8cBC4NMRsU9VNUmSRlblkcLJQHdmPpqZu4DVwJIhYxKYFREBzAR+CfRXWJMkaQSRmdVsOOJsYHFmLi2WLwBOyczldWNmATcBbwRmAedm5j8Ns61lwDKAOXPmnLh69epKah6r3t5eZs6c2eoyKtGpvdlX++nU3iaqr0WLFt2bmQtGGze1whpimHVDE+g/AeuBtwNvAG6NiB9m5vN7PChzFbAKYMGCBblw4cLxr/YVWLt2LZOtpvHSqb3ZV/vp1N4mW19Vnj7qAQ6tW54LbB4y5iLg+qzpBh6jdtQgSWqBKkPhHmBeRBxRvHh8HrVTRfU2Au8AiIg5wNHAoxXWJEkaQWWnjzKzPyKWAzcDU4CrM/PBiLi4uH8l8JfA1yLifmqnm1Zk5jNV1SRJGlmVrymQmWuANUPWray7vRl4d5U1SJIa5zuaJUklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVKo0FCJicUQ8HBHdEXHZXsYsjIj1EfFgRPygynokSSOb2sigiHhTZj7QzIYjYgpwJfAuoAe4JyJuysyH6sYcCHwRWJyZGyPiV5v5PyRJ46vRI4WVEXF3RHyo+EXeiJOB7sx8NDN3AauBJUPGvB+4PjM3AmTmUw1uW5JUgcjMxgZGzAN+DzgHuBv4ambeOsL4s6kdASwtli8ATsnM5XVjPgtMA/4DMAv4XGZeM8y2lgHLAObMmXPi6tWrG+tugvT29jJz5sxWl1GJTu3NvtpPp/Y2UX0tWrTo3sxcMOrAzGz4C5gCnAVsAn4K/Az4z3sZew5wVd3yBcD/HjLmC8BdwP7AwcDPgd8YqYYTTzwxJ5vvf//7rS6hMp3am321n07tbaL6AtZlA7/nG31N4TjgIuC3gVuB92bmfRHxeuBO4PphHtYDHFq3PBfYPMyYZzLzBeCFiLgdOB54pJG6JEnjq9HXFL4A3Accn5mXZOZ9AJm5GfizvTzmHmBeRBwREfsA5wE3DRlzI/C2iJgaETOAU6gdgUiSWqChIwXgPcCOzNwNEBFdwH6Z+WJmXjvcAzKzPyKWAzdTO+10dWY+GBEXF/evzMyfRsT/BTYAA9RONzV1lZMkafw0Ggq3Ae8EeovlGcAtwFtGelBmrgHWDFm3csjyJ4FPNliHJKlCjZ4+2i8zBwOB4vaMakqSJLVKo6HwQkScMLgQEScCO6opSZLUKo2ePvow8K2IGLx66HXAudWUJElqlYZCITPviYg3AkcDAfwsM/sqrUySNOEaPVIAOAk4vHjMmyOCHObdx5Kk9tXom9euBd4ArAd2F6sTMBQkqYM0eqSwADimeKu0JKlDNXr10QPAr1VZiCSp9Ro9UjgYeCgi7gZ2Dq7MzDMrqUqS1BKNhsLlVRYhSZocGr0k9QcR8evAvMy8rZi8bkq1pUmSJlpDrylExO8D3wa+XKw6BLihqqIkSa3R6AvNlwCnA88DZObPAT9PWZI6TKOhsDNrn7MMQERMpfY+BUlSB2k0FH4QEX8KTI+IdwHfAv6hurIkSa3QaChcBjwN3A/8AbXPSNjbJ65JktpUo1cfDQBfKb4kSR2q0bmPHmOY1xAy88hxr0iS1DLNzH00aD/gHOBXxr8cSVIrNfSaQmZurfvalJmfBd5ecW2SpAnW6OmjE+oWu6gdOcyqpCJJUss0evro03W3+4HHgd8d92okSS3V6NVHi6ouRJLUeo2ePvofI92fmZ8Zn3IkSa3UzNVHJwE3FcvvBW4HnqiiKElSazTzITsnZOZ2gIi4HPhWZi6tqjBJ0sRrdJqLw4Bddcu7gMPHvRpJUks1eqRwLXB3RHyH2jub3wdcU1lVkqSWaPTqo7+KiH8G3lasuigzf1xdWZKkVmj09BHADOD5zPwc0BMRR1RUkySpRRr9OM4/B1YA/7NYNQ3426qKkiS1RqNHCu8DzgReAMjMzTjNhSR1nEZDYVdmJsX02RGxf3UlSZJapdFQ+GZEfBk4MCJ+H7gNP3BHkjpOo1cffar4bObngaOBj2bmrZVWJkmacKMeKUTElIi4LTNvzcw/ycw/bjQQImJxRDwcEd0RcdkI406KiN0RcXYzxUuSxteooZCZu4EXI+KAZjYcEVOAK4EzgGOA8yPimL2M+wRwczPblySNv0bf0fwScH9E3EpxBRJAZv7hCI85GejOzEcBImI1sAR4aMi4/w5cR23CPUlSCzUaCv9UfDXjEPacRbUHOKV+QEQcQu1y17czQihExDJgGcCcOXNYu3Ztk6VUq7e3d9LVNF46tTf7aj+d2ttk62vEUIiIwzJzY2Z+fQzbjmHW5ZDlzwIrMnN3xHDDiwdlrgJWASxYsCAXLlw4hnKqs3btWiZbTeOlU3uzr/bTqb1Ntr5Ge03hhsEbEXFdk9vuAQ6tW54LbB4yZgGwOiIeB84GvhgRv9Pk/yNJGiejnT6q//P9yCa3fQ8wr5gjaRNwHvD++gGZWc6fFBFfA/4xM29AktQSo4VC7uX2qDKzPyKWU7uqaApwdWY+GBEXF/evbKpSSVLlRguF4yPieWpHDNOL2xTLmZmvGenBmbkGWDNk3bBhkJn/taGKJUmVGTEUMnPKRBUiSWq9Zj5PQZLU4QwFSVLJUJAklQwFSVLpVRMKW3t38pMnnmVr785WlyKpSVt7d7Kjb7fP3wnwqgiFG9dv4vRPfI8PXPUjTv/E97hp/aZWlySpQYPP38eefsHn7wTo+FDY2ruTFddt4KW+Abbv7OelvgE+ct0G/+KQ2kD983d3ps/fCdDxodCzbQfTuvZsc1pXFz3bdrSoIkmN8vk78To+FOYeNJ2+gYE91vUNDDD3oOktqkhSo3z+TryOD4XZM/flirOOY79pXczadyr7TeviirOOY/bMfVtdmqRR1D9/p0T4/J0AjX7ITls7c/4hnH7UwfRs28Hcg6b7AyW1kcHn79133sG/nPlWn78Ve1WEAtT+4vCHSWpPs2fuy/RpU3wOT4COP30kSWqcoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqRSpaEQEYsj4uGI6I6Iy4a5/79ExIbi618j4vgq65EkjayyUIiIKcCVwBnAMcD5EXHMkGGPAf8xM48D/hJYVVU9kqTRVXmkcDLQnZmPZuYuYDWwpH5AZv5rZm4rFu8C5lZYjyRpFJGZ1Ww44mxgcWYuLZYvAE7JzOV7Gf/HwBsHxw+5bxmwDGDOnDknrl69upKax6q3t5eZM2e2uoxKdGpv9tV+OrW3iepr0aJF92bmgtHGTa2whhhm3bAJFBGLgP8GvHW4+zNzFcWppQULFuTChQvHqcTxsXbtWiZbTeOlU3uzr/bTqb1Ntr6qDIUe4NC65bnA5qGDIuI44CrgjMzcWmE9kqRRVPmawj3AvIg4IiL2Ac4DbqofEBGHAdcDF2TmIxXWIklqQGVHCpnZHxHLgZuBKcDVmflgRFxc3L8S+CgwG/hiRAD0N3LOS5JUjSpPH5GZa4A1Q9atrLu9FHjZC8uCrb076dm2g7kHTWf2zH3HbWw76dS+qtK9ZTvbXuyje8t2jpozq9XlqE1VGgoamxvXb2LFdRuY1tVF38AAV5x1HGfOP+QVj20nndpXVT56w/1cc9dG/ujYfi79m9u58LTD+NiSY1tdltqQ01xMMlt7d7Liug281DfA9p39vNQ3wEeu28DW3p2vaGw76dS+qtK9ZTvX3LVxj3XX3LmR7i3bW1SR2pmhMMn0bNvBtK49d8u0ri56tu14RWPbSaf2VZX1Tzzb1HppJIbCJDP3oOn0DQzssa5vYIC5B01/RWPbSaf2VZX5hx7Y1HppJIbCJDN75r5ccdZx7Deti1n7TmW/aV1ccdZxw77Q2szYdtKpfVXlqDmzuPC0w/ZYd+Fph/lis8bEF5onoTPnH8LpRx3c0JU3zYxtJ53aV1U+tuRYLjz1cO6/9y5uu/RUA0FjZihMUrNn7tvwL8JmxraTTu2rKkfNmUXPjGkGgl4RTx9JkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpVGkoRMTiiHg4Iroj4rJh7o+I+Hxx/4aIOKHKeqRmbe3dyU+eeJatvTtHHbvusa185paHWffY1nHbZjNju7dsZ9uLfXRv2T7q2GZUVW+zNezo2z3qdru3bOfb657o2O9BFdsdampVG46IKcCVwLuAHuCeiLgpMx+qG3YGMK/4OgX4UvGv1HI3rt/Eius2MK2ri76BAa446zjOnH/IsGM/cNVd3NFdC4PPf6+btx01m2uXnvqKttnM2I/ecD/X3LWRPzq2n0v/5nYuPO0wPrbk2DF2Xn29Y6nhD3+zj0s/8b29bnfwezCoE78H473d4VR5pHAy0J2Zj2bmLmA1sGTImCXANVlzF3BgRLyuwpqkhmzt3cmK6zbwUt8A23f281LfAB+5bsOwf6Wte2xrGQiDfti99WVHDM1ss5mx3Vu27/HLEOCaOze+4r+Wq6p3rDXsztzrdl8t34Px3O7eRGZWs+GIs4HFmbm0WL4AOCUzl9eN+UfgrzPzjmL5u8CKzFw3ZFvLgGXF4tHAw5UUPXYHA8+0uoiKdGpvI/YV06bPmHrQ634jurqmDK7LgYHd/duefCT7drxYP3bKrINfP2X/A1/2x8zuF559cvf2ZzaPZZvNjO2accDsqa957eEAu198jikzDgCg//mnHx948bmRz2WNoKp6x1rDYG/Dbbf+e1CvTb4H4/azOIpfz8zXjjaostNHQAyzbmgCNTKGzFwFrBqPoqoQEesyc0Gr66hCp/bWyX31P/dUx/UFndvbZPtZrPL0UQ9waN3yXGDzGMZIkiZIlaFwDzAvIo6IiH2A84Cbhoy5CbiwuArpVOC5zHyywpokSSOo7PRRZvZHxHLgZmAKcHVmPhgRFxf3rwTWAO8BuoEXgYuqqqdik/bU1jjo1N7sq/10am+Tqq/KXmiWJLUf39EsSSoZCpKkkqEwBhHxeETcHxHrI2Jdse7yiNhUrFsfEe9pdZ3NiogDI+LbEfGziPhpRJwWEb8SEbdGxM+Lfw9qdZ3N2ktfnbC/jq6rf31EPB8RH273fTZCX52wzy6NiAcj4oGI+EZE7DfZ9pevKYxBRDwOLMjMZ+rWXQ70ZuanWlXXKxURXwd+mJlXFVeMzQD+FPhlZv51MX/VQZm5oqWFNmkvfX2YNt9f9YppZTZRmybmEtp8nw0a0tdFtPE+i4hDgDuAYzJzR0R8k9rFNscwifaXRwoCICJeA/wW8H8AMnNXZj5LbSqSrxfDvg78TmsqHJsR+uo07wD+X2b+gjbfZ0PU99UJpgLTI2IqtT9ONjPJ9pehMDYJ3BIR9xZTcAxaXsz2enWrDwHH4EjgaeCrEfHjiLgqIvYH5gy+d6T491dbWeQY7K0vaO/9NdR5wDeK2+2+z+rV9wVtvM8ycxPwKWAj8CS192XdwiTbX4bC2JyemSdQm+X1koj4LWozvL4BmE9th3+6hfWNxVTgBOBLmflm4AXgZdOdt6G99dXu+6tUnBI7E/hWq2sZT8P01db7rAixJcARwOuB/SPiA62t6uUMhTHIzM3Fv08B3wFOzswtmbk7MweAr1CbJbad9AA9mfmjYvnb1H6Zbhmcubb496kW1TdWw/bVAfur3hnAfZm5pVhu9302aI++OmCfvRN4LDOfzsw+4HrgLUyy/WUoNCki9o+IWYO3gXcDD8SeU36/D3igFfWNVWb+G/BERBxdrHoH8BC1qUg+WKz7IHBjC8obs7311e77a4jz2fMUS1vvszp79NUB+2wjcGpEzIiIoPaz+FMm2f7y6qMmRcSR1I4OoHZq4u8y868i4lpqh7UJPA78QbvN4xQR84GrgH2AR6ld7dEFfBM4jNoP9TmZ+cuWFTkGe+nr87T5/gKIiBnAE8CRmflcsW427b/PhuurE55jfwGcC/QDPwaWAjOZRPvLUJAklTx9JEkqGQqSpJKhIEkqGQqSpJKhIEkqVfbJa9JEKy7F/G6x+GvAbmpTXEDtDYa7WlLYCCLi94A1xfsppJbzklR1pMk0a21ETMnM3Xu57w5geWaub2J7UzOzf9wKlOp4+kivChHxwYi4u5iH/4sR0RURUyPi2Yj4ZETcFxE3R8QpEfGDiHh0cL7+iFgaEd8p7n84Iv6swe1+PCLuBk6OiL+IiHuKefRXRs251N6M9ffF4/eJiJ6IOLDY9qkRcVtx++MR8eWIuJXa5H5TI+Izxf+9ISKWTvx3VZ3IUFDHi4g3UZsW4S2ZOZ/aadPzirsPAG4pJjjcBVxObfqBc4CP1W3m5OIxJwDvj4j5DWz3vsw8OTPvBD6XmScBxxb3Lc7MvwfWA+dm5vwGTm+9GXhvZl4ALAOeysyTgZOoTcx42Fi+P1I9X1PQq8E7qf3iXFebcobp1KZQANiRmbcWt++nNp1xf0TcDxxet42bM3MbQETcALyV2vNnb9vdxb9PhwLwjoj4E2A/4GDgXuCfm+zjxsx8qbj9buA3I6I+hOZRmyZBGjNDQa8GAVydmf9rj5W1Dzqp/+t8ANhZd7v++TH0xbccZbs7snjBrpjH5wvUZmfdFBEfpxYOw+nn34/gh455YUhPH8rM7yKNI08f6dXgNuB3I+JgqF2lNIZTLe+O2mc9z6A2J/6/NLHd6dRC5pliht2z6u7bDsyqW34cOLG4XT9uqJuBDxUBNPi5xtOb7El6GY8U1PEy8/5idsrbIqIL6AMupvZRiI26A/g7ah/ycu3g1UKNbDczt0btc6IfAH4B/Kju7q8CV0XEDmqvW1wOfCUi/g24e4R6vkxtVs31xamrp6iFlfSKeEmqNIriyp43ZeaHW12LVDVPH0mSSh4pSJJKHilIkkqGgiSpZChIkkqGgiSpZChIkkr/HzHofwgP0tIHAAAAAElFTkSuQmCC
\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
...
...
@@ -500,7 +514,7 @@
},
{
"cell_type": "code",
"execution_count":
4
,
"execution_count":
15
,
"metadata": {},
"outputs": [
{
...
...
@@ -509,10 +523,10 @@
"<table class=\"simpletable\">\n",
"<caption>Generalized Linear Model Regression Results</caption>\n",
"<tr>\n",
" <th>Dep. Variable:</th> <td>Frequency</td> <th> No. Observations: </th> <td>
7
</td> \n",
" <th>Dep. Variable:</th> <td>Frequency</td> <th> No. Observations: </th> <td>
23
</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Model:</th> <td>GLM</td> <th> Df Residuals: </th> <td>
5
</td> \n",
" <th>Model:</th> <td>GLM</td> <th> Df Residuals: </th> <td>
21
</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Model Family:</th> <td>Binomial</td> <th> Df Model: </th> <td> 1</td> \n",
...
...
@@ -521,16 +535,16 @@
" <th>Link Function:</th> <td>logit</td> <th> Scale: </th> <td> 1.0000</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Method:</th> <td>IRLS</td> <th> Log-Likelihood: </th> <td> -
2.525
0</td> \n",
" <th>Method:</th> <td>IRLS</td> <th> Log-Likelihood: </th> <td> -
3.921
0</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Date:</th> <td>S
at, 13 Apr 2019</td> <th> Deviance: </th> <td> 0.22231
</td> \n",
" <th>Date:</th> <td>S
un, 28 Jan 2024</td> <th> Deviance: </th> <td> 3.0144
</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Time:</th> <td>1
9:11:24</td> <th> Pearson chi2: </th> <td> 0.236
</td> \n",
" <th>Time:</th> <td>1
7:21:21</td> <th> Pearson chi2: </th> <td> 5.00
</td> \n",
"</tr>\n",
"<tr>\n",
" <th>No. Iterations:</th> <td>
4
</td> <th> Covariance Type: </th> <td>nonrobust</td>\n",
" <th>No. Iterations:</th> <td>
6
</td> <th> Covariance Type: </th> <td>nonrobust</td>\n",
"</tr>\n",
"</table>\n",
"<table class=\"simpletable\">\n",
...
...
@@ -538,10 +552,10 @@
" <td></td> <th>coef</th> <th>std err</th> <th>z</th> <th>P>|z|</th> <th>[0.025</th> <th>0.975]</th> \n",
"</tr>\n",
"<tr>\n",
" <th>Intercept</th> <td>
-1.3895</td> <td> 7.828</td> <td> -0.178</td> <td> 0.859</td> <td> -16.732</td> <td> 13.953
</td>\n",
" <th>Intercept</th> <td>
5.0850</td> <td> 7.477</td> <td> 0.680</td> <td> 0.496</td> <td> -9.570</td> <td> 19.740
</td>\n",
"</tr>\n",
"<tr>\n",
" <th>Temperature</th> <td>
0.0014</td> <td> 0.122</td> <td> 0.012</td> <td> 0.991</td> <td> -0.238</td> <td> 0.24
0</td>\n",
" <th>Temperature</th> <td>
-0.1156</td> <td> 0.115</td> <td> -1.004</td> <td> 0.316</td> <td> -0.341</td> <td> 0.11
0</td>\n",
"</tr>\n",
"</table>"
],
...
...
@@ -550,24 +564,24 @@
"\"\"\"\n",
" Generalized Linear Model Regression Results \n",
"==============================================================================\n",
"Dep. Variable: Frequency No. Observations:
7
\n",
"Model: GLM Df Residuals:
5
\n",
"Dep. Variable: Frequency No. Observations:
23
\n",
"Model: GLM Df Residuals:
21
\n",
"Model Family: Binomial Df Model: 1\n",
"Link Function: logit Scale: 1.0000\n",
"Method: IRLS Log-Likelihood: -
2.525
0\n",
"Date: S
at, 13 Apr 2019 Deviance: 0.22231
\n",
"Time: 1
9:11:24 Pearson chi2: 0.236
\n",
"No. Iterations:
4
Covariance Type: nonrobust\n",
"Method: IRLS Log-Likelihood: -
3.921
0\n",
"Date: S
un, 28 Jan 2024 Deviance: 3.0144
\n",
"Time: 1
7:21:21 Pearson chi2: 5.00
\n",
"No. Iterations:
6
Covariance Type: nonrobust\n",
"===============================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
"-------------------------------------------------------------------------------\n",
"Intercept
-1.3895 7.828 -0.178 0.859 -16.732 13.953
\n",
"Temperature
0.0014 0.122 0.012 0.991 -0.238 0.24
0\n",
"Intercept
5.0850 7.477 0.680 0.496 -9.570 19.740
\n",
"Temperature
-0.1156 0.115 -1.004 0.316 -0.341 0.11
0\n",
"===============================================================================\n",
"\"\"\""
]
},
"execution_count":
4
,
"execution_count":
15
,
"metadata": {},
"output_type": "execute_result"
}
...
...
@@ -587,10 +601,9 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"L'estimateur le plus probable du paramètre de température est 0.0014\n",
"et l'erreur standard de cet estimateur est de 0.122, autrement dit on\n",
"ne peut pas distinguer d'impact particulier et il faut prendre nos\n",
"estimations avec des pincettes.\n"
"L'estimateur le plus probable du paramètre de température est -0.1156\n",
"et l'erreur standard de cet estimateur est de 0.115. La température a\n",
"un impact conséquent sur l'apparition de dysfonctionnements.\n"
]
},
{
...
...
@@ -605,12 +618,12 @@
},
{
"cell_type": "code",
"execution_count":
5
,
"execution_count":
16
,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX
oAAAEKCAYAAAAcgp5RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAGyFJREFUeJzt3X2UVPWd5/H3pxuQBhEjkhkFDWSWtHF9ABRQWZ3WqGhORLPrE2vGMRNCdmeMk83Knng2E43Rc2YHd2I26zgy6jgxiUo8iiSHCahjT2Y8PoCCILAIY4g2JEGND7Q2Snd/9497u6kuqunqpvqhfnxe5/Tpurd+de/3V7fvp27fuvUrRQRmZpaumsEuwMzM+peD3swscQ56M7PEOejNzBLnoDczS5yD3swscT0GvaR7Je2U9HI390vS/5G0VdI6SdMrX6aZmfVVOUf09wEX7Of+C4Ep+c8C4M4DL8vMzCqlx6CPiF8Av9tPk4uBH0TmWeBwSUdVqkAzMzswwyqwjAnA6wXTTfm8Xxc3lLSA7KifkSNHnnLsscdWYPVDU3t7OzU16b4FknL/Uu4buH/V7pVXXnkzIsb35jGVCHqVmFdyXIWIWAwsBqivr4/NmzdXYPVDU2NjIw0NDYNdRr9JuX8p9w3cv2on6Ve9fUwlXvaagGMKpicCOyqwXDMzq4BKBP0y4Or86pvTgHcjYp/TNmZmNjh6PHUj6QGgAThSUhNwIzAcICL+FlgOfBbYCnwAfLG/ijUzs97rMegjYl4P9wfwZxWryMyqwp49e2hqamL37t2DXUoXY8eOZdOmTYNdxgEbOXIkEydOZPjw4Qe8rEq8GWtmB6GmpibGjBnDpEmTkEpdkzE4du3axZgxYwa7jAMSEbz11ls0NTUxefLkA15eutcgmVm/2r17N+PGjRtSIZ8KSYwbN65i/y056M2szxzy/aeSz62D3swscT5Hb2ZVq7a2lhNPPLFzeunSpYwbN24QKxqaHPRmVrXq6upYu3Ztl3m7du3qvN3a2sqwYY45n7oxs6T86Ec/4rLLLuOiiy7i/PPPB2DRokXMmDGDk046iRtvvLGz7a233kp9fT3nnnsu8+bN47bbbgOgoaGB1atXA/Dmm28yadIkANra2li4cGHnsu666y5g77ALl156KccddxxXXXUV2ZXnsGrVKs444wxOPvlkZs6cya5duzjzzDO7vEDNnj2bdevW9dtz4pc6Mztg3/7pBjbueK+iyzz+6MO48aJ/v982LS0tTJ06FYDJkyfz6KOPAvDMM8+wbt06jjjiCFauXMmWLVt4/vnniQjmzp3LL37xC0aPHs2DDz7ImjVraG1tZfr06Zxyyin7Xd8999zD2LFjWbVqFR9++CGzZ8/ufDFZs2YNGzZs4Oijj2b27Nk8/fTTzJw5kyuuuIKHHnqIGTNm8N5771FXV8f8+fO57777uP3223nllVf48MMPOemkkyrwrJXmoDezqlXq1A3AeeedxxFHHAHAypUrWblyJdOmTQOgubmZLVu2sGvXLj7/+c8zatQoAObOndvj+lauXMm6det4+OGHAXj33XfZsmULI0aMYObMmUycOBGAqVOnsm3bNsaOHctRRx3FjBkzADjssMMAuOyyy/jOd77DokWLuPfee7nmmmsO7InogYPezA5YT0feA2306NGdtyOCG264ga985Std2tx+++3dXsI4bNgw2tvbAbpcyx4RfP/732fOnDld2jc2NnLIIYd0TtfW1tLa2kpElFzHqFGjOO+883jsscdYsmRJ52mi/uJz9GaWtDlz5nDvvffS3NwMwPbt29m5cydnnXUWjz76KC0tLezatYuf/vSnnY+ZNGkSL7zwAkDn0XvHsu6880727NkDwCuvvML777/f7bqPO+44duzYwapVq4DsjeLW1lYA5s+fz3XXXceMGTM6//voLz6iN7OknX/++WzatInTTz8dgEMPPZQf/vCHTJ8+nSuuuIKpU6fyiU98gjPPPLPzMddffz2XX345999/P+ecc07n/Pnz57Nt2zamT59ORDB+/HiWLl3a7bpHjBjBQw89xFe/+lVaWlqoq6vjiSee4NBDD+WUU07hsMMO44tfHIBxICNiUH4+9alPRcqeeuqpwS6hX6Xcv5T7FlG5/m3cuLEiy6m09957r0+Pu/HGG2PRokUVrqZ727dvjylTpkRbW1u3bUo9x8Dq6GXe+tSNmdkA+8EPfsCsWbO49dZbB+RrD33qxswMuOmmmwZsXVdffTVXX331gK3PR/Rm1mcRJb8e2iqgks+tg97M+mTkyJG89dZbDvt+EPl49CNHjqzI8nzqxsz6ZOLEiTQ1NfHGG28Mdild7N69u2IBOZg6vmGqEhz0ZtYnw4cPr8i3H1VaY2Nj56dgLeNTN2ZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeLKCnpJF0jaLGmrpG+UuP9YSU9JWiNpnaTPVr5UMzPrix6DXlItcAdwIXA8ME/S8UXNvgksiYhpwJXA31S6UDMz65tyjuhnAlsj4tWI+Ah4ELi4qE0Ah+W3xwI7KleimZkdCPX0De6SLgUuiIj5+fQfAbMi4tqCNkcBK4GPAaOBcyPihRLLWgAsABg/fvwpS5YsqVQ/hpzm5mYOPfTQwS6j36Tcv5T7Bu5ftTv77LNfiIhTe/OYcr4cXCXmFb86zAPui4j/Lel04H5JJ0REe5cHRSwGFgPU19dHQ0NDb2qtKo2Njbh/1SnlvoH7dzAq59RNE3BMwfRE9j018yVgCUBEPAOMBI6sRIFmZnZgygn6VcAUSZMljSB7s3VZUZvXgM8ASPo0WdC/UclCzcysb3oM+ohoBa4FVgCbyK6u2SDpZklz82b/HfiypJeAB4BroqeT/2ZmNiDKOUdPRCwHlhfN+1bB7Y3A7MqWZmZmleBPxpqZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWuLKCXtIFkjZL2irpG920uVzSRkkbJP24smWamVlfDeupgaRa4A7gPKAJWCVpWURsLGgzBbgBmB0Rb0v6eH8VbGZmvVPOEf1MYGtEvBoRHwEPAhcXtfkycEdEvA0QETsrW6aZmfVVj0f0wATg9YLpJmBWUZtPAUh6GqgFboqInxcvSNICYAHA+PHjaWxs7EPJ1aG5udn9q1Ip9w3cv4NROUGvEvOixHKmAA3AROBfJJ0QEe90eVDEYmAxQH19fTQ0NPS23qrR2NiI+1edUu4buH8Ho3JO3TQBxxRMTwR2lGjzWETsiYhfApvJgt/MzAZZOUG/CpgiabKkEcCVwLKiNkuBswEkHUl2KufVShZqZmZ902PQR0QrcC2wAtgELImIDZJuljQ3b7YCeEvSRuApYGFEvNVfRZuZWfnKOUdPRCwHlhfN+1bB7QC+nv+YmdkQ4k/GmpklzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeLKCnpJF0jaLGmrpG/sp92lkkLSqZUr0czMDkSPQS+pFrgDuBA4Hpgn6fgS7cYA1wHPVbpIMzPru3KO6GcCWyPi1Yj4CHgQuLhEu+8AfwXsrmB9ZmZ2gIaV0WYC8HrBdBMwq7CBpGnAMRHxM0nXd7cgSQuABQDjx4+nsbGx1wVXi+bmZvevSqXcN3D/DkblBL1KzIvOO6Ua4LvANT0tKCIWA4sB6uvro6Ghoawiq1FjYyPuX3VKuW/g/h2Myjl10wQcUzA9EdhRMD0GOAFolLQNOA1Y5jdkzcyGhnKCfhUwRdJkSSOAK4FlHXdGxLsRcWRETIqIScCzwNyIWN0vFZuZWa/0GPQR0QpcC6wANgFLImKDpJslze3vAs3M7MCUc46eiFgOLC+a961u2jYceFlmZlYp/mSsmVniHPRmZolz0JuZJc5Bb2aWOAe9mVniyrrqxqxSlq7ZzqIVm9nxTgtHH17Hwjn1XDJtwmCXZf3A23rocNDbgFm6Zjs3PLKelj1tAGx/p4UbHlkP4ABIjLf10OJTNzZgFq3Y3Lnjd2jZ08aiFZsHqSLrL97WQ4uD3gbMjndaejXfqpe39dDioLcBc/Thdb2ab9XL23pocdDbgFk4p5664bVd5tUNr2XhnPpBqsj6i7f10OI3Y23AdLwJ5ysx0udtPbQ46G1AXTJtgnf2g4S39dDhUzdmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOH9nrJmVJSJoaw/aA9oj8h9oa49u72tvL9Eugvb20svYp13RMtoj8mloi6L15u02vbaH15/9Vba89qAtStS+T61BW3vpPnZMd3df5DV31Fiq9s52HevrspyCdlG0vKK+tkfftp2D3gZN4Y7dJRwiiPaCnaI4GPLbe3f0vfdFqeX1cud8eUcrv3uxqcdgiYKAKL1Tlg6P0kGwd3n7C7G2gvW2t5doV+r5KgqSDz7YzSHPPLnf9RSHS1tfE2awbHy57KYS1ErUSNTUQI1ErYQENTUdt0WNoLZmb7u9j8nuqylaRo0K5teI2hoxvOPxUr4sAFFbky1b+bq7PK5omWv68HSUFfSSLgC+B9QCd0fEXxbd/3VgPtAKvAH8SUT8qg/19Nk+r/qljgAKjhpKvcruEzzFO0vnEUL2uP0dtaz/TSvvvbRjnzCIotvdBl3Rq3rbfu7b35HBPvOLQ6rLkcq+Ry7dHYE1N3/AyFVPdd7X2ZcSwVNYb9fneyD/Qnpp3UsH9PDC8FBhQOThURwEtTXZziyU7/D7Pr62RojC8MkeO6y2hkOG7Q2cjmDqWEbn8vL17vztbzn6qCP3CaWOdvvczutUPr+wPqlrqGX9UNewLFFDTan11AhREKI1RcuVgL3PRZdw7QjfGvHsM88we/YZBbUL1RQ9FwXPrfLlVotb+vCYHoNeUi1wB3Ae0ASskrQsIjYWNFsDnBoRH0j6r8BfAVfsb7nbm9s596//uXQQlArtff716Ro8Q9Lavrz2ltbxh93lFb9oR+g86ug4AqnpLmz2hkoWGnuPHrJ1lA6O2jwUJHizpoWjfv/wLjt58Tpqa9Sl9pJHPwV9KWyX9TN7LHmfawtrrum6jNqa7LkR+4ZNjYAuobdvUBTWvnrV85x+2qx9gqXrkV/R9ig6EhzK4dHY2EhDw8mDXUa/+djIGj4+ZuRglzGklHNEPxPYGhGvAkh6ELgY6Az6iHiqoP2zwBd6WujwGlH/e2M6d8CSQdBNKOzdWfNQoGvoFR/xFP6bpOLbRUc1xUddxQGyN/T2hlvx0UiNxIurVzNr1oyCYN7fkR37HAWpKJiGmiwspg12Gf2iaXQNnxg3erDLMKuYcoJ+AvB6wXQTMGs/7b8E/GOpOyQtABYAjB8/nssmvFdmmX0Q+U8FteU/5RirD2ja+EJlCxhCmpubaWxsHOwy+kXKfQP372BUTtCXOpwsGaGSvgCcCvxhqfsjYjGwGKC+vj4aGhrKq7IKZUe8DYNdRr9JuX8p9w3cv4NROUHfBBxTMD0R2FHcSNK5wP8E/jAiPqxMeWZmdqDK+cDUKmCKpMmSRgBXAssKG0iaBtwFzI2InZUv08zM+qrHoI+IVuBaYAWwCVgSERsk3Sxpbt5sEXAo8BNJayUt62ZxZmY2wMq6jj4ilgPLi+Z9q+D2uRWuy6zXlq7ZzqIVm9nxTgtHH17Hwjn1APvMu2TahAGtoT/X1xvfXLqeB557na+dsIcv3bCcebOO4ZZLThzssmwA+JOxloSla7ZzwyPradmTXRe1/Z0WFv7kJRDsaYvOeTc8sh6gX8K3VA39ub7e+ObS9fzw2dc6p9siOqcd9unzoGaWhEUrNncGbIc97dEZ8h1a9rSxaMXmAauhP9fXGw8893qv5ltaHPSWhB3vtPRL20rU0F/r6422bsab6G6+pcVBb0k4+vC6fmlbiRr6a329UdvNp6u7m29pcdBbEhbOqadueG2XecNrxPDarkFWN7y2803agaihP9fXG/NmHdOr+ZYWvxlrSeh4s3Mwr7rprobBfiMW9r7h2nFOvlbyVTcHEQe9JeOSaRNKhupABm13NQwFt1xyIrdcciKNjY3821UNg12ODSCfujEzS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBJXVtBLukDSZklbJX2jxP2HSHoov/85SZMqXaiZmfVNj0EvqRa4A7gQOB6YJ+n4omZfAt6OiH8HfBf4X5Uu1MzM+qacI/qZwNaIeDUiPgIeBC4uanMx8A/57YeBz0hS5co0M7O+GlZGmwnA6wXTTcCs7tpERKukd4FxwJuFjSQtABbkkx9KerkvRVeJIynqf2JS7l/KfQP3r9rV9/YB5QR9qSPz6EMbImIxsBhA0uqIOLWM9Vcl9696pdw3cP+qnaTVvX1MOadumoBjCqYnAju6ayNpGDAW+F1vizEzs8orJ+hXAVMkTZY0ArgSWFbUZhnwx/ntS4F/ioh9jujNzGzg9XjqJj/nfi2wAqgF7o2IDZJuBlZHxDLgHuB+SVvJjuSvLGPdiw+g7mrg/lWvlPsG7l+163X/5ANvM7O0+ZOxZmaJc9CbmSVuQIJe0khJz0t6SdIGSd/O50/Oh0zYkg+hMGIg6ukPkmolrZH0s3w6pb5tk7Re0tqOS7skHSHp8bx/j0v62GDX2VeSDpf0sKT/J2mTpNNT6Z+k+ny7dfy8J+lrCfXvv+WZ8rKkB/KsSWnf+/O8bxskfS2f1+ttN1BH9B8C50TEycBU4AJJp5ENlfDdiJgCvE02lEK1+nNgU8F0Sn0DODsiphZcn/wN4Mm8f0/m09Xqe8DPI+I44GSy7ZhE/yJic77dpgKnAB8Aj5JA/yRNAK4DTo2IE8guFrmSRPY9SScAXyYbneBk4HOSptCXbRcRA/oDjAJeJPt07ZvAsHz+6cCKga6nQn2amD/h5wA/I/sAWRJ9y+vfBhxZNG8zcFR++yhg82DX2ce+HQb8kvzChNT6V9Sn84GnU+kfez+RfwTZFYQ/A+aksu8BlwF3F0z/BfA/+rLtBuwcfX5qYy2wE3gc+DfgnYhozZs0kW24anQ72QZoz6fHkU7fIPuU80pJL+TDWAD8XkT8GiD//fFBq+7AfBJ4A/j7/NTb3ZJGk07/Cl0JPJDfrvr+RcR24DbgNeDXwLvAC6Sz770MnCVpnKRRwGfJPpja6203YEEfEW2R/fs4kexfkU+XajZQ9VSKpM8BOyPihcLZJZpWXd8KzI6I6WQjmP6ZpLMGu6AKGgZMB+6MiGnA+1ThaYye5Oep5wI/GexaKiU/N30xMBk4GhhN9jdarCr3vYjYRHYa6nHg58BLQOt+H9SNAb/qJiLeARqB04DD8yEToPTQCtVgNjBX0jaykT3PITvCT6FvAETEjvz3TrLzuzOB30o6CiD/vXPwKjwgTUBTRDyXTz9MFvyp9K/DhcCLEfHbfDqF/p0L/DIi3oiIPcAjwBmkte/dExHTI+Issg+jbqEP226grroZL+nw/HYd2QbaBDxFNmQCZEMoPDYQ9VRSRNwQERMjYhLZv8b/FBFXkUDfACSNljSm4zbZed6X6TrsRdX2LyJ+A7wuqWNEwM8AG0mkfwXmsfe0DaTRv9eA0ySNyodF79h2Sex7AJI+nv8+FviPZNuw19tuQD4ZK+kksvHqa8leXJZExM2SPkl2FHwEsAb4QkR82O8F9RNJDcD1EfG5VPqW9+PRfHIY8OOIuFXSOGAJcCzZDndZRFTlQHaSpgJ3AyOAV4Evkv+dkkb/RpG9afnJiHg3n5fE9ssv1b6C7JTGGmA+2Tn5qt/3ACT9C9l7fnuAr0fEk33Zdh4Cwcwscf5krJlZ4hz0ZmaJc9CbmSXOQW9mljgHvZlZ4sr5cnCzAZVfPvZkPvn7QBvZMAUAMyPio0EpbD8k/QmwPL8u32xI8eWVNqRJuglojojbhkAttRHR1s19/wpcGxFre7G8YQVjspj1G5+6saoi6Y+VfbfBWkl/I6lG0jBJ70haJOlFSSskzZL0z5JelfTZ/LHzJT2a379Z0jfLXO4tkp4HZkr6tqRV+Rjhf6vMFWTDbz+UP36EpKaCT4OfJumJ/PYtku6S9DjZQGrDJP11vu51kuYP/LNqqXPQW9XIx+f+PHBGPkDeMPZ+Ef1YYGU++NpHwE1kH4m/DLi5YDEz88dMB/6zpKllLPfFiJgZEc8A34uIGcCJ+X0XRMRDwFrgisjGfu/p1NI04KKI+CNgAdmgeDOBGWSDxh3bl+fHrDs+R2/V5FyyMFydDW1CHdlH+wFaIuLx/PZ64N2IaJW0HphUsIwVEfE2gKSlwH8g2w+6W+5H7B0CAuAzkhYCI4EjyYbF/cde9uOxiNid3z4f+LSkwheWKWQfbTerCAe9VRMB90bEX3SZmY1UWHgU3U72rWYdtwv/zovflIoeltsS+RtZ+Zgx/xeYHhHbJd1CFviltLL3P+biNu8X9elPI+JJzPqJT91YNXkCuFzSkZBdndOH0xznK/uO2FFkY5k/3Yvl1pG9cLyZj+j5nwru2wWMKZjeRvbVfRS1K7YC+NOOYXWVfcdrXS/7ZLZfPqK3qhER6/PRCp+QVEM2ot9/oXfjjf8r8GPgD4D7O66SKWe5EfGWpH8gG6b5V8BzBXf/PXC3pBay9wFuAv5O0m+A5/dTz11koxCuzU8b7SR7ATKrGF9eaQeN/IqWEyLia4Ndi9lA8qkbM7PE+YjezCxxPqI3M0ucg97MLHEOejOzxDnozcwS56A3M0vc/wcowwoTqhaBU
gAAAABJRU5ErkJggg==\n",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX
cAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl4VOXd//H3dyb7QmLYISA7yA5hEXEBrYK2KiriinVBpHWp7SNVn199tE+16oNt1VZxQ3GpgisupYJa44JbQBBkX8UEkJ0kkD33748ZMGAgQzLJLPm8rivXzDlzn3O+dwY+c3LmnPuYcw4REYkunlAXICIiwadwFxGJQgp3EZEopHAXEYlCCncRkSikcBcRiUI1hruZPW1mW83s28O8bmb2sJmtMbPFZjYw+GWKiMjRCGTPfTow+givnwl09f9MBKbWvSwREamLGsPdOfcxsPMITc4FnnM+XwDpZtY6WAWKiMjRiwnCOtoC31eZzvXP23xoQzObiG/vnsTExKx27drVaoOVlZV4PNHxdYH6Ep6ipS/R0g9QX/ZbtWrVdudc85raBSPcrZp51Y5p4Jx7AngCYNCgQW7+/Pm12mB2djYjRoyo1bLhRn0JT9HSl2jpB6gv+5nZd4G0C8bHYC5QdRc8E9gUhPWKiEgtBSPc3wKu8J81czywxzn3k0MyIiLScGo8LGNmLwEjgGZmlgvcCcQCOOceA2YDZwFrgH3AVfVVrIiIBKbGcHfOXVLD6w64PmgViUhEKCsrIzc3l+Li4gbZXlpaGsuXL2+QbdW3QPqSkJBAZmYmsbGxtdpGML5QFZFGKDc3l9TUVDp06IBZdedVBFdBQQGpqan1vp2GUFNfnHPs2LGD3NxcOnbsWKttRMd5RSLS4IqLi2natGmDBHtjY2Y0bdq0Tn8VKdxFpNYU7PWnrr9bhbuISBTSMXcRiVher5c+ffocmJ41axYdOnQIXUFhROEuIhErMTGRRYsWHfb18vJyYmIaZ8zpsIyIRJXp06dz4YUXcvbZZ3PGGWcAMGXKFAYPHkzfvn258847D7S955576N69Oz/72c+45JJLeOCBBwAYMWIE+4dH2b59+4G/BioqKpg8efKBdT3++OPAj8MJjB07lh49enDZZZfhO0sccnJyOOGEE+jXrx9DhgyhoKCAUaNGHfShNHz4cBYvXhzU30Pj/EgTkaD649tLWbYpP6jr7NmmCXee3euIbYqKiujfvz8AHTt25I033gDg888/Z/HixWRkZDB37lxWr17NV199hXOOc845h48//pjk5GRmzJjBwoULKS8vZ+DAgWRlZR1xe9OmTSMtLY2cnBxKSkoYPnz4gQ+QhQsXsnTpUtq0acPw4cOZN28eQ4YM4aKLLmLmzJkMHjyY/Px8EhMTueKKK5g+fToPPvggq1atoqSkhL59+wbht/YjhbuIRKzDHZY5/fTTycjIAGDu3LnMnTuXAQMGAFBYWMjq1aspKCjgvPPOIykpCYBzzjmnxu3NnTuXxYsX8+qrrwKwZ88eVq9eTVxcHEOGDCEzMxOA/v37s2HDBtLS0mjdujWDBw8GoEmTJgCcd955DB8+nClTpvD0009z5ZVX1u0XUQ2Fu4jUWU172A0tOTn5wHPnHLfffjvXXXfdQW0efPDBw55uGBMTQ2VlJcBB55o75/j73//OqFGjDmqfnZ1NfHz8gWmv10t5eTnOuWq3kZSUxOmnn86bb77Jyy+/TG1HyD0SHXMXkag2atQonn76aQoLCwHIy8tj69atnHzyybzxxhsUFRVRUFDA22+/fWCZDh06sGDBAoADe+n71zV16lTKysoAWLVqFXv37j3stnv06MGmTZvIyckBfFemlpeXAzBhwgRuuukmBg8efOCvjGDSnruIRLUzzjiD5cuXM2zYMABSUlJ44YUXGDhwIBdddBH9+/fn2GOP5aSTTjqwzC233MK4ceN4/vnnOfXUUw/MnzBhAhs2bGDgwIE452jevDmzZs067Lbj4uKYOXMmN954I0VFRSQmJvL+++8DkJWVRZMmTbjqqnoaa9E5F5KfrKwsV1sffvhhrZcNN+pLeIqWvtRnP5YtW1Zv665Ofn5+va7/zjvvdFOmTKnXbeyXn5/v8vLyXNeuXV1FRcVh21X3OwbmuwAyVodlREQa2IsvvsjQoUO555576u3WgTosIyIC3HXXXQ22rUsvvfQnX/AGm/bcRaTWnKv2dskSBHX93SrcRaRWEhIS2LFjhwK+Hjj/eO4JCQm1XocOy4hIrWRmZpKbm8u2bdsaZHvFxcV1CrtwEkhf9t+JqbYU7iJSK7GxsbW+S1BtZGdnH7jKNNI1RF90WEZEJAop3EVEopDCXUQkCincRUSikMJdRCQKKdxFRKKQwl1EJAop3EVEopDCXUQkCincRUSiUMSF+77Sct7bUEZ5RWWoSxERCVsRF+7vLN7MP1eUMu7xz/lux+HvXSgi0phFXLiPG9SOSX3jWbO1kDMf+oSZORs15KiIyCEiLtwBjm8Tw7s3n0z/dunc+toSbnhxIXuKykJdlohI2IjIcAdok57IC9cM5dbRPZizdAtnPfQJX2/cFeqyRETCQsSGO4DHY/xqRGde/dUJeDww7rHPefLjdTpMIyKNXkDhbmajzWylma0xs9uqeT3NzN42s2/MbKmZXRX8Ug+vf7t03rnxJE47rgX3zF7OxOcX6DCNiDRqNYa7mXmBR4AzgZ7AJWbW85Bm1wPLnHP9gBHAX8wsLsi1HlFaYiyPXZ7F//yiJx+u2Mq5//iUFVvyG7IEEZGwEcie+xBgjXNunXOuFJgBnHtIGwekmpkBKcBOoDyolQbAzLj6xI7MmHg8+0orGPPIPN76ZlNDlyEiEnJW0/FpMxsLjHbOTfBPjweGOuduqNImFXgL6AGkAhc55/5VzbomAhMBWrZsmTVjxoxaFV1YWEhKSsoR2+wuqeTRRSWs2lXJWR1jGdstFo9ZrbZXnwLpS6RQX8JPtPQD1Jf9Ro4cucA5N6jGhs65I/4AFwJPVZkeD/z9kDZjgb8BBnQB1gNNjrTerKwsV1sffvhhQO1Kyirc/3tjsTv21nfcFdO+dHuKSmu9zfoSaF8igfoSfqKlH86pL/sB810Nue2cC+iwTC7Qrsp0JnDosY6rgNf9217jD/ceAay7XsXFeLh7TB/uPb8P89Zs5/xHP9NVrSLSKAQS7jlAVzPr6P+S9GJ8h2Cq2gicBmBmLYHuwLpgFloXlwxpz/PXDGV7YQnnPjKPL9btCHVJIiL1qsZwd86VAzcAc4DlwMvOuaVmNsnMJvmb/Qk4wcyWAB8AtzrnttdX0bUxrHNT3rx+OE2T4xg/7UveWJgb6pJEROpNTCCNnHOzgdmHzHusyvNNwBnBLS34jm2azOu/Gs6kFxbw25nfsHFHETed1gULwy9aRUTqIqKvUK2NtKRYnr16COcPbMvf3l/Fba8t0fDBIhJ1AtpzjzZxMR7+cmE/MtMTefg/a9hWWMI/Lh1AUlyj/HWISBRqdHvu+5kZvzujO/ec15vslVu59Mkv2bW3NNRliYgERaMN9/0uG3osUy/PYtnmfC58/HM27S4KdUkiInXW6MMdYFSvVjx71RC27Clm7NTPWLetMNQliYjUicLdb1jnpsyYeDzF5ZWMe/xzlm/WoGMiErkU7lX0bpvGy9cNI8bj4aLHP2ehbv4hIhFK4X6ILi1SeGXSMNKT4hg/7StyNuwMdUkiIkdN4V6NdhlJvHzdMFo0ieeKaV/x2ZqwuthWRKRGCvfDaJWWwMyJw2ifkcRV03P4eNW2UJckIhIwhfsRNE+N56WJx9OxWTITnpuvgBeRiKFwr0FGchwvXns8nZunMOG5+XykgBeRCKBwD0BGchwvThhK5+YpTHxuPvN0DF5EwpzCPUDHJMfxzwlD6dA0mWuezdGY8CIS1hTuRyEjOY5/XjuUzGOSuHp6Dgu+02mSIhKeFO5HqVlKPC9eO5SWTRK48ukcvs3bE+qSRER+QuFeCy1SE/jnhKE0SYxl/LQvWbmlINQliYgcROFeS23SE3nx2qHExXi4fNqXuvG2iIQVhXsdHNs0mReuGUp5RSWXPfUlW/YUh7okERFA4V5nXVum8uzVQ9i9r4zLp+mGHyISHhTuQdA3M50nrxjExp37uHJ6DntLykNdkog0cgr3IBnWuSn/uGQAS3J3M+mFBZSW66bbIhI6CvcgOqNXK+47vy+frN7Of73yDZWVLtQliUgjFRPqAqLNuMHt2LG3lPvfXUHzlHju+MVxmFmoyxKRRkbhXg8mndKJrQXFPD1vPS2bxHPdKZ1DXZKINDIK93pgZtzx855sKyjh3n+voEWTeM4bkBnqskSkEVG41xOPx/jLuH7sKCzl968upkVqAsO7NAt1WSLSSOgL1XoUH+PlsfFZdGqWwqTnF7B8c36oSxKRRkLhXs/SEmN55qrBJMfHcNUzOWzeUxTqkkSkEVC4N4A26Yk8c9VgCkvKueqZHAqKy0JdkohEOYV7AzmudRMevWwgq7cWcv2LCymr0EVOIlJ/FO4N6ORuzfnzeb35eNU2/ufNpTini5xEpH7obJkGdtHg9ny3Yx+PZq+lY7MkuoW6IBGJStpzD4FbzujOz/u05t5/r2D+Fg0yJiLBF1C4m9loM1tpZmvM7LbDtBlhZovMbKmZfRTcMqPL/nPg+7dL54nFJSzO3R3qkkQkytQY7mbmBR4BzgR6ApeYWc9D2qQDjwLnOOd6ARfWQ61RJSHWyxPjB5EaZ0x4dr5OkRSRoApkz30IsMY5t845VwrMAM49pM2lwOvOuY0AzrmtwS0zOjVPjee3WQnsK63gmunzNQ68iASN1XTGhpmNBUY75yb4p8cDQ51zN1Rp8yAQC/QCUoGHnHPPVbOuicBEgJYtW2bNmDGjVkUXFhaSkpJSq2XDTWFhIeuKEvjbghL6t/By44B4PBE6imS0vS/R0Jdo6QeoL/uNHDlygXNuUE3tAjlbprqkOfQTIQbIAk4DEoHPzewL59yqgxZy7gngCYBBgwa5ESNGBLD5n8rOzqa2y4ab7OxsbvrFCJq0Wc9dby8jp6Q1t47uEeqyaiXa3pdo6Eu09APUl6MVSLjnAu2qTGcCm6pps905txfYa2YfA/2AVUhAfnlCB1ZvLWRq9lq6NE/hgiyNIikitRfIMfccoKuZdTSzOOBi4K1D2rwJnGRmMWaWBAwFlge31OhmZtx1Ti9O6NyU219fwoLvdoa6JBGJYDWGu3OuHLgBmIMvsF92zi01s0lmNsnfZjnwLrAY+Ap4yjn3bf2VHZ1ivR4evWwgrdMTuO75BeTt1hk0IlI7AZ3n7pyb7Zzr5pzr7Jy7xz/vMefcY1XaTHHO9XTO9XbOPVhfBUe79KQ4pv1yECVllUx4VmfQiEjt6ArVMNSlRSoPXzqAlVvy+a+XdaNtETl6CvcwNbJ7C/77rON4d+kWHv7P6lCXIyIRRgOHhbFrTuzIii0FPPj+arq3TOXMPq1DXZKIRAjtuYcxM+Oe83ozsH06v3v5G5Zt0m36RCQwCvcwt/8+rGmJsVz73Hx2FJaEuiQRiQAK9wjQIjWBJ67IYnthCb/+59e6i5OI1EjhHiH6ZqZz/wV9+XL9Tv749tJQlyMiYU5fqEaQMQPasnxzPo9/vI6erdO4dGj7UJckImFKe+4R5veje3BKt+bc+da3zN+gIQpEpHoK9wjj9RgPXzyAzGOSmPTCAjZpiAIRqYbCPQKlJcXy5BVZFJdVct3zCyguqwh1SSISZhTuEapLi1T+dlF/luTt4fbXl1DTTVdEpHFRuEew03u25Hend+ONhXlM+3R9qMsRkTCicI9wN4zswuherfjz7OV8snpbqMsRkTChcI9wHo/xwLh+dGmRwg0vLmTjjn2hLklEwoDCPQqkxMfw5BW+++Ve+5zGgBcRhXvUOLZpMv+4dACrtxZwyyvf6AtWkUZO4R5FTuranNvO7MG/v93CIx+uCXU5IhJCCvcoc+1JnRjTvw1/eW8V7y/7IdTliEiIKNyjjJlx3wV96dWmCTfPXMSarYWhLklEQkDhHoUSYr08Pn4Q8TEeJj43nz1FZaEuSUQamMI9SrVNT2Tq5Vls3LmP38xYSIVusi3SqCjco9iQjhnceU4vsldu44G5K0Ndjog0II3nHuUuH9qeZZvymZq9lp6tm3B2vzahLklEGoD23KOcmfHHc3ox6NhjmPzqN3ybtyfUJYlIA1C4NwJxMR6mXp7FMUlxTHxuPtt1k22RqKdwbySap8bz5BWD2LG3lF+9sIDSct1kWySaKdwbkd5t0/i/sX3J2bCLO99aqiEKRKKYvlBtZM7t35blmwt47KO19GydyvhhHUJdkojUA+25N0KTR3Xn1B4t+OPby/hs7fZQlyMi9UDh3gh5PcZDF/enQ7Nkrv/n1xoDXiQKKdwbqdSEWJ66YhCVDiY8l0NBsYYoEIkmCvdGrEOzZB69bCBrt+3l5hmLNESBSBRRuDdyw7s0486ze/LBiq1MmaMhCkSihc6WEcYffywrt/jOoOnWMoXzB2aGuiQRqaOA9tzNbLSZrTSzNWZ22xHaDTazCjMbG7wSpb6ZGXed04thnZpy22tLWPDdzlCXJCJ1VGO4m5kXeAQ4E+gJXGJmPQ/T7n5gTrCLlPoX6/Uw9fKBtElPYOJzC8jdpTNoRCJZIHvuQ4A1zrl1zrlSYAZwbjXtbgReA7YGsT5pQOlJcUy7cjClFZVMeHa+zqARiWBW0yXo/kMso51zE/zT44GhzrkbqrRpC7wInApMA95xzr1azbomAhMBWrZsmTVjxoxaFV1YWEhKSkqtlg034diXpdsr+MuCYno383LzwHg8ZgEtF459qa1o6Uu09APUl/1Gjhy5wDk3qKZ2gXyhWt3/7EM/ER4EbnXOVdgRgsA59wTwBMCgQYPciBEjAtj8T2VnZ1PbZcNNOPZlBJCW+R1/mPUtnxS24M6zewW0XDj2pbaipS/R0g9QX45WIOGeC7SrMp0JbDqkzSBghj/YmwFnmVm5c25WUKqUBnf58ceybttenp63nk7NkjUGjUiECSTcc4CuZtYRyAMuBi6t2sA513H/czObju+wjII9wv2/nx/Hdzv2cudbS8nMSGJk9xahLklEAlTjF6rOuXLgBnxnwSwHXnbOLTWzSWY2qb4LlNDxeoyHLxnAca2bcMM/v2bZpvxQlyQiAQroPHfn3GznXDfnXGfn3D3+eY855x6rpu2V1X2ZKpEpOT6Gab8cTGpCLNc8m8OWPcWhLklEAqDhB6RGrdISmHblIPKLyrh6eg6FJeWhLklEaqBwl4D0apPGI5cNZOUPBdzw4teUV+g2fSLhTOEuARvRvQV/Orc32Su3cceb3+o2fSJhTAOHyVG5dGh7cnft49HstbRNT+SGU7uGuiQRqYbCXY7a5FHd2bKnmAfmrqJVWiJjszSKpEi4UbjLUTMz7rugL1sLSrjttcU0T43nlG7Na7WuWQvzmDJnJZt2F9EmPZHJo7ozZkDbIFcs9UXvX/jSMXeplbgY3yiS3Vqm8qsXFvDN97uPeh2zFuZx++tLyNtdhAPydhdx++tLmLUwL/gFS9Dp/QtvCneptdSEWKZfPZimKXFcPT2HLXuP7gyaKXNWUlRWcdC8orIK3REqQuj9C28Kd6mTFqkJPHvVEBzwwPxifsgP/CKnTbuLjmq+hBe9f+FN4S511ql5CtOvGkxhqeOKaV+xZ19g48C3SU88qvkSXvT+hTeFuwRF38x0bhqYwPrte7n62Rz2ldZ8FevkUd1JjPUeNC8x1svkUd3rq0wJIr1/4U3hLkHTs6mXBy/uz8KNu5j0wteUlh/5GPyYAW259/w+tE1PxIC26Ynce34fnW0RIfT+hTedCilBdVaf1tx3fl9+/9pifjtzEQ9fMgCv5/A3cBkzoK3CIILp/QtfCncJunGD25FfXMbd/1pOcryX+87vi+cIAS8iwadwl3ox4aROFBSX89AHq0mM9XLXOb040i0YRSS4FO5Sb27+WVf2lZbz5CfrSYjzctvoHgp4kQaicJd6Y2b891nHsa+0gsc/Wkd8jJffnd4t1GWJNAoKd6lXZsafzu1NaXklD3+wmliPceNpGklSpL4p3KXeeTy+gcYqKh1/eW8VMV4PvxrROdRliUQ1hbs0CK/HmHJhP8orHfe/uwKH49cjuoS6LJGopXCXBuP1GH8d1w8z+L93V+IcXD9SAS9SHxTu0qBivB7+Oq4/hm9UwfIKx02nddFZNCJBpnCXBuf1GH8Z1x+vx8Pf3l9FSXkFk0d1V8CLBJHCXULC6zGmjO1LXIyHR7PXUlxWyR2/OE4BLxIkCncJGY/H+PN5vYmP8fD0vPXsKy3nnvP6HHEsGhEJjMJdQsrMuPPsnqQmxPD3/6yhsKScv47rT1yMBiwVqQuFu4ScmfFfZ3QnJT6Ge/+9goLicqZePpCkOP3zFKkt7R5J2LjulM7cd34fPlm9jUuf/JJde0tDXZJIxFK4S1i5eEh7Hr0si2Wb87nw8c/J0/04RWpF4S5hZ3TvVjx71RB+yC/mvEfmsWxTfqhLEok4CncJS8M6N+WVScPwmDHu8c/5ZPW2UJckElEU7hK2erRqwhvXn0DmMYlc9UwOM3M2hrokkYihcJew1jotkVcmDWNY56bc+toS7n93BZWVLtRliYQ9hbuEvdSEWJ6+cjCXDGnP1Oy1/OqfC9hXWh7qskTCWkDhbmajzWylma0xs9uqef0yM1vs//nMzPoFv1RpzGK9Hv58Xm/u+EVP3lv2A2Onfs4mnUkjclg1hruZeYFHgDOBnsAlZtbzkGbrgVOcc32BPwFPBLtQETPjmhM7Mu3KwXy/cx9n//1Tvlq/M9RliYSlQPbchwBrnHPrnHOlwAzg3KoNnHOfOed2+Se/ADKDW6bIj0Z2b8Eb1w8nLTGWS5/8guc/34BzOg4vUpXV9J/CzMYCo51zE/zT44GhzrkbDtP+FqDH/vaHvDYRmAjQsmXLrBkzZtSq6MLCQlJSUmq1bLhRX2pvX5nj8cUlfLOtguFtYriiVxzx3uAMOhYt70u09APUl/1Gjhy5wDk3qMaGzrkj/gAXAk9VmR4P/P0wbUcCy4GmNa03KyvL1daHH35Y62XDjfpSNxUVle5v7610HW57x43620du/bbCoKw3Wt6XaOmHc+rLfsB8V0O+OucCOiyTC7SrMp0JbDq0kZn1BZ4CznXO7QhgvSJ15vEYN/+sG89cOZjNe4o5+++f8q/Fm0NdlkjIBRLuOUBXM+toZnHAxcBbVRuYWXvgdWC8c25V8MsUObIR3Vvwr5tOpHOLFK5/8WvumPUtxWUVoS5LJGRqDHfnXDlwAzAH3yGXl51zS81skplN8jf7H6Ap8KiZLTKz+fVWschhZB6TxMvXDePakzry/BffMeaReaz+oSDUZYmEREADZjvnZgOzD5n3WJXnE4CffIEq0tBmL9nM7CVbAFj1QwFnPfwJY/q3Zd6a7WzeU0yb9EQmj+rOmAFtg77tWQvzmDJnJZt2F9XrdgLxh1lLeOnL77m5dxnX3D6bS4a24+4xfUJSi4SG7oYgUWPWwjxuf30JRf7DMZUOXIXjlQW5B9rk7S7i9teXAAQ1eA/ddn1tJxB/mLWEF774cRyeCucOTCvgGw8NPyBRY8qclQfCdb/qTvQtKqtgypyV9b7t+thOIF768vujmi/RSeEuUeNohiMI9k1ADrftUAyRUHGYa1cON1+ik8Jdokab9MSA23oM3lyUF7QrWw+37aOpKVi8Vv2FXIebL9FJ4S5RY/Ko7iTGeg+aF+sxYg+5ajU+xkPmMUn8ZsYiJjw7n9xd++pl24mxXiaP6l7ndR+tS4a2O6r5Ep0U7hI1xgxoy73n96FteiIGtE1PZMqF/Zgytt9B8+6/oC8f3jKCP/z8OD5bu4PT//oxT3y8lrKKyqBu+97z+4TkbJm7x/Th8uPbH9hT95px+fHt9WVqI6OzZSSqjBnQttpArW7ehJM6Mbp3K+56ayl/nr2C1xbk8cdze3F8p6ZB3XYo3D2mD3eP6UN2djZrLxsR6nIkBLTnLo1a5jFJPPXLwTwxPovCknIufuILbnppITuLa78XLxIOtOcuApzRqxUndW3O1I/W8thHa3m3spLvvKu47pROJMXpv4lEHu25i/glxnn53end+OB3p9C/hZeHPljNyAeymZmzkQrdt1UijMJd5BDtMpL4df8EXpk0jNZpidz62hLOfOhj3lv2g24KIhFD4S5yGIM7ZPDGr0/g0csGUlbhuPa5+Yx59DM+Xb1dIS9hT+EucgRmxll9WvPeb0/m/gv6sC2/mMunfcm4xz9n3hqFvIQvhbtIAGK8Hi4a3J7/3DKC/z23F9/vLOKyp77kgqmf8Z8VOlwj4UfhLnIUEmK9XDGsA9mTR/Cnc3vxQ34JV0+fz1kPf8obC3PrdCGUSDAp3EVqISHWy3h/yD9wYT/KKir57cxvOPn/PuTxj9ayZ19ZqEuURk4n8IrUQazXw9isTM4f0JbsVVt54uN13PvvFTz4/mouyGrLFcM60K1laqjLlEZI4S4SBB6PcWqPlpzaoyVLN+1h+rwNvDw/lxe+2MjQjhlcfvyxnNGrJfEx3ppXJhIECneRIOvVJo0pF/bj9rOO4+X53/PCF99x40sLyUiO44KBbRk3qB1dtTcv9UzhLlJPMpLjmHRKZyae1IlP12znpa828sy8DTz5yXr6ZaYxNiuTn/dtQ0ZyXKhLlSikcBepZx6PcXK35pzcrTnbC0uYtTCPVxfkcsebS/nj28sY0b05Z/drw8+Oa0lyvP5LSnDoX5JIA2qWEs+Ekzox4aROLN+cz6yFeby5aBPvL99KQqyHU3u04MzerRnZowUpCnqpA/3rEQmR41o34bjWTbh1dA/mf7eLt7/ZxL+/3cLsJVuIi/FwUpdmnN6zJacd15LmqfGhLlcijMJdJMQ8HmNIxwyGdMzgrnN6seC7Xcxespn3lv3AByu2YraEvpnpnNajBSO6N6d3mzQ8Ht0PVY5M4S4SRrxVgv7Os3uyfHMBHyz3hfzf3l/FX99bRUZyHCd2acaJXZtxYpc9/m12AAANA0lEQVRmIbkJt4Q/hbtImDIzerZpQs82TbjxtK5sLyzh09XbyV65lU/XbOetbzYB0LFZMsd3yuD4Tk0Z0jGD1mkKe1G4i0SMZinxB+7T6pxj5Q8FfLp6O5+v3cE732zmpa++B6BdRiKDj81g4LHH4Aoqqah0eHUYp9FRuItEIDOjR6sm9GjVhAkndaK8opLlmwv4asNOvlq/g49Xb+P1hXkA3Jczh76Z6fRrl06/zDT6tkunTVoCZgr8aKZwF4kCMV4PfTLT6JOZxjUndsQ5x8ad+3jh3c8oSWnNwo27mfbpOsoqfEMTH5MUS++2afRs7Tvsc1zrJnRslkysV2MJRguFu0gUMjOObZrM8LaxjBjRG4CS8gpWbC5gce5ulm7K59tNe3hm3gZK/cMUx3k9dGqeTPdWqXRtkULXlql0aZFC+4wkhX4EUriLNBLxMV7foZl26QfmlVVUsm7bXpZvzmfFlgJWbMln/oZdvLlo04E2sV6jfUYSHZul0Kl5Msc2TaJj02TaN02idVqijueHKYW7SCMW6/XQvVUq3VsdPJBZYUk5a7YWsnZrIWu2FbJ+217Wb9/Lx6u3UVpeWWV5o216Iu0yksg8JonMYxJpm55I22MSaZOeSMvUeGK01x8SCncR+YmU+Bj6t0unf5W9fIDKSseW/GI2bN/Lhh37+H7XPjbu2Efurn3M3bSFHXtLD2rvMWiRmkCrtARaNfE9tmgST4vUBFqkxtOiSTzNUuLJSIrThVlBpnAXkYB5PEabdN9e+Qldfvr6vtJyNu0uIndXEZv3FLN5dxGb9hTzQ34xa7YVMm/tdgqKy3+ynNdjZCTH0TQ5jmYp8TRNiSMjOY6MpDgyUuI4JimO73ZU0HJzPsckxZGWGEtCrEdn/ByBwl1EgiYpLoYuLVLp0uLw49XvKy1na34JWwtK2FpQzPaCErYXlrKtoIQde0vZXljCxp372LW3lIKSgz8I7s/55MDzOK+HtKRYmiTEkJYYS5PEWJokxJKaEEPqgccYUuJ//En2//iee0mKi4na7wwCCnczGw08BHiBp5xz9x3yuvlfPwvYB1zpnPs6yLWKRK1ZC/OYMmclm3YX0SY9kcmjuvPK/I3MW7vzQJvhnTO4cFD7n7QDfjJv/nc7eenL77m5dxnX3D6bS4a24+4xfQLa7pgBbQ87P5Dl92+7wjm8Zj/ZdlJcDB2axbDo+9019uXOs3tycrfm7NxXyofzcujQrSe79pXx2drtZK/cxraCEgqKy/B6jLIKx4bte8kvLqeguOzAaZ81iY/xkBTnC/qkOC+JcV4SY70kxXlJiPU9T4jzkhDjJSHWQ0Lsj4/xMR7iY/yPsT8+j9v/4/3xebzXS2yMEev14FxgtdVFjeFuZl7gEeB0IBfIMbO3nHPLqjQ7E+jq/xkKTPU/ikgNZi3M4/bXl1BUVgFA3u4ibp656Cft5q3deVDY5+0uYvKr34CDskp3YN7vZi6isspyFc7xwhcbAQ4K2eq2e/vrS5j/3U5eW5D3k/nAQQFf3fJ12fbkV74B40Ao5+0u4o43l3Lv+X0YM6AtW5p6GdGnNbMW5vHB8q0Hli0uq+T7nUUH2u1XXFZBYUk5hcXlFBSXU1hSzt6ScvaWlrO3pIK9JeXsK61gb2k5+0p9z4tKKw487thbemC6pLyC4rJKisoqqKisezCf2TGWkSPrvJojCmTPfQiwxjm3DsDMZgDnAlXD/VzgOef7OPrCzNLNrLVzbnPQKxaJMlPmrDwQVEerur3TymraAbz05fcHBWx12y0qqziw133o/ClzVh4UntUtX5dtl1UTmoFut7p2vj1sL81SgjtccllFJcVlFZSUV1JS7nte6n/ue6ygpKyS0grf9IHH8krKKnw/nl0bg1pTdaymPw/MbCww2jk3wT89HhjqnLuhSpt3gPucc5/6pz8AbnXOzT9kXROBif7J7sDKWtbdDNhey2XDjfoSnhqsL3GtumTV17or9u3Bm5R2YLp0y5oFddluXZYPwrLNgO1HWrbqNsJcXf59Heuca15To0D23Kv7tuHQT4RA2uCcewJ4IoBtHrkgs/nOuUF1XU84UF/CU7T0xczml+/ZGvH9gOh5T6Bh+hLI1QW5QLsq05nAplq0ERGRBhJIuOcAXc2so5nFARcDbx3S5i3gCvM5Htij4+0iIqFT42EZ51y5md0AzMF3KuTTzrmlZjbJ//pjwGx8p0GuwXcq5FX1VzIQhEM7YUR9CU/R0pdo6QeoL0elxi9URUQk8mhEHxGRKKRwFxGJQmEf7maWYGZfmdk3ZrbUzP7on59hZu+Z2Wr/4zGhrjUQZuY1s4X+awMiuR8bzGyJmS0ys/n+eZHal3Qze9XMVpjZcjMbFol9MbPu/vdj/0++md0coX35rf//+7dm9pI/ByKuHwBm9ht/P5aa2c3+efXel7APd6AEONU51w/oD4z2n5FzG/CBc64r8IF/OhL8BlheZTpS+wEw0jnXv8r5upHal4eAd51zPYB++N6fiOuLc26l//3oD2ThO7nhDSKsL2bWFrgJGOSc643vRI6LibB+AJhZb+BafFf69wN+YWZdaYi+OOci5gdIAr7GN27NSqC1f35rYGWo6wug/kz/G3kq8I5/XsT1w1/rBqDZIfMiri9AE2A9/pMLIrkvh9R/BjAvEvsCtAW+BzLwndH3jr8/EdUPf50X4htscf/0HcDvG6IvkbDnvv9QxiJgK/Cec+5LoKXzn0vvf2wRyhoD9CC+N7bqEByR2A/wXYE818wW+IeVgMjsSydgG/CM/3DZU2aWTGT2paqLgZf8zyOqL865POABYCOwGd91M3OJsH74fQucbGZNzSwJ3ynj7WiAvkREuDvnKpzvT81MYIj/T52IYma/ALY65yJl7IuaDHfODcQ3Iuj1ZnZyqAuqpRhgIDDVOTcA2EsE/Ll/JP6LDc8BXgl1LbXhP/58LtARaAMkm9nloa2qdpxzy4H7gfeAd4FvgJ/eraQeRES47+ec2w1kA6OBH8ysNYD/cWsISwvEcOAcM9sAzABONbMXiLx+AOCc2+R/3IrvuO4QIrMvuUCu/69BgFfxhX0k9mW/M4GvnXM/+KcjrS8/A9Y757Y558qA14ETiLx+AOCcm+acG+icOxnYCaymAfoS9uFuZs3NLN3/PBHfG78C35AHv/Q3+yXwZmgqDIxz7nbnXKZzrgO+P5n/45y7nAjrB4CZJZtZ6v7n+I6HfksE9sU5twX43sy6+2edhm8464jrSxWX8OMhGYi8vmwEjjezJDMzfO/JciKvHwCYWQv/Y3vgfHzvTb33JeyvUDWzvsCz+L4x9wAvO+f+18yaAi8D7fH9Y7jQObfz8GsKH2Y2ArjFOfeLSOyHmXXCt7cOvsMaLzrn7onEvgCYWX/gKSAOWIdv+AwPkdmXJHxfRnZyzu3xz4u498V/yvNF+A5hLAQmAClEWD8AzOwToClQBvzOOfdBQ7wnYR/uIiJy9ML+sIyIiBw9hbuISBRSuIuIRCGFu4hIFFK4i4hEoUBukC3SoPyniX3gn2wFVOAbIgBgiHOuNCSFHYGZXQ3M9p83LxJyOhVSwpqZ3QUUOuceCINavM65isO89ilwg3Nu0VGsL8Y51yCXokvjo8MyElHM7JfmG99/kZk9amYeM4sxs91mNsXMvjazOWY21Mw+MrN1ZnaWf9kJZvaG//WVZvaHANd7t5l9hW9coz+aWY5/fO7HzOcifMNRz/QvH2dmuVWurD7ezN73P7/bzB43s/fwDVYWY2Z/9W97sZlNaPjfqkQjhbtEDP+AcecBJ/gHkovBN5QDQBow1z+YWSlwF77L1i8E/rfKaob4lxkIXGpm/QNY79fOuSHOuc+Bh5xzg4E+/tdGO+dmAouAi5xvPPWaDhsNAM52zo0HJuIbUG4IMBjfIGzta/P7EalKx9wlkvwMXwDO9w05QiK+S+0Bipxz7/mfL8E3TGy5mS0BOlRZxxzn3C4AM5sFnIjv/8Hh1lvKj0MtAJxmZpOBBKAZsAD491H2403nXLH/+RnAcWZW9cOkK75L0kVqTeEukcSAp51zdxw00ywGXwjvV4nvDl77n1f9d37ol0yuhvUWOf8XU/5xW/4BDHTO5ZnZ3fhCvjrl/PiX8aFt9h7Sp1875z5AJIh0WEYiyfvAODNrBr6zampxCOMM890zNQnfmOHzjmK9ifg+LLb7R8W8oMprBUBqlekN+G51xyHtDjUH+LX/g2T/fVATj7JPIj+hPXeJGM65Jf7RAt83Mw++UfYmAZuOYjWfAi8CnYHn95/dEsh6nXM7zOxZfMMbfwd8WeXlZ4CnzKwI33H9u4AnzWwL8NUR6nkc38iAi/yHhLbi+9ARqROdCimNhv9MlN7OuZtDXYtIfdNhGRGRKKQ9dxGRKKQ9dxGRKKRwFxGJQgp3EZEopHAXEYlCCncRkSj0/wHRUJwHFwSFe
gAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
...
...
@@ -638,53 +651,22 @@
"scrolled": true
},
"source": [
"Comme on pouvait s'attendre au vu des données initiales, la\n",
"température n'a pas d'impact notable sur la probabilité d'échec des\n",
"joints toriques. Elle sera d'environ 0.2, comme dans les essais\n",
"précédents où nous il y a eu défaillance d'au moins un joint. Revenons\n",
"à l'ensemble des données initiales pour estimer la probabilité de\n",
"défaillance d'un joint:\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.06521739130434782\n"
]
}
],
"source": [
"data = pd.read_csv(\"shuttle.csv\")\n",
"print(np.sum(data.Malfunction)/np.sum(data.Count))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Cette probabilité est donc d'environ $p=0.065$, sachant qu'il existe\n",
"un joint primaire un joint secondaire sur chacune des trois parties du\n",
"lançeur, la probabilité de défaillance des deux joints d'un lançeur\n",
"est de $p^2 \\approx 0.00425$. La probabilité de défaillance d'un des\n",
"lançeur est donc de $1-(1-p^2)^3 \\approx 1.2%$. Ça serait vraiment\n",
"pas de chance... Tout est sous contrôle, le décollage peut donc avoir\n",
"lieu demain comme prévu.\n",
" Elle sera d'environ 0.8, ce qui est très important. Même \n",
" en prenant en compte le fait que chaque joint est pairé \n",
" avec un autre, la probabilité de défaillance d'une paire \n",
" est $p^2 = 0.64$. La probabilité de défaillance d'un des\n",
"lançeur est donc de $1-(1-p^2)^3 \\approx 0.95%$. La navette \n",
"a toutes les chances d'exploser !!\n",
"\n",
"
Seulement, l
e lendemain, la navette Challenger explosera et emportera\n",
"
L
e lendemain, la navette Challenger explosera et emportera\n",
"avec elle ses sept membres d'équipages. L'opinion publique est\n",
"fortement touchée et lors de l'enquête qui suivra, la fiabilité des\n",
"joints toriques sera directement mise en cause.
Au delà d
es problèmes\n",
"de communication interne à la NASA
qui
sont pour beaucoup dans ce\n",
"fiasco
, l'analyse précédente comporte (au moins) un petit
\n",
"
problème... Saurez-vous le trouver ? Vous êtes libre de modifier cette
\n",
"
analyse et de regarder ce jeu de données sous tous les angles afin
\n",
"
d'expliquer ce qui ne va pas
."
"joints toriques sera directement mise en cause.
L
es problèmes\n",
"de communication interne à la NASA sont pour beaucoup dans ce\n",
"fiasco
. Le calcul effectué ci-dessous montre que tout indiquait déjà
\n",
"
une sombre fin à cette célèbre histoire. Cependant, est-il tout à
\n",
"
fait exacte. Je laisse le lecteur attentif s'en assurer, car mes
\n",
"
souvenirs de probabilité ne sont plus tous jeunes..
."
]
}
],
...
...
@@ -705,7 +687,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.
7.3
"
"version": "3.
6.4
"
}
},
"nbformat": 4,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment