Commit bcd4d2e8 authored by Anton Y.'s avatar Anton Y.

exercise 2 try 1

parent 426d4d4f
#+TITLE: Your title #+TITLE: Exercice 02-2
#+AUTHOR: Your name #+AUTHOR: Anton Y.
#+DATE: Today's date #+DATE: 2025-07-07
#+LANGUAGE: en #+LANGUAGE: en
# #+PROPERTY: header-args :eval never-export # #+PROPERTY: header-args :eval never-export
...@@ -11,84 +11,56 @@ ...@@ -11,84 +11,56 @@
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/lib/js/jquery.stickytableheaders.js"></script> #+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/lib/js/jquery.stickytableheaders.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/readtheorg/js/readtheorg.js"></script> #+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/readtheorg/js/readtheorg.js"></script>
* Some explanations * What is the average ?
This is an org-mode document with code examples in R. Once opened in #+begin_src python :results output :session *python* :exports both
Emacs, this document can easily be exported to HTML, PDF, and Office import statistics
formats. For more information on org-mode, see import numpy as np
https://orgmode.org/guide/.
When you type the shortcut =C-c C-e h o=, this document will be dataset = [14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0]
exported as HTML. All the code in it will be re-executed, and the
results will be retrieved and included into the exported document. If
you do not want to re-execute all code each time, you can delete the #
and the space before ~#+PROPERTY:~ in the header of this document.
Like we showed in the video, Python code is included as follows (and npdataset = np.array([14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0])
is exxecuted by typing ~C-c C-c~):
average = statistics.mean(dataset)
print(average)
#+begin_src python :results output :exports both
print("Hello world!")
#+end_src #+end_src
#+RESULTS: #+RESULTS:
: Hello world! : 14.113
And now the same but in an Python session. With a session, Python's * What is the minimum ?
state, i.e. the values of all the variables, remains persistent from
one code block to the next. The code is still executed using ~C-c
C-c~.
#+begin_src python :results output :session :exports both #+begin_src python :results output :session *python* :exports both
import numpy print(min(dataset))
x=numpy.linspace(-15,15)
print(x)
#+end_src #+end_src
#+RESULTS: #+RESULTS:
#+begin_example : 2.8
[-15. -14.3877551 -13.7755102 -13.16326531 -12.55102041
-11.93877551 -11.32653061 -10.71428571 -10.10204082 -9.48979592 * What is the maximum ?
-8.87755102 -8.26530612 -7.65306122 -7.04081633 -6.42857143
-5.81632653 -5.20408163 -4.59183673 -3.97959184 -3.36734694 #+begin_src python :results output :session *python* :exports both
-2.75510204 -2.14285714 -1.53061224 -0.91836735 -0.30612245 print(max(dataset))
0.30612245 0.91836735 1.53061224 2.14285714 2.75510204 #+end_src
3.36734694 3.97959184 4.59183673 5.20408163 5.81632653
6.42857143 7.04081633 7.65306122 8.26530612 8.87755102 #+RESULTS:
9.48979592 10.10204082 10.71428571 11.32653061 11.93877551 : 23.4
12.55102041 13.16326531 13.7755102 14.3877551 15. ]
#+end_example * What is the median ?
Finally, an example for graphical output: #+begin_src python :results output :session *python* :exports both
#+begin_src python :results output file :session :var matplot_lib_filename="./cosxsx.png" :exports results print(np.median(npdataset))
import matplotlib.pyplot as plt #+end_src
plt.figure(figsize=(10,5)) #+RESULTS:
plt.plot(x,numpy.cos(x)/x) : 14.5
plt.tight_layout()
* What is the standard deviation ?
plt.savefig(matplot_lib_filename)
print(matplot_lib_filename) #+begin_src python :results output :session *python* :exports both
print(np.std(npdataset, ddof=1))
#+end_src #+end_src
#+RESULTS: #+RESULTS:
[[file:./cosxsx.png]] : 4.334094455301447
Note the parameter ~:exports results~, which indicates that the code
will not appear in the exported document. We recommend that in the
context of this MOOC, you always leave this parameter setting as
~:exports both~, because we want your analyses to be perfectly
transparent and reproducible.
Watch out: the figure generated by the code block is /not/ stored in
the org document. It's a plain file, here named ~cosxsx.png~. You have
to commit it explicitly if you want your analysis to be legible and
understandable on GitLab.
Finally, don't forget that we provide in the resource section of this
MOOC a configuration with a few keyboard shortcuts that allow you to
quickly create code blocks in Python by typing ~<p~, ~<P~ or ~<PP~
followed by ~Tab~.
Now it's your turn! You can delete all this information and replace it
by your computational document.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment