From 98da18eae0f7cc7f2344a626b8a503697a870cad Mon Sep 17 00:00:00 2001 From: "Anton Y." Date: Mon, 7 Jul 2025 02:09:54 +0300 Subject: [PATCH] task try 3 --- module2/exo1/toy_document_orgmode_python_en.org | 11 ----------- 1 file changed, 11 deletions(-) diff --git a/module2/exo1/toy_document_orgmode_python_en.org b/module2/exo1/toy_document_orgmode_python_en.org index 5f0f8a2..9dc0f60 100644 --- a/module2/exo1/toy_document_orgmode_python_en.org +++ b/module2/exo1/toy_document_orgmode_python_en.org @@ -18,9 +18,6 @@ from math import * pi #+end_src -#+RESULTS: -: 3.141592653589793 - * * Buffon's needle Applying the method of [[https://en.wikipedia.org/wiki/Buffon%2527s_needle_problem][Buffon's needle]], we get the *approximation* @@ -33,9 +30,6 @@ theta = np.random.uniform(size=N, low=0, high=pi/2) 2/(sum((x+np.sin(theta))>1)/N) #+end_src -#+RESULTS: -: 3.128911138923655 - * Using a surface fraction argument A method that is easier to understand and does not make use of the $\sin$ function is based on the fact that if $X\sim U(0,1)$ and $Y\sim @@ -62,9 +56,6 @@ plt.savefig(matplot_lib_filename) print(matplot_lib_filename) #+end_src -#+RESULTS: -[[file:figure_pi_mc2.png]] - It is then straightforward to obtain a (not really good) approximation to $\pi$ by counting how many times, on average, $X^2 + Y^2$ is smaller than 1: @@ -72,5 +63,3 @@ than 1: #+begin_src python :results output :session *python* :exports both 4*np.mean(accept) #+end_src - -#+RESULTS: -- 2.18.1