From 79376544e23fe7e40e0085bdc78af58f2320cba9 Mon Sep 17 00:00:00 2001
From: 422b3b2bc6aaa112c184ee1926b56a23
<422b3b2bc6aaa112c184ee1926b56a23@app-learninglab.inria.fr>
Date: Sat, 9 May 2020 10:12:56 +0000
Subject: [PATCH] exo
---
module2/exo1/toy_notebook_fr.ipynb | 20 ++---
module2/exo2/exercice.ipynb | 124 ++++++++++++++++++++++++++++-
2 files changed, 131 insertions(+), 13 deletions(-)
diff --git a/module2/exo1/toy_notebook_fr.ipynb b/module2/exo1/toy_notebook_fr.ipynb
index 8370168..fcd7082 100644
--- a/module2/exo1/toy_notebook_fr.ipynb
+++ b/module2/exo1/toy_notebook_fr.ipynb
@@ -4,16 +4,16 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "# 1 À propos du calcul de π\n",
+ "# À propos du calcul de π\n",
"\n",
- "## 1.1 En demandant à la lib maths\n",
+ "## En demandant à la lib maths\n",
"\n",
"Mon ordinateur m’indique que π vaut _approximativement_"
]
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 13,
"metadata": {},
"outputs": [
{
@@ -33,13 +33,13 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "## 1.2 En utilisant la méthode des aiguilles de Buffon\n",
+ "## En utilisant la méthode des aiguilles de Buffon\n",
"Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** :"
]
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 14,
"metadata": {},
"outputs": [
{
@@ -48,7 +48,7 @@
"3.128911138923655"
]
},
- "execution_count": 8,
+ "execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
@@ -66,7 +66,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "## 1.3 Avec un argument \"fréquentiel\" de surface\n",
+ "## Avec un argument \"fréquentiel\" de surface\n",
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction\n",
"sinus se base sur le fait que si X ∼ U(0, 1) et Y ∼ U(0, 1) alors P[X2 + Y2 ≤ 1] = π/4 (voir\n",
"[méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80). Le code suivant illustre ce fait :"
@@ -74,7 +74,7 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 15,
"metadata": {},
"outputs": [
{
@@ -117,7 +117,7 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 16,
"metadata": {},
"outputs": [
{
@@ -126,7 +126,7 @@
"3.112"
]
},
- "execution_count": 12,
+ "execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
diff --git a/module2/exo2/exercice.ipynb b/module2/exo2/exercice.ipynb
index 0bbbe37..7d03fbb 100644
--- a/module2/exo2/exercice.ipynb
+++ b/module2/exo2/exercice.ipynb
@@ -1,5 +1,124 @@
{
- "cells": [],
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "x = (14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([4.33409446])"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "np.std(x, ddof=1, keepdims=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([2.8])"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "np.amin(x, keepdims=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "23.4"
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "np.amax(x)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "14.113000000000001"
+ ]
+ },
+ "execution_count": 17,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "np.mean(x)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "14.5"
+ ]
+ },
+ "execution_count": 18,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "np.median(x)"
+ ]
+ }
+ ],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
@@ -16,10 +135,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.6.3"
+ "version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
-
--
2.18.1