From 5e2263f7043e48a80636301d789d67646f67cdf9 Mon Sep 17 00:00:00 2001 From: 44c8f042bf2b3227f315215be2cb4fed <44c8f042bf2b3227f315215be2cb4fed@app-learninglab.inria.fr> Date: Mon, 15 Feb 2021 16:40:14 +0000 Subject: [PATCH] Update toy_document_fr.Rmd --- module2/exo1/toy_document_fr.Rmd | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/module2/exo1/toy_document_fr.Rmd b/module2/exo1/toy_document_fr.Rmd index 31151b3..1389bd9 100644 --- a/module2/exo1/toy_document_fr.Rmd +++ b/module2/exo1/toy_document_fr.Rmd @@ -33,7 +33,7 @@ theta = pi/2*runif(N) # Avec un argument "fréquentiel" de surface -Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si X???U(0,1) et Y???U(0,1) alors P[X2+Y2???1]=??/4 (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait: +Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait: ```{r, warning=F} set.seed(42) @@ -44,7 +44,7 @@ library(ggplot2) ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() ``` -Il est alors aisé d'obtenir une approximation (pas terrible) de ?? en comptant combien de fois, en moyenne, X2+Y2 est inférieur à 1: +Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 : ```{r} 4*mean(df$Accept) -- 2.18.1