From a278202b7ca571ec82efff10aebc270f27df2f0b Mon Sep 17 00:00:00 2001 From: 4518b690809fa3b691c9db1f7d2a025c <4518b690809fa3b691c9db1f7d2a025c@app-learninglab.inria.fr> Date: Sun, 29 Mar 2020 11:54:09 +0000 Subject: [PATCH] =?UTF-8?q?Fin=20premi=C3=A8re=20partie?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- module3/exo1/analyse-syndrome-grippal.ipynb | 2223 ++++++++++++++++++- 1 file changed, 2185 insertions(+), 38 deletions(-) diff --git a/module3/exo1/analyse-syndrome-grippal.ipynb b/module3/exo1/analyse-syndrome-grippal.ipynb index 4933e01..ee9a778 100644 --- a/module3/exo1/analyse-syndrome-grippal.ipynb +++ b/module3/exo1/analyse-syndrome-grippal.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -28,13 +28,17 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 2, + "metadata": {}, "outputs": [], "source": [ - "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\"" + "try:\n", + " raw_data = pd.read_csv(\"incidence-PAY-3.csv\", skiprows=1)\n", + "except FileNotFoundError:\n", + " data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\"\n", + " data = pd.read_csv(data_url)\n", + " data.to_csv(\"incidence-PAY-3.csv\")\n", + " raw_data = pd.read_csv(\"/incidence-PAY-3.csv\", skiprows=1)" ] }, { @@ -61,11 +65,977 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
02020123101257199.013051.01511.019.0FRFrance
1202011310204893969.0110127.0155143.0167.0FRFrance
2202010310497796650.0113304.0159146.0172.0FRFrance
32020093110696102066.0119326.0168155.0181.0FRFrance
42020083143753133984.0153522.0218203.0233.0FRFrance
52020073183610172812.0194408.0279263.0295.0FRFrance
62020063206669195481.0217857.0314297.0331.0FRFrance
72020053187957177445.0198469.0285269.0301.0FRFrance
82020043122331113492.0131170.0186173.0199.0FRFrance
920200337841371330.085496.0119108.0130.0FRFrance
1020200235361447654.059574.08172.090.0FRFrance
1120200133685031608.042092.05648.064.0FRFrance
1220195232813523220.033050.04336.050.0FRFrance
1320195132978625042.034530.04538.052.0FRFrance
1420195033422329156.039290.05244.060.0FRFrance
1520194932566221414.029910.03933.045.0FRFrance
1620194832236718055.026679.03427.041.0FRFrance
1720194731866914759.022579.02822.034.0FRFrance
1820194631603012567.019493.02419.029.0FRFrance
192019453101387160.013116.01510.020.0FRFrance
20201944378225010.010634.0128.016.0FRFrance
21201943394876448.012526.0149.019.0FRFrance
22201942377475243.010251.0128.016.0FRFrance
23201941371224720.09524.0117.015.0FRFrance
24201940385055784.011226.0139.017.0FRFrance
25201939370914462.09720.0117.015.0FRFrance
26201938348972891.06903.074.010.0FRFrance
27201937331721367.04977.052.08.0FRFrance
2820193632295728.03862.031.05.0FRFrance
29201935310102.02018.020.04.0FRFrance
.................................
181719852132609619621.032571.04735.059.0FRFrance
181819852032789620885.034907.05138.064.0FRFrance
181919851934315432821.053487.07859.097.0FRFrance
182019851834055529935.051175.07455.093.0FRFrance
182119851733405324366.043740.06244.080.0FRFrance
182219851635036236451.064273.09166.0116.0FRFrance
182319851536388145538.082224.011683.0149.0FRFrance
18241985143134545114400.0154690.0244207.0281.0FRFrance
18251985133197206176080.0218332.0357319.0395.0FRFrance
18261985123245240223304.0267176.0445405.0485.0FRFrance
18271985113276205252399.0300011.0501458.0544.0FRFrance
18281985103353231326279.0380183.0640591.0689.0FRFrance
18291985093369895341109.0398681.0670618.0722.0FRFrance
18301985083389886359529.0420243.0707652.0762.0FRFrance
18311985073471852432599.0511105.0855784.0926.0FRFrance
18321985063565825518011.0613639.01026939.01113.0FRFrance
18331985053637302592795.0681809.011551074.01236.0FRFrance
18341985043424937390794.0459080.0770708.0832.0FRFrance
18351985033213901174689.0253113.0388317.0459.0FRFrance
183619850239758680949.0114223.0177147.0207.0FRFrance
183719850138548965918.0105060.0155120.0190.0FRFrance
183819845238483060602.0109058.0154110.0198.0FRFrance
1839198451310172680242.0123210.0185146.0224.0FRFrance
18401984503123680101401.0145959.0225184.0266.0FRFrance
1841198449310107381684.0120462.0184149.0219.0FRFrance
184219844837862060634.096606.0143110.0176.0FRFrance
184319844737202954274.089784.013199.0163.0FRFrance
184419844638733067686.0106974.0159123.0195.0FRFrance
18451984453135223101414.0169032.0246184.0308.0FRFrance
184619844436842220056.0116788.012537.0213.0FRFrance
\n", + "

1847 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202012 3 10125 7199.0 13051.0 15 11.0 \n", + "1 202011 3 102048 93969.0 110127.0 155 143.0 \n", + "2 202010 3 104977 96650.0 113304.0 159 146.0 \n", + "3 202009 3 110696 102066.0 119326.0 168 155.0 \n", + "4 202008 3 143753 133984.0 153522.0 218 203.0 \n", + "5 202007 3 183610 172812.0 194408.0 279 263.0 \n", + "6 202006 3 206669 195481.0 217857.0 314 297.0 \n", + "7 202005 3 187957 177445.0 198469.0 285 269.0 \n", + "8 202004 3 122331 113492.0 131170.0 186 173.0 \n", + "9 202003 3 78413 71330.0 85496.0 119 108.0 \n", + "10 202002 3 53614 47654.0 59574.0 81 72.0 \n", + "11 202001 3 36850 31608.0 42092.0 56 48.0 \n", + "12 201952 3 28135 23220.0 33050.0 43 36.0 \n", + "13 201951 3 29786 25042.0 34530.0 45 38.0 \n", + "14 201950 3 34223 29156.0 39290.0 52 44.0 \n", + "15 201949 3 25662 21414.0 29910.0 39 33.0 \n", + "16 201948 3 22367 18055.0 26679.0 34 27.0 \n", + "17 201947 3 18669 14759.0 22579.0 28 22.0 \n", + "18 201946 3 16030 12567.0 19493.0 24 19.0 \n", + "19 201945 3 10138 7160.0 13116.0 15 10.0 \n", + "20 201944 3 7822 5010.0 10634.0 12 8.0 \n", + "21 201943 3 9487 6448.0 12526.0 14 9.0 \n", + "22 201942 3 7747 5243.0 10251.0 12 8.0 \n", + "23 201941 3 7122 4720.0 9524.0 11 7.0 \n", + "24 201940 3 8505 5784.0 11226.0 13 9.0 \n", + "25 201939 3 7091 4462.0 9720.0 11 7.0 \n", + "26 201938 3 4897 2891.0 6903.0 7 4.0 \n", + "27 201937 3 3172 1367.0 4977.0 5 2.0 \n", + "28 201936 3 2295 728.0 3862.0 3 1.0 \n", + "29 201935 3 1010 2.0 2018.0 2 0.0 \n", + "... ... ... ... ... ... ... ... \n", + "1817 198521 3 26096 19621.0 32571.0 47 35.0 \n", + "1818 198520 3 27896 20885.0 34907.0 51 38.0 \n", + "1819 198519 3 43154 32821.0 53487.0 78 59.0 \n", + "1820 198518 3 40555 29935.0 51175.0 74 55.0 \n", + "1821 198517 3 34053 24366.0 43740.0 62 44.0 \n", + "1822 198516 3 50362 36451.0 64273.0 91 66.0 \n", + "1823 198515 3 63881 45538.0 82224.0 116 83.0 \n", + "1824 198514 3 134545 114400.0 154690.0 244 207.0 \n", + "1825 198513 3 197206 176080.0 218332.0 357 319.0 \n", + "1826 198512 3 245240 223304.0 267176.0 445 405.0 \n", + "1827 198511 3 276205 252399.0 300011.0 501 458.0 \n", + "1828 198510 3 353231 326279.0 380183.0 640 591.0 \n", + "1829 198509 3 369895 341109.0 398681.0 670 618.0 \n", + "1830 198508 3 389886 359529.0 420243.0 707 652.0 \n", + "1831 198507 3 471852 432599.0 511105.0 855 784.0 \n", + "1832 198506 3 565825 518011.0 613639.0 1026 939.0 \n", + "1833 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", + "1834 198504 3 424937 390794.0 459080.0 770 708.0 \n", + "1835 198503 3 213901 174689.0 253113.0 388 317.0 \n", + "1836 198502 3 97586 80949.0 114223.0 177 147.0 \n", + "1837 198501 3 85489 65918.0 105060.0 155 120.0 \n", + "1838 198452 3 84830 60602.0 109058.0 154 110.0 \n", + "1839 198451 3 101726 80242.0 123210.0 185 146.0 \n", + "1840 198450 3 123680 101401.0 145959.0 225 184.0 \n", + "1841 198449 3 101073 81684.0 120462.0 184 149.0 \n", + "1842 198448 3 78620 60634.0 96606.0 143 110.0 \n", + "1843 198447 3 72029 54274.0 89784.0 131 99.0 \n", + "1844 198446 3 87330 67686.0 106974.0 159 123.0 \n", + "1845 198445 3 135223 101414.0 169032.0 246 184.0 \n", + "1846 198444 3 68422 20056.0 116788.0 125 37.0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 19.0 FR France \n", + "1 167.0 FR France \n", + "2 172.0 FR France \n", + "3 181.0 FR France \n", + "4 233.0 FR France \n", + "5 295.0 FR France \n", + "6 331.0 FR France \n", + "7 301.0 FR France \n", + "8 199.0 FR France \n", + "9 130.0 FR France \n", + "10 90.0 FR France \n", + "11 64.0 FR France \n", + "12 50.0 FR France \n", + "13 52.0 FR France \n", + "14 60.0 FR France \n", + "15 45.0 FR France \n", + "16 41.0 FR France \n", + "17 34.0 FR France \n", + "18 29.0 FR France \n", + "19 20.0 FR France \n", + "20 16.0 FR France \n", + "21 19.0 FR France \n", + "22 16.0 FR France \n", + "23 15.0 FR France \n", + "24 17.0 FR France \n", + "25 15.0 FR France \n", + "26 10.0 FR France \n", + "27 8.0 FR France \n", + "28 5.0 FR France \n", + "29 4.0 FR France \n", + "... ... ... ... \n", + "1817 59.0 FR France \n", + "1818 64.0 FR France \n", + "1819 97.0 FR France \n", + "1820 93.0 FR France \n", + "1821 80.0 FR France \n", + "1822 116.0 FR France \n", + "1823 149.0 FR France \n", + "1824 281.0 FR France \n", + "1825 395.0 FR France \n", + "1826 485.0 FR France \n", + "1827 544.0 FR France \n", + "1828 689.0 FR France \n", + "1829 722.0 FR France \n", + "1830 762.0 FR France \n", + "1831 926.0 FR France \n", + "1832 1113.0 FR France \n", + "1833 1236.0 FR France \n", + "1834 832.0 FR France \n", + "1835 459.0 FR France \n", + "1836 207.0 FR France \n", + "1837 190.0 FR France \n", + "1838 198.0 FR France \n", + "1839 224.0 FR France \n", + "1840 266.0 FR France \n", + "1841 219.0 FR France \n", + "1842 176.0 FR France \n", + "1843 163.0 FR France \n", + "1844 195.0 FR France \n", + "1845 308.0 FR France \n", + "1846 213.0 FR France \n", + "\n", + "[1847 rows x 10 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "raw_data = pd.read_csv(data_url, skiprows=1)\n", "raw_data" ] }, @@ -78,9 +1048,73 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
161019891930NaNNaN0NaNNaNFRFrance
\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n", + "1610 198919 3 0 NaN NaN 0 NaN NaN \n", + "\n", + " geo_insee geo_name \n", + "1610 FR France " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] @@ -94,9 +1128,976 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
02020123101257199.013051.01511.019.0FRFrance
1202011310204893969.0110127.0155143.0167.0FRFrance
2202010310497796650.0113304.0159146.0172.0FRFrance
32020093110696102066.0119326.0168155.0181.0FRFrance
42020083143753133984.0153522.0218203.0233.0FRFrance
52020073183610172812.0194408.0279263.0295.0FRFrance
62020063206669195481.0217857.0314297.0331.0FRFrance
72020053187957177445.0198469.0285269.0301.0FRFrance
82020043122331113492.0131170.0186173.0199.0FRFrance
920200337841371330.085496.0119108.0130.0FRFrance
1020200235361447654.059574.08172.090.0FRFrance
1120200133685031608.042092.05648.064.0FRFrance
1220195232813523220.033050.04336.050.0FRFrance
1320195132978625042.034530.04538.052.0FRFrance
1420195033422329156.039290.05244.060.0FRFrance
1520194932566221414.029910.03933.045.0FRFrance
1620194832236718055.026679.03427.041.0FRFrance
1720194731866914759.022579.02822.034.0FRFrance
1820194631603012567.019493.02419.029.0FRFrance
192019453101387160.013116.01510.020.0FRFrance
20201944378225010.010634.0128.016.0FRFrance
21201943394876448.012526.0149.019.0FRFrance
22201942377475243.010251.0128.016.0FRFrance
23201941371224720.09524.0117.015.0FRFrance
24201940385055784.011226.0139.017.0FRFrance
25201939370914462.09720.0117.015.0FRFrance
26201938348972891.06903.074.010.0FRFrance
27201937331721367.04977.052.08.0FRFrance
2820193632295728.03862.031.05.0FRFrance
29201935310102.02018.020.04.0FRFrance
.................................
181719852132609619621.032571.04735.059.0FRFrance
181819852032789620885.034907.05138.064.0FRFrance
181919851934315432821.053487.07859.097.0FRFrance
182019851834055529935.051175.07455.093.0FRFrance
182119851733405324366.043740.06244.080.0FRFrance
182219851635036236451.064273.09166.0116.0FRFrance
182319851536388145538.082224.011683.0149.0FRFrance
18241985143134545114400.0154690.0244207.0281.0FRFrance
18251985133197206176080.0218332.0357319.0395.0FRFrance
18261985123245240223304.0267176.0445405.0485.0FRFrance
18271985113276205252399.0300011.0501458.0544.0FRFrance
18281985103353231326279.0380183.0640591.0689.0FRFrance
18291985093369895341109.0398681.0670618.0722.0FRFrance
18301985083389886359529.0420243.0707652.0762.0FRFrance
18311985073471852432599.0511105.0855784.0926.0FRFrance
18321985063565825518011.0613639.01026939.01113.0FRFrance
18331985053637302592795.0681809.011551074.01236.0FRFrance
18341985043424937390794.0459080.0770708.0832.0FRFrance
18351985033213901174689.0253113.0388317.0459.0FRFrance
183619850239758680949.0114223.0177147.0207.0FRFrance
183719850138548965918.0105060.0155120.0190.0FRFrance
183819845238483060602.0109058.0154110.0198.0FRFrance
1839198451310172680242.0123210.0185146.0224.0FRFrance
18401984503123680101401.0145959.0225184.0266.0FRFrance
1841198449310107381684.0120462.0184149.0219.0FRFrance
184219844837862060634.096606.0143110.0176.0FRFrance
184319844737202954274.089784.013199.0163.0FRFrance
184419844638733067686.0106974.0159123.0195.0FRFrance
18451984453135223101414.0169032.0246184.0308.0FRFrance
184619844436842220056.0116788.012537.0213.0FRFrance
\n", + "

1846 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202012 3 10125 7199.0 13051.0 15 11.0 \n", + "1 202011 3 102048 93969.0 110127.0 155 143.0 \n", + "2 202010 3 104977 96650.0 113304.0 159 146.0 \n", + "3 202009 3 110696 102066.0 119326.0 168 155.0 \n", + "4 202008 3 143753 133984.0 153522.0 218 203.0 \n", + "5 202007 3 183610 172812.0 194408.0 279 263.0 \n", + "6 202006 3 206669 195481.0 217857.0 314 297.0 \n", + "7 202005 3 187957 177445.0 198469.0 285 269.0 \n", + "8 202004 3 122331 113492.0 131170.0 186 173.0 \n", + "9 202003 3 78413 71330.0 85496.0 119 108.0 \n", + "10 202002 3 53614 47654.0 59574.0 81 72.0 \n", + "11 202001 3 36850 31608.0 42092.0 56 48.0 \n", + "12 201952 3 28135 23220.0 33050.0 43 36.0 \n", + "13 201951 3 29786 25042.0 34530.0 45 38.0 \n", + "14 201950 3 34223 29156.0 39290.0 52 44.0 \n", + "15 201949 3 25662 21414.0 29910.0 39 33.0 \n", + "16 201948 3 22367 18055.0 26679.0 34 27.0 \n", + "17 201947 3 18669 14759.0 22579.0 28 22.0 \n", + "18 201946 3 16030 12567.0 19493.0 24 19.0 \n", + "19 201945 3 10138 7160.0 13116.0 15 10.0 \n", + "20 201944 3 7822 5010.0 10634.0 12 8.0 \n", + "21 201943 3 9487 6448.0 12526.0 14 9.0 \n", + "22 201942 3 7747 5243.0 10251.0 12 8.0 \n", + "23 201941 3 7122 4720.0 9524.0 11 7.0 \n", + "24 201940 3 8505 5784.0 11226.0 13 9.0 \n", + "25 201939 3 7091 4462.0 9720.0 11 7.0 \n", + "26 201938 3 4897 2891.0 6903.0 7 4.0 \n", + "27 201937 3 3172 1367.0 4977.0 5 2.0 \n", + "28 201936 3 2295 728.0 3862.0 3 1.0 \n", + "29 201935 3 1010 2.0 2018.0 2 0.0 \n", + "... ... ... ... ... ... ... ... \n", + "1817 198521 3 26096 19621.0 32571.0 47 35.0 \n", + "1818 198520 3 27896 20885.0 34907.0 51 38.0 \n", + "1819 198519 3 43154 32821.0 53487.0 78 59.0 \n", + "1820 198518 3 40555 29935.0 51175.0 74 55.0 \n", + "1821 198517 3 34053 24366.0 43740.0 62 44.0 \n", + "1822 198516 3 50362 36451.0 64273.0 91 66.0 \n", + "1823 198515 3 63881 45538.0 82224.0 116 83.0 \n", + "1824 198514 3 134545 114400.0 154690.0 244 207.0 \n", + "1825 198513 3 197206 176080.0 218332.0 357 319.0 \n", + "1826 198512 3 245240 223304.0 267176.0 445 405.0 \n", + "1827 198511 3 276205 252399.0 300011.0 501 458.0 \n", + "1828 198510 3 353231 326279.0 380183.0 640 591.0 \n", + "1829 198509 3 369895 341109.0 398681.0 670 618.0 \n", + "1830 198508 3 389886 359529.0 420243.0 707 652.0 \n", + "1831 198507 3 471852 432599.0 511105.0 855 784.0 \n", + "1832 198506 3 565825 518011.0 613639.0 1026 939.0 \n", + "1833 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", + "1834 198504 3 424937 390794.0 459080.0 770 708.0 \n", + "1835 198503 3 213901 174689.0 253113.0 388 317.0 \n", + "1836 198502 3 97586 80949.0 114223.0 177 147.0 \n", + "1837 198501 3 85489 65918.0 105060.0 155 120.0 \n", + "1838 198452 3 84830 60602.0 109058.0 154 110.0 \n", + "1839 198451 3 101726 80242.0 123210.0 185 146.0 \n", + "1840 198450 3 123680 101401.0 145959.0 225 184.0 \n", + "1841 198449 3 101073 81684.0 120462.0 184 149.0 \n", + "1842 198448 3 78620 60634.0 96606.0 143 110.0 \n", + "1843 198447 3 72029 54274.0 89784.0 131 99.0 \n", + "1844 198446 3 87330 67686.0 106974.0 159 123.0 \n", + "1845 198445 3 135223 101414.0 169032.0 246 184.0 \n", + "1846 198444 3 68422 20056.0 116788.0 125 37.0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 19.0 FR France \n", + "1 167.0 FR France \n", + "2 172.0 FR France \n", + "3 181.0 FR France \n", + "4 233.0 FR France \n", + "5 295.0 FR France \n", + "6 331.0 FR France \n", + "7 301.0 FR France \n", + "8 199.0 FR France \n", + "9 130.0 FR France \n", + "10 90.0 FR France \n", + "11 64.0 FR France \n", + "12 50.0 FR France \n", + "13 52.0 FR France \n", + "14 60.0 FR France \n", + "15 45.0 FR France \n", + "16 41.0 FR France \n", + "17 34.0 FR France \n", + "18 29.0 FR France \n", + "19 20.0 FR France \n", + "20 16.0 FR France \n", + "21 19.0 FR France \n", + "22 16.0 FR France \n", + "23 15.0 FR France \n", + "24 17.0 FR France \n", + "25 15.0 FR France \n", + "26 10.0 FR France \n", + "27 8.0 FR France \n", + "28 5.0 FR France \n", + "29 4.0 FR France \n", + "... ... ... ... \n", + "1817 59.0 FR France \n", + "1818 64.0 FR France \n", + "1819 97.0 FR France \n", + "1820 93.0 FR France \n", + "1821 80.0 FR France \n", + "1822 116.0 FR France \n", + "1823 149.0 FR France \n", + "1824 281.0 FR France \n", + "1825 395.0 FR France \n", + "1826 485.0 FR France \n", + "1827 544.0 FR France \n", + "1828 689.0 FR France \n", + "1829 722.0 FR France \n", + "1830 762.0 FR France \n", + "1831 926.0 FR France \n", + "1832 1113.0 FR France \n", + "1833 1236.0 FR France \n", + "1834 832.0 FR France \n", + "1835 459.0 FR France \n", + "1836 207.0 FR France \n", + "1837 190.0 FR France \n", + "1838 198.0 FR France \n", + "1839 224.0 FR France \n", + "1840 266.0 FR France \n", + "1841 219.0 FR France \n", + "1842 176.0 FR France \n", + "1843 163.0 FR France \n", + "1844 195.0 FR France \n", + "1845 308.0 FR France \n", + "1846 213.0 FR France \n", + "\n", + "[1846 rows x 10 columns]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "data = raw_data.dropna().copy()\n", "data" @@ -122,7 +2123,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -152,10 +2153,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 7, + "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" @@ -179,9 +2178,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n" + ] + } + ], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", @@ -199,9 +2206,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXncHEWd/z/fuZ4z90UOSAKJyCFXsgFEEUUBT1ivxYussstvFXf97boqXovKDxdc11tgWQGDsiKiLChnuOSKIQkBchESyH0+SZ4kT54nzzEz9fujq3q6Z7q6q6d7ZnryfN+v1/OaeXqqq6urq+tb36OqSAgBhmEYholKqtEFYBiGYY4MWKAwDMMwscAChWEYhokFFigMwzBMLLBAYRiGYWKBBQrDMAwTCyxQGIZhmFhggcIwDMPEAgsUhmEYJhYyjS5APRk/fryYMWNGo4vBMAzTVCxbtmyPEGJCULphJVBmzJiBpUuXNroYDMMwTQURbTJJxyYvhmEYJhZYoDAMwzCxwAKFYRiGiQUWKAzDMEwssEBhGIZhYiFQoBDRrUS0m4hWOo6NJaKFRLROfo5x/PZVIlpPRGuJ6ELH8TlEtEL+9hMiInm8hYh+K48vJqIZjnPmy2usI6L5juMzZdp18txc9KpgGIZhomCiofwSwEVlx64C8JgQYjaAx+T/IKITAVwK4CR5zg1ElJbn3AjgCgCz5Z/K83IA3UKIWQB+COB6mddYAFcDOBPAPABXOwTX9QB+KK/fLfNgGIZhGkigQBFCPAVgX9nhiwEskN8XALjEcfxOIcSAEGIDgPUA5hHRZAAjhRCLhLXn8O1l56i87gZwvtReLgSwUAixTwjRDWAhgIvkb++Qacuvf8STLxRx15ItKBR562aGYZJFtT6USUKIHQAgPyfK41MBbHGk2yqPTZXfy4+7zhFC5AEcADDOJ69xAPbLtOV5HfH88rmN+PLvX8adSzY3uigMwzAu4nbKk8cx4XO8mnP88qosENEVRLSUiJZ2dXXpkjUNu3sGAAA9/fmAlAzDMPWlWoGyS5qxID93y+NbARztSDcNwHZ5fJrHcdc5RJQBMAqWiU2X1x4Ao2Xa8rwqEELcLISYK4SYO2FC4FI0iSdfsGRnJuUlVxmGYRpHtQLlPgAq6mo+gHsdxy+VkVszYTnfn5dmsR4iOkv6QC4rO0fl9WEAj0s/y8MALiCiMdIZfwGAh+VvT8i05dc/4ikUiwBYoDAMkzwCF4ckot8AOA/AeCLaCivy6joAdxHR5QA2A/gIAAghVhHRXQBWA8gDuFIIUZBZfRZWxFgbgAflHwDcAuBXRLQelmZyqcxrHxFdA2CJTPcdIYQKDvgKgDuJ6P8BWC7zGBYMSWd8Os1TiBiGSRaBAkUI8THNT+dr0l8L4FqP40sBnOxxvB9SIHn8diuAWz2Ovw4rlHjYUZAmryxrKAzDJAwe5jYZeaWhsEBhGCZhsEBpMorCEigpYoHCMEyyYIHCMAzDxAILlCZDKSY8T55hmKTBAqXJIDmvUwgWKQzDJAsWKE0GaygMwyQVFihNhnLFs4bCMEzSYIHSZHBwF8MwSYUFSpNR8qE0uCAMwzBlsEBpMtiHwjBMUmGB0mTYAoUlCsMwCYMFStNhSZQiSxSGYRIGC5Qmg53yDMMkFRYoTYYdNtzQUjAMw1TCAqXJKPlQki9S7n1xG2ZcdT+6ewcbXRSGYeoAC5Qmo5nChm99diMAYMPe3sYWhGGYusACpcloJg2F3T0MM7xggdJksA+FYZikwgKlySBqHpOXopnKyjBM9bBAaVKaoY/mEGeGGV6wQGkyuJNmGCapsEBh6kAz6FMMw0SFBQpTM1iZYpjhBQsUpmawXsIwwwsWKAzDMEwssEBpUnhiI8MwSYMFClNzmkD2MQwTAyxQmhRqgvjhZigjwzDxwQKFYRiGiQUWKEcgv/7LJpxz3eONLoYNW7wYZngQSaAQ0T8T0SoiWklEvyGiViIaS0QLiWid/BzjSP9VIlpPRGuJ6ELH8TlEtEL+9hOSthIiaiGi38rji4lohuOc+fIa64hofpT7aEb8nPLf+N+V2Lb/cB1L4w0bvBhmeFG1QCGiqQD+CcBcIcTJANIALgVwFYDHhBCzATwm/wcRnSh/PwnARQBuIKK0zO5GAFcAmC3/LpLHLwfQLYSYBeCHAK6XeY0FcDWAMwHMA3C1U3AxDMMw9SeqySsDoI2IMgDaAWwHcDGABfL3BQAukd8vBnCnEGJACLEBwHoA84hoMoCRQohFwhp23152jsrrbgDnS+3lQgALhRD7hBDdABaiJISGBc3k8OYoL4YZHlQtUIQQ2wB8H8BmADsAHBBCPAJgkhBih0yzA8BEecpUAFscWWyVx6bK7+XHXecIIfIADgAY55PXsKEp5qE0j8xjGCYGopi8xsDSIGYCmAKgg4g+6XeKxzHhc7zac8rLeQURLSWipV1dXT7FO/JoBqHDMMyRQxST1zsBbBBCdAkhhgD8AcCbAeySZizIz90y/VYARzvOnwbLRLZVfi8/7jpHmtVGAdjnk1cFQoibhRBzhRBzJ0yYUOWtNidJkScs2BhmeBBFoGwGcBYRtUu/xvkA1gC4D4CKupoP4F75/T4Al8rIrZmwnO/PS7NYDxGdJfO5rOwcldeHATwu/SwPA7iAiMZITekCeeyIh2C+Y2Oju3HiOC+GGVZkqj1RCLGYiO4G8AKAPIDlAG4G0AngLiK6HJbQ+YhMv4qI7gKwWqa/UghRkNl9FsAvAbQBeFD+AcAtAH5FROthaSaXyrz2EdE1AJbIdN8RQuyr9l6aCRFCTBSFQJo7dYZh6kTVAgUAhBBXwwrfdTIAS1vxSn8tgGs9ji8FcLLH8X5IgeTx260Abg1Z5CMGE8GSFEtTQorBMEyN4ZnyTUY4k1eDu3JWjhhmWMEC5QgmKRoKwzDDAxYoTYqJrEiKQElKORiGqS0sUI5gGm3yYosXwwwvWKA0KUY+lIRoBlEF29fvWYE/vew5zYhhmATBAqVJMYryqkM5/Ihr6ZU7Fm/G5/9neTyZMQxTM1igHMEUk6KiMAwzLGCB0qQ0k8mr4aoSwzB1gQXKkUzDp6GwW55hhhMsUI5gGh3lxTDM8IIFSpNisoJvMSHyJCHFYBimxrBAaVLMfCgNnofCFi+GGVawQDmCYc2AYZh6wgKlSeGlVxiGSRosUJoMZUZikxfDMEmDBUqTEUZGNFoxYM2EYYYXLFCalGbaYIthmOEBC5QjmEbPQ2GTF8MML1igNCkm2kdy5qEkpCAMw9QUFihNilmUVzI68oQUg2GYGsMCpckIM9pvdEeu1vJiecIwwwMWKM2KgbRotEBRJEVTYhimtrBAaTJU32xk8kqIbpCMUjAMU2tYoBzBNFoxsKO8IpSDtRuGaR5YoDQpRjPla18MI6JoSixPGKZ5YIHSZKgRu0knnZQtgKMUwzSabfv+w9VfhGGYWGCBEoL1u3vwx5e2N7oYxiREnkQTKAYn3/bsRrz5usexZsfB6i/EMExkMo0uQDPxzh88BQB4/6lTGlYG1b2addLJkChRSmFy7qLX9wIANu3twwmTR0a4GsMwUWANpUnx62jDrEhcS0gWJIpj3cRsp/JP8VIvDNNQWKA0GSZ9s+pXk7P0SoRzQ5xMvHgYwzQUFihNhnLGm0V5JUOi1FpTarQmxjCMRSSBQkSjiehuInqFiNYQ0dlENJaIFhLROvk5xpH+q0S0nojWEtGFjuNziGiF/O0nJIeaRNRCRL+VxxcT0QzHOfPlNdYR0fwo93Gk0uiOtqQv1DZsWCVh/YRhGktUDeXHAB4SQrwRwKkA1gC4CsBjQojZAB6T/4OITgRwKYCTAFwE4AYiSst8bgRwBYDZ8u8iefxyAN1CiFkAfgjgepnXWABXAzgTwDwAVzsFV61p5GS70kz5Zlp6JcK5RvdppWGLF8M0lqoFChGNBHAugFsAQAgxKITYD+BiAAtksgUALpHfLwZwpxBiQAixAcB6APOIaDKAkUKIRcLqGW4vO0fldTeA86X2ciGAhUKIfUKIbgALURJCNaeQBOeETxGULyEx81CinBtGQ2GBwjANJYqGciyALgC3EdFyIvoFEXUAmCSE2AEA8nOiTD8VwBbH+Vvlsanye/lx1zlCiDyAAwDG+eRVFwqN1FAaduXwxBFtFkYoEhu9GKahRBEoGQBnALhRCHE6gF5I85YGr7dd+Byv9hz3RYmuIKKlRLS0q6vLp3jmNFJDCbU4ZEKkT6SlV0zSJOQ+GWa4E0WgbAWwVQixWP5/NywBs0uasSA/dzvSH+04fxqA7fL4NI/jrnOIKANgFIB9PnlVIIS4WQgxVwgxd8KECVXcZiVJMHmZ+HGOhCivUGuWsYLCMA2laoEihNgJYAsRHS8PnQ9gNYD7AKioq/kA7pXf7wNwqYzcmgnL+f68NIv1ENFZ0j9yWdk5Kq8PA3hc+lkeBnABEY2RzvgL5LG6UCzW60peBPewSZmHEsNiw0Yn2075KNdhGCYyUZde+UcAdxBRDsDrAD4NS0jdRUSXA9gM4CMAIIRYRUR3wRI6eQBXCiEKMp/PAvglgDYAD8o/wHL4/4qI1sPSTC6Vee0jomsALJHpviOE2BfxXoxppA9FYTRyT0A5gWjlCKNl8cRGhmkskQSKEOJFAHM9fjpfk/5aANd6HF8K4GSP4/2QAsnjt1sB3BqmvHHRND6UmpakPoSpahYnDNNYeKZ8FSRBoPiRvLW8qs/DyFd0JEjOGvDilv2YcdX9vAozUzdYoFRB0k1eKnw2MSavWkd5gSc2evHgyh0AgCfW7g5IyTDxwAKlCoqN1FDUWl4mM8hrXZgAbKd8raO8hLre8JAo3b2DeO61PYHphkt9MMmBBUoI1Ag4CWHDJiREQanD0ivW53DRUObf9jw+/t+LMVRoaLghw1TAAiUEKdljNXSmvHB/+nEkLL0S5uRhIk9sn0i+YFY5jW4G+UIRC1fvSowJlqkdLFBCkFYCpaEmLwMS45RX5YiywVZwmnpN4BwqFPGvv3sJm/b21uV6OpQpazDvr6EkRWO74cnX8Pe3L8Xjr7Av50iHBUoIms7k1WAvSpgQZ20eYVZVrnEHunzzfty9bCu+eNdLtb1QEPI+B5vE5PV61yEAwIHDQw0uCVNrWKCEIJUEDcU2eYVZk6R5CaXc1Ph+W7PW69KfLwSkrC0pQ4GSEAXFLmcuc2R0N396eTtmXHU/dh7ob3RREseR8YTrhHqRk+Kb0JGYpVdiWHslzATOOG73YP8QunsHPX9rzVrb9/QPNVYzUCavoQCTl6LRvgtlmmvJpANSNgf3vLANALBy24EGlyR5RF16ZViRCA3FDhs2T9toIs1DCdEZxtFvnvKtRwAAG697b8VvGTmi6B9qrIZCphpKQlSUgfyRpaG0t1jdZu9gvsElSR5HxhOuE6lU4wUKbJOXQdJkyJOaz0MpaWS1vWGVe5AzvNao22yWKC/1vqSTIuEi0pGzNK3egcYOLJIIC5QQpJrOKd9o5Iz9CDmE6Qxrfb+qLI1+/kpwBglQnthYG9Kpxk8fSCosUEKQiHko9qe+DJQwX0/NJzba16mxhiLzjzqh8EDfEJ7fUP3i2KmEbfEchB0+noAhTqw0Sf3XExYoIbD3ak9AtKbJWl5JeX+j+VDCXKe2qPyjaiifWbAEH/2vRRioMlosbPh61Hr540vb0TtQvb/gSNOUjhDLXU1ggRIC2+TV0JnyIZzUDZYocax6HOrUGt+u0giGIgqUsDPdyzHVUOLo+FZuO4B//M1yfP2eFZHz4gH9kQ8LlBDYtlMfFeW51/bgf5dvq1kZwoTIJuUFjuZDMT+75k75mHwo6Yim05KGYpY+SrUozWT7/urnXCRpRH/dg6/gituXxpJXQl6vRMFhwyEohQ3r03z8vxcDAC45fWpNy+Jr8rJ9KDUtgjk1XnolhsuEyj+qQLEFQpUaimlUWxz9uL2nTQzdZxKa401/fq3RRTiiYQ0lBElYeiWUT6HBKkose8qHOLvWdxuXBqQ03XyV7UiFr5tuoxCLMIjh1hvdHuPiSPMJxQkLlBAkK7rGPPqp0dR6HkopbbQ7rtZJHpZ0xPlMxtGGMdiaUjHEd1BAObZ29+FAH6/zdSTAAiUE6uWqdmQZByZXLm1slRSnfIQorxql9SLISR5XdaoOttrwY/V8jaO8IpQ7jmdol0Nz/C3XP4EP3vhs5PzDEMfk1ESMKxMGC5QQhDU11AL1YjfVTPko59ZRQwnSPGMzeUVcwsc0ei5Ow0wkDUXl4VFgpRW+1lXfLQG2dPdVfW6SggySBguUECRhLS+Fv1NemebqVJgAaj2xMY7rAMH1FVd1lnwoVWoodW2H0ikfiw+l8lijlrFptPZ+pMICJQSJmIdikKZea1sFlyP60ith+tyodxvUycRVnyn51g1VPQ/F+jRth9H8H/Hl4SX/GjXoibLYQVJMykmEBUoIbKd8Aob+YZYkaTTRfCgmtj11naovA8BAQ4mpQqMGd5i2wzhMM7GEHstPr3bQqE45yuAgKMhgOMMCJQSqIZk45WsmdEw6zxgdqY0m3NIrtfWhxCWiRUQBGHq/mzg6zxjy8Cpvo5poHNpm879d8cMCJQRpWVsmjbFWjc2k0yyNCGtUCEPiWHrF7ELWR1QZHuyUj5Z/OdE1qqCJjdFH0nHMJfLTUBpllq2VT2i4wwIlBGGc8vXam8MLStR8mTouDhnxfoNOjy9s2PqM+nyMFZRIV5F5xNEBexxrlPU4Ke/GkQYLlBCEia6pVQROGHNJUt6Zmkd5xXSf9Qobjpqf6VlxaIhxLD3vJ0Ab50OJnkdCXq9EwQIlBGH2lG9kZ56U/VDiiBCq51pe9XLKm14vCNPOOA4NsVYmoka10Fh8KEkZsSUIFighSIVxyteosdkvuN8GW2VpG020pVdCzEOJ6pQPeK5xbQcQNezU9LQ4YpHUpaK1Jb0JtnE+lOgaV1LeryQRWaAQUZqIlhPRn+T/Y4loIRGtk59jHGm/SkTriWgtEV3oOD6HiFbI335C0rZERC1E9Ft5fDERzXCcM19eYx0RzY96HyakQ4QN10yg2GFeIdI2mEgj5BBpa73xWdI0lHqg2nEkp7xPB9w4H0oceTTBA6wzcWgoXwCwxvH/VQAeE0LMBvCY/B9EdCKASwGcBOAiADcQUVqecyOAKwDMln8XyeOXA+gWQswC8EMA18u8xgK4GsCZAOYBuNopuGpFmH0oGrmrY1JmylMMs6zDhQ1HI6iDiF+gVOtDMTsvlg3OYrxnr3I3ak5XHD7ORr9fSSSSQCGiaQDeC+AXjsMXA1ggvy8AcInj+J1CiAEhxAYA6wHMI6LJAEYKIRYJSw+9vewcldfdAM6X2suFABYKIfYJIboBLERJCNUMW6AYvGW1N3mZp21uQpi8Iq/lFVSShDjlDf0acUzAK60dF8FEJD+TsHW2ItLERh8T3nAnqobyIwBfBuBsKpOEEDsAQH5OlMenAtjiSLdVHpsqv5cfd50jhMgDOABgnE9eNUW1n0aavExQL/DX7llR9Yq2cRJppnyCNJSkzUMxFXBRLhOPD0Vfjuaeh8ICpZyqBQoRvQ/AbiHEMtNTPI4Jn+PVnuO+KNEVRLSUiJZ2dXUZFVSHuoCZUz7SpQLLYNqYn9+wrzYFMSEGk4tJPYbxK/nmE2jyivehVptdPbuxOG7ZL+qwmeehJMHk9ftlW7Fi64FGF8MmioZyDoAPENFGAHcCeAcR/RrALmnGgvzcLdNvBXC04/xpALbL49M8jrvOIaIMgFEA9vnkVYEQ4mYhxFwhxNwJEyZUd6d2ZtaHSWNspMkraUsNRRoh1zPKq05hw3FNPA2eiCmM0vlRcsrXRkVplIYSRRgkJSwfAL74u5fw/p890+hi2FQtUIQQXxVCTBNCzIDlbH9cCPFJAPcBUFFX8wHcK7/fB+BSGbk1E5bz/XlpFushorOkf+SysnNUXh+W1xAAHgZwARGNkc74C+SxmqJeqiTMlPcnWRIl2sTGYEo27eqvY51fn7Bh0+tpy2F4WpxzRyJNjvTxOTTjWl626bvx8iRx1GIeynUA3kVE6wC8S/4PIcQqAHcBWA3gIQBXCiHUnqufheXYXw/gNQAPyuO3ABhHROsB/AtkxJgQYh+AawAskX/fkcdqimpIZgKlZqVwlcULp4ZSrWjpHcjj3he3VXm2+9r1W3ql6ssACHYax+1Urr68ZpqHaoPR6l9pKHr6hwro6hnQ/u63fH2j/BBRrmtrbQnQUJJGJo5MhBBPAnhSft8L4HxNumsBXOtxfCmAkz2O9wP4iCavWwHcWm2Zq0E1HyOTV42HL74mrxjyv/q+Vbh72VYcPbYdZxxT84hsLWbL9MdjlqnX0itR96sx1lBi0KhMfHafvm0JFr2+Fxuve6/n737LtzTMhxJhcKDqIgkmr6TBM+VDoBpSEmbK15rdcsR54PBQ5LzqNg8lslPe//e4O7/IS6+Y5h+LD0XPotf3+ubhZ5JsnA8lgtZm5xFPWY4kWKCEQLWfgaHg4U0jo7xcTvkq1ZVc2jpxKMIWrTH0Z4kKG47bxBHdKW9W3jj8BbFwhPhQiqyhaGGBEgLVfnoH8prfSw2skcvXx0EuYzWNwTjmsUQaDYaI8oo8sTHI5BUp+wqqXsvLOH/rM0q57TqJcu++WwA3X5SX7ZtieVIBC5QQqPbTO+gtUJyNtFYOO5N849hYKSt3E4s0MTKGvqiuTvlAk1e8zzT6xEZ/4hhJx6FllpfHlX8TaihhJjgPN1ighEG2pMODBc+f8w5PX80nqBtGeVVLTgqUwUgmL7NoJP88QqStsQkp/v1QqjvPfNl6lb666zivZXJNXRq/1a+bUUMpmRJjKkzEciQJFighUI9P55R3Ro7UbrVh9VnbxpROxbfAZBxhq2bXiUbd9kOJODFOVHzxJhYNJYSWqas/v4mcjeoS4wgbbrQPpdECzQsWKCEImofi1FAaGeWlhEEU4lyptlmivJpmx0ZjJ0q061jnml+zmus0ZZSXXSeN7dFrtStsFFighECNtE00lFq3NfOJjdUJlziWB4nDnxtGu4naOR1pi0OWRtIRrhGikLoOzm/eTcO2AI5gki4K92ejaLSG5AULlBAEOeOcy9rXbE95kzQxXDrqroJO6qWhRCV4Hko8hYk6sVERdHocI+kws+1Ny+OVf72JNlBKismLBUpTo55fXjO8qYfJq7wstSKO/eDjmMFeT5NX0CAg/nko1Z1nWg57JB0pQEQY56HbJ8h/6ZVqyxWNOAJFGq2hsMmryVGPT/cg3U75aNfqG8zjYH/lLPXS2kr6CzhflmojvmLdbTGGl9fkOiaCa+eBfvzdgiXo8ahb5yDAq9OO6/2Nak40rVZVH/Wa2Ki7jp9G1qhRtskmeTqSspZXkjYsU7BACUHQ0itODSVqYzvnusdxyrceiZRHFFK2Uz4Gk1eUc8NEeRkk/dGjr+LRNbvxp5d3+J7vlVdcI8LIuyAanhbPxEaVV3Am1czLaEanfMmH0mCnPJu8jgxMNJSonU93n/8aWn5tyfnyVxvvFce+9PZIOoaX1w8/k0o5/UPWHKKWTGXTd2koHucmZYMt0/PjGEkrLcdkO+HAsGGPBKZFe2DFDsy5ZqGn1h6GMG1FR1LmoTRaoHnBAiUEJR9KsFO+Zmt52eYdnzSa72GIYxOhOMKGw9yBiclrQE7UbMmkK35zPrNa7i4YVVibnlbSUGJwyhvkERTl5S2kzcpx6zMbsLd3EJv29JmdEEAc21IH1evn7liGb923qurrBJHEmfosUEIQtMFWwcDkJYTAc6/tqan9NZ4or/g26Ypm8jJPY5K2JFACNBSPvJIyD0WRtLBhbVrfLYDN8ldLAA1FdBzY/pwIlWLXa0AeD6zYiV8+t7Gqa/z51S5cevMi32uwyavJUc82r1lXpWDglP/jyzvw8f9ejN8u2VJVGUyWM3F2NNWbvBB4nWCCy2qWQ3yojinrIVCcHWI99u6oenFIYVav6ud6OeWDOrgoi0OqybpRVr8OKospcfimgvj8HS/gL6/vQ49mIVqAo7yaHvUi6zWU0nHdy3WgbxAA8PK2A1FLo/8lhnZmO+UDuvTu3kE8u36Pb5r6hQ2bm2UyHqsJuBf39M8/ioZZinqq7nxzk1ccAt38ZO39lJxp2p+CUAIlaPXr5Zu78dKW/YH5JX35ejIIiuEoryZHPVqtD8VxXNfYOlqsTTL7fEYevmUwMQFVlbOblKGd/84lW3DZrc97LiIZhw8llg7Ngd+oLozJK47BYXSTV8DvcfhQQnRaOvOMn+nNVDDbGkqAQPnrG57DxT9/Vvu78l9Fqfp6LF+fMlhLj53yzY58floNJaYRrG8RDBqzex5K1RNRAAQ32sNDBRSKwvNFj6MGwnTcJlWunl2Q0z3I5OVXL/9270rcs3xrYFmqn9holi7O5evDXK+cgmqzXnVqKLAyKaur+t/l20OUSE/SZ8qrt9ZvAMQ+lCbHqaF4CQynU77W6qh/U4re0EwnNqp7zhf0CaNF1ASfq2RmoA2/KLB0U7f1PWC0HGTv9+tMbl+0Cf/825d8y1J+vaoIOD+eeSjmJwcFq0TxoXS0WFF5D66snD8UBrujjkHI1lKgKAuBr0bNPpTmJqjDcQ7Sg5ahMG0K5Y0mjjWVTDBVbJQg8bJtl2b11xa74wx4we5YvMn+HhRx5NXZOw/FUcfVz5Q3Oy9MyK/PxYzRVb/qFD39UoZ5Tx7VBgA4d/YE8wJ5EEewSRzRc+t3H8K9L27T/q7KqVvmCUimhpJpdAGaCefjyxeLSKfccxmco4m4TF4FIZDyiNUyzb9ai5fpTHnlT/IzeUXqz0L4jHS+LcWmvaU5DF7Cx7VatMf5znPiGJ1Wm4XJXCQrXfSOL+g+nRGPWpOXLVC8hLSpcLTSxdWJRgsbtj6jvOPv+uGfIQTwgVOnaMzSJhpK1ZevGayhhMDZfrwetNspH881y69TL6e8MnkF3UfBR6CUyhPFvBB8rqmvIJ0uvbhB5hfhcTtuH0pgsbTEMVsbiCds+JWdB/HC5u7APHQMFZxt3ju1EvRRJovaAiVipZm2az9MBHX6ZqBuAAAgAElEQVSQwFJVcUgTnKMGdEM+pmR2yjc5zs7NazQcZvn6sI7VUhncn955R29opqYBe8KZR8OPI8rLZBSm8vfz4wDuUOGg/c29nfLxaiiRd2w0zN+vKV70o6fxwRueC8xDl4VJm/czeZnWgRqvBD3jIOJcMNMvD9MJmAf7dQIlWEPheShNjktD8WjYBYPl68PuNa9rNL5RXuEu4YkdXhmQm5+GYiL8FMWiwDv+80nc95I7isfkXJOROACkU6Xm7r2asNNk6XGdAA0mLFEFf9D56udCBNtIUBGD6sy6vl6wOc/xG9UHzQEzpTTIiWLyChbUpoLPqx8BmteHwgIlBM7n56mhGCwOGfblrkhuYvKKoZ2ZTr7z86GEKc9QsYjXu3rxxbteLDvX/Ib9Xj4ASFOQycv53d88E2WEG9nsElK7HcpHMTkG/G7Q5lUbiaL1qbyjdqKlwUeEPAyEUtB8GYWuzZqEDXOU1xGEV+N3Pnz95Efr07QplL9ApU2r9MSx2rCtXRg6ZT01FPvc4LvVXcZIu7FH4v7pMml/k1fQasPO3+MYHfp1oLsO9uPmp17zrf/Azl5+Bs0u980jKBTbQCAUfUxeLg3F51IFe9AQrd7jmJtjkodpnWsX1CQ1kdNHoCRPnrBACYPz5fLWUBwvl8HkRxPKG5xJhEks7czQxFDSUPzMFcGXy+s6HRMFxV60M0BDcfhQvO7LvbRK5fkFg87ThJIdX5/mC3cux3cfeAVrd/Vozw+8jtJQDDq3akyrgJlAKT3b6jWUOMx3rnzi8KH4FMXvfXCiE5D23Cr2oRy5CJQ6JU8fisEIthBytFjhlK9TmJepaUDZir06rdJ+HMHX03ZoIbSbQA3FIVC8HcTOPL0Ejvd3Vx4GL7mJyaR/yLqZXo8oINNgB/W7iUDRpQl6hiZbNvgvvVKZzvM68uQoTvmgAYNxPgaOfb9FLJ2h1rp2r5zyfmbcRu8Y6QULlBAIUeqUvB60e6a8TkNReZk1Bp2G4ltOx/dq56GYmgZ856GokZzBvdqRQBXlCDzVePSaDojycs0j8jjfZB6KycjXRNC2Za05TocH/cKxza7jtc5aObqRsqnQAnx8KAV9WzJdH03Va5RRucsHFss8FH0aPyE+aCBQjDQUFijNjYBANm1Vmfc8lNJ33QsatiFXzENRnz7ZmAqr3T39+NPL3msjldR6/7xUJ+4XNmzS8HWT30xupTTpzT+dW6Do89Fd12QeikmHZyJo1fL6XuGnpi1IFcXE/KLbkiFoMGBistINFkzPB0oWgSgCZcg1CbPqbCL7UJzPQ2vyCvgdOMJMXkR0NBE9QURriGgVEX1BHh9LRAuJaJ38HOM456tEtJ6I1hLRhY7jc4hohfztJyQ9UkTUQkS/lccXE9EMxznz5TXWEdH8au8jDEKUHLteD9rZ+QZFvJhS0WgNeljTK3z6tiX4/P8sx4HDlduqqjyChIGfhlIvk1cpj2gaSpD5xdX5Bcy58EOl8EtqlzTCwEH9bOIgrtZx7x71e6cp2O3AfxDmF4ptaygRRuXOd6/m81B8hHjBoJ+wTV4RfZP1JoqGkgfwRSHECQDOAnAlEZ0I4CoAjwkhZgN4TP4P+dulAE4CcBGAG4hIrV1yI4ArAMyWfxfJ45cD6BZCzALwQwDXy7zGArgawJkA5gG42im4aoUAfDUUkwYbNFGsHK1TPob9ULbs65Pp9Z1rkIbi50MpdZwGGoqmXoxcRkoTCiircxfKahzEJjb4cCYvc81NVw4/wjjldR1XoIZiYgb0ifIy8Ts684jiQ3FqYX51eMnPn8UnfvEX7e8mM+Vf3qrfk8VpLg82efnMQzEYvBzsH8LPn1hfN22maoEihNghhHhBfu8BsAbAVAAXA1ggky0AcIn8fjGAO4UQA0KIDQDWA5hHRJMBjBRCLBLWk7q97ByV190Azpfay4UAFgoh9gkhugEsREkI1QwhBLIpvYbinjXsnUfYB1s5U9581B+Uzi8Lk0gkwDGx0Wuugz2S888D0Asuk87TdFmOYsDzcTvl/X8PCpE1KYeJoPXy1Zm2IJXOyIeiFSjWp84XZxJK7btlgKHWoN430/fHq90MGpq8XtyyH8+u36v93STS8t/u1e8l76zroLBhP4uGSfv57v1r8B8Pr8Wja3YFpo2DWHwo0hR1OoDFACYJIXYAltABMFEmmwrAue/tVnlsqvxeftx1jhAiD+AAgHE+eXmV7QoiWkpES7u6uqq7QUlRlGzbXiOHgqvBej/sfEnFMKK84zNRt43NRD4je1P/h7Lxe9v6ZUdi0AnowobDmJCCl7vx77ycxzxNmiH8Bf7lUHno06gOfNDHNxWEPbExgslL3Y8utiMoMs6ZR5Dfyq9Nqzbk18EK14ChMl3eYN0xE0wHWzrc89X8Jzb6aWQm99A3WAAAHJaftSayQCGiTgC/B/B/hRAH/ZJ6HBM+x6s9x31QiJuFEHOFEHMnTIi29HVRCDvKy+v9cz577Ygv5EhLZ/Lycxc425nfVfxWcC1tH+tfzpKG4uVDcV/HJJ+K4wbVpMoY5J8KDgt2vOiePiHv705MTF4mg4JSh1L9CgTq96GC9/49TnQdmzpPt1FbkNbnzNvT5OXUUHzatMrDzwTkfCZebcEtUPTXCkIVwe/5tedKK5GX172zbLp2r0zrA3m9IDBxe2V8LCq1IJJAIaIsLGFyhxDiD/LwLmnGgvzcLY9vBXC04/RpALbL49M8jrvOIaIMgFEA9vnkVVOEKD1orxfQ5ZTXjdYMOz87z4qoJ70QsNOUlTkondc7qooXOLHR9qHoO+goAiXMvI6g6wStBh3UIZnsKW+2mKW3NuaETJyyAZqosz6CnO666wR1WkFanzOPKBMbbR+KT3sI8k0MGYT1m2Cylpdz35bydCbzUFqzVj/T56NZmLxXKogo6oRQU6JEeRGAWwCsEUL8wPHTfQDmy+/zAdzrOH6pjNyaCcv5/rw0i/UQ0Vkyz8vKzlF5fRjA49LP8jCAC4hojHTGXyCP1ZSiEMhlDJ3yAVFA5quslgsU7+PuREZZ23l5CkdDwafO9dxgS36ajKRMtlXWoVIEOWyDOi/3aDuo8/O+hplTXl+GckxXrQ0iyI+iEzjBYcOO79o2LzUUz9/MrmUvge/nUwgI2x8yMEmHwU/r6xkoRU6WtyUTDaUlY2k4UQWKWhDVdOZ+VKJssHUOgE8BWEFEakW/rwG4DsBdRHQ5gM0APgIAQohVRHQXgNWwIsSuFEKo2vosgF8CaAPwoPwDLIH1KyJaD0szuVTmtY+IrgGwRKb7jhBiX4R7McKtoQR0SAH2ZFMNRbeWl6kPxX+JFvWSevymOr1AgSLvx6PBmjgvS2n960vl42V6MXVyO3+uRkMx6fzCOOV9NRT56TfjOqha3WHO/mmrjfIy2QPIfz8U5/PVX8fEhxKkoajVB/zKaoJJezvkWJa+PJ3Jmn9KszjYXxnS75Wv7t0Iu0NsVKoWKEKIZ6D31Z2vOedaANd6HF8K4GSP4/2QAsnjt1sB3Gpa3jgoCoGsUiE9l6+3juXSqUANxVQFrdgC2EBDMfWh+DnebYduwJvnu8FWqGim4A66KIC0R4sz1aZcy4QEmLS8fSj+Gg4Qdh6KPm1p+fLquwJnEwucTxTglNea+AwGUX6LQ77WdajiWp7lM/A9ujWUyvvpGyx18tGWr3d/euHUCMovNWRg8lL1un7XIc/frXOd34Vr8VNFaT5TfUQKz5QPgSVQ9BqKOpZNk89qw8Evhld6ZxmCzjdtOiqdl3BT17n/5R2+eZjMQzHRtk1MXno/i/r0v1AYk5ff8wWizUMJszWv76KbQddBcN0p9CYv92fFNZyDF829+2kof3ihtK+6qQ9Ff50gDaVkPopi8jLRUFyTF6vQUFSa3kHvDbiAysGWF/XWUFighKAo/Cc2FosC6RQhlaLADtJYoFSYvFRZ/DQUMzNCadOiyt+cxXtlpz54z9eHIirLo8PEKW+6rpiOMCYv3fMNKouZyUuVxy+tcspX70Nx+TcCNRT/kXLQRF0geLQdbKLzKZ9B5+l8V7zux7kuWiSXgv389ElcAQBlCU18rep0Ux+K7vmoybx1UlBYoIRC+C8OmS8KpImQTlFgh2Mc5aWZh+Ibjw/3MiPadDKLoNnYfs5u9Zu3DyV4JKcw0VCCOrUgIV0IEAjO3700rnwx2AYfTkPxS6vX/Er5BF3IUS7D4IpybHOV5rwwPpSgqDQ/AevseHVlDVrSRIXgZnzeT901XcdDaijl+TjfFa2pV+btJ1BM3g2loZhu+BUVFighKArhmNjo3YGmUtbOgEFreZmGLVZoKCL4fCGAOdOtlWh8l2hR1/AcjZe+K63MC6PVhg3aclDIqZXG/9zgiCSn5laZ1hkJFbT4ZxQfiokN3q5X34GD+f0Gm7z8BXrQpEXAu00Wi8K4HfgJY/eoXnN+gClpQD7ftmza6P3TRdipU319Pj5zXtymOY1wVALFY/sCr3y1M+7lZ72ivFighKAoBHK+qw0LZFIppH1MXuE1lDKBoq4V0HnaCopPMr85LWHnB/iGDUdxyht0iiZam5VX6bvXgM05icw7yit4LagBg2VOTARgSfOrfmQZZkMw3XVKZkvNNYK0PqcQDxKAfotDxqChqAFDay6trQ8TzdxvbTKv61cT5aXe+14/k5eRD0Xt/MgaSuKwfChqopC3QEkRfAWKiQ/Fb9ViuzMKaB9ksPmvr4biOORn8lIN1W9io1HYcIBz0i8fe8QfJFDk87HO0Y9gAe97NrHjf/CG53zLAMDIBq86zfJ6DbNJlMnq1wpdhxM0b8rP+Vzxe0CbNXZyG7QVr/sZdGgo+ln9wQJFPRuTeTNAZbt0PtOgfuLA4SFXMIErjYkvRkQfmISBBYoBW7v78Ohqa3G1jE+UlxW6l0KKSDsqNwp/9AnF9PN7WL9bx02iO0x9KH6T60qrwPqYvAyUsaBoF105reuYaX1FIYMmKNjk5TfZEzA3WerKAfgLWl30XJjLhlmuXWcSCZoVHiRk3ZP43PfyqVsWAwA65DIlph10tW1FaaBtWb2G4hQiQeub+QvAom3NKC+KSZt2VtWyTd3eaQw0UPVcdSbNuIkysXHY8O4fP40eOVEpm9JrKPmiQEo55QNUWT+B4jdfwhYCWpXd+lT7KZhEd3hqWwaqvxDC34eC4Hv1KwNQ/tJ4n1vS2vyvUxDW5K8Ueec1mC+iPZdG32DB+/nGtRaUgaBVvpPyug9jujAxrdi/B24B7D+SBrzr31mG8g766XV7AACt2TR6Bwu+9VEoFpFJWeH4JgEcXverBgwt2ZS+Ay76DyqAUicd5APLpgmDBa8or6IrnRdFITBhRAu6egbsvscrjUI7gLUtCKyhJAbnA80Ehg1bUSS6AYHRmkQFfUMJcsqro2G2/g02eQXbrP1WxY0SNhxkowccS68EdJpCWL6lFHlH+QxIgQLoo9ZUlF+UiXEmqx3YO2GWdWphJjoWhTDaShbw0VDsdbg05QxYwdfVRjT+pdasmYailj3S1YEresqjzQ7ki2jJSAuCUR7+bdKvDRSK+gAek+XrC0WBo0a2AgB6NLPlnafqiuI34KsFLFBComaj6hyQmVQKqRQFdsIms4K90qn/9BqKdVw540yWsg9yyusijZzl9F5tOHgk51eG8nIEBToERnkVrbBuIu/rWRqKpbTrJjaWnr/vpQAE+3x8fSiacGxnB26yErRtdgnoT7btP+xdDtV56q4R8Hycx3QBC0pQBIUNt2RS9nfPsgRoZAP5InIZK2hG2wE73ltdJ1zyoWiLawnAtLov7/N15QSseu1osQTtYQMfiu7dGGINJdlkU3oN5el1XdjXO4hsOqUd8Zk45Z2NuryTtOdc6MxQ8lM5n00G0tUsQwIER96oX42WXjG4hj4yR5UhoIMVlkkykyLP+hsslDQUz9UDiqWVEozmMWiSCJM2oBlZDrkizfyvX3CM6oMi7XYe6NeUw98BHdSpmWgopXlE+vLli8JeMNGvE/a71mBBaSg+HXAIX01QEIE9CbosnbNv0G8sB3S2WIMb3V4mJhNt1YBk0GsDvBrAPpSQ2MtBe5iidh0cAADk0hQY2miy3an13f1bkA9FnZsOYfPyXOjScV2dcHQ7MD3SqLIaDOf1UUbeZXJiOrFRCCCVIqTgvTTOQL5gCxSve86HFCiFovCcYKou7W/29I7yctb5rh5vIWBfX/iHuTs7JOfquF7X03ZYAQLD+R7oBIqKYgrqoHM+m9upNPa1vExeQ0W0ZNK+QTMDDm3Aq7xCiJIPRSsMhKu8FT6UgoGGUhS2tqyb3Ghm8tKvZFELWEMJid2hlDUE5wOzNJTqTV7OUZJ2HkqAE1t1ZCbjEt0kzbTPqgDlx/1MXiZaki4KxSSSJahOnOenyAr91oWVdshRoW60rcLGjTQ/j0SqswH8zRCq0yqve+f/v/7LZv/rF+ErAJ2dqs7xq8qou99iQCeuikukN3mpEbivQBElk5dJlJdOQymZvLzzGAzo7MP4LUomL+H5u1VmfT+RSRNasym9ycvAHKza0S6NBho3LFBCktbsgOZ8WTJp8t5j3XGeX1x4wcQpH2CfT4dwHnsvlFh6IYKck0B0k5dumfageQ7O/E2WXlFReLqJb21ZvVlFTVx1XtNJ+TMNDHYwCsfWayhB5ItFZDP+86YUA0O6QYP/oMApFL0EhrrH9mxaK1DU5D0/oSVEydeinR/iOO4lrAeGCsil/Z3yznrwekdN9lRReZc0qvI8rN9V1JoXQlj+vvZcJprJS9b/mh1+m+nGBwuUkKgon3LNwTn5KJtOaeduqJGTX9/nPLfCKR9gRlLHUwZreSl0uxO2ZNXmPJrwSadT3ifKy2ymvP8SFKpMXqhiDOSL2klgKl0qRcikvH1cAy4NpbI8BeE0Y1TmX95het23W6vzMXnJdH1lq836CaGK8hbhcMp7CFCXMPCuN1tD0ei6/Y579tIKVEfXlstgsOwaY9qzAIBPnTVdltd/EOa3uR3gfm+0PpSsFTSjk8vOZ+jVRpT5qTWb0keblZVXZ/Jq9VkCRvn72rJpH5NXsEBR99Djs4RLnLBACUlGTowr7yycI5ucj8lLNXST0Smgd8oXhXcHqxpoJoTJy3MNJof9XWtikI2VSGNvhrnJSzX8cjnonu2tOVnADrHctLdPew0hTV4ZjY9rMF9Em48PxdJQ9FF+qg5UWcLOy3Ci6nxf76DncROc2y14CTenVqjTHko+FO9rqLWm2nPeGogqb3suXXG/I9uy+MCpU3DJ6VNlWn8ttSUgwGDIJQy8n6+loegHJ0GTW5X5aWx7DgP5omc+6r3Qraox5LgfvfnOGvy05dI4POQtDNxL63gmcQf4hGg71cICJSS5TFqaTErHnl7Xhbd+7wn7/2w6pR19qpfKzzzjt0hh0Mxk24cS0SmfLwp7foDOPKdGtZ25jOcLbO9TYiBR1D2X7zpnEuVVFALjOnMAKkf05XmpKC/dxLeWjH4tNmfkjldHojrU0XLkrZv8qvDzoaiOfG+5QAlj8pI+A11ZVFvMpEgvUAKivNToeXRb1lPLUeVVAqd8raxsOmULCp3ZTXWcKsorSJMBvAXkQN7SUPwWb3Wt5+a5BL7VvsZ05LTXUXWmM5/mC9YkzUzaZ80/Yc1pUxNtvXA+EpM6ibIHjCksUEJy3vETKibGPbRyp/39inOPtXwomtGWarB+AsU5Kq0Y3QTs9qZePtvkZdCGPKNzCsJ+IXRRXofk6HRUe9Z35BwmyqtQdG+gZLrfhjJV+S33reaRZNMpTyHZM5C3nbY6H0rWZx6KerZ26LGPBgkEOeWt33r6865OLsx8gqGC8J00qAY9I1oz2gis17p6Aei1zMNDBbRmU2jNpQNMXmkIUb6EShHZNNkCRbvUScGtoeiEqrNuvNqs0lAyadLm4bwHr/Ko9jVWChQv/4Zqp0rbLa8X1Q7TpPehFKUPpS2b1vpQTAZbrhDl2ssTFihheN8pkzFldFvFCDbjsNO8ZdZ4rcnrlZ0HsWWfNYGsKPQqqN+2qPlCaYFD71BQd5lMJjaW27ZV3q1ZZfLSOFMH5Oi0PevpVC8tDhlYBK2gdH7XOm1FKWb/kI+teKhQRFauBl3eoby4ZT8A4HdLt1oajMfzc2oofotL+kWKmSw+qM5VPga/AYYfQ4WiLVC8+urBgtQwWzOe2sX2/Ydd1/bSyvoG82jPZZBLpwJNXkCZSalgRRLmAjQU1f4CfSjOMHZPDaWAXCZlddIaX1vQAqHlAqXfSytTAiWbkeVyl8Vuhz4aSqFoLRNkmbxMFof0TGIURBAnLFBC8MajRgCo3O8knSpVY2s2rTV5/evvXnL9r7MFf/uPqz3TFIvCZYryXN21XEMxwGskNlQsdUY6DUVtTzqmPeeZh9/WrxXX02w65Ly01/2qTu6oUZbfYodmxjdgdRCZNCGTTlXM/t/TY80hGswXtSYxFcoJaDQU2SGOarMEgZe2ZOJDUWukTZK+mO2OezLd10K1lbasvhNWneeIliyGCpVrZJWHEns9xr7BAtqyabRkvTWUQlnn6uqwi8rklZa/+YfHlpZe0QSJBMxyt0yaad9O2r2FgYcPRT7TMe16DUVd2xaiZWWx22Eq5bv6QzpFviYv94Zv3vk4y8cCJSG87Q0TAAD/8LbjAFidtfPhqE5Gkc14z3OYNrodgKXFAMGTzQB3CLEyo5VGnfrz0wGLQ7rmD2g6gpIPRSNQpDYwWjooywknULw1lKDQSHWNo0a2gqjSie1OW0QmlUI2RRVRXCqi7acfOx2ZtPeLXhD+PpSXt1lazvjOFgDAIY+5HSpfouAl44+XA5jVO3pc9wCUNDKdf0t1Yr4mL/lcO1utvMrbQfn/Xnn0DViTQVvSKV+B4q2hWMJb1b3Oj1Nyyvuv+RUkUNTSK63ZNPo1nbSzfH5RXraG4qFVqTx09ZovFpFJ+++bVJDzwNqy+rBhp0anG5w6ox7Z5JUQvvvBN+HPXzrPXhiyfOKiczb0aUePlmGp3i/HGyZ12prOHYsrJ6b98eXtAICvvvuNAMqWgpANfLQcAfd6mHcqJjZqGpHz5dX5ULIyIkZv8rKuf9RIqwPdss8dYVXyi3iXwSuturZCJ1zK0+YyKXTkMjg0oPehDBUsH0g6RRWdhXppJ4xokT4Uj86x4G/y+vo9KwEA42Rn42V+U/fTmknrVyCQaaaPtQYgzuesfnvrbGtQouuEbYHi48hWz31kq9Ie3HWnAhzOOnYsAO8OqW+ogPaWDFqyKU/zj69AKQqkHT6UoEizIB+K6uyzae8gAxV00Z5Lo2+o4DkocGouXsJa1YntQ/HQdNS1ldCvNHkJZFPKh6IXoimyNBSdNuUM2dZFrR0eKviayOOGBYoBU0e3Yfq4Dvv/Ea3ujkt1dHOmj0Euk0Iu4z3PoVfam1dsOwAA+ONL212/5wtFfOHOFwEAx07orPDFqO8TRlgduNdovDzEUuf0czbSAc3+6VYkin5dMlUHpx49GgCw59BA2f0oH0pYk5f3SNPrVpyRSh0taRzSLCGi8s2kU55OefVytmbTyKVTnmsfWetJ+XdqgBWkAHgLlEGHOUQ3mVPdc0dLBkTubWDVdZWfRtcJD9n3oxeA6jqdmrxUG1G/e/njDg/m0Z5NY2Rr1nO2vS1As5VmrXxRIJtK2eHpwRqKvw+lbyAPIktj9pqPNCg1FGuDLeHZrp334DUotMOGVZSX13UK/gIlX/DXUIqybK3ZFNpyaW3kovPaXoM2IQQODxXsthJlhWxTWKBUQWdLBoccS0r//oVtAIAFn5kHQL+0R3ffIMa0Z/GB06YAAI4d3+H63RkievLUkVY+jpdMqdcnTRkFAHh564GKa6iOo8X2f3i/pM5G6r0Gk4yI8lk5uatnAB25NMZ1WAKufCRlsrOdXQaNyWuoUMQI+UI8s34PZlx1P9btcpiA5HnZdAodLRk7UMCLIekE9grX7HdMWGv3eImFEOjPF0qmJp/RnlqD6fsPr634TZnBxnbktJGA+/uG7Htqk3uF2OdLgWl3aBq/gxqtj2jVhzCr567SlDvFldZW6pAqr7NkYzfacmmMas/a5XZSbqJTbVgtQZNJE4gsx7zuXpTmo/LQ+Z56Bwtoz6a1o3pl8mrL6RdddAsUvcnL9qFoBBdQqrfy92uoqHx5mhUb5P21ZNJoy6bRP1T01M6dGoouSEQIoEPeL5u8EkpnSwZPrO2yJb4amasG39lihdGWm6T2HhrEuM4WfOLM6Zg6us013ttzaABnfvcx+//WTFpqB6VGc9a/W7+fMX002nNpVzQYYL2k975oaT1qNOe58ZUQeMv1T9j/60xeSkPRdZ47Dx7GpFGttjnD+YI6F9EzmTvhHIU7zXwD+SImSpPabc9sAAAsen1vKa09iSxlCXqfKK98wQpTzXiYvPodu/l1tlbmM1Swlv9QdnG/8F3VDtbtPlTx28tbLT/LuM6cVvP7h18vA2CN6qeMbsNmhylxt1yA9BhpDvOy4QPAvz+4BkApQMCv4+rUmrys/0dKgVN+z8+9Zm2Q9fgru1EoCOw5NIDdB91rRh0etM6ZJJ/hQTkQcy4/AljtVRfldfCw9SwmycALnU/hlmc2oFcGCZSn6R8qWKtJZzN2OLyXMDjYP2TPI/IyR9kCpSMr8/XxobQop7y77vPOaEMvQSHL1ZJJYYR8Noc8tJTegbz9nntpZKUBgf/8nThhgVIFqkNbuHoXbpGdXNbhmJ8+znrZlWkLAA70DWHHgX7bvj5+RItLI7ni9qWua6hoMdUYneak0W05jG7L4sBh94hw8YZ9+Onj6+3zAe+Or3wk6SVQ+gbzaMtltNpWoSiwavtBTHYKFJcKXnI+HxrM+zZmIQTWOBzPrkCEQtGOdlLLR6gOwXl/mTShsyXj6VdS9A8VLcqVAVwAABwISURBVEGdSlV0FodtDSWNzpZMhflGCRw1mi+vs8df2WV/nzN9jP29XDB9895VAIApo9pQKApPs+Wq7da6S+25NMZ15HDQ8Zx3HRxAey5tz8Y/eNjbxPfACmtuVKlzrKz/Hzzyqrwnb5NXn3yeatJoeSftXPL+3pcsLf2GJ19zpVHPY8roNgCldqzyUtpCi4+Gotr5ZClQ/OYaWXlWaiiv7LTa1xsmddoC9KDHxlU9/XmMldqHl8B/bfchTBvTZrdBr458wx5r7s7RUuhXOOXtKC9vDUU9h5asQ6BURNwJLNvUbW+g5mVurDBZsskr2RwayOOaP1khvpe/5Vj7+F/NsJyYakG2QlHg1O88AgDYJUdwY9uz2NdbEhKv7nKPZlsyKWsZfNlhOjuO448agZFt2Yqd3JwCRjVEr1V8N+7tdf3f3efu1IpFge6+IYzryGnnF6zb3YNNe/twwYlH2cLL+aKrDmx8ZwuE0O86B1jBCTsdI9s+x1ITg4Uixne2uHagbHUIFHWdbJrQ4aOh3L5oI1bvOIgRrRm59EqZhjJU8qGMaK0UTGr0PMK2i7vP/95DJfPWhBEt+N6HTgEA7O/zjjp76xssp/rq7fpF+1JyjobTxLO7px+TRrbafrTdPQO60wFY/j/AO+JsrTQdThxhddTlHboyA46TUWu9ZR25CuO94MRJdgSk0pwU6nmcNGUUMinCavlOqM5ctdPp4zrsTr8c1faVEPXSLHbLpfxPnTZKmoncaTbJNj97Uiemjrby2dZdGWLe0z9kz4L30qy37j+MmeM77DboVRY1SFB+1/IBWX++gNastYy+v4aSRmdLVpbL/fy6pGBWZfQSKM+utzTIdjZ5JZvLzp4OwL3N7lipAgPA+M4cOlsy9rpSSzbus38789hxMn0L9h0qdTblHWEqRWhxTMBSDeamT56BCSNaMKI1Y5sCFE5zg4oE83L8lguUR9fsdv3//UfWWhPrOnIY19lS4Wzfc2gAF/3oaQBWVJuXyUt1giqEttvDvg5YHeo3/teKjlLRRs56GcpbM/aV6QZwv6Bq9KdMXr0aB+a/Sc1gr9wArXzU2DuYR2vWMkOUm84O9A3hfhl9N8LA5AWU7Oc6n85pR1tazIY9lWYxhTWocJs9//TyDmza22ubAXd77InivLdZkzpB5B6NF4vCdd60MZbQKTc5qQHCeNnB6oTs1997Aj427xirzFl3l9LdN4gUWe/EuM4cumVn+90HLJOceuanTBuF5Zv3e46iVdnHdbYgRd4mr3nXWubgT5413XPiohpsjW7PYaz0+e0/7Bb2SuueMrpNG92464Al0Ft9NJTfPG9Fb7Yqs3O55jdohVpn0uTpG1FlHdWWLWkoZcEme+U7cs0lJwPw1ra+dPfLAErmOZNFWqPCAqUKvviu40Hk1iqckxuJCMeMbbdHRUoFBoBL/+poAJYZYW/vIB5ZtVNrEx7lMGv12M5c62UY0Zqt2BTJOcpXo6xy7QMANu6xBJ2KzgJKL8bmvX222WJsRxYTR7TYdnvFTQ6zxtFj2+0lJv7wwlb7uOp8VGelG6m/5ydP299vvmwuAHdwwuGhAlqyKddL6RRwKt/RbTkrystjpObspJZs3IfRZQ7k+1/egYdW7rSDCzpbsq58vnHvSnxLTjZty6WtzqZMoJRrccpufduzlkl0+/7DOEv6yGZN7MSMce3oyKXtpU0U6jlMGdWK846f4Jokq4Tc1DFtGN/ZgkyK8PCqXa7z//L6XrzhGw/a/08c0YoRZSa8q/7wst0Bf/09J9gDgvJBTd+QtRSN8l3sKvOP9NhaRtbOo1zo7DzQjwkjWpBJp3DUyFaslVrIg3K5oqNGWe1DDbruWroF5aiB08jWDNpzGV+T1+j2HFpzlT4U9bxHtpY66fIB2V9e34ue/jzOOGY0MulUhfN/zY6D2HmwH0eNtOo0RZXvV99g3tYaMzLsvjwfNXcnl/YOtVZlHd2edZjnKv2xgBXYk06RrwVg1oROALw4ZGIZ1Z7F3OljcKOjYz1+0ghXmhnj220NRX0u+8Y77cUPx3VYkwGv+NUyXH3fSs/rjO3IYdPePhSLwvHyZuzPPT3uxrxD2rRz6RSOk43op4+vx5NrSxrIz59Yjx8/tg4zxrXj3ivPwTffdyKA0qjIubf4+M4WTBjRYqvXirTDXzS2I2fPdXjJEXX21KtdAEqRbLotZhXnzBqHWROtMiuTwTPr9uDA4SEresvRQbzu6ITVCz2mI4uRrVl09w25/BLFosC//u5l+/+bPjkHE0a04NBAHg+t3AkhBK78nxeweV8fxktfQWdLGocG86W9ZxwvYms2jfZcpuIFLx+pzpbt4Q8vbMPq7Qfx0f9aZAv8v33zDBARTpoyyqW9AsAvnn4dAPCli45HSyaNrMPkpTr0L77reCv0uSjw1KtdWLW9VO9/t6Dki7vhE2cAsDp8NYIVQuCupSXB//Ezj7FNM+sdQR7X/Gk1/uvPr6M9l8bRYywzlnOeUU//kC1kO1rSdiRRuUamOmAAmDtjLNbu6nHVp5qTdeLkkQCAdWWm35XbDuCHj76KXCaFTDrlufruR/9rkf193oyxFU75X/1lE36w8FVk05YJUb1D5Z3wJ36xGIDlAxvfkcNrjqCK17sO4d0/tgY/k0a1IpUijO1osTt2wIp6/I5jlQvAGhQ6hc5QoYht+w9jVFtWG5Voa1NtWVszLx+QvbC5G4Dlix3dlq2wAKhlZuafPd1+vnVQUJpboBDRRUS0lojWE9FV9bz2J+UeDoA1Cn+LnGimmDGuA6/v6cULm7uxeV8vjh3fYduiAWueiWLltoPIpAifO+84Vx4XnjQJm/f1YeX2AxU256KwXtYZV92PNTsOyi2I+3HqtFH4y9fOt8NKAbfJ7T9kKOsM2dFPlLb430vtQjXmqaPbMGf6GEwc0YKungHXiHzz3j6059JY8vV3ArDMcxNGtOCMYyyNp1gU+MrvVwAomcTKzWq/WrQRM666HwDw/lOn4I6/O8sOxfz5E1ZgwSdvWWxf73sfPgVj2rOYPKoVrzs0PiXExnbkcN7xEwEAZ1yz0HZ2Lli00b63ay4+CecdPxET5HP4h18vwzPSzgyUzHOdrRkIUTL5KGcwYJmTJoxowZ9f7cLPn1hvd0rlJpapo9vwiTOPQTZNeM9PnsZWh71eOe3/auYYrNp+EB/42TPo7h3Ee378NL4vHeWnTrPqMpsm24T1/AbrOSpzl+Kvf/6c/d2pZcyWAtppHi3fF6OjJYNRbVlMGtmC13aX6lUFmxw1shXjO3Noy6axxXEPH7yhdM2WTBopuUxIuYby9Lo9dr3OGN+B/qEi/iwHGx+bd7RtOrr2r98EoHIt00//cgmAkhmvLZt2dcLLNnXb9UJkDfbGdeaw59CgLbi+KU2qQ/YEyTRasyl8/5FX8ZGbrPtwLvB67IROvP2NE7F4wz57UOEcxEyTfqnxnTmXtvzdB9bgziWWhqXe5YkjWl0a/jfuWYlDA3mcdew4z6jEB1bswD/+ZjkA616UD6zc37N2Zw9SBBw9ph1Hj23Hxj1uTXf19oMYzBdx9nHjoIwnbPLygYjSAH4O4N0ATgTwMSI6sV7Xv/i0qfZ3NTpzojrsD97wHB5YsbNiRPumqaPs76t3HES+KHDchE5XtNhbZ1tLvnzgZ8/aHbR6OeccUzJXvfvHT+PWZzfi2fV7MXVMmy1M7vv8OQCskdNTr3a5nPbXXGzZXt98nOXT+d5Da7FsU7dtW7/nc29Gey5jR+eo4AMhBJZs3Ifzjp9gO4YB4KQpI7F5Xx9ufPI1V4d//gmT8LY3TMCSjfuw62A/+uUMZRWFBADffO8JAEqz+3f3DLhs/OcdPwEfnXs0lv/bBThn1nis2X4QA/kCnli729YSx7TnMG/mWPucV6XD+dn1pRBj9Uyc5f7ULc/b3y84aRKAUiTXvt5BrN5+EL+QnStgCdwNe3qxYU8v/uPhtTjtOwsBWP6ENx41Ai/92wV22rOPG1fhyAZKEU/KGf7y1gNYsGij7bAGrAEJYEV6bdt/GA+t3IlX5O8ny7bz9uOt9jFYKOKjNy3Cn1/twrETrPOmjGq1o4ymjWnHo2t2Ye+hAduHcczYdvz40tPs6xWFNajIF4quTvKysy1tatqYNqzafsBeRFOFRF/+lpl22lFtWfvZb9rbix88Yg1eVNjzcbL+lZBwCoZsOoU508fggRU7UCgKPPHKbhweLFRsw3DchA4s29Rtd/TOwdLyb77Lvt/BQhFdhwYqIiEV6hkv2diNQwN5O1T7rbPHo7Mlg5njO9DTn7fN2t+81xJKYztyOFOuHDBxZKs9UDg8WMA9y61ItzcfNw5fvsha6cKp4e/u6cdvpUnvLbPH46hRrejqGbC1DQD43B0v2N/HtOesIJGWjMsM/PLW/bh/xQ5ceNJRyGUsa4RzCkHvQB5/LQX+m6aNRor0e/jETWVP2DzMA7BeCPE6ABDRnQAuBrDa96wYefRfzsU7f/AUPjxnWsVv733TZHz57pKp5YTJbpPYUaNa8a33n2ibDQDLp7H4a+8s2dFHt7n8KEApwmn+m2fglZ099ohIdfgjWkrO61OmjcYJk0firqVbcdfSrXYH9KO/Oc3ubMZ1tuCts8fj6XV78KEbrUbYnkvbne7Fp03FLc9swIJFm7Bg0SY773OlsFOM62jBnkODuP6hV3D9Q68AAB7/4tuQy6Rw4uSReHDlTtc8G8Vv/v4sTBxZ0gC++b4Tcc2fVuNTv7A6+p9+7HS8/9Qp9u/vOnES7l62FfOufcyefPjOEybZ9fLXp0/FPcu34d0/ftry/ziioM45ztIix3e6R/gA8NgX32abCdWnc48b532r+gIsR+7p33kEh4cKeP+pU+xZ8gBw7PhO17m5dAq//Mxf2WaMoxyaz48eXWd/X/ntC+3FPedMH4Nf/2Wz3eGN72yx54X892VzMevrlr/k+Y378PytVp390ztm4V8uON7Ob2Sb9ZrP+X+P2sd+8NFTMXdGSQB3yXqa9fUH8eWLSudeKIXshBEteO61vbjk58/ao+Z3vHGibTIFLLPVY6/stjVPxX9+9FQAbp8dYC1p5OQdb5yI/3h4LY772gMo50sXWmV6/6lT8C93vYSZX3WnOevYsRgtNVzlt3O2tw+eMRU/+GhJgE4f227f88lXP2wf/48PW2VVZqILf/SU6zpLv/5O+9mkyQpH/uhNizBZRo59+pwZ+IoUJoClZagJuYrjJ43AxBGtuPCko/CjR9fhgzc8h8+edxyeXNvlqgu1zE/vYB63PbsRyzfvx/tPnWK/68oqctzEDvz+ha34yWPrMGtiJx5zWAOmjGrF1NFteM+bjrL9XLWkaTUUAFMBOD14W+WxujFr4ggs/+a78HdvnVnxW0dLBo/887n2///5kVMr0vztOTPxsXlH27/PmtiJsR05ewQLAE9/5e32d2UTByzH/3UfOgVP/Ot59rwXAPjoX7mF25mOUfsTssE650kAVsd0yWmlTvsNk0bYvp62XNrVaSje5+jkAcsvUM5MOSJVO/KV83/OPRZnSw1J8ZG50zCuI4e1u3qQy6Ts0aDizceNw+h2S8gOFQSOndCBX8yfa/9+3YfeZIeuKmHymXNmYsO/v8fuCN4waQQ+fuYxOGmKZbcf0ZqxhQgAnCiPO/nR35yGjde9F8eMa8ftn5lnd3BAKYJNmakUsye5Bcqnzp6ONx9XMo2e/8aJ9oQ/xU2fPMOeNwAA732Tu56njC4JoUw6hT9/6TyXtgsAH5l7tOv/95c9K6C02oLC+YxVCPTyb77LNtOef8Ik+3flZ5tZttLD3597LMq55uKTcIqsl46WDJ75ytsxZ/oYPPLP57ruE7DMRGeVPW8AWPy183Hl22cBcFsGFJe/Zaa9SgUAnDS58vl9R2rkitPKhBsAPP3lt9tC/vRjKn//8aWnuVbxVvf7/MZ99oTiz799liusff7ZM2zfHGCtxPDAF94KADhh8ki7Dm988jV7msG3P3ASbvxk6V1XPqgXt+zHNX9ajbZsGtd98E34G/mc33+K9Xx/sPBVfO6OF/D7F7Zi3oyxWPXtC0FEmDtjLG74xBxMHlXqV2oF1WOySy0goo8AuFAI8Xfy/08BmCeE+MeydFcAuAIAjjnmmDmbNm2qyKuWLHptLw4P5fGON07y/L1YFBh07FtRDUOFIh5/ZbdrVOP8bcFzGzGuM4ebnnwdn3v7cZ4vJWA5QJdt6sYlp011jbSB0vpDagOsTNp7LLJxTy9GtGYwtiNXsfvik2t349E1u5AmwuffMRvjOyvTAJa9/LZnN+DcN0zACR6dw4HDQ3h2/R48s34PLjt7Ot54lDtNd+8gdh7sx7Pr92DyqDa895TJnmUdyBfw8KpduODESRX1P5AvIJdOYcW2AzhqVKttnirnriVb8OPH1uGGT5xRMQIHrOe76PW9uGPxJlz3oVNs7cLJvt5BPL3OEvYfOHVKRZ309A9h094+vLz1AM6ZNc61rlx5Pl09A/YqxU76hwrYsKcXT67twnvedJRnHsWiwNfuWYE7l2zBzZ+agwtOOsr1++6D/XhybRf+++nXccLkkfj2B06yowkVr+7qwaNrduGtsyZgIF/A6ceMcS2eGoQQAi9u2Y+xHTnc9uxGfPKs6XawhvNe9hwawN3LtuLi06ZWCDbACiDoHyqgb7CAEyaPtOfMKA4PFvDUui60ZFLY3TOAM44ZjVkT3fVWKAps338YYzty2Np9GLMndlZsCyGEwMa9fXjq1S5k0oRPnDkdXrzWdQgrtx3AubMnuOrsxS378b/Lt2FMew4XnDQJnS0Z23qgONg/hO8/vBZvmTUeRSEwa2JnRVmXbdqHJRu7sfNAP2aO78Alp091hdpHhYiWCSHmBqZrYoFyNoBvCSEulP9/FQCEEP+uO2fu3Lli6dKlup8ZhmEYD0wFSjObvJYAmE1EM4koB+BSAPc1uEwMwzDDlqZ1ygsh8kT0eQAPA0gDuFUIsarBxWIYhhm2NK1AAQAhxAMAKkNCGIZhmLrTzCYvhmEYJkGwQGEYhmFigQUKwzAMEwssUBiGYZhYYIHCMAzDxELTTmysBiLqAbDWJ8koAAd8fgeAYwBsjphHUJo48gCap6xB5YzrOlzW2lxnuLVXYPiV9XghROUSDOUIIYbNH4ClAb/fbJBHVwx5+KaJI49mKmtQObmsR35ZTcrLZW1oWX37TvXHJi83fzRIsz+GPILSxJEH0DxlDSpnXNfhstbmOsOtvQLDr6xGDDeT11JhsB5NrfOoF81S1mYpJ8BlrSXNVN7hVlbTPIabhnJzQvKoF81S1mYpJ8BlrSXNVN7hVlajPIaVhsIwDMPUjuGmoTAMwzA1YtgLFCK6lYh2E9FKx7FTiWgREa0goj8S0Uh5PEtEC+TxNWoPFvnbk0S0lohelH8TG1zWHBHdJo+/RETnOc6ZI4+vJ6KfkNcuV8kpa03rlYiOJqIn5PNcRURfkMfHEtFCIlonP8c4zvmqrLu1RHSh43hN6zXmstajvYYqLxGNk+kPEdHPyvJKVN0GlDVRbZaI3kVEy2T9LSOidzjyirdeTULBjuQ/AOcCOAPASsexJQDeJr9/BsA18vvHAdwpv7cD2Ahghvz/SQBzE1TWKwHcJr9PBLAMQEr+/zyAswEQgAcBvDvBZa1pvQKYDOAM+X0EgFcBnAjgewCuksevAnC9/H4igJcAtACYCeA1AOl61GvMZa1Hew1b3g4AbwHwDwB+VpZX0urWr6xJa7OnA5giv58MYFut6nXYayhCiKcA7Cs7fDyAp+T3hQA+pJID6CCiDIA2AIMADtajnEDosp4I4DF53m5YoYNziWgygJFCiEXCalG3A7gkiWWNu0xeCCF2CCFekN97AKwBMBXAxQAWyGQLUKqji2ENKgaEEBsArAcwrx71GldZ4yxTnOUVQvQKIZ4B0O/MJ4l1qytrPaiirMuFENvl8VUAWomopRb1OuwFioaVAD4gv38EwNHy+90AegHsgDXz9PtCCGeneZtUcb9ZCzNSyLK+BOBiIsoQ0UwAc+RvUwFsdZy/VR5LYlkVdalXIpoBazS3GMAkIcQOwHqBYWlOgFVXWxynqfqra71GLKuibu3VsLw6kli3QSSpzTr5EIDlQogB1KBeWaB48xkAVxLRMlgq5aA8Pg9AAcAUWCaELxLRsfK3Twgh3gTgrfLvUw0u662wGshSAD8C8ByAPCzVtpx6hfqFLStQp3olok4Avwfwf4UQflqnrv7qVq8xlBWoY3sNUV5tFh7HGl23fiStzar0JwG4HsD/UYc8kkWqVxYoHgghXhFCXCCEmAPgN7Bsz4DlQ3lICDEkTTPPQppmhBDb5GcPgP9BnUwLurIKIfJCiH8WQpwmhLgYwGgA62B13NMcWUwDsL0834SUtS71SkRZWC/mHUKIP8jDu6RJQJlcdsvjW+HWnlT91aVeYypr3dpryPLqSGLdaklgmwURTQNwD4DLhBCqP4u9XlmgeKCiMogoBeAbAG6SP20G8A6y6ABwFoBXpKlmvDwnC+B9sMw7DSsrEbXLMoKI3gUgL4RYLVXhHiI6S6rilwG4N4llrUe9yjq4BcAaIcQPHD/dB2C+/D4fpTq6D8Cl0gY9E8BsAM/Xo17jKmu92msV5fUkoXWryydxbZaIRgO4H8BXhRDPqsQ1qdcoHv0j4Q/WSHkHgCFYEvtyAF+AFTnxKoDrUJoA2gngd7AcW6sBfEmUIj6WAXhZ/vZjyGiaBpZ1BqyVldcAeBTAdEc+c2E18tcA/Eydk7Sy1qNeYUXqCHmNF+XfewCMgxUosE5+jnWc83VZd2vhiIqpdb3GVdY6ttdqyrsRVjDHIdluTkxw3VaUNYltFtbgrdeR9kUAE2tRrzxTnmEYhokFNnkxDMMwscAChWEYhokFFigMwzBMLLBAYRiGYWKBBQrDMAwTCyxQGCYhENE/ENFlIdLPIMdqzgzTaDKNLgDDMNaEOCHETcEpGSa5sEBhmJiQC/U9BGuhvtNhTeC8DMAJAH4Aa2LsHgB/K4TYQURPwlq37BwA9xHRCACHhBDfJ6LTYK0k0A5r0tlnhBDdRDQH1tpnfQCeqd/dMUwwbPJimHg5HsDNQohTYG1tcCWAnwL4sLDWMLsVwLWO9KOFEG8TQvxnWT63A/iKzGcFgKvl8dsA/JMQ4uxa3gTDVANrKAwTL1tEab2kXwP4GqxNjRbKVczTsJakUfy2PAMiGgVL0PxZHloA4Hcex38F4N3x3wLDVAcLFIaJl/K1jHoArPLRKHpD5E0e+TNMYmCTF8PEyzFEpITHxwD8BcAEdYyIsnJfCi1CiAMAuonorfLQpwD8WQixH8ABInqLPP6J+IvPMNXDGgrDxMsaAPOJ6L9grfr6UwAPA/iJNFllYG0itiogn/kAbiKidgCvA/i0PP5pALcSUZ/Ml2ESA682zDAxIaO8/iSEOLnBRWGYhsAmL4ZhGCYWWENhGIZhYoE1FIZhGCYWWKAwDMMwscAChWEYhokFFigMwzBMLLBAYRjm/28UjAKqgNEKZRSMglEwCkYBVQAA+LxNn5ORreoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "sorted_data['inc'].plot()" ] @@ -215,9 +2245,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztvXmUXFd16P3bNfbc6lGzLFmSB1lgGwtZZvAHGGwFHtgkdhAJtpKYp4Rn8kKStxKcxbfM8DlAHsHESezEYMc2JGBjCAjwgLAxYPAkGduarMmSrLlbPY817u+Pe26rulXdXdVdPVT3/q1Vq6tO3XPq3NtVd589nL1FVTEMwzCMXAhM9QQMwzCM4sGEhmEYhpEzJjQMwzCMnDGhYRiGYeSMCQ3DMAwjZ0xoGIZhGDljQsMwDMPIGRMahmEYRs6Y0DAMwzByJjTVEyg09fX1unTp0qmehmEYRlGxbdu206raMNpxM05oLF26lK1bt071NAzDMIoKETmcy3FmnjIMwzByxoSGYRiGkTM5Cw0RCYrIb0Xkx+51rYhsEZF97m9NxrG3ish+EdkjItdktF8mItvde3eKiLj2qIg85NqfF5GlGX02us/YJyIbC3HShmEYxtjIR9P4C2B3xutPA0+q6krgSfcaEVkFbAAuAtYDd4lI0PW5G9gErHSP9a79ZqBNVVcAdwBfdmPVArcBlwNrgdsyhZNhGIYxueQkNERkEfAB4BsZzdcCD7jnDwDXZbR/R1VjqnoQ2A+sFZH5QJWqPqteEY8Hh/Txx3oEuMppIdcAW1S1VVXbgC2cETSGYRjGJJOrpvE14G+AdEbbXFU9AeD+Nrr2hcCRjOOOuraF7vnQ9kF9VDUJdAB1I4w1CBHZJCJbRWRrc3NzjqdkGIZh5MuoQkNE/gfQpKrbchxTsrTpCO1j7XOmQfUeVV2jqmsaGkYNMzYMwzDGSC6axtuBD4nIIeA7wHtE5FvAKWdywv1tcscfBRZn9F8EHHfti7K0D+ojIiGgGmgdYSzDMIqI9t44P3rFfrozgVGFhqreqqqLVHUpnoP7KVX9GLAZ8KOZNgI/dM83AxtcRNQyPIf3C86E1SUi65y/4qYhffyxrnefocATwNUiUuMc4Fe7NsMwiohHth3lz7/9W9p64lM9FWOcjGdH+JeAh0XkZuAN4AYAVd0pIg8Du4AkcIuqplyfTwD3A6XAY+4BcC/wTRHZj6dhbHBjtYrIF4AX3XGfV9XWcczZMIwp4HS3Jyx6Eyks/LG4yUtoqOrTwNPueQtw1TDH3Q7cnqV9K7A6S3s/Tuhkee8+4L585mkYxvSitScGQH8iNcqRxnTHdoQbhjHhtPYkABMaMwETGoZhTDhtvZ55qj+RHuVIY7pjQsMwjAnHd4DHTNMoekxoGIYx4bQ4odGfNKFR7JjQMAxjQkmm0nT0+T4NM08VOyY0DMOYUNqdwABzhM8ETGgYhjGhZG7oM02j+DGhYRjGhNIySGiYplHsmNAwDGNCGaRpmCO86DGhYRjGhNLaa+apmYQJDcMwJhRf0wgGxPZpzADGk7DQMAxjVFp64lREQwQDYj6NGYAJDcMwJpS2njg15WHiybSZp2YAZp4yDGNCae1NUFsWoSQcNEf4DMCEhmEYE4qnaUQoCQXNPDUDMKFhGMaE0toTp7Y8Qkk4YOapGcCoQkNESkTkBRF5RUR2isjnXPtnReSYiLzsHu/P6HOriOwXkT0ick1G+2Uist29d6cr+4orDfuQa39eRJZm9NkoIvvcYyOGYRQVbb1x5pRGiIZN05gJ5OIIjwHvUdVuEQkDz4iIX6b1DlX9SubBIrIKr1zrRcAC4Gcicp4r+Xo3sAl4DngUWI9X8vVmoE1VV4jIBuDLwEdEpBa4DVgDKLBNRDaratv4TtswjMkilkxTGglQEg4OJC40ipdRNQ316HYvw+6hI3S5FviOqsZU9SCwH1grIvOBKlV9VlUVeBC4LqPPA+75I8BVTgu5Btiiqq1OUGzBEzSGYRQBqbSSSiuRYJBoKGD7NGYAOfk0RCQoIi8DTXg38efdW58UkVdF5D4R8evFLwSOZHQ/6toWuudD2wf1UdUk0AHUjTDW0PltEpGtIrK1ubk5l1MyDGMSiCc9H0Yk5GkaZp4qfnISGqqaUtVLgEV4WsNqPFPTcuAS4ATwj+5wyTbECO1j7ZM5v3tUdY2qrmloaBjxXAzDmDwGCY2QOcJnAnlFT6lqO/A0sF5VTzlhkga+Dqx1hx0FFmd0WwQcd+2LsrQP6iMiIaAaaB1hLMMwioBYytMsIkGhJBwkZvs0ip5coqcaRGSOe14KvBd4zfkofD4M7HDPNwMbXETUMmAl8IKqngC6RGSd81fcBPwwo48fGXU98JTzezwBXC0iNc78dbVrMwyjCEikPMOAZ54yTWMmkEv01HzgAREJ4gmZh1X1xyLyTRG5BM9cdAj4UwBV3SkiDwO7gCRwi4ucAvgEcD9Qihc15Udh3Qt8U0T242kYG9xYrSLyBeBFd9znVbV1HOdrGMYkcpZPI5lCVXHR9kYRMqrQUNVXgUuztN84Qp/bgduztG8FVmdp7wduGGas+4D7RpunYRjTjwGhEQxSEg6iCvFUmmgoOMUzM8aK7Qg3DGPCyNQ0oiHvdmMmquLGhIZhGBNG3DnCw84RDthejSLHhIZhGBNGPJnpCPeEhmkaxY0JDcMwJox4yhMQURc9BVYnvNgxoWEYxoQxyBEe8jUNExrFjAkNwzAmjKEht2DmqWLHhIZhGBOG7wiPZJqnTNMoakxoGIYxYSScIzwzesqERnFjQsMwjAkjlso0T/mOcDNPFTO5pBExDMMYE75PIxoMEg15z03TKG5M0zAMY8LI5gi3zX3FjWkahmFMGIlM81Ta0ojMBEzTMAxjwogn0wQEggFzhM8UTGgYhjFhxFNpIi5RYSggBMR2hBc7JjQMw5gw4sk0kaB3mxERVyfczFPFjAkNwzAmjFgyTSSjdoYnNEzTKGZyKfdaIiIviMgrIrJTRD7n2mtFZIuI7HN/azL63Coi+0Vkj4hck9F+mYhsd+/d6cq+4krDPuTanxeRpRl9NrrP2CciGzEMo2hIpNIDdTTAS1zoO8eN4iQXTSMGvEdVLwYuAdaLyDrg08CTqroSeNK9RkRW4ZVrvQhYD9zlSsUC3A1swqsbvtK9D3Az0KaqK4A7gC+7sWqB24DLgbXAbZnCyTCM6U08mSYcPFPaNRwMDNQNN4qTUYWGenS7l2H3UOBa4AHX/gBwnXt+LfAdVY2p6kFgP7BWROYDVar6rKoq8OCQPv5YjwBXOS3kGmCLqraqahuwhTOCxjCMaU48ecYRDhAKykC6dKM4ycmnISJBEXkZaMK7iT8PzFXVEwDub6M7fCFwJKP7Ude20D0f2j6oj6omgQ6gboSxDKNgJFJp/u6/t3OsvW+qpzLjyIyeAogEAyQsjUhRk5PQUNWUql4CLMLTGlaPcLhkadMR2sfa58wHimwSka0isrW5uXmEqRnG2Rw63cN/Pf8Gz+yz706hyYyeAs88lUybeaqYySt6SlXbgafxTESnnMkJ97fJHXYUWJzRbRFw3LUvytI+qI+IhIBqoHWEsYbO6x5VXaOqaxoaGvI5JcOgN+5F8/TELKqn0AzVNMJBMUd4kZNL9FSDiMxxz0uB9wKvAZsBP5ppI/BD93wzsMFFRC3Dc3i/4ExYXSKyzvkrbhrSxx/reuAp5/d4ArhaRGqcA/xq12YYBcMXGr3x5BTPZObhOcIHaxpxM08VNbnknpoPPOAioALAw6r6YxF5FnhYRG4G3gBuAFDVnSLyMLALSAK3qKq/hPsEcD9QCjzmHgD3At8Ukf14GsYGN1ariHwBeNEd93lVbR3PCRvGUPoSnrDoNk2j4MSTg0Nuw8GACeciZ1ShoaqvApdmaW8Brhqmz+3A7VnatwJn+UNUtR8ndLK8dx9w32jzNIyxYprGxJHdPGU+jWLGdoQbs57emPk0JopsjnDzaRQ3JjSMWY+vYZimUXgSQzUN2xFe9JjQMGY9vS4XUnfMhEahGbq5L2I7woseExrGrKdvwKdh5qlCMzR6KhSwkNtix4SGMes5s0/DNI1CEzPz1IzDhIYx6+k1TWNCUFUvy23QzFMzCRMaxqzHd4CbplFYkmlFFdsRPsMwoWHMegbMUxY9VVD8nd+RkIXcziRMaBizHt8R3p9Ik7JkegXDFxqDHOHOPOVlCTKKERMaxqwnc3+G7dUoHH7djMEht17iavNrFC8mNGYosWSK//PdV9h1vHOqpzLtyXSA267wwjFgnhqyIxwgmTYTVbFiQmOG8oPfHuORbUf5rxcOT/VUpj298RTBgLcCNr9G4cimafhCI5E0TaNYMaExA0mnla//6iAAT+9pNvvxKPTGU9SWR7znpmkUDF/TiA7ZpwFYydcixoTGDOTne5rY39TN5ctqOdrWx8HTPVM9pWlNXzxJQ0UUME2jkGRzhIcDvk/DhEaxYkJjhpFMpfnKT/eycE4pX/q9NwPwi71WxnQ4VJXeRIqGSic0bK9GwRjRPGVCo2gxoTHD+OZzh9l9opPPfOBCltWXc259uQmNEYgl06hC/YCmYeapQpHI5ggP+ULDTKbFSi7lXheLyM9FZLeI7BSRv3DtnxWRYyLysnu8P6PPrSKyX0T2iMg1Ge2Xich2996druwrrjTsQ679eRFZmtFno4jsc4+NGMPS1Z/gqz/dy5XnNbB+9TwArlhex7ZDbVM8s+mLHzlVX+n7NEzTKBSxEUNuTdMoVnIp95oE/lpVXxKRSmCbiGxx792hql/JPFhEVuGVa70IWAD8TETOcyVf7wY2Ac8BjwLr8Uq+3gy0qeoKEdkAfBn4iIjUArcBawB1n71ZVe0umIXXm3voiiX52OVLcPKYuoooXbEk6bQScPZk4wy+OarBNI2CM9yOcDChUcyMqmmo6glVfck97wJ2AwtH6HIt8B1VjanqQWA/sFZE5gNVqvqseuE8DwLXZfR5wD1/BLjKaSHXAFtUtdUJii14gsbIQlNXDIC5VSUDbeWRIHCmZoQxmD53XcynUXiyRU+FTGgUPXn5NJzZ6FLgedf0SRF5VUTuE5Ea17YQOJLR7ahrW+ieD20f1EdVk0AHUDfCWEYWmrr6gSFCI+opk2Z2yY5vnqosCRENBSx6qoBkjZ5y5qm47dMoWnIWGiJSAXwP+JSqduKZmpYDlwAngH/0D83SXUdoH2ufzLltEpGtIrK1uXn2On2bOmOIQH1FZKCtPOppGlaVLjt+2pDScIjyaMj2aRSQRFafhu0IL3ZyEhoiEsYTGP+pqt8HUNVTqppS1TTwdWCtO/wosDij+yLguGtflKV9UB8RCQHVQOsIYw1CVe9R1TWquqahoSGXU5qRNHXFqCuPDJgAAMojTtMwW31W/GSF5dEgZZGgaRoFZCDkNksaETNPFS+5RE8JcC+wW1W/mtE+P+OwDwM73PPNwAYXEbUMWAm8oKongC4RWefGvAn4YUYfPzLqeuAp5/d4ArhaRGqc+etq12Zkoamzn4bKkkFtvnnKbPXZ8R3fZZEg5ZGQXacCMpIj3MxTxUsu0VNvB24EtovIy67t74CPisgleOaiQ8CfAqjqThF5GNiFF3l1i4ucAvgEcD9Qihc19Zhrvxf4pojsx9MwNrixWkXkC8CL7rjPq2rr2E515tPUFaPROXR9BoSGraCz0uebpyIhyqNB08gKSCyr0LCQ22JnVKGhqs+Q3bfw6Ah9bgduz9K+FVidpb0fuGGYse4D7httnobnCL9gXuWgNj96yrK3ZscXEmXhIOVR0zQKyYAjPGDmqZmE7QifIaTSyunuOI1Vw2gadjPMii80SiOeT8M0jcIRS6aJhAKD9gf5O8KTtiO8aDGhMUNo7YmTSiuNQ30aEd88ZTfDbPS5tOjRUIDySMiizApILJmiJDT4FjMQcmuaRtFiQmOG4O/RGOrTKHMht7ZPIzu98RRl4SAiQlVpmI6+xFRPacbQn0gTDQcHtfmmKjNPFS8mNGYI/m7wxqrBmkY4GCASCtBtjvCs9MaTlDq/T215hK7+5IAt3hgfsWRq0G5wyExYaNe4WDGhMUNo7nRCY4imAZ4z3DatZac3nqIsQ2gAtPXGp3JKM4ZYMk3JUE3DaoQXPSY0Zgi+eaohm9CwqKBh6U+kBm5sdU5otHSb0CgEsUQWTcPMU0WPCY0ZQlNXjOrS8FkrO/Cc4bZPIzux5Bm7u69ptPaY0CgEsWT6LKERCAihgJjQKGJMaMwQmrtiWbUMwDatjUA848ZW53J2tfTEpnJKM4ZYIk00dPYiJhQUM08VMSY0Zggt3fEB88pQyqMWSjocmc7amjLTNApJfzJFSfjsW0w4GLBggyLGhMYMoaUnNlCydCjlEcveOhyZJpQ5ZRFEoM2ERkEYTtOIBANmnipiTGjMEFp64gM2+aGURYOmaQyDJzS8G1swINSURWgxoVEQYskU0WE0DdsRXryY0JgBJFNp2nsTwwqN8khooG6EMZihewlqyyNmnioQ/Yk0JVk0jXDIHOHFjAmNGUBbr7eLua5ieJ+GJSzMTiyRHrQari03TaNQDKtpBAKWRqSIMaExA/BXxsNrGkHiqbQ5H7MQTw22u9eZplEwsoXcgmeeMk2jeDGhMQPwQ0TryocLufWSFvZZ2O1ZxBLpQfUeakxoFIxMf1Em4ZCYT6OIMaExA/B3MA9vnnJ1ws2vMQhVPcunUVceoa3XyxhsjJ1EKk0qrcOH3JqmkRcHT/dMm6i+XMq9LhaRn4vIbhHZKSJ/4dprRWSLiOxzf2sy+twqIvtFZI+IXJPRfpmIbHfv3enKvuJKwz7k2p8XkaUZfTa6z9gnIhsxzmJU85TTNCzT7WCSaSWtnOUIV8Wy3Y4Tv2pfVk3DzFN5oap85N+f5f/+dM9UTwXITdNIAn+tqhcC64BbRGQV8GngSVVdCTzpXuPe2wBcBKwH7hIR/5tzN7AJr274Svc+wM1Am6quAO4AvuzGqgVuAy4H1gK3ZQonw6OlJ47Imc1pQ/FraljY7WCy3djOpBKxXeHjIZbwTKHZQ25tR3g+tPTEaeqKcaCpe6qnAuQgNFT1hKq+5J53AbuBhcC1wAPusAeA69zza4HvqGpMVQ8C+4G1IjIfqFLVZ1VVgQeH9PHHegS4ymkh1wBbVLVVVduALZwRNIajtSfGnNIwwUC2qrwZmob5NAbhBwZk3th8v5AlLRwf/e7aZg25NU0jL/Y7YXGktXeKZ+KRl0/DmY0uBZ4H5qrqCfAEC9DoDlsIHMnodtS1LXTPh7YP6qOqSaADqBthLCOD1p44dcPsBgcGUn9bptvBxJKeEI0EB5unwFKJjJeRNY2AaRp5sM8JjROd/QPf2akkZ6EhIhXA94BPqWrnSIdmadMR2sfaJ3Num0Rkq4hsbW5uHmFqM5PT3cPvBgeo8OuEmyN8ELFEFk3DBROcNqExLs6Y/s6+xVgakfzYf6oLAFU41tY3xbPJUWiISBhPYPynqn7fNZ9yJifc3ybXfhRYnNF9EXDctS/K0j6oj4iEgGqgdYSxBqGq96jqGlVd09DQkMspzShae4ZPVghnSr7aBr/BZPNpNFREiYYCHD7dM1XTmhH0+5pGVvOU7QjPh/3N3QPa8BvTwESVS/SUAPcCu1X1qxlvbQb8aKaNwA8z2je4iKhleA7vF5wJq0tE1rkxbxrSxx/reuAp5/d4ArhaRGqcA/xq12Zk0DpC3ik44wg389RgfFU/czUcCAjL6st53YTGuIhl8Rf5hIIBErbRNGf2nerm8nNrgenh18hF03g7cCPwHhF52T3eD3wJeJ+I7APe516jqjuBh4FdwOPALarqL3E/AXwDzzl+AHjMtd8L1InIfuCvcJFYqtoKfAF40T0+79oMRyqttPWOrGmUuiJD/Qn7oWYyXFjo8oYKXm+eHpEqxcpoIbdx82nkREdfgqauGFcsryMaCnBkGpinQqMdoKrPkN23AHDVMH1uB27P0r4VWJ2lvR+4YZix7gPuG22es5X23jiqjOgIDwSEcFCmhRNtOuFHT0WG2N2XN5Tz2I4TbuPf2Tc9Y3QGHOFZfRpCMm0LmFzwI6fOa6xkcW0Zb7QUh6ZhTGNaRtnY5xMNBQdWf4ZHNvMUwLkNFaSVafEDLVYGQm6zlB8Om3kqZ/y9GSsaK1hSW1YcPg1jetPpdi5Xl4ZHPC4aCpimMYRs0VPgmacADpiJasyMpGmEQxZymyttvd6isLEqyuKaUo609uK5e6cOExpFTo/bsOfnlxqOaMhKbA5lOLv7soZyAA40mzN8rIzkCA8HhHgqPeU3v2KgJ55CxNskubi2jK5YkvbeqU1xY0KjyPEjovxd38MRCQXMPDWE4cxTFdEQ86pKTNMYByOH3HrXO2lJIUelN5akLBwkEBDmV5cC0NQ1tSluTGgUOX4+KT+sdjiioeCAOcbwGM4RDrC8sZzXTdMYM7EBn0Z28xRg6dFzoCeeotT9tmvKPBP0VGcrMKFR5PiaRsUomkY0bD6NoYy0a3llYyW7T3Ty0httkz2tGYF/bTNTtPj4moalRx+d3nhywPRc44Jd2ntNaBjjwBcaZTn4NMw8NZiR9hJsuvJc5leX8LFvPM8rR9one2pFTyzh1Slx1Q8GEQl6bbYrfHR6YinKnKYxkBfNhIYxHnriKcJBGXU/QTQUNEf4EGIJz8kYDp59Y1swp5SH/+wKVOG/f3tsCmZX3AxX6hW8HeFgQiMXeuNJyl3C0TnOPGWOcGNc9MSSozrBwRzh2Ygl00SC2VfDAI2VJZw3r5K9LmGckTuxZCrrHg3IME/Z93FUeuMpytzvOxoKUh4Jmk/DGB/dseSoTnCwfRrZGGk17HP+3AoTGmOgP5HOGm4LZ5zjtogZnUxNA2BOWWTKy76a0ChyPE1j9FQX5tM4m1gyTXSY1bDPeXMrOd0d53S3VfLLh5FSsPiFmfywXGN4Mn0a4Pk12synYYyH3ngqJ/OUhdyejXdjG0XTmFcJwN6Tpm3kQyyRzhpuC1DqVs59VklyVDKjp8CLoGo1n4YxHrpjyVHDbcH3adiPNJOczFNOaOwxE1VeeNd2GE3DCZN+03xHpSc+WNOoKQtbyK0xPnry8GmY43EwsUSayChRZw0VUWrKwubXyJP+xPBaXNTMUzmRSKWJJ9ODfBo1ZRFzhBvjoyeWGnWPBvib+0xoZJKLeUpEOG9uJXvMPJUXI2lxJWETGrnQ68x3ZdFMTSNCV39ySsOVTWgUObmap6KhIMm0krTY+AHiOZinwDNR7T3VbQn28mCkkFvfp2FCY2R6427jboamUVs+9Xs1cin3ep+INInIjoy2z4rIsSGV/Pz3bhWR/SKyR0SuyWi/TES2u/fudCVfcWVhH3Ltz4vI0ow+G0Vkn3v45WCNDDxHWW7mKbDUDZnkEj0FsLKxgu5YkhMd/ZMwq5lBf2IETcO1WyXJkemJOU0jMtgRDkxpBFUumsb9wPos7Xeo6iXu8SiAiKwCNgAXuT53iYh/xncDm/Bqhq/MGPNmoE1VVwB3AF92Y9UCtwGXA2uB21ydcMMRS6ZIpDRnRzhgEVQZ5OIIB1jR6DnD/SpqxuiMGHJr5qmc8DWN8shg8xQwpXs1Rv3FqOovgVzrcl8LfEdVY6p6EK8W+FoRmQ9Uqeqz6un4DwLXZfR5wD1/BLjKaSHXAFtUtVVV24AtZBdes5ZsK5Hh8H/ApmmcIZZMZc1wO5QVjV5RJhMauRNLDh9yW2I163PijE9jsCMcpr+mMRyfFJFXnfnK1wAWAkcyjjnq2ha650PbB/VR1STQAdSNMJbhyLWWBpwxT5mmcYbYCCaUTOorIlSXhtlv9TVypj+RGtb0FwwIkWCAPtM0RiSrpuF8Gm3T2acxDHcDy4FLgBPAP7r2bEl8dIT2sfYZhIhsEpGtIrK1ubl5pHnPKHriuaVFhzMV1GyvxhniqeH3EmQiIqxorDBNI0dUdVTTXzQcMPPUKPiWhPIsmsZUht2OSWio6ilVTalqGvg6ns8BPG1gccahi4Djrn1RlvZBfUQkBFTjmcOGGyvbfO5R1TWquqahoWEsp1SU5KdpeF88C7s9Q2yEvQRDWdFQwQETGjnhlXLNXqfEpyQctAXMKJyJnjrz+y4JBymLBKe3TyMbzkfh82HAj6zaDGxwEVHL8BzeL6jqCaBLRNY5f8VNwA8z+viRUdcDTzm/xxPA1SJS48xfV7s2w9Htr0Ry8GkMOMLthzqAFz2Vo9BorKClJz7lyeKKAT89SOkIm05LwgHzaYzCgKYx5DrWlEWmtKbGqEtUEfk28C6gXkSO4kU0vUtELsEzFx0C/hRAVXeKyMPALiAJ3KKq/l3qE3iRWKXAY+4BcC/wTRHZj6dhbHBjtYrIF4AX3XGfV9VcHfKzgjH5NEzTADJMKFkqy2XDd4Y/+3oLZZEg7zq/cSKnV9QMOHBHWMyUhoOWe2oUfE2jdMh1rKuY2l3ho95tVPWjWZrvHeH424Hbs7RvBVZnae8HbhhmrPuA+0ab42wl11KvYEJjKH4UWS77NOCM0Ljlv15CFX76l1dy3tzKCZtfMZOL0CgJB+k3rXdEeuIpIsHAWRF+9RVRTnVO3Z4h2xFexIzJp2EmAWDk+uDZWDinlPqKCMvqyhGBR7efmMjpFTUD5qkRBHJJKGiO8FHojSWzpghqqIhOaap+ExpFTE8OKzof82kMJp6n0AgEhCc+dSWPfeqdvHVprQmNEcjmwB1KSSRoPo1R6ImnsiYjra+McLo7Tjo9NWltTGgUMd2xJKGA5HTjM/PUYM5oGrmZpwDqKqJEQ0Hev3oee091s7/Jkhhmw99/MdQWn0lJyEJuR6M3nsx6DRsqoqTSSnvf1OzVMKFRxPj1wYercZ2JHyVk6dE9Yu6GlcuO8KGsX+0FDz62/WRB5zRT6MvVp2FCY0R6YqmskZH1lVEAmrumxkRlQqOI6YmlcnKCg+3TGEq+Po1M5lWXcG5DOTuPdxZ6WjOC3BzhFnI7Gn1DCjD5NFSY0DDGSE8smZM/AzLNU7a6gzPJ8oZL3z0aS2rLONLWW8gpzRh6czBPlVr01Kj0DCn16uNrGlMJyt6TAAAgAElEQVTlDDehUcT05JgWHSAStNxTmeSyGh6JJbVlvNFqQiMbfbk4wm2fxqj0DqdpmHnKGCud/UkqS3ITGgGXJM7MUx75hCtnY3FNGV39STqmMHHcdKU3h5DbaDhILJm2wlYj4Pksz76GldEQ0VDANA0jf7r6ElSVhnM+3uqEn2G8msbi2jIA0zay0Bf3Us4HA8MHaJSELZpvNHpiSUrDZy9qRIT6iqhpGkb+dPYnqcpR0wC/TriZBOBMhuAxaxq1pQDm18iCZ1YZWRiXWiGmEUmm0vTEU1QPsyhsqIzSbJqGkS+d/QmqSvLRNIK2snP05lHAKhumaQxPbzxF2SgBBn4AgtXUyE5nv7eomVOW/fdtmoaRN/2JFPFkOmefBnh7EkxoeJwxT41N06gqCTOnLMwRExpn0ZfIviktE988ZWG32Wl3WWxH0jTMp2HkRZdbieTr04jZyg7wdttGR7G7j4ZFUGVnuP0FmZSEzDw1Ev5u7+phNI0Gl+k2NQWpRExoFCld/d6XKj/zlGkaPvmEKw/H4poyjrb1FWhGM4feeGp0TSNiQmMk/Ki8OSNoGmmFlp7J1zZMaBQpvs0zH/NUNBS06ClHb2x0Z+1oLK4t42hb75Ss9qYzfYnRr62vaZhPIzsdTtOY48q7DmVuVQkAr52Y/PxnJjSKlAFNIw/zlOfTsB8pOE1jjP4MnyW1ZSRSyokO0zYyySV6aiDk1nwaWRnNp3HleQ3Mqyrhaz/bO+l7XUYVGiJyn4g0iciOjLZaEdkiIvvc35qM924Vkf0iskdErslov0xEtrv37nRlX3GlYR9y7c+LyNKMPhvdZ+wTEb8krAF09o1F0zDzlE9vPJW1VkE+XDDfK8JkOagG0xdPZd1fkEmJhdyOiO/TGC6kviQc5FPvXclLb7SzZdepyZxaTprG/cD6IW2fBp5U1ZXAk+41IrIKr1zrRa7PXSLi/zLvBjbh1Q1fmTHmzUCbqq4A7gC+7MaqxSstezmwFrgtUzjNdsbk0wib0PDpiY1f01g1v4pgQNh+tKNAs5oZ9MZHz4k2sE/DNN+stPcmqCwJERqhHPH1ly1ieUM5t35/O7smceEyqtBQ1V/i1e7O5FrgAff8AeC6jPbvqGpMVQ8C+4G1IjIfqFLVZ9XTpR4c0scf6xHgKqeFXANsUdVWVW0DtnC28Jq1dDqhka9Pw8xTHrmYUEajJBzkvLmVvHrMhEYmuZmnnE8jbouYbHT2JYbdo+ETCgb4+k1riIQCfPTrz9HUNTklYMfq05irqicA3N9G174QOJJx3FHXttA9H9o+qI+qJoEOoG6EsQy8kNuAkNdq2dKInKE3nhp39BTAmxdWs+NYh+VQcqTSSiyZHjV78Jl9GraIyUZ7X2JYf0Ym5zZU8H+vv5iOvgR7Tk6OU7zQjvBsQe86QvtY+wz+UJFNIrJVRLY2NzfnNNFip7MvQUU0RCCPfQa2ue8Mw1VFy5fVi6pp7YlzrN2c4XAmGipXTcPMU9lp740zpzR75NRQfOEyWUEFYxUap5zJCfe3ybUfBRZnHLcIOO7aF2VpH9RHREJANZ45bLixzkJV71HVNaq6pqGhYYynVFx09SfzipwCf3OfCQ0Yvipavrx5YTWA+TUcZ+qDj3xto6EAIrYjfDja+xLDbuwbil+Vc7IE8FiFxmbAj2baCPwwo32Di4hahufwfsGZsLpEZJ3zV9w0pI8/1vXAU87v8QRwtYjUOAf41a7NIP+8U3DGpzHbTSmptLq9BOM3T10wv5JwUMyv4eh3PorSUa6tiFfb3sxT2enoTQy7sW8o/p6XyVoQjvqrEZFvA+8C6kXkKF5E05eAh0XkZuAN4AYAVd0pIg8Du4AkcIuq+t+KT+BFYpUCj7kHwL3AN0VkP56GscGN1SoiXwBedMd9XlWHOuRnLfnU0vApiwZJKwW7YRYrvgklW62CfImGgixvqGDfqe5xjzUT6E3kpmmA1QkfDlWlIwdHuM9kaxqj3jlU9aPDvHXVMMffDtyepX0rsDpLez9O6GR57z7gvtHmOBvp7EsMZFrNlXpXW/h0V5wldbNXaPTGRq8slw/zqks41Tk5kSvTnYECTDkIjVITGlnpiadIpjUnRzhMvqZhO8KLlK4xaBoDBemnKDvmdMG/sRVC0wCYX13CiQ4TGsBACdfRUqODK/lqPo2z8HeD5+oILxafhjHFjMWnMaBpzHKh0ZNDDet8mFtVQktPzMKZyS/lfFVJiM4+K5c7lPbekTPcDiUamtyULCY0ipB0WumO5Ve1D6C+0lu5tHTHJ2JaRcN4S70OZX51CapM2uaq6YwfPZWLeaq23EvvbQzGF6S5OsJFhEgoYJqGMTzd8SSq+SUrBKgrN00DvBQiUFhNA+CkmajOmKdyEBo1JjSyMlotjWyUTGI4vQmNIsRfieTr04iEAlSXhme90Ci8T8OrF37SnOF5aXG1ZRHaek1oDKV9oJZGbj4NgGh48lIEmdAoQgaq9uXp0wCor4jMeqHhaxrjTVjoM880jQH8cObR0oiAp2n0xlMWQTWE9r6R06JnoyRsmoYxAmc0jbEIjSinu2b36q7QPo2q0hCl4aAJDTyfRkDOOGdHorbcW0mbiWowJzv6qSoJ5ZXmJhoKmk/DGB5fpa8pH4PQmMKC9NOFM+apwmgaIsK86hJOmHmKjr4EVaVhXLmcETGhkZ2jbX0srMlvD5ZpGsaInHbRT34IbT7Ul0dsn0Yeq+FcmVdVwinTNDjW1scC5+MZDV9omF9jMMfa+lhUk9s19DFNwxgRf2VWM0z94JGor4jS1Z+c1XZkL1lhKKfVcK7Msw1+ABxr72Nhjjc8//trmsYZVNW7hnPyExqmaRgj0tIdo6okRGQMK+X6Sk87aZnFP9RCpUXPZG5VCU1d/aTTszcZpKpyrC33G96ApjGLv4tD6ehL0B1LmqZhFJbTPfExmaYgM//U7DVR9RSoAFMm86tLSKR0Vgvjzr4kPfFUzje86tIwIqZpZHK0zavLkq/QME3DGJGW7hh1FfmbpsALuYXZvcGvNzZ6Det8WeBW14dbego6bjFxtL0XIGdNIxgQ5pSGaTWfxgC+0Fg4Jz9HuGkaxoi09sQHdnfni+Wf8hyv+cTA58LFi71iTC+90VbQcYuJY+6GtyAPe3xteYS2Hss/5eNXgDRNwygoLd3xMWsaDZW+0Ji9q7vj7f153dhyobGyhHPqyth6aBYLDXfDy9URDpZ/aihH23opiwRzrqXhEw1NXpp5ExpFRiqttPbGqSsfm9AoCQepjIZonqU+jUQqzamuwgsNgMvOqWHb4bZZWxnxWFsfJeFAXt/NmjITGpn4gQT5RvZFwwFik5RleVxCQ0QOich2EXlZRLa6tloR2SIi+9zfmozjbxWR/SKyR0SuyWi/zI2zX0TudCVhcWVjH3Ltz4vI0vHMdybQ1htHFerG6AgHaKyKztqMrKc6+1GFBdUlBR/7rUtraemJc/D07PRrHGvvY0GeN7za8oj5NDI41p7/Hg3wSzmnJ2XBUghN492qeomqrnGvPw08qaorgSfda0RkFV4p14uA9cBdIuJ7I+8GNuHVFF/p3ge4GWhT1RXAHcCXCzDfosZflY3VPAVeeOipztmpaRxv94TlRGgaa87x1kdbD89OE9VY9hfUlEdo64nPWu1sKN5u8Py/myWuENNkaBsTYZ66FnjAPX8AuC6j/TuqGlPVg8B+YK2IzAeqVPVZ9b45Dw7p44/1CHCVFHJHVhHiO7DH6ggHX2jMTk3jeHv+ztpcWd5QwZyyMFsPzc5S9mPZyVxbFiGZVrpcEsnZTFtPnI6+BEvyLOMMnqYBxSE0FPipiGwTkU2uba6qngBwfxtd+0LgSEbfo65toXs+tH1QH1VNAh1A3TjnXNT4BZTGo2k0VkVp6ozNytXd8Q5faBTePBUICG9aWM3uE10FH3u60xdP0dITz1vTGMg/NYsDM3x2n+wE4IJ5VXn3HdA0JsEZPl6h8XZVfQvwO8AtInLlCMdm0xB0hPaR+gweWGSTiGwVka3Nzc2jzbmoaRnQNMZhnqosIZ5KD+Ttn00cb+9jTlm4YAWYhrKisYIDzd2zbmf4q0fbgfxveI1Vnsbsa4CzGX+xceH8/IVG0Wgaqnrc/W0C/htYC5xyJifc3yZ3+FFgcUb3RcBx174oS/ugPiISAqqBs3R/Vb1HVdeo6pqGhobxnNK0p7UnTkBgzhjyTvn4leaaZmEE1fH2/pwT6o2F5Q0V9MZTs64g0/MHWxGBty6rzavfysZKAPY1dU/EtIqK1050Ul8RHQiLzwdf05iMsNsxCw0RKReRSv85cDWwA9gMbHSHbQR+6J5vBja4iKhleA7vF5wJq0tE1jl/xU1D+vhjXQ88pbPRppLB6Z44teURgoGxu3bmutXdbPRrHHcRPhPF8oYKAA40z66b4PMHW7hwXlXemybnVkWpLAmx99TsM+kNZffJTi6cXzmmvsWiacwFnhGRV4AXgJ+o6uPAl4D3icg+4H3uNaq6E3gY2AU8Dtyiqr5Y/ATwDTzn+AHgMdd+L1AnIvuBv8JFYs1mWrpjA3bgseJrGrNVaCycAH+Gz4pGT2jsn0Ur53gyzbbDbazNU8sArxbJeXMr2Xdq9lyvbCRTafae6h6TaQomV9MYs2FXVV8HLs7S3gJcNUyf24Hbs7RvBVZnae8HbhjrHGcip7vj4xYavvo728xTXf0JOvuTzJ9ATaO+IkJVSWjWaBo7j3fQ0h2nP5Fm3bn5Cw2A8+ZW8NiOk6hqQdPVFxMHT/cQT6a5YN701zQmxhtoTBiHTvfw3gvnjmuMkrCXpmC2aRp+vYuJNE+JCMsbKzjQNPM3+O071cUH7nwG/z6/dtnYAhtXNlby7d4jnO6Oj8mePxPYdcKLnJrRmoYx+bR0x2jpibNybsW4x2qsjM46oeGbjMYSB58PKxoqeHrvzI7iA/iFO8f3XjiX6tLwmDXg8+Y6Z/iprlkrNLYf7SAclAGfWL4Ui0/DmGT8CJOVc8emwmYyG3eFv3CwldJwkFVjXM3lyvLGCpq7YnT0zeyQ5l/vP8259eV8/aY1fOWGsyzVOXOeWwTNFmd4bzzJLf/1EjuOdQCQTiuP7TjJO1bUj6mwGhRJ9JQx+exzP6rzCqJplNA0yzSNFw628pZz5oz5h5kr/mpx3wy+CcaTaZ4/2MrbV9SPe6yGyijVpeFZE3b7+I6T/OTVE/zvb/+WvniKl95o41h7H9desnD0zsNgmoaRlb2nuqmMhphXNf7on7lVUZq6YrNmE1pHX4LdJztZu3TiEwqsOaeGgMAvZ7CJ6uUj7fTGUwURGiLCqvlVbJslObv++7fHqC4N8/rpHv7fH+7g4a1HKAkHeN+qsfsqTdMwsrL3VBcr5lYUJMJk/pxSkmmdNZvQth1uRZUxhYXmS015hDXn1LJld9PoBxcpz+w/TUDginMLI4Tfu2our53s4tAMzxDc1NXPr/ef5sZ15/C/3rWcR7Yd5eGtR7nqwrnjKkFsmoaRlX1N3ZzXOH5/BsCFLrRvt4vamOk8f7CVcFC4dMmcSfm8965qZPeJzoHCRDMJVeXxHSe4dEkN1XkWCxqO9avnAfDYjpMFGW+68qNXTpBWuO7SBfzN+gv49v9cx9Wr5vKnV547rnGjIdM0jCG0dMdoLVDkFMAFzhk8a4TG6628edEcSsKFrQ0+HH5Y9JO7T03K500mrx7tYO+pbn73LWO3wQ9l4ZxSLl5UzWM7ThRszOnG9qMd3LFlL29ZMocVbvF3xfI67rlpDW9eNL7FTCAgRIKTU4jJhEYR0J9I8a3n3gAKEzkFUBENcU5d2UB8+Eymsz/Bq0fbedvyyUuQfG5DBec2lPPo9pl3E/zutiNEQwE+ePGCgo67fvV8Xj3awZHW3oKOOx043NLDxv94gerSMHf94WUT8hnRcMA0DcOLUvndu37DHT/by9pltaxdWjib/IXzqmZFGu/nDrSQVnjb8vE7bfPh99cs5rnXW3nlSPukfu5E8XpzNw/85hCbXz7O+tXzqCopjGnK59pLFhAJBvjXn+8v6LhTTVd/go8/sJW0Kt/6+OXMm4CqkXCmet9EY0JjmvP1X73OrhOd3PGRi3lo0zpKI4Uzr6xaUMWhlh56ZngBnN8caKEkHOAt50yOP8PnDy9fQlVJiLueLv6b4IHmbj5812+4bfNO+hNpblx3TsE/Y8GcUj627hwe3nqE/U0zYzHT2Z9g04PbeP10D3f9wVtYVl8+YZ9VYprG7Kaps59vPXeYO5/cx/vfNI8PX7qo4Hl5LpxfhSq8drL4fqCxZO4/jl/vP81bl9YORJhMFpUlYf7o7ct4Yuepor4JdvQm+JP7XyQUEJ741JXs+vw1rCmgxpvJJ9+zgrJIiC/8eHfRh4O39cS54e5nefFQK1+54c28rQDhySMRDZlPY1bw0htt/PsvDvDVLXv57RttqCpd/Qnef+czfOYHO1g4p5TbPnjRhHz2qgWeM7zY/Bo7j3fw1v/vZ/zxf7wwUP42G//5/GG+8ONd7Gvq5h0T/IMdjo+tWwLAEzuL1yH+uR/v5FhbH/fcdBnnz6skFJy420ZteYS/WX8+v9jbzL8UuZnqrqf3s6+pi/v/eC0fvnTR6B3GSUk4OCmV+yz31BTy7784wBcfew2AgMCdT+7jhssWMb+6hNPdMf7r45dzxfK6Ccv8uaC6hPqKKF95Yg+nOvr51HtXTugNoRAcae3lT+5/kUgowK8PtPC2Lz3FvKoSPrZuCf/znecOXKvdJzr5zA92oAoi8K7zG0cZeWJorCzhgnmV/ObAaW5594opmcNYOdLay7Ovt/D9l47xyXev4LJzJn6PC8CN687ht2+0c8fP9vK25XUTptVMJKc6+3nw2cN8+NJFvGPl5CxYJkvTMKExRdzzS09g/I83z+cL164mIMK/Pr2fe375OiLw/jfNm3B1VkS4/4/fyj8/tY9/+fl+0qr8zfoLJvQzx4qqcvcvDvDPT+4nFBC++4krEITvvXSUHcc6+PtHX2PPyW7+/ndXEw0F+ftHd1NVEmbLX15JWpkw52MuvGNFPQ8+d5j+RGrSQn7Hy0MvvsHffm87ACsbK/jzqyZP4IkIf//hN/HLvc3c/fQB7v2j4hAau090UhYJsnBOKV98dDeptPIXV62ctM8vCQcty+1MZe+pLr7yxF7WXzSPf9pw6UAVvlt/5wJauuP86NXj/NX7zp+UuaxeWM2/37iGT3/vVe56+gDPH2xl36ku3n1BI59894qChfiOl+deb+UfHt/Dey9s5LYPXsRil6n2795/IarKPz25j6/9bB9HWntZ3ljOr/ad5jMfuJDGAqRcGS9vX1HPN545yNZDbZO26hyO10520tGbIBQM0NYTZ8+pLt5o6WVOeZi1S2t51/mNHGvr43M/2sW6c2v5xLtWcOmSOZPuDyqNBLnxinP42s/2sb+pa2Bfw3TgeHsf3/jVQV492s51ly6kviLC5leO8+j2kwQDwrL6cvY3dfPn71nBkrqJzaicydL68kkJapFiqJ4qIuuBfwKCwDdU9UvDHbtmzRrdunVr3p/RF0/xvZeOkkylKY+GWLuslqqSMIGAUFUSQkToT6T4zgtvcPHiOVy6pGZM59LcFeNP7n+RY+19bPnLK6mrGJwKWlVp701QM85CS/nSn0hx473P096bYPXCan626xR1FRGe/Ot3jau0bDaOtvXS3ptgnjOP5cLHH9jKS2+08ZtPv2fY1frmV47zf777CgC/95aFfO5Dqyc8OWEu9MSSXPy5n/Lxd57Lp39najS5dFr52s/2cudTZ/sJ6iuidPYliKfSVJeGBxzQj//llSycwNojo9HSHeNtX3qKay6axx0fuaTg38N8UVW+/cIRPv/jnSRTypK6Ml5v9tKelIaDbLryXDr6Evxk+wk+vf4Cfu+yifdjFBIR2aaqa0Y7btprGiISBP4Vr3TsUeBFEdmsqrsK+Tm98SSf+cGOrO9VloRYXFNGW2+cEx39lEWCfPPmtVx2Ti3ptPLK0Xb2nepmSV0Z64bk4jnc0kNXf5Lz51XyzWcPc8eWvfQnU/zzRy89S2C48510gQGeavvdP3vbwOvHtp/gE//5Eo/vOMkH3jw/a58jrb0cbevjksVzRg0Fburs55f7TvP4jpM8+dop/LXK21fUsf6ieZzbUMHS+nLmV5UQGHJzOHS6hydfO8Un371iRPPOhy5ewGXn1FAeCTKnbPKv4XCUR0O8ZUkNP/jtMT548XxSaSUYEC5aUD3ouI6+BLFEisaqEhKpND965Tjfeu4w4WCAt6+o5/x5lVy+rDbvc9t2uI3bf7KLl95o54bLFnHdpQuJp9LMKQ1zbkMF1aVhEqk0T+4+xS/2NqMK1126cEoFBkBdRZQ/eccy7n76ACc7+vnDdUu4YnkdjZUl9CdSHGrpob4iSm1Z5KzvTCFRVXYe7+SLj+3m1/tbeOfKer74u29i4ZxSXjnagapy4fyqge/mZz80MYEr04Vpr2mIyBXAZ1X1Gvf6VgBV/WK248eqaaTTyunuGOFggNPdMV481EYsmSKRSnO0rY8jrb2kFP5g7WK+/PgeTnX28/trFvPykXZezti8tXZZLe9YUU8yrTx74DQvHvIyd5ZFgvTGU7xzZT2f/dBFYy62Mlmk08p77/gFpeEgmz/5DpLpNC8dbufZA6d5o7WX1t4Ez+xrJq0QCQb4/bcuYuMVS2nvS3C8vY+OvgSRYIAVjRUcaevl776/g75EivqKCH+wdgmrFlSz52QXD289Mig/UzQUYHFtGem00htP0RNP0htPERD49d++Z1qYm8bCy0fa2fTg1oESuyJwy7tWcLClh1/vP00kGKCpK0ZA4KYrlvLioVZ2Hu9kRWMFkWBgIMKtIhriDy5fgoinHWejujTMBfOqCAj8ePsJfvLqCRoro/zt+gv43bcsLKqSqqrK9146xhd+vMv7ToUCbHjrYp7c3TTwvQkFhIbKKI1VJTRWRjmntoz3v3n+wHU73R1jz8kujrT2cs1F86gpi/DioVZCQW9fQ1NXP+fNrWR5QwWqSjKtVJWEWdFYwZZdp9j8ynHeaO2lujTMX73vPG5cd86ECqmpIldNoxiExvXAelX9uHt9I3C5qn4y2/FjFRr5cKKjjy8++hqP7ThBTVmEv3zfeaw7t45f7GnigWcPc/B0DwGB8+dV8cGL51NfHuW511u4ZvU8rl41t2h+tA9vPcLfPPIqZZEgaVX6E2kCAgtrSomGgly9ai5vWVLDk6818fDWI6RGiKtfu7SWz37oIi6YVznoB6eqnOqM8frpbg6e7uFgcw9H2noJBwOURYKURUKURYJcsngOV180bzJOe8Jo6Y5x/28OcU5dOb/c28zmV45TFgnygTd5mtw5dWUcae3joa1HqK+I8LkPreb9b5qHiNDVn2DPyS6+8auDPL7zJJFggLJokGzfpM7+5MD/wjebbLry3HFlUZ1qkqk0r53s4hu/ep0fvHyc8+dW8vF3LqM3nuJUZz9NXTFOdfbT3BXj4Omes6KI5lZFaaiMsuOYJ3zryiOICNFQgLqKCHtOdmWNPBKBd65s4H0XNvLBixdMKw220MwkoXEDcM0QobFWVf8845hNwCaAJUuWXHb48OFJmVtXv7fyGeok7IklEYGySPH+SMG7of9k+wlePNhKICC8bXk9l59bmzV9xIHmbrYdbmNuVQkLqkuoKY/Qn0ix83gnXf1Jrr1kAeFpHs47magqP9/TxOqF1TRWDtaedh3vZOGc0mEzyPbFU5SEA8MuPvoTKQ40dxMQYUH18OMUK6e7Y1SXhof9PnX1J9iy6xShYIA3L6ymsSo68Fvc39RFIqVcMK9y0PWLJ9O09cYJiBAMCC3dMXaf7OLSxXMGgi5mOjNJaEyKecowDGM2k6vQKIal34vAShFZJiIRYAOweYrnZBiGMSuZ9vYTVU2KyCeBJ/BCbu9T1Z1TPC3DMIxZybQXGgCq+ijw6FTPwzAMY7ZTDOYpwzAMY5pgQsMwDMPIGRMahmEYRs6Y0DAMwzByxoSGYRiGkTPTfnNfvohIF7DHvawGOgo4/HQfrx44XcDxpvv5Fno8KNw1LIZznYhxp/N3cLr/T6by2tUD5araMOqRqjqjHsDWjOf3FHjs6T7e1gKPN93Pt6DjFfIaFsO5TtA8p+13cLr/T6by2uXz2TPdPPWjWTZeoZnu5zudr1+xnOt0voZQ2PkVy/+kUEzI/GaieWqr5pA/ZSYym8+9UNg1HB92/cbOVF67fD57Jmoa90z1BKaQ2XzuhcKu4fiw6zd2pvLa5fzZM07TMAzDMCaOmahpGIZhGBOECY1pjIgsFpGfi8huEdkpIn/h2mtFZIuI7HN/a1x7nTu+W0T+JWOcShF5OeNxWkS+NlXnNZkU6hq69z4qIttF5FUReVxE6qfinCaTAl+/j7hrt1NE/mEqzmcyGcO1e5+IbHPfsW0i8p6MsS5z7ftF5E6ZyvKfhQzxskdhH8B84C3ueSWwF1gF/APwadf+aeDL7nk58A7gz4B/GWHcbcCVU31+xXQN8TJCNwH17vU/4BUHm/JzLJLrVwe8ATS41w8AV031+U2za3cpsMA9Xw0cyxjrBeAKQIDHgN+ZqvMyTWMao6onVPUl97wL2A0sBK7F+9Hh/l7njulR1WeA/uHGFJGVQCPwqwmc+rShgNdQ3KPcrfKqgOMTfwZTSwGv37nAXlVtdq9/BvzeBE9/ShnDtfutqvrfqZ1AiYhERWQ+UKWqz6onQR70+0wFJjSKBBFZircSeR6Yq6onwPti4gmBXPko8JD78s0qxnMNVTUBfALYjicsVgH3TuB0px3j/A7uBy4QkaUiEsK76S2euNlOL8Zw7X4P+K2qxvAEzdGM9466tinBhEYRICIVwPeAT6lq5ziH2wB8e/yzKi7Gew1FJKxncRwAAAM9SURBVIwnNC4FFgCvArcWdJLTmPFeP1Vtw7t+D+FpuYeAZCHnOF3J99qJyEXAl4E/9ZuyHDZliz4TGtMcd7P6HvCfqvp913zKqay4v005jnUxEFLVbRMy2WlKga7hJQCqesBpaQ8Db5ugKU8rCvUdVNUfqerlqnoFXn64fRM15+lCvtdORBYB/w3cpKoHXPNRYFHGsIuYQtOoCY1pjLOd3wvsVtWvZry1Gdjonm8EfpjjkB9llmkZBbyGx4BVIuIndHsfno16RlPI76CINLq/NcD/Ar5R2NlOL/K9diIyB/gJcKuq/to/2JmwukRknRvzJnL/zReeqY4wsMfwD7woFMUzhbzsHu/Hi0R5Em+l9iRQm9HnENAKdOOtUFZlvPc6cMFUn1exXkO8iKDdbqwfAXVTfX5Fdv2+Dexyjw1TfW7T7doBnwF6Mo59GWh0760BdgAHgH/BbcyeioftCDcMwzByxsxThmEYRs6Y0DAMwzByxoSGYRiGkTMmNAzDMIycMaFhGIZh5IwJDcOYZETkz0TkpjyOXyoiOyZyToaRK6GpnoBhzCZEJKSq/zbV8zCMsWJCwzDyxCWfexwv+dyleCmvbwIuBL4KVACngT9S1RMi8jTwG+DtwGYRqQS6VfUrInIJ8G9AGd7GrT9R1TYRuQy4D+gFnpm8szOMkTHzlGGMjfOBe1T1zUAncAvwz8D1qurf8G/POH6Oqv4/qvqPQ8Z5EPhbN8524DbX/h/A/1YvT5NhTBtM0zCMsXFEz+QH+hbwd3iFc7a4ompB4ETG8Q8NHUBEqvGEyS9c0wPAd7O0fxP4ncKfgmHkjwkNwxgbQ/PvdAE7R9AMevIYW7KMbxjTAjNPGcbYWCIivoD4KPAc0OC3iUjY1UUYFlXtANpE5J2u6UbgF6raDnSIyDtc+x8WfvqGMTZM0zCMsbEb2Cgi/46XrfSfgSeAO515KQR8Da9s50hsBP5NRMrwshD/sWv/Y+A+Eel14xrGtMCy3BpGnrjoqR+r6uopnophTDpmnjIMwzByxjQNwzAMI2dM0zAMwzByxoSGYRiGkTMmNAzDMIycMaFhGIZh5IwJDcMwDCNnTGgYhmEYOfP/A8nsahCRE8NwAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "sorted_data['inc'][-200:].plot()" ] @@ -252,10 +2305,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 13, + "metadata": {}, "outputs": [], "source": [ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", @@ -274,7 +2325,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -298,9 +2349,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAD8CAYAAAC7IukgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3X+w1fV95/HnC0GwiSgQMPxQYSPJBE0Xyx10x+5uxC2QHxOwNQ2rVWbqDIniju1mVqTJjqnSmZhpYsu6ISE1FbWK1MSRTaF4jTq1XQJcgr+Q0Hu7UkSIXOaiYmegXnjvH9/Pqd97cjmcc/lyftz7esycOd/7OZ/P53zul8N9n8+P7/ejiMDMzKxIwxrdADMzG3wcXMzMrHAOLmZmVjgHFzMzK5yDi5mZFc7BxczMCufgYmZmhXNwMTOzwjm4mJlZ4YY3ugH19JGPfCSmTp3a6GaYmbWU7du3H4qI8bWUGVLBZerUqXR0dDS6GWZmLUXSP9daxsNiZmZWOAcXMzMrnIOLmZkVrqrgImmPpFckvSipI6V9Q9KbKe1FSZ/N5V8uqUvSbknzcumzUj1dklZKUkofKenxlL5F0tRcmcWSOtNjcS59Wsrbmcqeffqnw8zMilBLz+XqiJgZEW25tPtS2syI2AAgaQawCLgUmA98V9JZKf8qYAkwPT3mp/SbgcMRcQlwH3BvqmsscBdwBTAbuEvSmFTm3vT+04HDqQ4zM2sCZ2JYbAGwNiKORcTrQBcwW9JEYHREbI5sh7KHgIW5MmvS8RPANalXMw9oj4ieiDgMtAPz02tzUl5S2VJdLe/gu0f53e9v5uCRo41uipnZgFQbXAJ4WtJ2SUty6bdJelnSD3M9isnAG7k8+1La5HRcnt6nTET0Au8A4yrUNQ54O+Utr6vlrfxpJ9v29LDymc5GN8XMbECqvc7lqojYL2kC0C7pF2RDXPeQBZ57gG8Dvw+on/JRIZ0BlKlUVx8pGC4BuOiii/rL0jQ+8fWNHOs98W8/P7JlL49s2cvI4cPYveIzDWyZmVltquq5RMT+9HwQeBKYHRFvRcTxiDgB/IBsTgSyXsSFueJTgP0pfUo/6X3KSBoOnAf0VKjrEHB+ylteV3nbV0dEW0S0jR9f0wWmdffCHVfzhZmTGDUi+2cZNWIYC2ZO4oVlVze4ZWZmtTllcJH0IUnnlo6BucCraQ6l5Frg1XS8HliUVoBNI5u43xoRB4Ajkq5McyY3AU/lypRWgl0HPJvmZTYBcyWNScNuc4FN6bXnUl5S2VJdLWvC6FGcO3I4x3pPMHL4MI71nuDckcOZcO6oRjfNzKwm1QyLXQA8mVYNDwcejYi/lfSwpJlkw1F7gC8DRMROSeuA14BeYGlEHE913QI8CJwDbEwPgAeAhyV1kfVYFqW6eiTdA2xL+e6OiJ50vAxYK2kFsCPV0fIOvXeMG664mOtnX8SjW/fS7Ul9M2tByjoBQ0NbW1v43mJmZrWRtL3sMpRT8hX6ZmZWOAcXMzMrnIOLmZkVzsHFzMwK5+BiZmaFc3BpUb7/mJk1MweXFuX7j5lZM6v23mLWJHz/MTNrBe65tBjff8zMWoGDS4vx/cfMrBV4WKwF+f5jZtbsfG+xKhx89yi3PbaD+6+/3D0EMxtyfG+xM8Qrs8zMauNhsQq8MsvMbGDcc6nAK7PMzAbGwaUCr8wyMxuYqoKLpD2SXpH0oqSOlDZWUrukzvQ8Jpd/uaQuSbslzculz0r1dElambY7Jm2J/HhK3yJpaq7M4vQenZIW59KnpbydqezZp386flVpZdaTt17FDVdcTPd7x87E25iZDSpVrRaTtAdoi4hDubRvAT0R8U1JdwJjImKZpBnAY8BsYBLwDPDxiDguaStwO/AzYAOwMiI2SroV+PWI+IqkRcC1EfElSWOBDqCNbDvl7cCsiDictlL+cUSslfQ94KWIWFXp9/BOlGZmtav3arEFwJp0vAZYmEtfGxHHIuJ1oAuYLWkiMDoiNkcW0R4qK1Oq6wngmtSrmQe0R0RPRBwG2oH56bU5KW/5+5uZWYNVG1wCeFrSdklLUtoFEXEAID1PSOmTgTdyZfeltMnpuDy9T5mI6AXeAcZVqGsc8HbKW16XmZk1WLVLka+KiP2SJgDtkn5RIa/6SYsK6QMpU6muvo3JguESgIsuuqi/LGZmVrCqei4RsT89HwSeJJtPeSsNdZGeD6bs+4ALc8WnAPtT+pR+0vuUkTQcOA/oqVDXIeD8lLe8rvK2r46ItohoGz9+fDW/rpmZnaZTBhdJH5J0bukYmAu8CqwHSqu3FgNPpeP1wKK0AmwaMB3YmobOjki6Ms2Z3FRWplTXdcCzaV5mEzBX0pi0Gm0usCm99lzKW/7+ZmbWYNUMi10APJlWDQ8HHo2Iv5W0DVgn6WZgL/BFgIjYmVZyvQb0Aksj4niq6xbgQeAcYGN6ADwAPCypi6zHsijV1SPpHmBbynd3RPSk42XAWkkrgB2pDjMzawK+caWZmVXkG1eamVlTcHAxM7PCObiYmVnhHFzMzKxwDi5mZlY4BxczMyucg4uZmRXOwcXMzArn4GJmZoVzcDEzs8I5uJiZWeEcXMzMrHAOLmZmVjgHFzMzK5yDi5mZFc7BxczMCufgYmZmhas6uEg6S9IOST9JP39D0puSXkyPz+byLpfUJWm3pHm59FmSXkmvrVTaO1nSSEmPp/QtkqbmyiyW1Jkei3Pp01LezlT27NM7FWZmVpRaei63A7vK0u6LiJnpsQFA0gxgEXApMB/4rqSzUv5VwBJgenrMT+k3A4cj4hLgPuDeVNdY4C7gCmA2cJekManMven9pwOHUx1mZtYEqgoukqYAnwP+oorsC4C1EXEsIl4HuoDZkiYCoyNic0QE8BCwMFdmTTp+Argm9WrmAe0R0RMRh4F2YH56bU7KSypbqsvMzBqs2p7LnwF3ACfK0m+T9LKkH+Z6FJOBN3J59qW0yem4PL1PmYjoBd4BxlWoaxzwdspbXpeZmTXYKYOLpM8DByNie9lLq4CPATOBA8C3S0X6qSYqpA+kTKW6+pC0RFKHpI7u7u7+spiZWcGq6blcBXxB0h5gLTBH0iMR8VZEHI+IE8APyOZEIOtFXJgrPwXYn9Kn9JPep4yk4cB5QE+Fug4B56e85XX1ERGrI6ItItrGjx9fxa9rZman65TBJSKWR8SUiJhKNlH/bET8XppDKbkWeDUdrwcWpRVg08gm7rdGxAHgiKQr05zJTcBTuTKllWDXpfcIYBMwV9KYNOw2F9iUXnsu5SWVLdVlZmYNNvzUWU7qW5Jmkg1H7QG+DBAROyWtA14DeoGlEXE8lbkFeBA4B9iYHgAPAA9L6iLrsSxKdfVIugfYlvLdHRE96XgZsFbSCmBHqsPMzJqAsk7A0NDW1hYdHR2NboaZWUuRtD0i2mop4yv0zcyscA4uZmZWOAcXMzMrnIOLmZkVzsHFzMwK5+BiZmaFc3AxM7PCObiYmVnhHFzMbMg7+O5Rfvf7mzl45GijmzJoOLiY2ZC38qedbNvTw8pnOhvdlEHjdO4tZmbW0j7x9Y0c6/1gm6pHtuzlkS17GTl8GLtXfKaBLWt97rmY2ZD1wh1X84WZkxg1IvtTOGrEMBbMnMQLy65ucMtan4OLmTWdes2BTBg9inNHDudY7wlGDh/Gsd4TnDtyOBPOHXVG33cocHAxs6ZTzzmQQ+8d44YrLubJW6/ihisupvu9Y2f8PYcC33LfzJpG+RxIiedAGsu33DezluY5kMHDwcXMmobnQAaPqoOLpLMk7ZD0k/TzWEntkjrT85hc3uWSuiTtljQvlz5L0ivptZWSlNJHSno8pW+RNDVXZnF6j05Ji3Pp01LezlT27NM7FWbWDDwHMjhUPeci6b8DbcDoiPi8pG8BPRHxTUl3AmMiYpmkGcBjwGxgEvAM8PGIOC5pK3A78DNgA7AyIjZKuhX49Yj4iqRFwLUR8SVJY4GO9L4BbAdmRcRhSeuAH0fEWknfA16KiFWVfgfPuZiZ1e6MzblImgJ8DviLXPICYE06XgMszKWvjYhjEfE60AXMljSRLDBtjiyiPVRWplTXE8A1qVczD2iPiJ6IOAy0A/PTa3NS3vL3NzOzBqt2WOzPgDuA/DKOCyLiAEB6npDSJwNv5PLtS2mT03F5ep8yEdELvAOMq1DXOODtlLe8rj4kLZHUIamju7u7yl/XzMxOxymDi6TPAwcjYnuVdaqftKiQPpAylerqmxixOiLaIqJt/Pjx/WUxM7OCVdNzuQr4gqQ9wFpgjqRHgLfSUBfp+WDKvw+4MFd+CrA/pU/pJ71PGUnDgfOAngp1HQLOT3nL6zKrie+Ia1a8UwaXiFgeEVMiYiqwCHg2In4PWA+UVm8tBp5Kx+uBRWkF2DRgOrA1DZ0dkXRlmjO5qaxMqa7r0nsEsAmYK2lMWo02F9iUXnsu5S1/f7Oa+I64ZsU7nbsifxNYJ+lmYC/wRYCI2JlWcr0G9AJLI+J4KnML8CBwDrAxPQAeAB6W1EXWY1mU6uqRdA+wLeW7OyJ60vEyYK2kFcCOVIdZ1XxHXLMzx7d/sSHr4LtHWbFhF0/v/CVH3z/BqBHDmHfpR/na5z7pi/bMcnz7F7Ma1HI1eKvOy7Rqu631ObjYkFbt1eCtOi/Tqu221udhMbMKWvUuva3abmtOHhYzK1ir3qW3Vdttg4eDi1kFrXqX3lZttw0ep7MU2WxIKM3LXD/7Ih7dupfuFpkcb9V22+DgORczM6vIcy5mZtYUHFzMzKxwDi5mZgXyhasZBxczswL5wtWMV4tZSzr47lFue2wH919/uZfXWlPwjVD7cs/FWpK/HVqz8YWrfbnnYi3F3w4/4N5bc/GFq32552Itxd8OP+DeW/Op9kaoQ4F7LtZ0Kn0j97dD996a2fdv/OA6wxULL2tgSxrvlD0XSaMkbZX0kqSdkv44pX9D0puSXkyPz+bKLJfUJWm3pHm59FmSXkmvrUzbHZO2RH48pW+RNDVXZrGkzvRYnEuflvJ2prJnF3NKbKCKWoJ5qm/kQ/3boXtv1gqq6bkcA+ZExHuSRgB/L6m0PfF9EfGn+cySZpBtU3wpMAl4RtLH01bHq4AlwM+ADcB8sq2ObwYOR8QlkhYB9wJfkjQWuAtoAwLYLml9RBxOee6LiLWSvpfqWDXwU2GnKx8UVlz7qZrLV/uNfKh/O3TvzVrBKXsukXkv/TgiPSrdkGwBsDYijkXE60AXMFvSRGB0RGyO7IZmDwELc2XWpOMngGtSr2Ye0B4RPSmgtAPz02tzUl5S2VJdVmef+PpGpt75NzyyZS8RWVCYeuff8Imvbzx14Rx/I6/eUO+9WfOras5F0lnAduAS4H9HxBZJnwFuk3QT0AF8NQWAyWQ9k5J9Ke39dFyeTnp+AyAieiW9A4zLp5eVGQe8HRG9/dRldfbCHVefdC/6WvgbefWGeu/Nml9Vq8Ui4nhEzASmkPVCLiMbgvoYMBM4AHw7ZVd/VVRIH0iZSnX1IWmJpA5JHd3d3f1lsdNUZFDwN/LBz7dHGRpqWi0WEW9Leh6Yn59rkfQD4Cfpx33AhbliU4D9KX1KP+n5MvskDQfOA3pS+qfLyjwPHALOlzQ89V7ydZW3eTWwGrJb7tfy+1r1ito7xN/IB7/TnZuz1nDK/VwkjQfeT4HlHOBpssn07RFxIOX5Q+CKiFgk6VLgUWA22YT+T4HpEXFc0jbgvwFbyCb0/1dEbJC0FPhURHwlTej/dkT8bprQ3w78RmrOz4FZEdEj6a+BH+Um9F+OiO9W+l28n4tZ45Qv2CjxEurmN5D9XKrpuUwE1qR5l2HAuoj4iaSHJc0kG47aA3wZICJ2SloHvAb0AkvTSjGAW4AHgXPIVomVZnwfAB6W1EXWY1mU6uqRdA+wLeW7OyJ60vEyYK2kFcCOVIeZNami5uasNZwyuETEy8Dl/aTfWKHMnwB/0k96B/ArYx0RcRT44knq+iHww37S/x9Z78jMWoAXbAwtvkLfzOqmqLk5a36nnHMZTDznYmZWu4HMufjGlWZmVjgHFzMzK5yDi5mZFc7BxczMCufgYmZmhXNwMTOzwjm4mJlZ4RxczMyscA4uZmZWOAcXszrzfiY2FDi4mNVZfj8Ts8HKN640q5Py/Uwe2bKXR7bs9X4mNii552JWJy/ccTVfmDmJUSOy/3ajRgxjwcxJvLDs6ga3zKx4Di5mdeL9TGwocXCxQa3ZJs9L+5k8eetV3HDFxXS/d6zRTTI7I04ZXCSNkrRV0kuSdkr645Q+VlK7pM70PCZXZrmkLkm7Jc3Lpc+S9Ep6baUkpfSRkh5P6VskTc2VWZzeo1PS4lz6tJS3M5U9u5hTYoNJs02ef//GNlYsvIwZk0azYuFlfP/GmrbIMGsZp9wsLAWAD0XEe5JGAH8P3A78NtATEd+UdCcwJiKWSZoBPEa2BfEk4Bng4xFxXNLWVPZnwAZgZURslHQr8OsR8RVJi4BrI+JLksYCHUAbEMB2YFZEHJa0DvhxRKyV9D3gpYhYVel38WZhQ0f55HmJJ8/NandGNguLzHvpxxHpEcACYE1KXwMsTMcLgLURcSwiXge6gNmSJgKjI2JzZBHtobIypbqeAK5JQW0e0B4RPRFxGGgH5qfX5qS85e9v5snzBmm2YUhrnKrmXCSdJelF4CDZH/stwAURcQAgPU9I2ScDb+SK70tpk9NxeXqfMhHRC7wDjKtQ1zjg7ZS3vK7yti+R1CGpo7u7u5pf1wYBT543RrMNQ1rjVHWdS0QcB2ZKOh94UtJlFbKrvyoqpA+kTKW6+iZGrAZWQzYs1l8eG5xKk+fXz76IR7fupdvfps8YX8Nj5Wq6iDIi3pb0PDAfeEvSxIg4kIa8DqZs+4ALc8WmAPtT+pR+0vNl9kkaDpwH9KT0T5eVeR44BJwvaXjqveTrMgPoM1m+YmGl70N2ul6442pWbNjF0zt/ydH3TzBqxDDmXfpRvva5Tza6adYg1awWG596LEg6B/gvwC+A9UBp9dZi4Kl0vB5YlFaATQOmA1vT0NkRSVemOZObysqU6roOeDbNy2wC5koak1ajzQU2pdeeS3nL39/M6szDkFaump7LRGCNpLPIgtG6iPiJpM3AOkk3A3uBLwJExM60kus1oBdYmobVAG4BHgTOATamB8ADwMOSush6LItSXT2S7gG2pXx3R0RPOl4GrJW0AtiR6jCzBvEwpOWdcinyYHImlyIffPcotz22g/uvv9zf1szqpFX/37Vau8/IUmSrjlfJmNVfq/6/a9V218I9l9Pki/XM6q9V/9+1arvdc2kAX6xnVn+t+v+uVds9EA4up6mWVTK+etlaWTN9flt1dVqrtnsgHFwKUO2dbofCOKsNXs32+W3VO0y3artr5TmXOmjVcVYz8OfXPOfStIbSOKsNPv78Nq9mGqos5+BSB4NhnLWZP8R2Zg2Gz+9g1WxDlXk13VvMBq7Vr17Of4hXXPupRjfH6qzVP7+DTSvcKNRzLlaRx9vNms/Bd4+e9EahZ6JH6TkXK5zH282aTysMVXpYzCpqhQ+x2VDU7EOVDi52Ss3+ITYbipp9vyLPuQxxrXZ3VjOrP8+5WM2aeSmjmbUuD4sNUa2wlLHVuBdo9oFqtjm+UNJzknZJ2inp9pT+DUlvSnoxPT6bK7NcUpek3ZLm5dJnSXolvbYybXdM2hL58ZS+RdLUXJnFkjrTY3EufVrK25nKnl3MKRkavAqseO4Fmn2gmp5LL/DViPi5pHOB7ZLa02v3RcSf5jNLmkG2TfGlwCTgGUkfT1sdrwKWAD8DNgDzybY6vhk4HBGXSFoE3At8SdJY4C6gDYj03usj4nDKc19ErJX0vVTHqoGfiqHFq8CK416g2a86Zc8lIg5ExM/T8RFgFzC5QpEFwNqIOBYRrwNdwGxJE4HREbE5slUEDwELc2XWpOMngGtSr2Ye0B4RPSmgtAPz02tzUl5S2VJdVqWhcnfWM829QLNfVdOcSxquuhzYAlwF3CbpJqCDrHdzmCzw/CxXbF9Kez8dl6eTnt8AiIheSe8A4/LpZWXGAW9HRG8/dVmVmn0pY6twL9DsV1W9WkzSh4EfAX8QEe+SDUF9DJgJHAC+XcraT/GokD6QMpXqKm/3Ekkdkjq6u7v7y2J22twLNOurqp6LpBFkgeWvIuLHABHxVu71HwA/ST/uAy7MFZ8C7E/pU/pJz5fZJ2k4cB7Qk9I/XVbmeeAQcL6k4an3kq+rj4hYDayG7DqXan5fs1q5F2jWVzWrxQQ8AOyKiO/k0ifmsl0LvJqO1wOL0gqwacB0YGtEHACOSLoy1XkT8FSuTGkl2HXAs2leZhMwV9IYSWOAucCm9NpzKS+pbKkuMzNrsGp6LlcBNwKvSHoxpf0R8F8lzSQbjtoDfBkgInZKWge8RrbSbGlaKQZwC/AgcA7ZKrGNKf0B4GFJXWQ9lkWprh5J9wDbUr67I6InHS8D1kpaAexIdZiZWRPw7V/MzKwi3/7FzMyagoOLmVkTavWtxR1czKzl/5ANRq1+OyHfuNLM+vwhW3HtpxrdnCFtsNxOyBP6ZkNY+R+yklb7QzaYHHz3KCs27OLpnb/k6PsnGDViGPMu/Shf+9wnB3TXhyLu1u0JfTOrie+L1nyKvp1Qo4bXPCxm1oTqtTeM74vWnIrYWrzRw2sOLmZNqJ5zIEX8IbNiFXE7oRfuuPqkw2v14OBi1kQa8W3T90UbnBrdK/Wci1kT8RxI8YbyMutG3q3bPRezJtLob5uD0VBeZt3IXqmDi1mT8RxIMRo9oT3U+ToXMxuUir5eZCjzdS5mZomHGBvLw2JmNmh5iLFxPCxmZmYVeVjMzMyawimDi6QLJT0naZeknZJuT+ljJbVL6kzPY3JllkvqkrRb0rxc+ixJr6TXVkpSSh8p6fGUvkXS1FyZxek9OiUtzqVPS3k7U9mzizklZmZ2uqrpufQCX42ITwJXAkslzQDuBH4aEdOBn6afSa8tAi4F5gPflXRWqmsVsASYnh7zU/rNwOGIuAS4D7g31TUWuAu4ApgN3JULYvcC96X3P5zqMDOzJnDK4BIRByLi5+n4CLALmAwsANakbGuAhel4AbA2Io5FxOtAFzBb0kRgdERsjmyi56GyMqW6ngCuSb2aeUB7RPRExGGgHZifXpuT8pa/v5mZNVhNcy5puOpyYAtwQUQcgCwAARNStsnAG7li+1La5HRcnt6nTET0Au8A4yrUNQ54O+Utr8vMzBqs6uAi6cPAj4A/iIh3K2XtJy0qpA+kTKW6+jZGWiKpQ1JHd3d3f1nMzKxgVQUXSSPIAstfRcSPU/JbaaiL9Hwwpe8DLswVnwLsT+lT+knvU0bScOA8oKdCXYeA81Pe8rr6iIjVEdEWEW3jx4+v5tc1M7PTVM1qMQEPALsi4ju5l9YDpdVbi4GncumL0gqwaWQT91vT0NkRSVemOm8qK1Oq6zrg2TQvswmYK2lMmsifC2xKrz2X8pa/v5mZNVg1V+hfBdwIvCLpxZT2R8A3gXWSbgb2Al8EiIidktYBr5GtNFsaEcdTuVuAB4FzgI3pAVnwelhSF1mPZVGqq0fSPcC2lO/uiOhJx8uAtZJWADtSHWZm1gR8hb6ZmVXkK/St6Q3ljZvMhhIHF6ur/MZNZjZ4+a7IVhfeuMlsaHHPxerCe8ObDS0OLlYX3rjJbGjxsJjVjTduMhs6vBTZzMwq8lJkMzNrCg4uZmZWOAeXQcwXLJpZozi4DGK+YNHMGsWrxQYhX7BoZo3mnssg5AsWzYrnYebaOLgMQr5g0ax4HmaujYfFBilfsGhWDA8zD4wvojQzq+Dgu0dZsWEXT+/8JUffP8GoEcOYd+lH+drnPjlkRgPOyEWUkn4o6aCkV3Np35D0pqQX0+OzudeWS+qStFvSvFz6LEmvpNdWpq2OSdshP57St0iamiuzWFJneizOpU9LeTtT2bNr+aXNzKrlYeaBqWbO5UFgfj/p90XEzPTYACBpBtkWxZemMt+VdFbKvwpYAkxPj1KdNwOHI+IS4D7g3lTXWOAu4ApgNnCXpDGpzL3p/acDh1MdZmZnRGmY+clbr+KGKy6m+71jjW5S0zvlnEtE/F2+N3EKC4C1EXEMeF1SFzBb0h5gdERsBpD0ELAQ2JjKfCOVfwK4P/Vq5gHtEdGTyrQD8yWtBeYA16cya1L5VVW20cysJt+/8YMRoRULL2tgS1rH6awWu03Sy2nYrNSjmAy8kcuzL6VNTsfl6X3KREQv8A4wrkJd44C3U97yuszMrAkMNLisAj4GzAQOAN9O6eonb1RIH0iZSnX9CklLJHVI6uju7j5ZNjMzK9CAgktEvBURxyPiBPADsjkRyHoRF+ayTgH2p/Qp/aT3KSNpOHAe0FOhrkPA+SlveV39tXV1RLRFRNv48eNr/VXNzGwABhRcJE3M/XgtUFpJth5YlFaATSObuN8aEQeAI5KuTPMpNwFP5cqUVoJdBzwb2froTcBcSWPSsNtcYFN67bmUl1S2VJeZmTWBU07oS3oM+DTwEUn7yFZwfVrSTLLhqD3AlwEiYqekdcBrQC+wNCKOp6puIVt5dg7ZRP7GlP4A8HCa/O8hW21GRPRIugfYlvLdXZrcB5YBayWtAHakOszMrEn4IkozM6toIBdRDqngIqkb+Od+XvoI2VxOq3G768vtrq9WbTe0bttP1u6LI6KmSeshFVxORlJHrVG5Gbjd9eV211erthtat+1Fttt3RTYzs8I5uJiZWeEcXDKrG92AAXK768vtrq9WbTe0btsLa7fnXMzMrHDuuZiZWeEGZXA5yR40/17S5rSnzP+RNDqlj5C0JqXvkrQ8V+b5tC9Nad+aCU3U7rMl/WVKf0nSp3Nl+t07pwXaXe/zfaGk59K/+05Jt6f0sZLa035B7bkbs9a8X1ELtLtu57zWdksal/K/J+n+srrq/Rkvsu3NfM5/S9L2dG63S5qTq6u2cx4Rg+4B/CfgN4BXc2nbgP+cjn8fuCcdX0+2TQDAr5HdcWBq+vl5oK1J270U+Mt0PAHYDgxLP28F/gPZTT43Ap9pkXbX+3xPBH4jHZ8L/CMwA/jPDIkDAAADj0lEQVQWcGdKvxO4Nx3PAF4CRgLTgH8Czqr3OS+43XU75wNo94eA3wS+AtxfVle9P+NFtr2Zz/nlwKR0fBnw5kDP+aDsuUTE35HdSibvE8DfpeN24HdK2YEPKbsR5jnAvwLv1qOd5Wps9wzgp6ncQeBtoE3Zfd9GR8TmyD4Rpb1zmrrdZ7J9JxMRByLi5+n4CLCLbPuGBWT7BJGeS+fv3/YriojXgdJ+RXU950W1+0y172RqbXdE/EtE/D1wNF9Pgz7jhbS93gbQ7h0RUboR8E5glLJ7RdZ8zgdlcDmJV4EvpOMv8sEdl58A/oVs64C9wJ/GB/cwA/jL1HX9n2e6630SJ2v3S8ACScOV3SR0Vnqt0t459VRru0sacr6VbYh3ObAFuCCym62SnkvDFgPZr+iMOs12l9T9nFfZ7pNp6Gf8NNte0grn/HeAHZFt/ljzOR9KweX3gaWStpN1D/81pc8GjgOTyIYMvirp36XXboiITwH/MT1urG+TgZO3+4dk/8AdwJ8B/5fsZqE17XdzBtXabmjQ+Zb0YeBHwB9ERKVeayF7DBWlgHZDA855De0+aRX9pNXlM15A26EFzrmkS8m2k/9yKamfbBXP+ZAJLhHxi4iYGxGzgMfIxp0hm3P524h4Pw3T/ANpmCYi3kzPR4BHacxQQr/tjojeiPjDiJgZEQuA84FOKu+d08ztbsj5ljSC7D/dX0XEj1PyW2kYoDQEczClD2S/omZud93PeY3tPpmGfMYLanvTn3NJU4AngZsiovR3suZzPmSCS2lFhqRhwNeB76WX9gJzlPkQcCXwizRs85FUZgTweT7Yt6bh7Zb0a6m9SPotoDciXovKe+c0bbsbcb7T+XkA2BUR38m9lN9jKL9f0ED2K2radtf7nA+g3f1qxGe8qLY3+zmXdD7wN8DyiPiHUuYBnfNKs/2t+iD7pnwAeJ8s4t4M3E62UuIfgW/ywQWkHwb+mmzy6jXgf8QHqz22Ay+n1/6ctMKmSdo9FdhNNkH3DNldS0v1tJF9YP8JuL9Uppnb3aDz/ZtkXfuXgRfT47PAOLJFB53peWyuzNfSed1NbrVMPc95Ue2u9zkfYLv3kC0WeS99tmY06DNeSNub/ZyTfRH8l1zeF4EJAznnvkLfzMwKN2SGxczMrH4cXMzMrHAOLmZmVjgHFzMzK5yDi5mZFc7BxczMCufgYmZmhXNwMTOzwv1/q4MdzlEclD8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "yearly_incidence.plot(style='*')" ] @@ -314,9 +2388,54 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "2014 1600941\n", + "1991 1659249\n", + "1995 1840410\n", + "2012 2175217\n", + "2003 2234584\n", + "2019 2254386\n", + "2006 2307352\n", + "2017 2321583\n", + "2001 2529279\n", + "1992 2574578\n", + "1993 2703886\n", + "2018 2705325\n", + "1988 2765617\n", + "2007 2780164\n", + "1987 2855570\n", + "2016 2856393\n", + "2011 2857040\n", + "2008 2973918\n", + "1998 3034904\n", + "2002 3125418\n", + "2009 3444020\n", + "1994 3514763\n", + "1996 3539413\n", + "2004 3567744\n", + "1997 3620066\n", + "2015 3654892\n", + "2000 3826372\n", + "2005 3835025\n", + "1999 3908112\n", + "2010 4111392\n", + "2013 4182691\n", + "1986 5115251\n", + "1990 5235827\n", + "1989 5466192\n", + "dtype: int64" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "yearly_incidence.sort_values()" ] @@ -331,9 +2450,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEKCAYAAAAGvn7fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGalJREFUeJzt3X2UJXV95/H3h5kBhmkYjAONDsr4QAhIqzgXXWQ13WhcdNCcGE5QQcVIGo0PRCdnM8v6sLrLOj5MsphgkklUiAodw8PZyBjUE2hQNEgPqA2OEBdmlSEMAjLSMAuMfPePX7XctP1wq+69XcXPz+ucPn3vrbpVn/rdut9b9auqexURmJlZPvaqO4CZmfWWC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLzNJ+TnzVqlWxZs2aWYc9+OCDrFixop+zr6zJ2aDZ+Zytuibnc7bqyubbunXrPRFxUFczjYi+/a1duzbmctVVV805rG5NzhbR7HzOVl2T8zlbdWXzARPRZe11V4yZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWWmVGGX9B5JN0u6SdJFkvbtVzAzM6um48IuaTXwbqAVEUcDS4DX9SuYmZlVU7YrZimwXNJSYD/gzt5HMjOzbihK/OappLOAc4DdwFcj4tRZxhkFRgEGBwfXjo2NzTqtqakpBgYGqmTuuyZng97nm9yxq2fTGlwOO3d3Pv7Q6pU9m/dCftVe115yturK5hsZGdkaEa1u5tlxYZf0JOAS4BTgfuAfgIsj4vNzPafVasXExMSsw8bHxxkeHi6bd1E0ORv0Pt+aDVt6Nq31Q3vYNNn5N1Vs37iuZ/NeyK/a69pLzlZd2XySui7sZbpiXg7cHhE/iYhHgUuBF3czczMz670yhf1HwH+QtJ8kAS8DtvUnlpmZVdVxYY+I64CLgRuAyeK5m/uUy8zMKir1tb0R8UHgg33KYmZmPeArT83MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy03Fhl3SEpO+0/f1M0h/1M5yZmZXX8U/jRcQtwPMBJC0BdgCX9SmXmZlVVLUr5mXA/4mI/9vLMGZm1j1FRPknSZ8BboiIv5hl2CgwCjA4OLh2bGxs1mlMTU0xMDBQet6LocnZoPf5Jnfs6tm0BpfDzt2djz+0emXP5r2Q9nbr5TKXMd/yNnm9c7bqyuYbGRnZGhGtbuZZurBL2hu4E3hOROycb9xWqxUTExOzDhsfH2d4eLjUvBdLk7NB7/Ot2bClZ9NaP7SHTZMd9/CxfeO6ns17Ie3t1stlLmO+5W3yeuds1ZXNJ6nrwl6lK+aVpK31eYu6mZnVo0phfz1wUa+DmJlZb5Qq7JL2A34LuLQ/cczMrFudd4YCEfEQ8OQ+ZTEzsx7wladmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmSn703gHSrpY0g8kbZN0XL+CmZlZNaV+Gg84F7giIk6WtDewXx8ymZlZFzou7JIOAF4KnA4QEY8Aj/QnlpmZVaWI6GxE6fnAZuD7wPOArcBZEfHgjPFGgVGAwcHBtWNjY7NOb2pqioGBgerJ+6jJ2aD3+SZ37OrZtAaXw87dnY8/tHplz+a9kPZ26+UylzHf8jZ5vXO26srmGxkZ2RoRrW7mWaawt4B/AY6PiOsknQv8LCLeP9dzWq1WTExMzDpsfHyc4eHh8okXQZOzQe/zrdmwpWfTWj+0h02Tnffwbd+4rmfzXkh7u/VymcuYb3mbvN45W3Vl80nqurCXOXh6B3BHRFxX3L8YeEE3Mzczs97ruLBHxF3AjyUdUTz0MlK3jJmZNUjZs2LeBXyhOCPmNuAtvY9kZmbdKFXYI+I7QFd9P2Zm1l++8tTMLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsM6V+QUnSduAB4OfAnm5/SdvMzHqv7G+eAoxExD09T2JmZj3hrhgzs8woIjofWbod+CkQwF9HxOZZxhkFRgEGBwfXjo2NzTqtqakpBgYGqmTuq8kduxhcDjt3L/68h1av7Gi8Xrfd5I5dPZtW2bbrdJl7ob3dernMZcy3vE19T4CzdaNsvpGRka3ddnOXLexPjYg7JR0MfA14V0RcM9f4rVYrJiYmZh02Pj7O8PBwybj9t2bDFtYP7WHTZJVequ5s37iuo/F63XZrNmzp2bTKtl2ny9wL7e3Wy2UuY77lbep7ApytG2XzSeq6sJfqiomIO4v/dwOXAS/sZuZmZtZ7HRd2SSsk7T99G3gFcFO/gpmZWTVl+hsGgcskTT/vwoi4oi+pzMysso4Le0TcBjyvj1nMzKwHfLqjmVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZKF3ZJSyTdKOnyfgQyM7PuVNliPwvY1usgZmbWG6UKu6RDgXXA3/YnjpmZdUsR0fnI0sXAR4D9gT+OiJNmGWcUGAUYHBxcOzY2Nuu0pqamGBgYqJK5ryZ37GJwOezcXXeSuTU5X9lsQ6tX9i/MDO3r3OSOXYs233bzLW9T3xPgbN0om29kZGRrRLS6mefSTkeUdBJwd0RslTQ813gRsRnYDNBqtWJ4ePZRx8fHmWtYnU7fsIX1Q3vYNNlx0yy6Jucrm237qcP9CzND+zp3+oYtizbfdvMtb1PfE+Bs3agjX5mumOOB10jaDowBJ0j6fF9SmZlZZR0X9oj4LxFxaESsAV4HXBkRp/UtmZmZVeLz2M3MMlOpozYixoHxniYxM7Oe8Ba7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8tMx4Vd0r6Svi3pu5JulvShfgYzM7NqyvyC0sPACRExJWkZ8A1J/xQR/9KnbGZmVkHHhT0iApgq7i4r/qIfoczMrDqlet3hyNISYCvwbOC8iPiTWcYZBUYBBgcH146Njc06rampKQYGBuac1+SOXR3n6rXB5bBzd22zX1CT85XNNrR6Zf/CzNC+ztW1fs23vAu9J+r0RM3WhNe5bNuNjIxsjYhWN/MvVdh/8STpQOAy4F0RcdNc47VarZiYmJh12Pj4OMPDw3POY82GLaVz9cr6oT1smqz0O9+Losn5ymbbvnFdH9P8e+3rXF3r13zLu9B7ok5P1GxNeJ3Ltp2krgt7pbNiIuJ+YBw4sZuZm5lZ75U5K+agYksdScuBlwM/6FcwMzOrpsz+/FOAC4p+9r2AL0bE5f2JZWZmVZU5K+Z7wDF9zGJmZj3gK0/NzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMlPmN0+fJukqSdsk3SzprH4GMzOzasr85ukeYH1E3CBpf2CrpK9FxPf7lM3MzCroeIs9Iv4tIm4obj8AbANW9yuYmZlVo4go/yRpDXANcHRE/GzGsFFgFGBwcHDt2NjYrNOYmppiYGBgznlM7thVOlevDC6Hnbtrm/2CmpzP2arrd76h1SsrP3eh92ud5stWVx1pb+uybTcyMrI1IlrdzL90YZc0AFwNnBMRl843bqvViomJiVmHjY+PMzw8POdz12zYUipXL60f2sOmyTK9VIuryfmcrbp+59u+cV3l5y70fq3TfNnqqiPtbV227SR1XdhLnRUjaRlwCfCFhYq6mZnVo8xZMQI+DWyLiD/tXyQzM+tGmS3244E3AidI+k7x96o+5TIzs4o67tCLiG8A6mMWMzPrAV95amaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpaZMr95+hlJd0u6qZ+BzMysO2W22M8HTuxTDjMz65GOC3tEXAPc18csZmbWA4qIzkeW1gCXR8TR84wzCowCDA4Orh0bG5t1vKmpKQYGBuac1+SOXR3n6rXB5bBzd22zX1CT8zlbdf3ON7R6ZeXnLvR+rdN82eqqI+1tXbbtRkZGtkZEq5v597ywt2u1WjExMTHrsPHxcYaHh+d87poNWzrO1Wvrh/awaXJpbfNfSJPzOVt1/c63feO6ys9d6P1ap/my1VVH2tu6bNtJ6rqw+6wYM7PMuLCbmWWmzOmOFwHfAo6QdIekt/YvlpmZVdVxh15EvL6fQczMrDfcFWNmlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWmVKFXdKJkm6R9ENJG/oVyszMqivzm6dLgPOAVwJHAa+XdFS/gpmZWTVltthfCPwwIm6LiEeAMeC3+xPLzMyqUkR0NqJ0MnBiRJxR3H8j8KKIeOeM8UaB0eLuEcAtc0xyFXBPldCLoMnZoNn5nK26JudzturK5jssIg7qZoZLS4yrWR77pU+FiNgMbF5wYtJERLRKzH/RNDkbNDufs1XX5HzOVl0d+cp0xdwBPK3t/qHAnb2NY2Zm3SpT2K8HDpf0DEl7A68D/rE/sczMrKqOu2IiYo+kdwJfAZYAn4mIm7uY94LdNTVqcjZodj5nq67J+ZytukXP1/HBUzMze2LwladmZplxYTczy4wLu5lZZp6QhV3Sakmr684xG0nPlPQeSSfUnWWmJmeDZudztuqanK/J2aB6vidUYZe0RtLVwBXAxyW9pO5M7ST9R+BrpO/SeZukt9cc6ReanA2anc/ZqmtyviZngy7zRUSj/4B9226/FvhEcfvNwD8AQ8V91ZDtBOAZ0/MHPgCcVtx/EfAlYLiOfE3O1vR8zpZnviZn63W+Rm6xSzpA0l9JuhX4hKTDikG/A/youD0G/BA4Y/ppi5jvKEnfA/4b8FlJJ0Rq7aOAQwAi4jrgm8BbFjNfk7M1PZ+z5Zmvydn6la+RhR04EdiXtGCPAB+QtJy0W/JqgIh4GLgYeElx/7F+hZF0qKQD2h46BbgkIl5K+oB5g6TDgQun8xUuA46WtE+/8jU5W9PzOVue+ZqcbbHy1VbYlSyV9FZJX5d0lqRnFYOfDTwSEXuAPwN+CpwGfBV4iqRfK8a7FfixpOP6lPFISV8GvgF8WNL01xT/P2C/4vYXgbuAdaRP1Ce37WHcR/p2y+f9KmVrej5nyzNfk7Mtdr7aCnuxq/GbwJuAjwH7AH9TDL4LuLv4ZPoxaWGeRWqA7/P41wIvA+4tHu8JSSva7j4fuCMi1gBXAp8oHr8PeFjS/hFxH/CvwFOLHN8E3luMtzfwc2B77tmans/Z8szX5Gx15lu0wi7pOEkflXR6cV/AkcAVEfGliPgYcJikFwM7SJ9gRxZP3wYMFI/9BfAqSa8mfSgMAt/tMtuTJJ0v6Xpgo6SDinxDwLWSFBH/CNwvaR1pT2H/YjjF/YOBx0h7GAdL+hvgImBPRNydY7am53O26pqcr8nZmpJvUQq7pOcAfwk8APyepPcW814NPFAsNMD5wBtIhXoP8OLi8RtIR4wfiohrgA3A6cDxwH+PiMfaplHFS4v5vYp0UOJs4ADSl50dUuxdAFxQ5Pt2sSyvBIiIbxXTWBoR24AzgZuB/xkRb6E7Tc7W9HzOlme+JmdrRr65Tpep+kfasj6DtNuxtHjsT4Gzitst4JPAycDLga+0PfdppF0VSIX8RtKvMB0D/G/gKW3jlj4dqWjYM4GrSd05q4rHvwi8u7j9DGBjMfxYUn/YkrZl+0kxndWkPYl3Ap8FPgWs6KLdGput6fmcza+r2+7f//V0i13S80kHOH8b+CDwvmLQDtJvpkL65LkW+F3gn4FDJD1X0rJI/ek7JL0kIq4kfd3lR4FLgYsi4t+m5xVFy5R0EvAa4EPAcaS+fUhn20zvHfwY+Drwyoi4nvSJO1LMcwq4Djg2InYAbyR1Bd0FvC8iHiwbqG1P49VNyzaD266axrUbuO26yfZEaLsyP433SyS9EDgc+GpE/IS0NX5rRJwu6QXAOZJawDjwnyTtFxEPSfou8HukczQvBP4A+KSk3cAkcHsxi78CLoyIXSUyKSJC0rGk3ZyvA1sinR7568BtEXGlpNtJV6++AtgK/I6kVRFxj6R/BR6U9HTgz4HTJB1M+tWoe0m7TkTEBDBRod1apL2aB4CPA3cDz6w7m9uuWrYnQru57fJru/mU2mJXskzSmyTdSOrYPxCYLrw/B7YXW983kHYtjgMe4vFTeAAeJe2CHELaKr+J1L9+NXBPRNwBaau8YlF/KfAZ0lHllwMfKUZ5DLhV0vKIuL3I91zSi3Un6XzS6eVYQmqfS4qMpwJrgc1R8RxXSSslfbaY5u3AuRFxt6S9SJ/kdWZbUrTdb5J2BRvTdsV6NyDpfBrWdsU8Q9IwzVzn9pG0oqFtd0DD225A0r6SLqBhbbegTvprgBXAi4vbBxbBPjnLeGeRLoNdXdw/mdSffhjpKwCuLh7fl9QNs6rtuccAe3eSZ8Y89wPexuNb/suAPwLeUQx/EvC9YvqnkPq71hTDTiqWZVVxexJYSerf/3J7HmCvLrJdRLpibIDUtXRm2zjTxyHeCfyPxcrW9rqeQVrZ1pMO8DSl7aazXVqsVwc1rO32B7aQfkkM4D1NaLcZ+b4M/HVx/2PA2+puO9J74s2k9/8lTWu7tnxXAn9fPNaY9a7TvwW32CWdDdwGbJE0GBH3k/qF7iz6xl+jxy8Q+hbpAOj0hUbXkg6iPhQRFwA/lfQ50kHRW4Bf9CFFxI0R8chCeWZkOwS4HBgGPkc6QPFa0l7CnmK6PyUdeH03qe/rYB4/jfIa0rn0j0TE5cCnSVeznkc6Yv1oW75Sn6ozsv0d8PYi263AEZI2FltRv690wdUVpD2Yvmcr8q0gvblOIF0/8ArScY9jSVtKdbZde7bNpLMFXku6huE36m67wnLStRfPkrSKtM4vKaZZS7vNkm9v0rr2VFIXx9GSPlJX20laRjrGdjLw8Yj43WLQMW3TrK3tZuT7WERMb3FPAkfV2XaldfAJNkzavfhb4D3FY8eSitYdRfALgU3FsHOAD7c9/3rgmOL2PqRTgI7txacSaeV9Udv900lbJm8Gvt32+FOBO4vb7yBdtvuk4vlfAp7eNu6qPmV7E+lI968Df1/8vR74X6Rz+RctW9v0Dmy7/Z9Jb6ZT6267WbL9MemUsWc2qO3eTOprfT/wVtKBtOvrbrdZ8r2PtMezqgltR9oDO3XGY6cA1zWh7ebI9/QiQ+3rXcfL0cGCTp+acwowXtxeRtqaWlncP4y0tX4saRfwYtKW1j+RPqn26Uv41Mcl+MVvt76Ax7t77iWdMzo97tcoCi1p9+mrxTh/skjZjgG+Mb3ito23jHRw+YTi/jn9zjYj5wGk4xs7gQ8X9+8FButqu1my3VXMdwVFN19dbdf2er6F1M32WuALxWP31N1uc+QbKx5rP124lvWO1EVxK7CpmP8HivpxH3BwA9a59nxXkb6Y69C617vSy1FigZ9MulDoOcX9pTOGnw+cPL0CkboezqRPRX2OlfkCHj9f/nPAR4vbv0ba43h62wtzNG1fCbxI2d7R/lhx+5Ci7Z672NnaMvwh6XzbzaR+7W8WbzjV2XYzsp1HOq3s2U1oO9JXRi8h9aFeTdoyvgl4f93r3Cz5/pl0htkLGtJ2XyHtgT2NtBV8FmnDsCnrXHu+L5Au/T+8CW3X6d900emIpE8BP4uIDcX9vUjnXb4DeA5wSpTsJ+8VSYeS+rTeFRG3Kn2h2GiRazXwnejNVWXdZHt7RNxWPHYMqVtqXZHtD+vI1k7pOoQzSW+yI0kr66HU2HZt2Y4mvdn+nHSW1UnU1HaSBkjdHPuQ2uk3SBeenE3aUj6cGtttlnyHk45P/BbpmNfLSO1Xy3qn4rTn4vbzSO/Ta0mX1Ne+zs3IdzTpSvdzSd80W9t6V0bZ89g3A+cWBxmOJK3Ex5NelLPrKuqFYyjOgZd0Bqn//2xSF9IPIp1+WXe2HxXZbietHHtIW/E31pit3b2kg4Dvi4i/k3QacHND8t1P6ie+ifS6LqO+tttDOnviUdKW+s9J6/8k8N4GtNtc+R6W9BpSwa9tvZsumoX7Sced3h8RFzag7Wbme4C08boN+K/Uu951rOwW++tIB0ofJn3j2JURcUufspUi6VrSwbXtpHNIPxQR36s1VGFGtruADQ1qt5WkLbg3kL7/fjNwXkQ8Ou8TF8Es2T4dEZvqTfXLigtPpvuy76o7z0xFvpOBz0Y666TuPPuQfnPhjaQ96r8EPhXpa7prN0u+zRHxZ/WmKqfjwi7puaTzOS8mHSzq2VfldqvYg/ggaUv485GuWmuEJmcDkLSU1P3yMClfk17XxmaDdFEX8FiU2TpaRE3OJ+lM0mm1n2va6wrNz7eQUlvsZmbWfE39aTwzM6vIhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlpn/D0QBdzhJVkBDAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "yearly_incidence.hist(xrot=20)" ] @@ -341,9 +2483,14 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, "outputs": [], "source": [] } -- 2.18.1