{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Incidence du syndrome de la varicelle" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import isoweek" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Les données de l'incidence du syndrome grippal sont disponibles du site Web du [Réseau Sentinelles](http://www.sentiweb.fr/). Si nous n'avons pas encore de copie locale, nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1984 et se termine avec une semaine récente." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "data_url = \"https://www.sentiweb.fr/datasets/incidence-PAY-7.csv\"\n", "data_file = \"syndrome-varicelle.csv\"\n", "\n", "import os\n", "import urllib.request\n", "if not os.path.exists(data_file):\n", " urllib.request.urlretrieve(data_url, data_file)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Voici l'explication des colonnes données [sur le site d'origine](https://ns.sentiweb.fr/incidence/csv-schema-v1.json):\n", "\n", "| Nom de colonne | Libellé de colonne |\n", "|----------------|-----------------------------------------------------------------------------------------------------------------------------------|\n", "| week | Semaine calendaire (ISO 8601) |\n", "| indicator | Code de l'indicateur de surveillance |\n", "| inc | Estimation de l'incidence de consultations en nombre de cas |\n", "| inc_low | Estimation de la borne inférieure de l'IC95% du nombre de cas de consultation |\n", "| inc_up | Estimation de la borne supérieure de l'IC95% du nombre de cas de consultation |\n", "| inc100 | Estimation du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n", "| inc100_low | Estimation de la borne inférieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n", "| inc100_up | Estimation de la borne supérieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n", "| geo_insee | Code de la zone géographique concernée (Code INSEE) http://www.insee.fr/fr/methodes/nomenclatures/cog/ |\n", "| geo_name | Libellé de la zone géographique (ce libellé peut être modifié sans préavis) |\n", "\n", "La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant `skiprows=1`." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
02020127863960101126813917FRFrance
1202011710209757512843161220FRFrance
220201079011669111331141018FRFrance
32020097136311054416718211626FRFrance
4202008710424770813140161220FRFrance
520200778959657411344141018FRFrance
620200679264692511603141018FRFrance
720200578505631410696131016FRFrance
82020047799158311015112915FRFrance
920200375968410078369612FRFrance
10202002765344530853810713FRFrance
1120200179835701912651151119FRFrance
122019527794152461063612816FRFrance
1320195175823367579719612FRFrance
14201950764244276857210713FRFrance
15201949766214540870210713FRFrance
1620194875542338377018511FRFrance
172019477753650581001411715FRFrance
182019467263813163960426FRFrance
1920194574492261563697410FRFrance
2020194475728362778299612FRFrance
2120194374834275169177410FRFrance
22201942762793989856910713FRFrance
232019417413020306230639FRFrance
242019407421122186204639FRFrance
252019397313713104964528FRFrance
262019387307814164740528FRFrance
2720193779701621778102FRFrance
28201936712772632291204FRFrance
29201935792201857102FRFrance
.................................
14991991267176081130423912312042FRFrance
15001991257161691070021638281838FRFrance
15011991247161711007122271281739FRFrance
1502199123711947767116223211329FRFrance
1503199122715452995320951271737FRFrance
1504199121714903897520831261636FRFrance
15051991207190531274225364342345FRFrance
15061991197167391124622232291939FRFrance
15071991187213851388228888382551FRFrance
1508199117713462887718047241632FRFrance
15091991167148571006819646261834FRFrance
1510199115713975978118169251832FRFrance
1511199114712265768416846221430FRFrance
151219911379567604113093171123FRFrance
1513199112710864733114397191325FRFrance
15141991117155741118419964271935FRFrance
15151991107166431137221914292038FRFrance
1516199109713741878018702241533FRFrance
1517199108713289881317765231531FRFrance
1518199107712337807716597221529FRFrance
1519199106710877701314741191226FRFrance
1520199105710442654414340181125FRFrance
15211991047791345631126314820FRFrance
15221991037153871048420290271836FRFrance
15231991027162771104621508292038FRFrance
15241991017155651027120859271836FRFrance
15251990527193751329525455342345FRFrance
15261990517190801380724353342543FRFrance
1527199050711079666015498201228FRFrance
15281990497114302610205FRFrance
\n", "

1529 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202012 7 8639 6010 11268 13 9 \n", "1 202011 7 10209 7575 12843 16 12 \n", "2 202010 7 9011 6691 11331 14 10 \n", "3 202009 7 13631 10544 16718 21 16 \n", "4 202008 7 10424 7708 13140 16 12 \n", "5 202007 7 8959 6574 11344 14 10 \n", "6 202006 7 9264 6925 11603 14 10 \n", "7 202005 7 8505 6314 10696 13 10 \n", "8 202004 7 7991 5831 10151 12 9 \n", "9 202003 7 5968 4100 7836 9 6 \n", "10 202002 7 6534 4530 8538 10 7 \n", "11 202001 7 9835 7019 12651 15 11 \n", "12 201952 7 7941 5246 10636 12 8 \n", "13 201951 7 5823 3675 7971 9 6 \n", "14 201950 7 6424 4276 8572 10 7 \n", "15 201949 7 6621 4540 8702 10 7 \n", "16 201948 7 5542 3383 7701 8 5 \n", "17 201947 7 7536 5058 10014 11 7 \n", "18 201946 7 2638 1316 3960 4 2 \n", "19 201945 7 4492 2615 6369 7 4 \n", "20 201944 7 5728 3627 7829 9 6 \n", "21 201943 7 4834 2751 6917 7 4 \n", "22 201942 7 6279 3989 8569 10 7 \n", "23 201941 7 4130 2030 6230 6 3 \n", "24 201940 7 4211 2218 6204 6 3 \n", "25 201939 7 3137 1310 4964 5 2 \n", "26 201938 7 3078 1416 4740 5 2 \n", "27 201937 7 970 162 1778 1 0 \n", "28 201936 7 1277 263 2291 2 0 \n", "29 201935 7 922 0 1857 1 0 \n", "... ... ... ... ... ... ... ... \n", "1499 199126 7 17608 11304 23912 31 20 \n", "1500 199125 7 16169 10700 21638 28 18 \n", "1501 199124 7 16171 10071 22271 28 17 \n", "1502 199123 7 11947 7671 16223 21 13 \n", "1503 199122 7 15452 9953 20951 27 17 \n", "1504 199121 7 14903 8975 20831 26 16 \n", "1505 199120 7 19053 12742 25364 34 23 \n", "1506 199119 7 16739 11246 22232 29 19 \n", "1507 199118 7 21385 13882 28888 38 25 \n", "1508 199117 7 13462 8877 18047 24 16 \n", "1509 199116 7 14857 10068 19646 26 18 \n", "1510 199115 7 13975 9781 18169 25 18 \n", "1511 199114 7 12265 7684 16846 22 14 \n", "1512 199113 7 9567 6041 13093 17 11 \n", "1513 199112 7 10864 7331 14397 19 13 \n", "1514 199111 7 15574 11184 19964 27 19 \n", "1515 199110 7 16643 11372 21914 29 20 \n", "1516 199109 7 13741 8780 18702 24 15 \n", "1517 199108 7 13289 8813 17765 23 15 \n", "1518 199107 7 12337 8077 16597 22 15 \n", "1519 199106 7 10877 7013 14741 19 12 \n", "1520 199105 7 10442 6544 14340 18 11 \n", "1521 199104 7 7913 4563 11263 14 8 \n", "1522 199103 7 15387 10484 20290 27 18 \n", "1523 199102 7 16277 11046 21508 29 20 \n", "1524 199101 7 15565 10271 20859 27 18 \n", "1525 199052 7 19375 13295 25455 34 23 \n", "1526 199051 7 19080 13807 24353 34 25 \n", "1527 199050 7 11079 6660 15498 20 12 \n", "1528 199049 7 1143 0 2610 2 0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 17 FR France \n", "1 20 FR France \n", "2 18 FR France \n", "3 26 FR France \n", "4 20 FR France \n", "5 18 FR France \n", "6 18 FR France \n", "7 16 FR France \n", "8 15 FR France \n", "9 12 FR France \n", "10 13 FR France \n", "11 19 FR France \n", "12 16 FR France \n", "13 12 FR France \n", "14 13 FR France \n", "15 13 FR France \n", "16 11 FR France \n", "17 15 FR France \n", "18 6 FR France \n", "19 10 FR France \n", "20 12 FR France \n", "21 10 FR France \n", "22 13 FR France \n", "23 9 FR France \n", "24 9 FR France \n", "25 8 FR France \n", "26 8 FR France \n", "27 2 FR France \n", "28 4 FR France \n", "29 2 FR France \n", "... ... ... ... \n", "1499 42 FR France \n", "1500 38 FR France \n", "1501 39 FR France \n", "1502 29 FR France \n", "1503 37 FR France \n", "1504 36 FR France \n", "1505 45 FR France \n", "1506 39 FR France \n", "1507 51 FR France \n", "1508 32 FR France \n", "1509 34 FR France \n", "1510 32 FR France \n", "1511 30 FR France \n", "1512 23 FR France \n", "1513 25 FR France \n", "1514 35 FR France \n", "1515 38 FR France \n", "1516 33 FR France \n", "1517 31 FR France \n", "1518 29 FR France \n", "1519 26 FR France \n", "1520 25 FR France \n", "1521 20 FR France \n", "1522 36 FR France \n", "1523 38 FR France \n", "1524 36 FR France \n", "1525 45 FR France \n", "1526 43 FR France \n", "1527 28 FR France \n", "1528 5 FR France \n", "\n", "[1529 rows x 10 columns]" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = pd.read_csv(data_file, skiprows=1)\n", "data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Y a-t-il des données manquantes ? Non :" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
\n", "
" ], "text/plain": [ "Empty DataFrame\n", "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n", "Index: []" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data[data.isnull().any(axis=1)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nos données utilisent une convention inhabituelle: le numéro de\n", "semaine est collé à l'année, donnant l'impression qu'il s'agit\n", "de nombre entier. C'est comme ça que Pandas les interprète.\n", " \n", "Un deuxième problème est que Pandas ne comprend pas les numéros de\n", "semaine. Il faut lui fournir les dates de début et de fin de\n", "semaine. Nous utilisons pour cela la bibliothèque `isoweek`.\n", "\n", "Comme la conversion des semaines est devenu assez complexe, nous\n", "écrivons une petite fonction Python pour cela. Ensuite, nous\n", "l'appliquons à tous les points de nos donnés. Les résultats vont\n", "dans une nouvelle colonne 'period'." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "def convert_week(year_and_week_int):\n", " year_and_week_str = str(year_and_week_int)\n", " year = int(year_and_week_str[:4])\n", " week = int(year_and_week_str[4:])\n", " w = isoweek.Week(year, week)\n", " return pd.Period(w.day(0), 'W')\n", "\n", "data['period'] = [convert_week(yw) for yw in data['week']]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Il restent deux petites modifications à faire.\n", "\n", "Premièrement, nous définissons les périodes d'observation\n", "comme nouvel index de notre jeux de données. Ceci en fait\n", "une suite chronologique, ce qui sera pratique par la suite.\n", "\n", "Deuxièmement, nous trions les points par période, dans\n", "le sens chronologique." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nous vérifions la cohérence des données. Entre la fin d'une période et\n", "le début de la période qui suit, la différence temporelle doit être\n", "zéro, ou au moins très faible. Nous laissons une \"marge d'erreur\"\n", "d'une seconde.\n", "\n", "Ceci s'avère tout à fait juste." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", " delta = p2.to_timestamp() - p1.end_time\n", " if delta > pd.Timedelta('1s'):\n", " print(p1, p2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Première visualisation des données :" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsfXmcFsWZ//d533cYhvu+VVBQgxBREdF4n0QTr40bcnn83Ji4ZhNzribZrGYliRsTEzerifGOiUeMWW/jfSMED0AgcgsIcghyM8PMW78/uuvt6uq6uuc9Znjry2d437e6uqq6u7qeem5ijMHDw8PDw0NErtYD8PDw8PDoePDEwcPDw8MjAU8cPDw8PDwS8MTBw8PDwyMBTxw8PDw8PBLwxMHDw8PDIwFPHDw8PDw8EvDEwcPDw8MjAU8cPDw8PDwSKNR6AFkxYMAANnLkyFoPw8PDw6NT4Y033tjAGBtoq9dpicPIkSMxa9asWg/Dw8PDo1OBiN5zqefFSh4eHh4eCXji4OHh4eGRgCcOHh4eHh4JeOLg4eHh4ZGAJw4eHh4eHgl44uDh4eHhkYAnDh4eHh4eCXji4FE3WLlxB15auL7Ww/Dw6BTotE5wHh5pcdzPn0eRAct/dkath+Lh0eHhOQePukGR1XoEHh6dB544eHh4eHgk4ImDh4eHh0cCVuJARF2JaCYRzSaieUR0dVh+FRG9T0Rvh3+nC+dcSUSLiehdIjpNKD+MiOaGx24gIgrLG4novrB8BhGNLP+lenh4eHi4woVzaAZwImPsYAATAEwhosnhsesZYxPCv8cBgIjGApgK4CAAUwDcSET5sP5NAC4BMCb8mxKWXwxgE2NsNIDrAVzb/kvz8PDw8MgKK3FgAbaFPxvCP5Nq7ywA9zLGmhljywAsBjCJiIYC6MUYm84YYwDuAnC2cM6d4fcHAJzEuQoPDw8Pj+rDSedARHkiehvAOgBPM8ZmhIe+RkRziOg2Iuoblg0HsFI4fVVYNjz8LpfHzmGMtQLYDKC/YhyXENEsIpq1fr23V/fw8PCoFJyIA2OsjTE2AcAIBFzAOAQiov0QiJrWAPhFWF2142eGctM58jhuZoxNZIxNHDjQmsjIw6NseHHhemza3lLrYXh4VA2prJUYYx8BeAHAFMbY2pBoFAH8HsCksNoqAHsJp40AsDosH6Eoj51DRAUAvQFsTHUlHh4VwvbmVlxw20xcdMffaz0UD4+qwcVaaSAR9Qm/NwE4GcA/Qh0CxzkA3gm/PwxgamiBNAqB4nkmY2wNgK1ENDnUJ5wP4CHhnAvC758B8Fyol/DwqDla24KpuHT9NktND489By7hM4YCuDO0OMoBuJ8x9igR/YGIJiAQ/ywH8BUAYIzNI6L7AcwH0ArgMsZYW9jWpQDuANAE4InwDwBuBfAHIlqMgGOYWoZr8/AoK/xuxaOeYCUOjLE5AA5RlH/JcM40ANMU5bMAjFOU7wJwnm0sHh41AdeIeergUUfwHtIedYm3VmzCGTe8jJ0tbda63Kja0waPeoInDh51iR8/Oh/zVm/B/DVbrHW9w41HPcITB4+6hDd38PAwwxMHDw9HeAM6j3qCJw4edQfGGDpycJZVm3bg3+55C7t22/UhHh6VgicOHnWHIssmVqoW33DVw/PxyOzVPqWpR03hiYNH3SGteMgLkzzqEZ44eNQd0i72XtXgUY/wxMGj7iAu9ml0D9UjEp4aedQenjh41B1Y2sWXZTzPw6MTwxMHj7pDWg6g+kShA5tSedQNPHHoZFi4dis+2Lyr1sOoS3jdg0c9wSUqq0cHwqnXvwQAWP6zM2o8ks6L1JxD1YmCp0IetYfnHDzqDkWWTVDkl2yPeoInDh51h9SmrBUZhQle5+BRe3ji4FF3SO0E55UNdYMH3liFlRt31HoYHQKeOHjUHcSlPtUe3fs57NFY/dFOfOfPs3HZn96s9VA6BDxx8Kg7pDdl5Z9+0d6TwXOFL1nnc4UDDsSBiLoS0Uwimk1E84jo6rC8HxE9TUSLws++wjlXEtFiInqXiE4Tyg8jornhsRuIAv9UImokovvC8hlENLL8l+rhESLjGl896VLtdA5funUGDr76qZr1X0tw4u+3AAFcOIdmACcyxg4GMAHAFCKaDOAKAM8yxsYAeDb8DSIaC2AqgIMATAFwIxHlw7ZuAnAJgDHh35Sw/GIAmxhjowFcD+DaMlxb2fH0/LVYst7vKjo7GNKFZa0nU9aXF23A5p27a9Z/LcGfs1cxBbASBxaAr4gN4R8DcBaAO8PyOwGcHX4/C8C9jLFmxtgyAIsBTCKioQB6Mcams0DDd5d0Dm/rAQAnca6iI+HLd83CSb94sdbD8GgnOr6HdIAO+Ars0fDiwzicdA5ElCeitwGsA/A0Y2wGgMGMsTUAEH4OCqsPB7BSOH1VWDY8/C6Xx85hjLUC2Aygf5YL8vCwoZhxa1jtJcNbSVUX/H772x7AiTgwxtoYYxMAjEDABYwzVFdtd5ih3HROvGGiS4hoFhHNWr/eJ0LxyIbU737VFwvPMdQSnjYESGWtxBj7CMALCHQFa0NREcLPdWG1VQD2Ek4bAWB1WD5CUR47h4gKAHoD2Kjo/2bG2ETG2MSBAwemGbpHJ8LWXbuxaXtLxdrPaq1UPVSux2cXrMXGCt7bzgyW+FLfcLFWGkhEfcLvTQBOBvAPAA8DuCCsdgGAh8LvDwOYGlogjUKgeJ4Zip62EtHkUJ9wvnQOb+szAJ5jHZin/vEj87H6o521HsYeiyN+8iwO+a+nU53zjXvfwsOzV9srIi5TTiPXr/aULLfOYVtzKy6+cxYuun1mWdvdU1BSSHvqAMAt8N5QAHeGFkc5APczxh4loukA7ieiiwGsAHAeADDG5hHR/QDmA2gFcBljjGdKvxTAHQCaADwR/gHArQD+QESLEXAMU8txcZXCba8uw8K1W3H3vxxRlvZWbtyBxkIOg3p1LUt7nR07WtrslSQ89PZqPPT2apx58DB7ZeHdd1nwa7VNKRcxWrdlFzbt2I1hfYL5tdjb8WvgdQ4irMSBMTYHwCGK8g8BnKQ5ZxqAaYryWQAS+grG2C6ExKWzoKWtWLa2jvnv5wH4SKvVwtotzZnOq96aUV6OYfJPn0WRAfOuDlyOWot+9VPBE4U4vId0VviJ1Glx7ZP/KH13Ed2wqu8oy9uRTAs8cVCDSZ/1Dk8cMiKrOaRH7dFYSDfta/Woy61z4JfR5omDEpETnL8/gCcOmeGnT+dF14a8vVIHQLkXqSztPTZnDe6avrys4+jo8O92AJ8JLiP87qLzorEhl2oB2FPyOdiuQ6Wo5hFKzz9yZPkH1MFQffFhx4bnHDLCz5/OixF9mmo9BAsqM7tMi94js1fj5F/Wd2gYTxTi8MQhI/I1iHvjnZfah37duwAA9hvUI9V5teISqxlbaf6aLVXrq6PCE4c4PHHIiEK++sThjteWV73PPQn5XPDMUntI7ymLxp5yHRWCd36LwxOHjGjI+1vXWVGvi0C9Xrcr9phNQJngV7iM8MSh84HzesVisqwe4Bc/jzTwK1xGFHL1tKzsWUhr5++6qO5oacXIKx7Dn2etjJU/PX8ttjW3puqzEvC0wQxPPOPwxCEjGlI6Unl0HHzvL3Mq0i4Py/Gb5xeXypZt2I4v3zUL37l/dkX6BIAn3/kALy9Sh7D/+j1vlb63ljHki8eeD+/nkBENnnPodBAZhvVb3eMrucrqVTNie8gxrNi4w7m/tPjq3W8AUMfmEiPVfv+v71RsDHsCvE4mDr/9zYiC1zlUFYvXbcMdry5rVxtiyJM1m3cZ6/59+UZs3hHkUn5zxaZ29Qt0DJHOMwvWao95kYq/BzL8CpcRtfBzqGec+ZtXcNUj89vVhqtYZXdbEef9djouvCPIe/DN+7KLhNo7Tf7yxio8+OYqe8UyY0dL7XUk1YanDXF44pARngVtP+6ftRKvLdngVJfneGiPQ5pKEa1avHm9t1Z8lKmfcu5Av/3n2fhWBfUVOoz90d8wa3kiGeMeDR8SJw6vc8gIP4/aj+89ECiG0+SxYCz7brzN8aGJ1dIocfc0ZvKC2+orY5w4O15auB5tRYYTDhxUs/HUGp44ZISnDbVBe+570XGdF4nI7jb3Hve0DcP2DBn5OjPE53d+SBjrOQGXFytlxJ62EHQWtCePRqsjdRD7cD2nEnjh3XU169vDw0ociGgvInqeiBYQ0Twi+kZYfhURvU9Eb4d/pwvnXElEi4noXSI6TSg/jIjmhsduoDCyGBE1EtF9YfkMIhpZ/kstL2qic/AUqV23wNX3rShUTOMwVy6xEr/GP85YUZ4GOxA279yNZRu213oYGvj3S4QL59AK4NuMsY8BmAzgMiIaGx67njE2Ifx7HADCY1MBHARgCoAbiYhnV7kJwCUAxoR/U8LyiwFsYoyNBnA9gGvbf2nlRUJZVYN55BN4VScDn3ifO3pKzbmrNtd6CKlwzo2v4oTrXqj1MJTwe684rMSBMbaGMfZm+H0rgAUAhhtOOQvAvYyxZsbYMgCLAUwioqEAejHGprNgpb0LwNnCOXeG3x8AcBJVM16xAzoAbfAWUlWCSICKGYiD6jmlsYRJM/MXfNC5Qm0vXW/nGr7/17n49TOLqjCaOPzbFUcqnUMo7jkEwIyw6GtENIeIbiOivmHZcABicJlVYdnw8LtcHjuHMdYKYDOA/mnGVmnIE8ebvVUXfMGs9G1ftHYrnlsQyfrTcA6k8JFWlZUTHWoHVSb8acYKXP/Mwqr361/pOJyJAxH1APAXAJczxrYgEBHtB2ACgDUAfsGrKk5nhnLTOfIYLiGiWUQ0a/16dSyZSkEmBjXhHDrg5J2/egsenbPaXrGdKEVUrfBNOOX6l2Kxl9IG6SsH0lxiLiOD/ccZ72U6b0+G3/DF4UQciKgBAWH4I2PsQQBgjK1ljLUxxooAfg9gUlh9FYC9hNNHAFgdlo9QlMfOIaICgN4AEh44jLGbGWMTGWMTBw4c6HaFFUIt5lFHFH+ffsPL+Nqf3rJXLBOqfQtWVjAmUjmQVfj6g04QZ+mWl5di1+7qmdN2wNerpnCxViIAtwJYwBj7pVA+VKh2DgA+2x4GMDW0QBqFQPE8kzG2BsBWIpoctnk+gIeEcy4Iv38GwHOsg5HxhFipJmOo3S3Z1tyKL906o2bmlVwFVe1p8flbZtgrSWjvEDuWtq12uOaxBfjdi0ur09ej83FFhaL1dla4OMF9AsCXAMwlorfDsu8D+BwRTUCwTi4H8BUAYIzNI6L7AcxHYOl0GWOMk/9LAdwBoAnAE+EfEBCfPxDRYgQcw9T2XVZ6tLYV8dT8tfjkuCHK3L0JhXQNaFctyeWKD3fg5UUbsL25FccfUH2v0UisVO52y7cS12JR39MJye4qhRm/5ZX2BXXcE2ElDoyxV6DWCTxuOGcagGmK8lkAxinKdwE4zzaWSuIPr7+Hqx+Zj1+cdzD+6bARiePyrr0S63RbkZXyHHc08OvfFEYqrUqfjCUJdYfiJyuDNJuAchG3anOlymerQPdG8xLFGMO81Vswbnjvcg3NI4T3kA6xZWcQhVLnoJN4YSvwLrW0mndJtZS0pel6+YbtmLH0w7L2WbJW6gTUoZqPqbNyDrp7JM/x7o15dcUQj85Zg0/9zyt4ZHbljSLqDZ44hOjdFOxQNu902xlXYpGyE4eyd+kMbiXkQqCOv+4FfPbm18vWJxDtkDuiUt6ELIt3TcRTVTaK1QVBlItt3MWS9dsABCbIHuWFJw4huhSCHYoYS+eFd9dh5BWPYaFi4lVioW5uM1tm9G5qKH+njuDXW821WdWXiji5EKwOZt/Q4VBtjkxnkpwotTw3nlels20aOgM8cQjBJ6u4U3nynQ8AAG+8t0mhkC7/GGycA89bPaRX1/J3bkHEObS/rZbWIm56YYlznwBKWi/VIuAypmrQhnL1kUrn0EnlSq5iJRtyoY7ONRy7hzs8cQjBJ6VKH8yYSiHd/sm4atMO/F1IqNJsIQ4RAWt316mwZvNOnHPjawDKc913vLYM1z75D2s91fuetf9aLx1p1q40C11HIg0vvLsOKz508wvRORemVe3lSpxDrZ/wngefzyEEn6ui7JUvwi2tbfhAyjlcjrl49LXPx3676hyqvSDMXBYRMNN1b9zegkLePrptzW6OTQrGQblauDyKaoiVVIQrCyHvrCKSC2//O3IELP2pPQeCVqyU8tr5Zq5Sj7dYZCXupN7giUMIZtiVq3IXV2Iu2ogD3211VFHCof/1NLoUyseMxhTSBrGSC3SnlfNWKjmdDONNQ8jas2OuxMLnHhZdXZ7g0A3ttbQW8f5HOwGYw5y89+F2XHj733HfJZMxKKVIto0x5DoUf1Y9eLFSCD61XGPVtHencvUj8xJlLRaHn1qxzmK3tiHYCJwKOkcn1fVmjXj68iJ1LK5K3NL2cilpnjOv29PiD6BCLcORy9e4fmszWlqLqZ7H1Y/Mw13T31O2J+Ku6e9h2YbteOjt9OautYit1VHgiUOIkljJeZPQvklz+6vLE2W2hXVPmafyLf7j6+ogcOLlcnFflnV3zead+H93zEp1zqgB3dEln+71UA0tk1gpBX29/ulFmfup5cInL+aHT3sG/3bPm4l6MqG99O43cMAPg8AKMwRxpym0eteG4Dk2t6aP01TPugxPHEJECunqcA4qdFQnuEqbOepyFTPhdkRiJRU3YcaVD85NPSYq/eeOcj2fNAvSijAwYBbxUDlSoH60oyVTcDyV0v1v89Za86Y88c4HJcONnl0jbslE5xpDM/XrnlqIG55NlyfCcw4ekSWQY/1KTBnbopDGEa2ciIuV2t93IiKGpk0lIcgkwzcc0z1JUluuGftJV13fToaGsoTuziIClDHhx0/j879P7/CoNWVNcRd7NIrEwc45AMAvn06XJ6KOaYMnDhxqsZL+havEAm2biPx4LedrNfuOi5UM9So0qKy5ElTDSbPoZbHZzxKTa2eZwmG/ueKj1OeIO3LxXUpz6eI1m4hDIZd9mcuSCXBPgScOIfjccl0Qnn83e7IhHWGxERw+UWspBq1m33FrJb09u23hNR3VXQ8hvclwuayVssi5CznCh9uaU52za3d1Ip6qEEvFKnKmUj33W2HYyDmPKgkdob791WWYv7pzpWhNC08cQvAFphpmoroJb+ccQuJQ9QiaVe2uhPKJldKfREQZ5kJ5xuu6WRVl/Ws278Jh1zyD/3vrfed+yplIZ97qzanq60SV8jM33QpnEXA7zX1VuPqR+Tj9hpczt6vCui27nGO7VQN1TxwWrd2K0d9/vOTZKXLnlaITegcgm84h/lktsNj38neuvWyh3JQmtBLEqz2PPrbwZbhfrovZ5xSy/hnL3KPhlpM4nHHDK4my9z/aiRcXRhy2eF0xsZJwTtbQIaZ3tT3zo5phOSb95Fkc9/Pnq9afDXVPHO77+0q0Fhkem7sGQHY5cxo4rIVKlDO+UVak6Vun8HSNAKqMo+TevRN07RGVR6yUBa5ipbcyyPpFlEMhbcKU61/CBbfNLP0WCYJ4jSy++4jBRCjdjUeyPxiVtZI4pmsenV9Wi6aPqpgvxYa6Jw6lPAFKhbQZWdlVvVjJIjsvHa4eddi0vQU3vrA4GkOKc7/z59nt6lsVeK8jm53zoYlzKO14W9uKeOd9uyxbFSk47N25r0pzoFubW2O/2zTiI3HxTrOQi/e5UgYLKmtf8b7d8soyzFqeSHe/R8ATB0nRmWa3mHXS6YiAs87BUo8xhlteXoqRVzyGr/0p6VgkYsO2Zqzbukt7/N//MgdL10cJkNZvdVd6PrNgrVM9F06KP5dqmfG2J79Be4b4+lK3hebU61/K3kmI2EJsGHO5QsWLC60oWzd54JvvpaNYyW14SqjESvXi++CJQ/iZJW5Rub0nbQsfH6Ot1yXrt+GaxxYACDJlmTDxmmcwadqz2uPbpN1fOeB6i1XKQKWZqJVYmo6pD1IGcyVzP/bzl67fhuUfqjMRuiIN5+u6xpVL0ioutP900/TSd+ZGoxKIcw4ms3NpHCkWd1Vd+b3vqLHO2gsrcSCivYjoeSJaQETziOgbYXk/InqaiBaFn32Fc64kosVE9C4RnSaUH0ZEc8NjN1B4V4mokYjuC8tnENHI8l+q7gKDj0palcjQOgBZOQdez01xXSmcc+OrAIDn/7HOWM/dmsReh7+AmayVMu4d077y05dsSPadouspv3oZP/y/d6z1yiGHB9RiO3V/KRo1QLXQNre2SVxECrGSYz35+T/45irnPlTj8ZxDhFYA32aMfQzAZACXEdFYAFcAeJYxNgbAs+FvhMemAjgIwBQANxIRTwR7E4BLAIwJ/6aE5RcD2MQYGw3gegDXluHaUoHvalSiDB2ycg56sZJN58DCeub2y6lUVzXFFaFrNuvFUcY2Heupo7KquAnzDTlmzEDXoQn9UeoIs+rove5zxBZ4kcP0/DPrzKqw3qkW2s//fgYm/zTiXOUapvv31PxIbJnGWum1Je4WXUqxUoJzcG6uU8E6+xljaxhjb4bftwJYAGA4gLMA3BlWuxPA2eH3swDcyxhrZowtA7AYwCQiGgqgF2NsOgtmyV3SObytBwCcxLmKSoOzo23Rttz53Kw7Kq2M3VnnYK6YxVs2C7I6n7netqxZ32T0MEQsNTXXkDLwXtRm0hJn0bptmdpSwaQjSqMrcb2XWZ02Zah23G+8t8k4JtcuTFfdHqsspVhJKttDaUM6nUMo7jkEwAwAgxlja4CAgAAYFFYbDmClcNqqsGx4+F0uj53DGGsFsBlAf0X/lxDRLCKatX59dg/leJvx32mme7U5B9fwGR0lX7Lz4qO5IvE6yFDXqnNwG0YMhOycUaXxjXvfLks7sTUug0I3rXTFxWdAfr66Pq7727ux36a95JL1ccKcRiykslaSz99TpUzOxIGIegD4C4DLGWMmWzvVU2KGctM58QLGbmaMTWSMTRw4ML2oQAW5Y5UoQ4esxCGzzsGROpRTJppG0Zc4rhmou1hJOMegc7BerWGg2vAZZdoOVmLd2GAIk5FOId0+sVLa+e8UBFbmHDQD+83zi5XlKshhQmQiZdpMuYiVWh3FgZ0NTsSBiBoQEIY/MsYeDIvXhqIihJ9cO7kKwF7C6SMArA7LRyjKY+cQUQFAbwBVMR5ORgh1P9e2Bo+84jH816NJObTuRbSJaaLwGWZUy6uzXByKnlim5xLKhfYQB11oiHKh2RATqdym2Bd9YqR2wqUlDm6cg/TbsQuTKFV+BrJYyNSHWqwU/13LpEmVhIu1EgG4FcACxtgvhUMPA7gg/H4BgIeE8qmhBdIoBIrnmaHoaSsRTQ7bPF86h7f1GQDPsQrKRj77u+n49TNhkhTpdUrTqWmI/NitryxLHMvu52DvFygP51CO29/eXblK6qEOn5FN91ENlKtv8Rp3tJTHvNjlGRMos45M7sclwummHS2x365RUU25y+UW5DkkE63ffP4QbV1V/XLkxRAxZ1X7PN/LBRfO4RMAvgTgRCJ6O/w7HcDPAJxCRIsAnBL+BmNsHoD7AcwH8CSAyxhjPIjLpQBuQaCkXgLgibD8VgD9iWgxgG8htHyqBBhjmLFsI65/Rh3XvVycg2k3oZfhui36Vs7B4YX6cFszXlqo19uMuvJx/OCv5iQ5Yi+yYlE+ngVZEvuoYL6tOtFXcrEZM6hHht4jbNzegpFXPIZ7Zq5Ifa54DaZQ2+n8dOx1TM25cg68msu8/MY9cX1KOYhrghhIa7k8Lp4cSHUMSBKs1rbybj/O/M2rePIds39SNWBNPMsYewV6bvUkzTnTAExTlM8CME5RvgvAebaxlAOyU1dSIW1+0BceNRJ3vLYcgP7laCsyvL1ST/31gfeMXZd2KK5ExIRzb3oN74XBBnXn/3HGChw9eoC1LSAIYJiA685SU15UZIJTipps7QvniM/PBCLgshP2w/8+v8S5H3Xf0XfuF3L36+/hc5P2TteO8L1cobbdF/dsnK7YTw7kJFZauSk+J51FV4ZqrpEHOEQTZiXnIBOHCoiVlmvezWqi7jykZQ5Qpnq2uThueO+oLaFyW5GVJs0vn34X5/12euJcWx/OHtKWMboQBx1hAIBtuwICmiN3+/GZivgyWoW0aypWhWDJRc+z/w+eiN1L8ZQxg3vgO6fub+2bAOSlcbqK2pjm17fDWFO7MygwXRfJNLoSfXwmoT1k53Q5eC2X+yebnaYhQNr+LX4Jch9i7nCltZKswzD0/a373sZ/P/kP7XEdfvZE+nPKjbojDokFK+UCkM8BPzlnfFg3Kj/iJ8+UnHnmrDLHttctmrYXobWMYiUTtuwKPFZN/gFA/KV48M1kHoH2ZOACdERQpXOI/25pK2Llxp3KNgnxPA3ax02UyMusqnr+bTPxi6feVRzRt787gxjCmTikUEn/z3N2ix/j5sCRxvGhu0QclXfhzgTZUE0+Jl+S/L50KUQ1VNyOLFYyvW8PvvU+bnxhifZ4R0b9EQfLRBGPq160HFEp54M4KTZsaykFpbOaeGbkHEqyTRvn0E5lcnNrINPu2pC31DSjscFxemnG+9e33sejc1Zjy67diei5NrS0RXL52DNNsbOWPc1Vfb+0cL3TIisiC+dQS9cVXd/unENQb9UmNcHO0ndyLPb+ORKcg3Sy+NxVCnE52qzLGMuZO6NaqD/i0M7jAXHQp6w0lZf60L5s5r65zsGmF7n15WXmhixQ59NOwvZSNDqGn5ixTG21fOsry/C1P72Fb98/W7BWUg0kWaRLPelKGwjxxE+A+y5WjFyrOqO1jeHJd9bgfCHXgQ3OnsJldtclIgOnm25Xn2WBTEuAlG1YaHEyHIbAOSgm3PIN8eCILpz69x6YY63T0WBVSO9psMkfbXMxn6PUu9jEGBxftrYiwym/fBHfm3IApowb6qRz2NHSimctAfGs42Pxz6zo2dUt1LOOOHCs2RztOLOIGWKe1pIexSBVchIrpRkHx+62Ir56tzmUugx3sVJ5YWrPVXp59SPz0FjI45HZq+2VM/ZhFCvJnIN0VYnUpKIu0UEh7cKpv77UPZ5TR0H9EQfpt2miqHbqNVGkAAAgAElEQVRhOYKVc7DNFdcJv21XK5Zu2I4rHpyLKeOGOukcLk256KjgGizOVmvUgO7K8p//TS+jVyFHAkFWjkMhF9Y8BAr/2UAwi5W2N7dmUjQCGcVKwvf+3bvgw+2RP8CQXl3xwZbKhfrIKgbluGfmSnslbd+umwED5yAdSiiUpcfBYscUOq4UfXP06VaenBjVRP2Jlcz6aCtyRCVvTN0i7xpdVcYDb6hDCfPqXOdgan96ioiTOqR1bsp63BU5ihZ01xzS2gVNerW5M6QMIsKkUf1iZWLf5982E3dOf8807HAcyYFkMX0U+x7etwk9Q2OBLvkcujdGuiHdfB7Us9FopaVVFpPJWsk45LLAtQujziFBDMw7fxvnILfnQuvz7TTOqAU634jbiSSLKR0XHrxqIRJ3seWOrfSPDyTTQmlwrQ5ipXIgrsDNLqgo1+IRG4Ir4VJERgUCSyGxvVcWJ3MwcBy6d9/Yb1GcIDv9cSV+chxJNAvmms47Y2EBYiwSeeVz5Hyfz5u4l/bYfbPUu3sTl1XuZFfKPhwvzsTtysOUF/ydkse52KU6h7S5PfUYqrORKifqjjjIcyhhOid8V02MfC5SSGtDGduG4DoPSrJ/Fo7HYYuieZfvnbnC6JgnopQylcyT1m6VVT7OgYtNlGG8lX2Lx6Mfu9uKTnJ5VR2TCervX1qqLFfdAnFeuS7solc0A0MhJA6FHMXaM+XyGNyrK/781SPdOgRw+4WH8w6T42lpw+2vLnNuKytc7s+AHl2M9VS6PBGbd+qtj5RcqfzbiTi073gtUHfEQX4G8kSRd5kycgJx0LKTtongLNOP1xPd9NMuvFc8OBdn/++rWLdlFy6/961U52aF68J34JCexuOiM5rzvdO84K7yftUaa4qhI5s3usL1OYoJcYrFiHPICQYSALSbA96LayKokf274YQDBwUbBMU9/8VT7+L37bSKc8FtDgSIiCwK6Tjkd37LzrhITXZuTbQncw4OE900bxev24Z9v/+4tY1qo+6Igy3olvgQVQ89R1GQL9VC8+37Z6PZsgC5e30Gn7tai9i6a3eMy8m607jhuUX4v7fNViPOOgfLQu06xF6WBPYx6yKlfiFZKD5n8agsVtL2qVhl2wycw+qP1Aphe6Rd+1iSbUYEs5CjhCe3CWkTQelqf7TT7tBWLRBSKqSlAtnEVmxKqXOQnqkTcdBU2bprdyYrrmqg7oiD/JBkmebdr0dB0VSKwzxRyTmMy5nFifmXN1dhtkV847pb5AtcS2sR4696KjYJs3KhfZq6WOuIk18nV/5oRwuWSfbeIhryVDaxkrj2pQ3ZICMQK9kXSHkBOH38EOw2cA7aF9wyXN31XPSJkfqxMVZa5PO5uCe37doKGbIE2hT+V3zywNRtlgs/OP1jyNk4B1khndgQ6usrrZWY+bcKqkyAu3a3YfxVT+HXz6qNIlz1LZVC/REH4fuJ172A32lkxYBaxk9EJecuHlc/7TPMGi9GFGvoTTXN6NFVbb0sBs6zKeQAYMqvXjaaKBZyOWcOZKbFzyEXEyslodY5qLms3W3FTI5iOaJM0TdVZ/TvbifQn/r4UBw+sq/2eIMQotqFc+D3IG1+cTJYK3GMHtgDl588xrnNU8YOtooSXTF53/4gssVWiv82iZIBaf4rOQepPceJfsvL8bXGZrVm2oxUA/VHHIQHudSw8wWAAwb3SpTlcxHnsCvkHNLHMlLXlxcNec7FdQ4pu7TglOtfEtoOGieQ1rvUZldfyFMqa5al6/U5lmOikJQiOQC4VvBHcI1rJO/ACzlCa5GBMdbu2FUtbXYiDykGlIgiY+jfoxFAEAcrxjlY1v70YiV7/UKeMCAcj1ub5QOFfkemJyLe44NH9IY8BTiXePOXDsPT3zw2toFScw7xMtcgedc8tgArhICXNs66xrShHomDe11VApF8DugaxgzaVeIc0i0Wehv8OJKcQ/R7wRpTptb0favGwcAyx2lqyOdS3RcxX7O8wL28KDI3dfVz0FGRrMnmuZ16a5GlcmJTjU3M5Ka7RYGzpb7NAT2CjcTEffpBCCJqSuoKALG6rrAtYg35XCqOJLCCSz8OFSKfIzfOoVuXQkwi0FZkuPqRIFvjvgO7Y8zgnpiwVx/819njSsdN7aWFaPJs22O4Gl9UCnVHHFzAdwuql4KI0DVMBsIVWalz6eqIQ0I2Gj++WVACvvBuMlHPig93xGzolX04TLiYQi7jLjmfM8uBTTAtM65t6oYdiJXS7117NQW7ybYiS+XEprrfLpwDkd6TmyG4v89861j89kuHYf/BPWPHTCiXWEm8roZ8LpWoLsguV56FL0eEXA7GCxfvcSEf54ZvfH6xEAsruogzPz4MABJcBlA+E20r51Bb2lB/xMHlufLdsqpuXvCQ5gtn2gXU9cUwKaS6KiKeHvvz5xNlQ3p1dR9YCXaFtA0NKYmDq+OdbaHi0EVKbW1jmcQaw3o3AQiISzkdlnQt5QjQOdUyxkAgjB7UEz0aC5h29njhWFTvrRWio15o+pqWODjUMaXoVLZZVs4hFH86NljIxUVQiwVxpsip8XufJbmUCeK5tiFXw8nQhPojDil2zqqaqjg/aWWDrmIlk423azjtQb3ismDTfOPEiNOktVua8X6GMMsAkM+n2x1+Q/C9MAd7U23lkkW6FKhZ4hoBiG0I0ryyVucnzXAIpF3IGeKit6YueeFY1OE5N74mnaUmDmJgQ2V/lmtoyOVSEVwXJbcr+Pvo6gSXz+Xi4TGEE8VNibwBFOG6Zr8rRzwwjEsF13wZlYKVOBDRbUS0jojeEcquIqL3pZzS/NiVRLSYiN4lotOE8sOIaG547AYKnwQRNRLRfWH5DCIaWd5LjMP0PPbqF+wO+QumenhdCrnSJColTk8tVlLXl4tvf3W5tg0V5+DSlynonYpjEgO8pUFDLpeKLRb7Me1u27uZGje8dyoRyANfPRJPffPY0q6SsXQvrTzc08cPkY5HNXoKyZWC6LEa4sDMx0xQnXbkT59Ld4KELoWUOgeUz8yZxzpTxUfii3ORAVMOGoJ5V5+GBslQIkYcpHYBN2slHb51/9uJMrG5PUHncAeAKYry6xljE8K/xwGAiMYCmArgoPCcG4mIb2tuAnAJgDHhH2/zYgCbGGOjAVwP4NqM1+IE0+3mHABjwIylH+JXiqBsowf1iC0UgH0BlV+ExQqbZ1U9FbhF08CebtYhad7BNoOuhePsCcMwom+Tta1CO/wczKlJs7+sT3/zWFz0iZFuu9yw0sSR/bD/4J4li6AiY6leWnm8cnY9cYEYIDxTIqCLRlwTiJXUsNnGy2HIbXCp3a1LPp0JUhk5h3yO0JDLoVXiCB98832c9quX8Nw/1gZ+IXlC98YCchSPRRXnHOLtAm7WSgDwf2/FMyHuaGnFvNVJo5H5a6IskZ1e58AYewmA2RA9wlkA7mWMNTPGlgFYDGASEQ0F0IsxNp0Fd+QuAGcL59wZfn8AwElkEjq3E64Lls6LOJ8TI4QGZf/8O32+aACYJQVpm7V8k7Key8h4GGxXUVaaCcZ3VKZT8o7+C4WUnIMII3HI1iQAYN+BPQJFb4bpxc8psnQEd6O0cZCjc8b9McRdLGHaOeNLVkmxc6C/R3pjh7D/jK+W6b3pbkknK4OAslEHIqChkPRB4Qvz0vXbA05L6FzHOYjcD79PKimk6lZcfl+cS5CfO8c375sdtaOsEaEz6xy+RkRzQrET99YZDkD0jFoVlg0Pv8vlsXMYY60ANgPo345xGeFyuwO2Pfq94MdxxqnEOYSt6SYChyy3bC0WMahnI+6++IjUg3Mx3Ys1yRjWOcb6d0kmZAvGx9EezsEEpcrBsZv27DgibjEds/+t+2fHfsseyrqMda3FIgb36oprBGVzqR7TX4tuXvDYT2lpg0tiq25d8ilNWc1+CT/61FjntvI5QiGXi1mAAXGRDEO08Mve1DpTbc5huYTPUGHTdnt4kawZI6uFrMThJgD7AZgAYA2AX4TlqhnCDOWmcxIgokuIaBYRzVq/Xq1wtMHNzj/OtosKv2AgwYfrzjixIBSDSTp+eG+pXzvSEociY85OOpFYTd92zlEkIFuFiLA5TKWJsJkGfP3K6iEd9N8+U0bZCU3nyc19aBoUoqUiY3pltWZs3L8jNXFwIKmNhZQKaZjvYdo8313yuQTnwJsnCnQMvM2ctLnRiZWAMBy6YjKKfjc6bNwRbRjPGD9UWceqc+iMnANjbC1jrI0xVgTwewCTwkOrAIhB40cAWB2Wj1CUx84hogKA3tCIsRhjNzPGJjLGJg4cODDL0GFa2sRdkmmC5ly2U2L9xG6RIUcASXffZTLYEg3JYCzy5LahpJA21HE1GywYnOB0svQSDM2rDqVV3GXhIHKlDUH71IQJ4hD7Hv3iIbpVHs1Mt92CfV5065It+WOiWaGAiFIt6DZrpTRcSI4IhTxprdD+69H52N7cGuMcdDoHud88JRXdgBtx2CRIE3ShQmz6oQ6vc1Ah1CFwnAOAWzI9DGBqaIE0CoHieSZjbA2ArUQ0OdQnnA/gIeGcC8LvnwHwHKsgybSJTIBg4m7YqhcV8Snk+vDkSVdk3MlJGptDW1k4h50tbsShpHOwipXsbQWB99THbE5kZm/X9nAO2QVLkc6BtYvdT4qV1JxDjzC7m26h1O3obfOiR2MBT3/zWJehBv0I4jSO6Us+bFee8oBz0B9PozMnApas34ZZ723CvNVqZe+GbS0xrlF3z+VbTZQ9+N02IYR7l0I2AU2tdQ7WbQQR3QPgeAADiGgVgP8EcDwRTUCwni0H8BUAYIzNI6L7AcwH0ArgMsYYX5kuRWD51ATgifAPAG4F8AciWoyAY5hajgvTweV2P/T2+3hy3gexsr9dfmyJNZdzSA/q2Yh1JS/LJGSdQ5Ex5HLmHMU6FAz21yowFk8UY0LJM9zIXZnlxRwmhbRp0m/eudtIPNqjcyjBgUjINaIET+0zMUyKleLfzzx4GM49dDgO2ydIUaoOF6IPO+4ysjGD3YPe5YQNE8fnfv+6ol46nUOa48H1aohhkWHtluDde3TOGhw0LBDVylOIE9PAjFbTr/TUgyx7+jv68vdOwN2vv6cM3ikSJx1xsOocjEcrDytxYIx9TlF8q6H+NADTFOWzAIxTlO8CcJ5tHOWCcVccTg5VlNADBNZQXCgAYGT/7kbiIJvZFRlDnvROTibIfdtQZKwkv7aBs9AmuuOskM7pFdImwvY/mvDFHOWw/Xa563IvolipPUMwcQ5AEIri+AMGaY/zsenjLqUbnM2YgqSNkL5eqm6Nz1EmoEUG6CSRBSFY1A5ht55IByzoHHTXIt/ThnwuEYtLvL+DejVqF36xhwZNQCvb/s6H7K4y0i4uKoUgxIUC9hcnyTnEPa3TjI2HKnDmHBzGJ4/TqpBmwPA+Zl8HXWylLbt2Y5MumT3s4Y+VnIPxjCTarZC21FXOmRDyuXHOIckRqEyWi4zpxUqafcDZE4Ypy7981yzNSAOkVK85wSRWIkoSUF2wxLsvPgL9hEjGD74Z+RrI7fMw+8bcD9It7dVUwJZd+hSiJi5EXNgbs3IOnVHn0JnhIusU66jCVMg7DNtD3q0QKwUesPqx6V4IbiefRuegq3vQsHhI8pK1kqE9V4V0PqcOn/HTx82WU3+etcp4/LE5a2K/W9uKCc6sHJCXXhI2BO15ad95f3Psd4w4KPpVdWUymNDuijWsxnsfmsPWcyJku+ZU+hyD3oqQ3Gnf9OISZd2jxwwAADSF7+jWGOcQB6+Ty8XvkThsmeD2aeoSC3YJxDcvgWJdfSFiqZa7sHEOigrzV2/B35e7up21D544CFBNcBVxkFlt2yZeThrEQlPEhM5B+L5Nk5M4n3InVyzqd5MnCOILQJj4NrGSVHbBkfsk6slWIRz3zFyRLBSgu24OWRF65M+ew3E/f8F4jgwX80wZkTjP7CFtU9gnn3lcOZpQiiraYEjvBKd3fjPfC9mnRwdVK6pFUXQiVfdHiUB+H27Ti2yBiFPbp3+3Upn8DPh7TNK8NCmkezQWsE3iHGKEBXanQwDoohErqTj0l793QnRccc7pN7yM835rdrotF+qPOKQUQjQZOIfSWmrjHCQbbO7nIM7Fi48eFZsNut0w5xzS5FnQ7SYvO2F07Hebg0JaxZZ/6ciRyYoG2W45sd6g69Gh/X4O+npfPGIf43Wr5OkcgX9N/PhxBwQm272EBDRB8/F6L373eGNqVn2SH3V9rveIOCbN6SFU97RB0ecbPzzZqLdqLbIE52DTzUWxzqKytZLjJ/dVCkRaUUUxu6Lcj4ozEDdaZBBRiXNAr5BOlone5rW2Vqo/4pDyft/0xUMTZXL4jNmrNifqiJAddLhYSZyMXQq52ETUKZELGUxZdVXlkND8RbGF5igyhu0t0Y5KtfDkbMbsNYQLbZghGSW4+jnkDc5//LgI2QlOXgcb8jl8+uBhpcxv/Bz5lu/TvzuG9WnSzgsdcVDprqZfeSJ+eMbHACQt83RQcQMqUVZjIR8s0Ia2ZJ2Na/Y68ck8J3GYnHPIUVwsKm7cVKJE+bJlzsFls6nzLVHd037du+DS4/cD0D6z7XIgm0fMHgrVFNxfYfYX+UMwKWa+GtubZdY0qZCWlXQ6x7VSADhHhXSR6bO5yaIGTpBMLfNF/yNBqax6dwm13/mUEyVRYtH80tqSHKl8Xjh04iJ5t6urpxPl8XGpoCIOQ3tHxgaqXbkKqvHIimVezyZ6K0i7FldOz9Qmj2Ise/iLnENSpJck9Amdg4VzePLyY7QiPd25XBfYKZ3gOjNc1iuxiurBihYcsjWDCk+8E1eicj8HIsIxoVJN3mjv0vgm7DcwDLznqnNgJtM9mTgEfdpCG8jtqdh+1zAbHIeP7GuvBODY/bN6xkfIJlYKPm0Kab4g6u6hvJtOhs+w30ue7EeGiVnTh9vQnMDbVIzTVE+EHGQQCImDJROcrHPIk/meulhUdesi6ByEl0fk6mWdo0r8xRJiJY1COizeq283rTGA7b2s9d6q7jgH425WtRvTiUzAX1I7npdSenI/BwC446JJKDKGXz+zKDbRRGulF75zPIb07oq572/G6IE9cM1jC1I5wenFSvHR8xSjppZVSjjVrpTHtBHxyGx1pNvDR/Z1Jnb9uyejlKaFatGScfHRo2K/XV/YKLS32jZfvlVicxu2NSvDQMj30sw5qAc4ZnAPZbmNu5P1azodjzPnALJyDrLOgc8vWXeXBk0NwVIn68xEh0vVNZg4B0B/Hbw4R6TlHO54bbmyPOZTU0PUH+dgOOa6oeT1uHgoLXj4DCCMRx/m4I2zu9GvkQO6o2tDHoeP7BfLK+ACxpgzIXHhHHKKxCqqe6BaAFTx7YFAHpxGh9JeqBatRB1pZef0xMY58IVtW3MrrlMkVkqKlYLGuInrA28kTXlFkeOS9dvw0Y7dem5NM7jPT9pbWb7dElpFtsw796ZXdTUTJWpdlD22kkwciAjLN2zHio07jGM1oaSQljjf/QWimdQ5JEWE8vzTXQevR6QX6cnP+r5LJpf6VfVVbdQfcXC44balQ9xFiu+oHGCrX/cuOPPgpPORSqEo96lb0PO5qG8TzpowDOcfuY/Rz0EGJw6vLv6wVHbaQYMT45T1HaqNuMqqSScqM8nKZZRDDuuq4BQRi60ULgnfPHn/RD0eVPCmF5bgN88n81jrQqbIeql451G9ax6dDwBYtzUZhj1HpDUmyBpXSg6fsXKjOqWoUlei4W5gcB4DksS7V1MBx1/3Ak7+5YvqvsNP07vNxUqBh3RULpqqJ6yVFG3Kc1/LOYTlJuIgY69+3Ur9mtquFuqPOJShDdEhSpxPT14eD2jGGMPAno2K7F/qkMs6dlcEn2c2U9bWNlYSAfXq2mCsy9EcKqT/8Pp72jpESc5BqZdBcufTrFOyG3a8MtLupuYqLMlcOAdZpq8yZVUq4i3ycdnknV9PgyE4mzhX3lzxEQBge3PyXqpEee2Gs7VSEqpTIudPdXvDendNcA42b/xSf4ZjTYK1kqjvKBrESioOR34t9Sl/Q84B5EwceP8dRedQf8RBccMnjQyCnB08oo9TG6UFAGaHqpbWYmKRbGkt4tXFH2LLLimEhDQzZcc5Dp1p4Vapvc07d5cUZnv3i5yDvnVKcrfL4RLaWyUu0pmyJjkH/TW561Ds9Yb27lpS9K/enNzpurys8kKhSvZj0kc1KvxjgOR84Zejc5QKzomeNx97q2J+yLvicqB0iZp2f/6ZjwdjVG52kifxaMS6x3joPn0TIj257tTD98LfpI2Yqp6Ipi5qJzjxu/xsVOOUN0a6lLki5+Aqei6FFRdEmLVE3REH1Sw/ffwQvPkfp2DSqH6aGklwSwbTOrNzd1tiMX10TqCUXbg2nkdaZo1l3wiOEnGQVgFZhNG7W0NpgRYndDc5cZEAldjnwqPiilnV5aoWBpVVk4oA/OnLRyCXS4qVDtlbTajFNXHOqo+UdYb27lr6rjanVD80MeCiXEOV7EeVx5s3zU0nbeC3SF4Q5TZ5vRJxUMwPk0LaFeceMjz2W7xuFc6bGKRvUXIOmj5MOgeeE1qEfE3H7j8wFggz2qzprz3iHOJESxdKg7ebdIKL//7i5H3Qq2sBY4dKoWhK3KWec9CJlr3OoUZQ3e98jtCve5dUJo584TXJcrnCWpxgukVfNsez6Rzkw3K7PzlnfCkCZTzbVXy8E/eJTEhVO/sj9+uPF797fOm3aheks1YSR/Tmik3K0BhH7TdAKVb6z08flKgLxF+YM3+jVo6Ki6Rqd6976a56eJ6yHIiLEvnZqoBqvLvGQpIIj+zfDQ0FaVfssBURTT9NIdvzObLmyrDhl5+dIPUdIEtUVt05QcA6taFEjihxj+RqOi7LdOndYgpp9RiTfg5mJzgg0FlMGtU/8RR/9ezCUhs6a6XRgyQLMop9eD+HakN1v/kCkibmDmf1TZzDoJ6NgMzqa+qXApyFv/lLfvWZ8UVSNnNb8eEObNzegltfWRar17upofQixMz1pH7v/H+T8NJ3T0A+R1qdwD79u0fnK8av8wXhC/6rizfg3BtfS3itRtcULOYPvR1F1cyyAHA0h6K7peu3KTkHnQOhSOSSYqVoN2e2huZzKYkp44biu6cdGB8L42PSt5nLiXqOoGU5mCMQeBaXOwhhSf4NYNkGfZA+NXHQ12UAFqxJWq/liBJOcPLGoVHDlZkcQ3Ue0rFwGLJYSSFCVXUh+0MsXb8tLlbSrLKnS+lDxWx1AWpLHerOz0H1YvOHEe3e7Q8lF+6MdYzD7RcdjgMG98Rd099zesbxviMZ/HGS01fkqRscP/bnz2tFRZxrMSndujcW0L2xgK6FnFPeBxWnpLZWiu71F26ZYWyTWytd8Ze5pTKdmMXl2cwNzUKnPbYAFx8zKnHcllReN8agf4A/UJ04TYevnzQ6EUpBDvt+7T+NV5wZid0isVLyWRVyyVzKgFmUaAXfjBQZzv5fnRmremOle1SBVZWayO4/uEcifIZcT9448Nq6VKFAxOXJ5qkmzgEqD2kFdZBPO/EXLwpt6sVKyYREAfjcb9ZEZq4W6pA4KNjxEnFIIVcibq2kPodHPJWTi+h6kPcKfLevmlh5SUa/Q2OrzpVvsRABmv7zOTelsOp8tc29u/yb6yfEjHU6JV6agINEaq5GH7lU35bKQ9pV/xK1oV9A+b3q312nx7CLlQp5KhkVLFkf6bQS4osUEMcsh6+ODzJZZPJoZkytVP/yMftih6T7kueRrOznRN3I0ZV25dHYZOsuZeA92ZRV0YltrouEs2csgKL6HG5duNUh+kIl4cVKAtIwczkKKt74fDzWvGx2Jyvf+KIvh4FI6hyCF0e1g86R2yLJJ7fLop8zZG5TjVMEX4BPGRv5RARiN2tzQd8Ky6Yhvbvid186DK/8+wmxcpc2xTFOe3xB4rjuOmVxRrzNSNfDSmXJenzxUR9TEQfOOQS/lfobxK1fAPUuuSAQ+JPC3eu+A7vjjosmKa4oCdWYnXUOijJtEEAKzKGVC22OFNny4nVkzuGP/3IEAKBfD7v3vKhg391WjO3O5WtQbfhVeVZU4icRom5K5OJ1DnW9mzoJcSCi24hoHRG9I5T1I6KniWhR+NlXOHYlES0moneJ6DSh/DAimhseu4HCt42IGonovrB8BhGNLO8lxqF6iKI3oyt40ptnFqyNlT/+9WNiZnY5ii+63CLo17LiT7K4MHEOtp3Kg/96VFgveAlMCul4m/GyaedEWV2/OHlv3H3xEWouIUeYfuWJ+N/PH4rLTx6Da84eZ4w7k+xbFa8JOO2gIRjRt1us3NbmDZ87RHgZCXMUfg46YinSBrkbNeegXsh1UC02vBvTHOQiTAAYFm4+vnPqAYl6hXwuEWKiqSEfy5ZmgpIrDO+J7VEqTVk1dQPrNKY1zuB+DvsO6B62Y9Y57D+4J86eMMzJL0B8jsf//AW8vGiDcA3xuqpMby3K8CbmDaUortSZ0QLRPebchWyeXm24cA53AJgilV0B4FnG2BgAz4a/QURjAUwFcFB4zo1ExHnAmwBcAmBM+MfbvBjAJsbYaADXA7g268W4QGUd0ia9mC40IqfZLfTu1hA3s0N8EnDRSZNGDixbK6l2s1xmq0LvpgYcunffUj2Zc9ARQL5Az1sdLaanj4sUZtecPR5HjxmgvTdDezehSyGHy0/eH1+cvI91NyVfj7xg68RKth1sIUdCYhd1nSGCqasIk/+DKtmP3P5JBw4SjBv0bYjgz5ETPV0oEn7dvZsasO/A7vikpMwE1ArpjwwpWZP9qIgd32ln4By0jpyBJ7c2WnCO8NjXj8ZtFx4e9h0/rrYSMwfzK41TMCx4/6OdymPR7+R6sVvFOcB9IyRec4JzCH/z/A+6bJDVgpU4MMZeAiDnpVENwd4AACAASURBVDsLwJ3h9zsBnC2U38sYa2aMLQOwGMAkIhoKoBdjbDoL7sBd0jm8rQcAnES67W05oOIcwtmXylpJsdPWVIz95IHLdHllOfiuShefRte3WH3dlmYUmT27WjhQFFk8PIIqSYlJaRsfhzmvQaxnhVhJB1uuiRF9m9A1NCPVtXnUfgPwxcnJWEPiwiyfGvmXCCIeAN89LdrBHzCkZ8xBUgZv/pxDhuOfDh0RqyfaxSfOE66FMT3h3LqrFYvWbcNrS6LdsC6f9eR9+ynLdWO2PR7VkHTn5MNUneKzfOXfT8D9Xzmy9PugYb1LO2h54VXNSyJ96BDVOF3mm2qDo+IcYOEcRIgEU2cJxTknk4I94URbAWTVOQxmjK0BgPCT55scDmClUG9VWDY8/C6Xx85hjLUC2Aygf8ZxWaF6iHzXmkqspNhVqCAqwOat3ozbX10enp/cpajGpDLF5Gy5ur+o/sJ1WwEAS9ab8wRH44zLgXUZrFwQcExurwxfLESIcuV8jC0P6ql2VY9//Rh8fESf0rhFL/NfSWK8ifskF0dRxisPnd/WmFiJgmx63OtczO4nEu+J+/TFwms+WXrm1392Aj5z2IjY9fBFQyd64spgk/n0rOVBbpE/vm5OxQoAx+0/KFFm4nZsO2PZCuu6v72LrbtaMXpQDzz6b0cn2mxjLKaQHtG3W8kJtTQeyTKPQ2XmrFIeq5AmNIWcz2FHS2vpOUw9fK94m66bm5gZbfykwb0CY4RCLohc22KIQvvQ2+oIx+VEuRXSqvnFDOWmc5KNE11CRLOIaNb69etVVaxQTYoskYBl0c6Pz1I7bYlZ4+ZropKK9fj4rDoHDesgEp1/PX508rimf87qi5NXl6zFBTlL0ptTxg7Gf356bNS3rHMQ+j4vXEiB6P5c/8zCRJs88GEUfyo6JsvdVYR9i8EaR1RkPjSb+2PEn1mO9B7sMqGVw1Lw6iqm+ZVQLr52yy5tXC4gElmO6BcZRehEN0rls6HMxiUfGnq0DwtFdtxj/5xDhmPc8N6xutwAwTlcuFyu4aZ5PZM4JlU4bIngjP3R3/C1P70FALjgqJFiNeeNkOhhL97Tfz1+v9KzJwoiNYucw6btLfj2/bMT11FJZCUOa0NREcJP7t20CsBeQr0RAFaH5SMU5bFziKgAoDeSYiwAAGPsZsbYRMbYxIEDsyV9US0KJbFSydzNfucLUujq/QaqzQV5U3e+thx/npUMxyzX4+MrWSs5mLKK4DGFAM3OX6uQtntTB/XcZqUoJ1fhZ+eOx0WfGFXqR7yeb5w0Rnseb/P9TcmYSXzR4GNsM+QHVkG8d/I84aqfLTt343cvLg3HHR8TUZTdT3QoVN0H0foJEHUOyXGdE4a02NbcCjHcu4zfnz8RQHxnrY3SqizTP2/VozxVtE4jwhnjhyZ0aWMUZrS8zZZWix5DukccKvNkvsF4ZdEG7P/DJ7RtqmKTHblvfyz/2RnJ/qFnCMR3KwXjACBpvqxsP5+L6Teuf2Yh/vJmtH5kSRWQFlmJw8MALgi/XwDgIaF8amiBNAqB4nlmKHraSkSTQ33C+dI5vK3PAHiOVTB5qqplnpaP326XwGyyX4BuxLypHz86HzOXK2lerG83zkG/I7xK8KjWRUv9j0+NxZ+/emS8PFygsyge1fXMnIN4SA6fIUexFcHH97AmcRAQEYl4li+pf8XYBvRI+hhEY0wuKrLIJUeEjdtbAADXPRVxNipCHu2K47tI1a5433Dj0VYMHBp10/OUsYNRkESOtuxpNkRismQ7v/vSYbHfpk1LvF7waZKpA6J+IN6oOlxLcA9fXuQmURDHqbNgJsOqL+oMRZ2QC/i7K16X/Dwa8hS7PyprvkrDxZT1HgDTARxARKuI6GIAPwNwChEtAnBK+BuMsXkA7gcwH8CTAC5jjPEt1KUAbkGgpF4CgJP3WwH0J6LFAL6F0PKpUhBvcfcuecz8wUk4anSUqhNw5xzExUenf3DVrYuKvwfeWIVnF6xDPkfa3bvupRcVkOqQ0kGWs8NHxuW7QYgGZlXquUeYNOtk5EW2nPkcOFEUXy551GqTZrFC/Bi/l6pQJG3Crl+Vl0E1ZHlXXDRwDnwxbW1jRrFScH78XmrFSiozXOV80XMO8twMYjvFJ5Dp2nX5PTh0XIvaoivYjKj64xxV7FyROGjuJ+ccPtrRghueXRQ7Jm5gVAH6ZDzzreMwIPTDeOO9QDdkmssN+VxM+Z3wpq4C52D1kGaMfU5z6CRN/WkApinKZwEYpyjfBeA82zjKBXFRzeUIg3pGZo38hXGJ95/Pu3EO7ju0aBf6nT8HskWdQlhM6tKza6GkSO3eJR9TDLpaFpXaZMzqXOd8PWSe/Cz2crrLbHVE8dxDo2ii/LrFl8vlZZJTcYrg56vMgjkxKuRzKCh2w+rQ1fE+RdGUDJ7WNEjcZH6usjhPtzlXtWHWOcSvQfSBKbXpaDHEo+l+94E5xno6/YDq8lXBGzmO2q9/rJ7cppY4hG3+4K/v4LG58Tzw4nvmwjmMHtSj5HD35DsfYPK+/aXICfExNORzMbGbfG1VYBzq20Na5S4vfppQyOViu0jd3HA1j1WZDOqiOcbESsIJ3zntAKleWuJgt/hw3bGYuBsAGCiIcOSk76Yu9KEvkhzT7lZ9m6pmTOPlp6tyDn/luP1w4VEjceFRI5X5qVXNyjvYSKmtIg5R37Zgj7K3uY7o6vI7a8fpgHwu6WA4akD3RL01m5NZ7FTQhQtXe5FTaEmmJ8RARBTjxEHdP+ccVGajcZ2Dmyk252T5uabNU5dCXCGdtJ7rAJzDHgdpxyrCJF+VkSNInEP7ZLtRO9F3HQcjmrKarItUgU11xIrAFdLm8bnrHNST/+8/OBl9uzXEdq7pxErqinmpPSDOOSTTcybbYYbjKiU3z8bWvbFQ0vWoHplSIS0dM4uVuGkuM/o58PNNIRo4XL1vde+Eah7lBSONM8YPxUsL12P/wT2V9dIg0bdS1Oq2QVMpuXXj4Yu+LfwM5zAAc7pX7r1eyBHmrd6Me2ZGJsdpdQ6mCLTlQt0RB1E2KE8KV7M9IOAc2hw4B9f3gBSsQ17jwCSassY4ocT1uIkOeDmDPWaTu1gpEpOJUCXIsYmV4jthc39AdB92CgEJjdxIkRl9R4IxBg2InIPKuVDNkejb48f4XFJyDoJIy4VzEMeoW9hUNvSqexRlJdP3WRpnLpqXbUVWCvUhQ07mo4OrjwUQcZ+2qvwS48pgk84hGZuMZ7+L1wuwaF08iZcI3k5DPoczbngldmxo7/i9kk1Z5fuvdMYrM+pPrCTc5KQjWrircHgTEolVdIuWq1hJUabjHLhVyLzVm2MRWWUxlE4spQIXA9lexDSmrICbFUfesjCLcMnNzG+buIuTRy22wiOZmh47v542i1OManiqrHBJnUO8XATfxHDiYBIpEMWjp6bZYeqi6wZ9xxcj5TgFwtRaLGp35HK5PuQ8wrZciAO0CmlxQ8iv569vvS+U6RqFknPYq1883hfvGzBvcr4emmgPl1KL3n7h4fjcpL1iZYFCWs0B3nbhRJxwYNKJsdyoO+IQYydl4lCqY5+MhTzFXhi9tVK68YntbNjWom2zjTFMvfn1WLnMOehCMahQinfjwEK7QJfrWt0mOeWSMLUnXiv/vq1FIA6GgXPxkNh0wkKGm8da7o88D4b3acL/fuHQRD2ZUeRET7Wg8si8yzZsx+tLNxo5ByIqhWgBTNZKbmU8o52cW0AVBjwncA6tRabNySGW9+pawBs/PEU9RoURgA6qcC09Ggs4dezgUorQoF7w+eqSD61tcnNs+R7KhiJipj4TMT7z4GEAkqFzTjhwUGJ+yn4O4hBOPHBwIvpzJVB3xCFmrSTrHDQKMBVkzkFvrVT+nXa0y5fGpFGw28p4uewEp67ndj0671ZTXRdoFdIxnUPYt6Fz/qICEYtu4pqiXWz0wqoS7sjje+DSIxMiAyBunSaeZ1IKf/+vc2O/deMUFajfP/1jmnpuN51zPTulnCGyKTQQheIGggVdqzMT+u7ZtUEbhLLk6e5EHOKhTQDgq8fti5vPnxgXOSpEVXpRZXhcqiAv7iLnYBprlOLXfj0NBZIU0pXXMcioQ51DhOMl1iwV55DLnhzHVE9ssb8m1HKekqEugOSuM43ijyuFbTtj5+tJwTnIC1WfbvHr5rvUno0FbXuiCEm98MXP6yrsJvnLbzJlVekclPfKQXELIBEKmxMdJefgwBGKx3j4iD9cPAnHjFFHEnDlADnn4BK8UXQM3d1W1ObHMGdfE8fozjnwxD23vboscX68XvJcrTFJOFb5OSeJQ8S1iFzGeClsSKQ7ispO0oiHGvI5bBNifVVB/5xA/RGH8Cb//vyJOP4AdcIdlwXNlXNIq5AWJ6pOrsjFSqZ4REHfKYhD6ARny0G8ctMOp/Z41zuazY5OQPIenXvI8Njvi48ehfEjeuNPM1aUbORlzH0/iltlyrimAl98TGIllc5BlY9ALtE9AtlMk7eliqKqM5xQgQS5v0nnpBQrKQo55+BKHIoxzkFNHMTF3jZHc4REjgoVxN27qW0VwTBxDiqdg+xJL1orccby/q8cmQgkWFLuC+31ChP7yGjI50qivLYiq0oUVhl1J1bir+/wPk2l0LgcERtpb8XVWimLhzSHPD6OfC4QK9lizqhOb+qi3g9wJzhTJEgAeHlhFA76wCE9ExE3OfiOeZcQY+i3XzxMXVcY96CejUkilyNM3rd/KDpQ7/R6N4nOf8k+TFfFd3um3Zkr55AgKpr2ZC6VixBUz1wmDqaddLCY6rkQE1RzlafkNJlocogbJpPOgYcr5+O1jUlWhivrhfoBMZaT0vpKsQHUbQa5LkG832eMH5rgbAmCWKmkO0q2VzIsECzO1mxOxggDwtwcYb//+fA7eOHdbIFG24O6Iw78ISrl8Ygeng35XDyxSrli2IjN6GLx8+Q4yZgzct/R+f924mj84PSP4VOKJDG8/yKL5OiiV6mI7YKS95un7J+IuBmNMfgUlaN9uql3SSplsrJeuDNVrY1dCqLSMR3ncMvLQSC9uFhJ4srCNh+dE8V0UnFZCcMErY4n5BTD37vDi1ItqPIir8ugxsdpygWSFlyEst2JAwxDWLAgy5soDjv3kOGlMOX/dNgI9A3ngm3zZIojJtcrMoYeQo5mtSd1UCg6SG7TpOPknIM4L8RorBx8lx+En2GxfkSIJsk8MsOm7WqOQMxv/Zc33lfWqTTqjziEn6o5yV9Mm2gFCOTAogVHezkHMUQCxzxNiO9cjgfJk8oNpqw9Ggv48rH7akMv8MnId508C5eMrx63X+m7KcwIN6f8xr1vl8p0nJDYjOl2mUI9i6z6QcOSBMuk0Ltn5krsaGl1UkiLFmSySSKgiIGjczoMi695dD6AaM6pfADk5yrHL5LH2eLAOaiu9BxJnAdEc0ic6xd9YqSyTdHkNuAcomv55Wcn4LrzDhbqBsdsrwcRGYkhh8payRQ/SvQTmBXGOlLVZYg/U9HyiWNE3yZsa27Fph27S1yGMmCmoJDuYUkFmqfI67ocRD4L6o84GKxCuIzURcaZz1EsbrzWWslxXPz5PyJEG31DM2n5LkkWL8iTSFxUbBOsFHKijaF3U0NMYSvi5I9FYZpNMX6WfxgkGFq2IUo0pMt+J3tLm8ZYZEyZ6ITnEwCAb5+6f+K47YmO/dHf8MQ7H0T1EzqH5LhUi2lS7q3uj1/nupCz4guginOQ2zCJlYLFNJtY6bunJfNS82cjhiDXmVGKYpO2YtG4eeBcsYvOwdXPIelJrWovKHRLwRks0CIxVvmscL3B9uZW3PLK0lg/IkTOgRubfPnYfZU9ixEYakQb6pA4aPL/AtGEdZk4eYlzOG7/9lmF8Pl/zWMLrHVVyXEAhUJaeLp24hCIqj7c3qIVZwFShjbDxfFggCJB0HEOOqWcaoxFxvCH6ctj5deddzC+cXJEEFSLkosl4DpBBJbsO1mmIhiyWMnkfStid9Fd52BaLHO5aHNj5BwUTZj6Fue67pp43TmrNmPh2m3G/vkxq84BjlaBlIxvpMvHDbil2QzqxiMVyw5wQHzRf31pEJbfxDm0FRm6FHI4dO8+pZwmibrCO54mgGY5UbfWSqrbzdlgF9f0gDgEu6n/+NRYg612+R8sN2VVlev6tkWazRHhNQfHINEByPTyc+uWLoLVhS7K7NBeUWRcU2QFnnPiIylj24FDesbGwpPuxKyPUqVjUfct4uoz1Zn/HFUOiVwGXAauWqDlOWRWSJOTQrpfj6SZtDKxFBcrCU6KulZ53fN+O93af6FEHBx0Do5+DgCsARx5f6uEZFEjFOJBIFI0xzmH5HvOuT1x3VBdu+jn0Fa0hF7PRcTOxeKvEqhDziGAUucQPjxbnHlely96poXXlTSoFi/Z1LbUpkZJZ/JzsO0+XGlYPF+E/qSuoYKYW7uMGdQD+yh2XUD8hTOFG8lRoDuQFwsnT/CUtOGAIfGAcfLt26ufekFxEW0ASHiEtxaLINInsonXNYiVhOOmefn5SXsnypTpN8MVQhQr6SCfb3qP+HXaFdLxHBGq2FxAxKnOXrW5VKbMv67oTpd5kOscbHvFnIKAmsVKwTwxvZOcKO7a3VaVOErKMdSk1xoiUjomHwzfta3cuAPduuTx9o/Ubv1AoFDjk8G0Q1JNElexx3dOTcqAeX/K0MTyb6HAhXNwgahk1JkqAsCvpk4AAAzvE3AFPzl3vEEZLo7DPMYiS3qsdimoFoF4WVq+QUwgDwTx+0XCqFvUkqas6noN0ph3tzFtQLq0nIMpiB9HPkfamEaxegoZva5ZeTosXKsPQsf1e9ZZR3HrLJ3RwAdbkmHA1Tkr4mVfOW5fnK3QHQVdc5Nx8+zh739LW0QMlYSpFMQwzMthnesMlwsGHdVG3REHDpO10vaWNowa0D1hzxyrm6MSRTfJ6FWz/7GvH5MoU00/3eIrLgAiNu2Ii1tEMZMqz0CszQwzwbT4DO7VFQ35KGaSThkNyMTBvJtSmbJ2U/huyM2kjT6gWvyPGCUmjVGP86vH7xf7TZrLPnBIkJqW2+U3t7Zp75G8+TCl14xvCMwP1WU7oNQ5WOpyiMYIurq2eSfr13R0cYfCD0OXa5qjSyGHKz/5Ma0ujHMONuvFEufQahErCbqJooNYqcjc055WAnVHHEw6B3HnZttpi+G0TQuvagLIIgttHzplJiEWjZVjgCRHjlsrmfvKohtxUXLvDEULOn0DIO2uTXSWgsBu8k6uu5I4yJxD+3QOQJxY6y59QI9G/MenxkbjMLR3/AEDS7qqXbuLJRGcDPnRmBXnoijR0Lkj+H18ceH6RJkM2wZERFZrJR3noPLgVorJhKKuhjkJRDoHm8qjxDkIxEHVtxxd12UjJNf54RnqWFmVQP0ppEvWSgpxT2zBN09akXi4mOxxdLGt0gJMViFbBKXs2ROG4VunHIC9+8dl+uIETfPiusIWEjxHVJI7m65bvH22uEEqP4dujclFVW6lHHHLxOdsFNmItM7hegAz5yD3dcPUQ4xtRuO1LH5lNpaQH/G/nTjaUDeFzqHNzjmsVxBM1Xspcgk6YswRWEAxq/VivqSXETgHpaUUlUxui8ysB+Qc01aB6B04pCf+5Ri16Wsl0K4Vg4iWE9FcInqbiGaFZf2I6GkiWhR+9hXqX0lEi4noXSI6TSg/LGxnMRHdQBXMgWe2VnJ/sfI5N0IitnPwiN54RBNuQrV66e5Cjgi7hIlYZEgQhqCeMF6HlzAt7CKBSClp5ByEvk2j0ImVVGIBmYD0djSXNcH1mYsvvcv1AIEyU2VDD8Sf3dihvTBl3BBtm7uL4u7V0LllbCbYfDeAQGH/bY3ODIjeC6spK8WthXScw/lHjkyUqZ6ROFd091sEg916kW+8ROKgs17MUxTdwKpzkCb6jz49VlO7MijHdvIExtgExtjE8PcVAJ5ljI0B8Gz4G0Q0FsBUAAcBmALgRiLid/AmAJcAGBP+TSnDuJQwhc+I5SG23BlXzkEkOJceP1orUkqzsc0RxUIo687N4gSXBjYCGnAOZjNWuW+VYrFUL5TDivqWZT89XVmX2/qfeOAg3HHR4Th4rz7KemkgKuNdjRDMNDe4ns07duOxuWuwZL1aRp9GVLRUaMOacS0rdbD4OQDumyvbEIgIb6+Mgi3q5rrKa1u14RGNFxoLNs7B0KEAldJem8AoF4Q1b7OKlZKpc4/ab4B9MGVEJXQOZwG4M/x+J4CzhfJ7GWPNjLFlABYDmEREQwH0YoxNZ8G24C7hnLIjslUyK6vskzueYFyHBkdRVRqxx4qN20uyfMAtr3K5rJXi7ZuPEwW7LiKgZ6N+5y7ev62aODe8vaJgPXLEqH7ae88jYjZ1yeP4A8qTNUsMPufi4AW4mebOW71ZWweIK7Vtz0m02TdZk1UCqpwaOhRS6BxEs9++GiMRIkr0qXpGXfLRom3jHILAe3bwpUAkDtqgmVxvVrRZk7lFh64k2kscGICniOgNIrokLBvMGFsDAOEnfzOHA1gpnLsqLBsefpfLEyCiS4hoFhHNWr8+mxafs6UmBxkgnc7BhIbYbtM+LhE6m27ZRJAHNJMhXqPtej7cHsUMcqUT1hc77HNor65aNjttf4xFfhG6+wNERDlNqlQbxGduale81abuiYJNgYvcPTrHXPfTQhIj3QJVast4NP15aTZXrk5wInEdM6gH/vTlI7R1XfKZiCbEg3t2TRyP9U1uSXb4XHh6/geWmsF1txbdcoF3duLwCcbYoQA+CeAyIjrWUFd1K5ihPFnI2M2MsYmMsYkDB6odxGww3W5xh2YVw8SO61sVXxLTi3CMFH5j2U9PR6+udjn5HRcdjhM0O+N8CmI3XwjyN3mUOiJron1HbkQXp0muZwOX0R8YiuZ+eu54a5smIn7x0aMSZV0bctoFSFRglkOsxBcA232MPUfLreomjNFGHLJi3wHdleVpNiOugffEZv554l4Y0VftSBnUlYiDSqwk3BPT5gIIrZXMwwv6CQf5fBhW+5C99SJMnkrVZq0UWObp41hVA+2aPYyx1eHnOgB/BTAJwNpQVITwc11YfRUA0bNoBIDVYfkIRXllYNA5VIZzcGtzv4E9Sklujt1/oHGHOElI0dizq97gLE34DLG733xebw2ja199POzbsqK57mBzFMhrd7cVcfjIvuhpIJ58bKZ7Lju6AcBFnxille02OjoAuouVArGFi1JWPMcEkUOzzWFxjvXVhFOXcduFE3HUaPX9yfL+WDkH4bhNMZwgDhaFtG1eipntbPVEXHa82UqrLfTyN4smg43QEaOS6VirhczEgYi6E1FP/h3AqQDeAfAwgAvCahcAeCj8/jCAqUTUSESjECieZ4aip61ENDm0UjpfOKfsMJmyis9qxlJznCHXiJeiEtP2ImwJ5e0bDHbsAPDpCZHooH93/e4nFu00BXFQOZWpYHu5ot27XXHtAi5WCnIF2NoMPl2tijhMxLbBMeigs0I65IQ+E8YicmnPdq9sXJoKV37yQLz1o1Od6nLnPRVi1nGOfkJWizfheLPVpDTep+r5iubCNpFjl0LOOc5a7LfhvQgcWM3JkHg9VYrSaqI9fg6DAfw1XGQLAP7EGHuSiP4O4H4iuhjACgDnAQBjbB4R3Q9gPoBWAJcxxrhW9VIAdwBoAvBE+FcRmExZxRdvi0ExCrhzDq628QDwzIK1AID5a9R5HFRtDrCwxqpzVBB3uK4uEV0t1h78eo0e5IgvoP8qeRir2mtpK6Jbo3nqunAOqsXBdE2ivNqV6Jjue47IzRpGaMMmh7bdaxH88tOoZUwLGmXgHEyclXzc5m8gd6nSF4gE3rZhaizknAxF5PfaZCWWzwXhX1rbmFHsx4NMPjy7ckIUGzITB8bYUgAHK8o/BHCS5pxpAKYpymcBGJd1LGnAn7UpnK8L3v1ga9SmYQK5RjFNA3FR6+4QHwewvwiujmgi7LqE4LNgU4wK3R1uYKN5ey2tRTQ4ikxMi7PSmsVgctvgbMqaHIeunovSUWxPl5gmGld6YUAaSzXTwie2YnP25DtiW9crNkY5y08Za7Y6k5/JRzuSYbkbUnIOLpCdF20bkjbG0NJWNBLychpSZEXdhc8oOlor2eCa8Dtm4eJg+ukCOTy10zkpZLuu98EUL0ls01VxDUCrXAciAtfcWnSQF/NPg3+FYlymsboSB9cXmxD3+P3DxZPU9VLMS1eOFogC2tkWwc9NinQzNlEIh81M9LE5awBESaFs+OS4IThsH7P8XZ63qndUJFpi2G4VXKMZyP4Spnu0evMuPPDGKqzf2ozZK/UmzPwxugRHrBTqjji4ipVscOUCGlLoHFytS/jkSxOKo9Fm0x3jHNzatHEjXEbcbAmBzvu2iUTELF42biQSK+nrKEMcGNp0NS5wTc4SKKQj6qCz4U+DNL4NPICfbR594Yh9St9Nc1S8JzYHs1J7jpyOSxh9GZ/6+LBEmfgM31pp5sLEvOR9ujXgL5ceqawnE0LX98ckPuZzSBVDrVqoP+LAvyg5B/d2RIXoJIMoJB6szcLGOi72vJ00nKfVG1T8XiaWdsO2QLEuxthXIY0pKxAQHZtYKSIOJs4hWWbSZYgLo80KyQmEWNKmcpiecs5h8r52Kxcu2rFxDs5Wb8Ihl9AUgPs1D7L4JABJ9U2/7kliK85tVcBGESJn/PUTx2g5l2SMpva/PybDiGqh7ogDZx3UycezcQ79e+iVwiIRsXEbrspE/oKm0WHYXtY0/ja/njoB/zxR7XiXBa6XEYWPbnPWYxhDmyiow5SD9HGL/nliJF4xRXldKcjJTZCJSI8yLAhpdA5cxGojDs4xpYTrselGfvXZCS5DLOGbpyTzgstwcVgToQrYKKJ7o5tZsCshTIPBvezEsNKoPXmqMkyZPkC8LAAADyFJREFU4EToMn1xuNKRLhUQK0X5d1MQBwvnoMosp8NZE4bjrAnqBCnZ4CijF8RKriKoNLqBQ/buY1woh/VpwpBeXfHBll1GYtqqyuGqHGNcId3DYoHlAlcrICDaENi4SlcFu+gcpwqhLaK/Ik2pCUN6p+ccbGiyGFQMExzQTPMojXjXFS4OsJVG3XEOJp2DiJu+cJjxuItzDJAuDHha4pBKrGTZ3bheTyXAb4s9jETw2dJWtPo58Ksx6wbiv00e1xxXnTkWA3o0YoCBW/y8IKM3gUDOxMHkdSuCz7c0c8PGObhy1HsJaWBtCyaf6y5Nuzro2TZAMmwEVNQBmeYREcVEy6Zr+vlnPl76vt9Atac5YH9fq4Haj6DKiGIrmSeGzbV+8r5BiIkTNHmeOeLEwTw2V2ViPoNYybY7rGUcF/4sbJfDr5cx+73aGlqquAbIA9wsfaaMG4pZPzzZuKDakshw5HJxcV45LKA4jU/DVdoW8iwW2LbFzdVMdO5Vp+LVK050qjuol5vPz72XTAbg4jMSjdGmEJ/s6MksPuObz5+orWezBKwG6lesZKlne7m+cMTeOPljg63sboNj9FYgeklvu1A/aQAxFn75rKu4cvL1K5UuKhVFyZs5hbmtjct6IYxzM3PZRlx2gq5fub/yKOLdiXbg6NSza0EbPJGDj/WSY/c11uORY9OIqLpbZO9ZIvbadvE85LxN8WoKkSIjLedt2w6Joks5BW97+waA/gqFOYertVclUX/EwRBbSYRLXBoXOWgsG5vjS2YKLgYAA3oGk8plDZp71alOuzR+X6od5hmIFh/XWE2Auz2/Kd9yItxCmS7dVQwT9BfEirIuLmGTJj8QANgWevZ3T0EcbLb0WZw3rz7zIOPxg/fqg6NHD8BVZ5Y/gc0vzjsYZx+i14nxq7EpsEWHOV2wQY5drRFnMX54b209cY6bElCJnMPfLj+2lGu8mqg/4hB+2uSN5fJmrkSb+w3sgYOG9cLZDkrhNDsvwN3uvBKwEmzRpDLDTs3UXtB/dQkjT+gShFKwbEbCT1su7GP2H4CGPCmT3+jQZDHpzHJbxo3QL5BAwNnc/S/68NvtQWNDzqojAOy5oUVx25kHJ30mRLy+dGPpu4nQi5aGpvkmEoeGPDn7zpQT9UccHDXSlSAONlaf29jbum7I5/DY148p17BiqATncKkhXhIQcVe2ey6+yzY/B440zmrVfv+IAkOA1qI9kCBF1MGIob2bsGiaOjueDt3KFFJdRBpP7XLD9V7axUrucZi45dOXjxllrMfbsa0FolipUqHXbai91qNGSLNLLRdseYxv/MKh+NYp+2O/gdVnITkqQRy+d5o+lzAQ0WnbIiQGXnPlHGyL1FePiwiXi/lnOZEjiryUHR3RKmFU1ssyL7NlCawdcRBTgapQuh6LWCnNNZwW5vW++GizToivK1biICj0a3Uv65BzCD6tCukyks1rzh6Hh2evtu4+hvdpwtdPGlO+jjOgEmIl10xn9nAckVzX1WHQ9mKNGhDpd8q9H3CxOOEhRlzzbdjESmnQs2sBW3e11iS/eCXApQK2nfbQUFd4ytjBZev7i0fsjfMOG2ENRsnvtW0TJoq0aqEHBOqROBjyOYjIslvS4YuT98EXJ7vZvtcatZBt8mdi67pZyCVcLrGFuHksJ3F4+pvHoo8lVlIQ2z8YwP9v7+5j7KjKOI5/n7aUl6X0jbashb4YaKUtpdClsQqUGqoWkRpLI0pooSaCwYjUGEEkYpSkKBJ5McGqraACxqCxKEoALQRFSstrS+0LSKDYQBUopchLw+Mfcy473fsyc7czd+Z2f5/kZmfPzj33PHv27plz7pxzknpCS+ZMYPOLj3DsEenmO6Txl6+ekjhZDWi4xWs9RfYckhqmUYccwKOXz0nsyQO8f0THHptr1WNmqfbSSHsb+p7LvhczwNP3GoeUPYeixvn6ospQSdJQXnzjlbTDSknTNyaGLUehe5XSLBw1alDiOXssxf3syzW3La2YPnYYqy87NYuivWfEoP0T5/NA8hpEZfG/cPGQ5jbeoQ1uI427d8msTG9UeK/n0ETjWVRD2+f+A6ZdPqOvuf2LM7n41OT1a/Lw7rvpenPxncCSbkOsbAF6/qzGH4YfN2boe1eQaXb9ytILr3YvGf3yrrdb+trNaKY3ee6HxuVXkAQ73oh+h0M7slt6Ius72NIsCNlTMxs4Zak9LgkyNHfKYUwYdXApJpmUyfSxwxLXy2/WPUtO5sXXGm95CunnnsSX/k56cy2dP5Wl86c2PKfiE1M7ueWh51q+dv5/Yw3C/IRJcEVbMmcCU0bX3yK04oozJnNFwhyHvFz56WO4+q6NHFaCRevq6R5WSv+cokYx+lzjMHZ4B2OHN57Qkma5Y0l25MhBHDkyeXilsuduZ8KkwviV/enHdu5d4WKu+ORkPjdjTOLkw6zFrwgXlLxxKPpGiTRmTxyZOEmwaJUZ4W++k9xLvXnxDAb0MzUOZvZx4FqgP/BTd19aRDk2fXduoR+m9UWjhxzI98+cyuwPNH5jf+aEMdy6+nkg21UrBw7ox5QGs1rzEr81t9UT8KQYlV7NoSlWpT15QuN12/JWisbBzPoDPwLmAFuBh81spbs/1eqypF0QTLK1ILZXQj3TMrxTp0x+ft4JRRdBWmRox0B+srAr9Sq7RSpF4wDMALa4+zMAZnYbMA9oeeMg5Xb/12a3/IPjvHQOPhB4JdO7pKT8spxfkaeyNA6jgedj328F8ll4RdramOGt/VwgT98+YzKdgw9gVsKy7yJFKMsYSq0B16rLKTP7gpmtMbM127dvb0GxRPIztGMgl552tObUSCmV5a9yKxAfdD4c+HfPk9x9mbt3uXvXiBG62hIRyUtZGoeHgaPMbLyZDQTOAlYWXCYRkT6rFJ85uPtuM/sScBfRrazL3X19wcUSEemzStE4ALj7ncCdRZdDRETKM6wkIiIlosZBRESqqHEQEZEqahxERKSKJa2LX1ZmthPYWONHY4DnUmQxGNiR4Xl55al4snvtrPNMG0ser51Hnoonu/PyyDOreCa6e/Jyye7elg9gTZ307SmfvyzL83LMU/GUNJ60sSgexVOmeOr97+z52BeHlV5Ned4dGZ+XV56KJ7vXzjrPtLHk8dp55Kl4sjsvjzzziKeudh5WWuPuXWnT25XiKa99KRZQPGWXVTxp82nnnsOyJtPbleIpr30pFlA8ZZdVPKnyadueg4iI5Kedew4iIpKT0jcOZrbczF4ys3WxtGPN7EEze9LM7jCzQ0L6QDNbEdIfN7NTYs+ZHtK3mNl1VtCmvRnGs8rMNprZY+FRyM7qZnaEmf3VzDaY2XozuyikDzOzu81sc/g6NPacS0M9bDSzj8XSC62jjGMpvH6ajcfMhofzXzezG3rkVfj7J+N42rF+5pjZ2lAPa83sI7G8sq+ftLdGFfUATgaOB9bF0h4GZoXjxcB3wvGFwIpwPBJYC/QL368GZhJtLPQnYG6bx7MK6CpB/XQCx4fjQcAmYBLwPeCSkH4JcFU4ngQ8DuwPjAeeBvqXoY4yjqXw+ulFPB3AicAFwA098ir8/ZNxPO1YP8cB7wvHU4AX8qyf0vcc3P1+4OUeyROB+8Px3cD8cDwJuDc87yWiW7+6zKwTOMTdH/ToN3kz8Km8y15LFvG0oJipufs2d38kHO8ENhBt+zoPuCmcdhPdv+95wG3u/pa7/wvYAswoQx1lFUsry9xIs/G4+y53fwB4M55PGeomlC+TeMqiF/E86u6VTdDWAweY2f551U/pG4c61gFnhOMFdO8i9zgwz8wGmNl4YHr42Wii3eYqtoa0smg2nooVoUt8eRHd/J7MbBzR1c1DwCh33wbRm4Co5wO19wsfTcnqaC9jqShN/aSMp55S1Q3sdTwV7Vw/84FH3f0tcqqfdm0cFgMXmtlaou7Y2yF9OdEvZg3wQ+DvwG5S7lFdoGbjATjb3Y8BTgqPc1pa4h7M7GDgduAr7v5ao1NrpHmD9JbLIBYoUf00EU/dLGqkFfb+ySAeaOP6MbPJwFXA+ZWkGqftdf20ZePg7v9094+6+3TgVqKxXtx9t7tf7O7T3H0eMATYTPQP9vBYFjX3qC5KL+LB3V8IX3cCt1DgcIaZ7Uf0x/0rd/9tSH4xdHcrwxIvhfR6+4WXoo4yiqU09dNkPPWUom4gs3jatn7M7HDgd8BCd386JOdSP23ZOFTuLDCzfsA3gRvD9weZWUc4ngPsdvenQtdsp5l9MHQfFwK/L6b01ZqNJwwzHRrS9wNOJxqaKqLsBvwM2ODu18R+tBJYFI4X0f37XgmcFcZKxwNHAavLUEdZxVKW+ulFPDWVoW4gu3jatX7MbAjwR+BSd/9b5eTc6mdvP9HO+0F0Jb0NeIeohfw8cBHRJ/ubgKV0T+YbR7RS6wbgHmBsLJ8uoj+Ap4EbKs9px3iI7sJYCzxB9MHUtYS7ZAqI50SiLuwTwGPhcRownOjD9M3h67DYcy4L9bCR2F0VRddRVrGUpX56Gc+zRDdMvB7+PieVoW6yjKdd64fownFX7NzHgJF51Y9mSIuISJW2HFYSEZF8qXEQEZEqahxERKSKGgcREamixkFERKqocRDJgZldYGYLmzh/nMVW6hUp2oCiCyCyrzGzAe5+Y9HlENkbahxEaggLof2ZaCG044gmKC4EjgauAQ4G/gOc6+7bzGwV0dpXHwZWmtkg4HV3v9rMphHNej+IaJLSYnd/xcymE62f9QbwQOuiE0mmYSWR+iYCy9x9KvAa0f4a1wNnerQO1nLgytj5Q9x9lrv/oEc+NwNfD/k8CXwrpK8AvuzuM/MMQqQ31HMQqe95717D5pfAN4g2Wbk7rPDcn2gplIpf98zAzAYTNRr3haSbgN/USP8FMDf7EER6R42DSH0915bZCaxvcKW/q4m8rUb+IqWhYSWR+saYWaUh+CzwD2BEJc3M9gtr69fl7juAV8zspJB0DnCfu78K7DCzE0P62dkXX6T31HMQqW8DsMjMfky0Qub1wF3AdWFYaADRJkzrE/JZBNxoZgcBzwDnhfTzgOVm9kbIV6Q0tCqrSA3hbqU/uPuUgosiUggNK4mISBX1HEREpIp6DiIiUkWNg4iIVFHjICIiVdQ4iIhIFTUOIiJSRY2DiIhU+T91Gk0xblNjUQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'].plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Un zoom sur les dernières années montre mieux la situation des pics au printemps. Le creux des incidences se trouve en septembre." ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXl4JFd97/09XUvvrV0jzUizz9gzHu/GGIzZjBdIiDHgxOTeAAmJCXEu65sE3twkvHmvbyC5FxKSwBuCCYYQsAFzTWKDcTCLjbcZe+zZ9xmNRtJoa0m913reP6pOdfXeklrqUvf5PI8eaU53aapL3fU7399KKKXgcDgcDseNr9knwOFwOBzvwY0Dh8PhcErgxoHD4XA4JXDjwOFwOJwSuHHgcDgcTgncOHA4HA6nBG4cOBwOh1MCNw4cDofDKYEbBw6Hw+GUIDb7BJZKb28v3bx5c7NPg8PhcNYUL7744gyltK/W89ascdi8eTP27dvX7NPgcDicNQUhZKSe53G3EofD4XBK4MaBw+FwOCVw48DhcDicErhx4HA4HE4J3DhwOBwOpwRuHDgcDodTAjcOHA6HwymBG4ci9p2L4+hEotmnweFwOE2FG4ci/uIHh/HXPzrW7NPgcDicpsKNQxFZ1cB0Smn2aXA4HE5TWbPtM1YKRTeR1YxmnwaHw+E0FW4cilB0E4msBkopCCHNPh0Oh8NpCtytVISqG1ANE0lFb/apcDgcTtOoaRwIIcOEkJ8SQo4SQg4TQj5ir3+aEDJGCHnZ/nqb65hPEUJOEUKOE0Juc61fSwg5aD/2BWJvzQkhfkLIg/b684SQzY1/qfWh6CYAYDalNusUOBwOp+nUoxx0AJ+glO4CcAOAewkhu+3HPk8pvcr+egwA7MfuBnAZgNsBfJEQItjP/xKAewDssL9ut9c/AGCOUrodwOcBfHb5L23xUEqhGsw48KA0h8NpX2oaB0rpBKX0JfvnJICjADZUOeQOAN+mlCqU0rMATgG4nhAyCCBGKX2WUkoBfB3AO1zHPGD//F0AN5MmOPw1g4JS6+cZrhw4HE4bs6iYg+3uuRrA8/bSHxJCDhBCvkoI6bLXNgAYdR12wV7bYP9cvF5wDKVUB7AAoGcx59YImGoAgNk0Vw4cDqd9qds4EEIiAL4H4KOU0gQsF9E2AFcBmADwv9lTyxxOq6xXO6b4HO4hhOwjhOybnp6u99TrRnGlsPKYA4fDaWfqMg6EEAmWYfgmpfRhAKCUTlJKDUqpCeCfAVxvP/0CgGHX4UMAxu31oTLrBccQQkQAHQDixedBKf0ypfQ6Sul1fX01R6AumgLlwGMOHA6njaknW4kAuB/AUUrp51zrg66n3QngkP3zDwDcbWcgbYEVeH6BUjoBIEkIucH+ne8F8IjrmPfZP78bwJN2XGJVUfW8cZhJc+XA4XDal3qK4G4E8FsADhJCXrbX/m8A7yGEXAXL/XMOwAcBgFJ6mBDyEIAjsDKd7qWUMn/NhwB8DUAQwA/tL8AyPt8ghJyCpRjuXt7LWhqKzpUDh8PhAHUYB0rp0ygfE3isyjH3AbivzPo+AHvKrOcA3FXrXFYaphxkwcdjDhwOp63hFdIuFN0SOAMdAcxytxKHw2ljuHFwwdxKgx0BzGVU6K4ANYfD4bQT3Di4YG6lDZ1BUArEM1w9cDic9oQbBxeOcugMAABmktw4cDic9oQbBxdMOayLWcYhkdOaeTocDofTNLhxcMGUQ3dYBgCkedtuDofTpnDj4IIph+6QZRxS3DhwOJw2hRsHF6qdytod4caBw+G0N9w4uOBuJQ6Hw7HgxsEFcyt1BplyMKo9ncPhcFoWbhxcKLoJHwFk0YewLCCV48qBw+G0J21nHM7OpPHg3vNlH1MNE7JoXZJIQORuJQ6H07a0nXH48eGL+JPvHcRUIlfymKIZ8IvWuOuwX0RK5caBw+G0J21nHG7Yak0fff5sySyhQuXg58qBw+G0L21nHC5bH0PEL+K5M7Mljym6Cb9tHMKyyGMOHA6nbWk74yAKPly3uauicWDKIewXeZ0Dh8NpW9rOOACWa+n0dBrTycJpb6puQhasSxINiEjzmAOHw2lT2tY4AMDzZwvVg6Kb8EssIC0gzescOBxOm9KWxmHP+hiifhHffmEUpkmddVU34Be4W4nD4XDa0jiIgg9//NZL8fSpGdz/9FlnXdVN+CU7W0kWoeqmUzXdipgmxVeeOoMkb03O4XCKaEvjAAD/9dUbcdtl6/DXjx9z5jYorphD2C8CaO3+Sscnk/gfjx7Ffx6dbPapcDgcj9G2xoEQglt3D0AzKObTlnFQ9cIKaaC1O7MuZK3XPZ/hyoHTXL72y7MYjWeafRocF21rHAAgKFvB56xmBZ7ddQ4RphxaOGMpwY0DxwOkFB2f/vcj+MEr480+FY6L9jYOUqFxUIvqHAC0dCFcwn5tTEHUw5HxBGZTSu0ncjh1klWtz18ru3DXIm1tHALMONhvzsL2GdZjrexWyisHte5j/stXnsPfP3lqpU6J04bk7M1ZRuWp416izY2D9fJz9gQ4d+O9iF8CgJaudWCB+Pk6lUMip2Euo2F8PruSp8VpM/LGoXU3YmuRtjYOLOaQK6McwrZyaGWpm8har63emMPEvNXJdirJ3UqcxsHcummuHDxFexsHV8zBNCk0g5YEpJOtbBxs5VAr5nDHP/4SD790AeMLlmIobjvC4SyHnGbVEmVa+LO2FuHGAZZxUA3rDVockG5t5VA75qAbJl4ZncdTJ2cc5TCdVEAprXgMh7MYuHLwJm1tHFgfpZxmQrEroVkRnCT4IIu+1jYOLuXgbiPihhnNM9MpTNjKQTXMRWU4cTjVYDGHLDcOnqKmcSCEDBNCfkoIOUoIOUwI+Yi93k0IeYIQctL+3uU65lOEkFOEkOOEkNtc69cSQg7aj32BEELsdT8h5EF7/XlCyObGv9RSgo5xMKDYQWlmMAAg2uL9lVjMwaRAskLKrqIx45DG+Hx+eh53LXEaRc5RDq37WVuL1KMcdACfoJTuAnADgHsJIbsBfBLATyilOwD8xP437MfuBnAZgNsBfJEQwu64XwJwD4Ad9tft9voHAMxRSrcD+DyAzzbgtdVEEggEH0FWNZweSqzxHtD6zfcSOQ0+Yv08ny3vWmKKKqnoODg2D8E+gAelOY3CyVZq4czAtUhN40ApnaCUvmT/nARwFMAGAHcAeMB+2gMA3mH/fAeAb1NKFUrpWQCnAFxPCBkEEKOUPksth/XXi45hv+u7AG5mqmIlIYQgKAnIaoZzE2SN9wDLOLS0WymrYX1nEEDljCWmqADgxGQKO9dFAXDlwGkczJ3EU1m9xaJiDra752oAzwNYRymdACwDAqDfftoGAKOuwy7Yaxvsn4vXC46hlOoAFgD0lPn/7yGE7COE7Juenl7MqVckIPmQ0/LKQXYph4hfaFnlYJoUSUXHxu4QgMq1DkpRV9qrhjsAAFPJXLmncziLJme/xzKqwRMdPETdxoEQEgHwPQAfpZQmqj21zBqtsl7tmMIFSr9MKb2OUnpdX19frVOui0CRcmDZSoClHFq1ajOl6qAUeeNQIWOJSX7G9v4ogpLAlQOnYTDloJvUSYDgNJ+6jAMhRIJlGL5JKX3YXp60XUWwv0/Z6xcADLsOHwIwbq8PlVkvOIYQIgLoABBf7ItZCkFJKFAOrEIaAMJy67qVWBrrsG0cKmUfFSuH9R0B9EX9PObAaRg5l+uSZyx5h3qylQiA+wEcpZR+zvXQDwC8z/75fQAeca3fbWcgbYEVeH7Bdj0lCSE32L/zvUXHsN/1bgBP0lXSl0FZKAhIu5VDSBZaVjmw7KRhRzlUMA52tlJ3WAYADHYG0R/1YyrBjQOnMeRcnzFe6+Ad6lEONwL4LQBvJoS8bH+9DcBnANxCCDkJ4Bb736CUHgbwEIAjAH4E4F5KKfuLfwjAV2AFqU8D+KG9fj+AHkLIKQAfh535tBoERMGuc7BTWcX2CEgz5dAblhHxizUD0rsGrUA0Uw7TvDMrp0GwCmmAV0l7CbHWEyilT6N8TAAAbq5wzH0A7iuzvg/AnjLrOQB31TqXlSAgC0hktarKgVKKVUieWlVYu+5YUEJHUKqZyvpbN2zCa7b2oC/qR3/Uj1+emlm1c+W0NllXXKtepf69Fy+gIyjhLbvXrdRptT01jUOrE5R8mEoYzpsy6CqCC/tFJ0jmjkW0Akw5xAISOkMSFmooh0sHYrh9zyAAoC/qRyKnI6cZTttzDmepuJMe6i2E+8efncJwV4gbhxWkrdtnAHDqHObsbJ2ukOw8FrK7trZicQ5rnRELiugMSZVTWbXS+o/eiB8AEE/XPweCw6lEVjMg2sWV9X7W4mm1oAaH03ja3jgE7GylhawGQoBoIC+mwnLrjgplrTMifhGdQdkxjsUoZbK4ogFr1kWllhvtwGg8w3PyG4SimU7CQz2fNd0wMZ/RCmIVumHiob2j3GA0EG4cJCtbaT6joSMowefLxxZC9kyHVsxYSuQ0RPwiRMFXl1vJHaiP2AY0pbRn872x+Sze8Dc/xc+ON6YQs93JagZ6bDVaTyrrnP1edbuj/uPABP74ewfwixM8FtYo2t44BGUrW2k+qxW4lACXcmjBDIpEVnNUUnfYUg7lOrOy3ZnbOLDjEm2qHC4u5GBSYGQ23exTaQlymoEeRznUNg7Mnam6anAe3j8GgLd1aSTcOEgCVMNEPK2gIygVPObEHFpMOcTTKvaPzqPTNoZdIRkmLV8Ip+gGBB+B6GorErVnXaTa1Dgk7XhNvM4JepzqZDUDXbZxqCeVdTZtGQCmHKYSOTx90lJxMzzFumG0vXFgc6QvLuTQGSo0Dq048Cet6HjXl57B+XgGH79lJwCgJ2J9MONl4g6KZhaoBoDHHNjrjqcLb0SUUnzrhfN8xvYiyWkmogERsuBDRqtfObB42A9eGYdJAdFHMMuNQ8Noe+PAUlcnFnLobAPlcGQigbMzaXz2XZfjFjsNkLnT5spkHyl6qXFo95hD3jgUXq9fnJzBpx4+iO++eKHcYZwK5DQDAVFAUBbqUg7sujPl8LPj07h0IIqNPSHMpHgGXaNo+zoHlqefUQ3HzcJwlEMLZStp9m5rsCPorLFMkdmyxsEoqfEIywIIaWflYLuVXNeLUoq//c8TALjfe7HkNANB2YewLNQVc5hNFSqHZE7DulgAWdXgbqUGwpWDnL/xVYw5tFCdA+t6KbliCMzfW0k5BKTCtwkhBBG/2MbGoVQ5/OLkDPafnwfA/d6LQTNM6CZFQBQQ8ot1ZSux666bFLphIqsZCEoCeqMyv/YNpO2Vg7siujjmEGrBOgfNsDKS3K6i7lCtmENpFXQsILWtcUiUUQ5PHLmIqF/EjnURfoNaBMw1FJQFWznUH5AGrFkQWc1AUBYQ8YuYTc+u2Lm2G22vHNztH4pTWQWfNSmulWIOWhnlEJQFBCUB8TL+WkU3CqqjGRG/2PYxh7mM5qT/zmc09EX9GOwMcr/3ImB9lfwSiznU71YCAEUzkFWtNi49ERnzGc15j3OWBzcOLuPQUaQcACDsF1oqW4nlhktCYSPB7rBcoBxeOBtHMqeVDUgDVq1Dq07JqwWLORgmdVTEQlZDR0hCX8SPGR5zqBvWniUoCdb8lCrK4dEDE3hxZK5AseV0E1nVQEgWeFuXBtP2xqHArRQsNQ4hubWmwZWLOQB2IZz9oUopOt7zz8/hwb2jtnEodStFAu0bc3AX/7Eg/kLWqrDvjchIKnrJBD1OeZhyCEi+mjGHP3vkED7zw6OIp1WE7XhgTjPyMQc7JZsnBDQGbhxkd8xBLnk8JLeWcmCSu1gNdIVlp6hrNqXAMCmmUwpymlFBOUhtXASnO0H6uSLj0Be1dq887lCbqWTOMQZBSUBIqhxzWMhqiKdVvHR+HnMZFes7rWy7ZE6HSa3PMVMO5bLuOIun7Y2DOxOnnHJotTnSml5BOYQkp6iL9a5JZHVLOVSIObRr+4xkTsOm7jCA/I1oPqOhMyg5NygedwCePjmDp06W7z+1kNFw02d/im/vHQVguXdD/soxB9aqxDApTGpNJATgNIwMSoLTn4m79RpD2xsH5lYixBp8U0yozgyKtQLLVpLKKIe5tGUU2G44kdXK1jkAQCzQvgHpRFbDxh5rvGo8bfWkSuSYW4nfoBh//+RJfP6JE2Ufm07loOgmnjltNcoLSFa2UVrVYZTp8XVuNlPw7w2dAQDAPDMOct6tNJvm174RtL1xYAHpWECC4Cud9haWxRatcyh8rT1hGSlFh6LnZ1skclrZ9hmApRxymtl2mSGUUqQUHZu688YhmdNBKdARktHbom6lpbQnz+lmxbjUgt0yfsS+6QckH4a7QzCp1Q69mHMzlnK4aUcvgHwRJ9vQBG3jIou+gmwmztJpe+PgF30gpLTGgRHyCy2VleNkK/lKlQNgfdjiLj+6VQRXqhxYZ9Z2izukVQMmtabhhWQB8bTqNCzsCEpOd9FWMg4P7j2P1332p4uelaBWMQ4sy4sRlARs64sAAE5Pp0qef242jcGOAG7fMwAA2GgbZzakKiAJIISgL8LnmzeKtjcOhBAERKFsvAGwlUNLuZVMSAIpmFsBuArh0irmnZgDcyuVUQ5t2nyPpbFGA5KV/ltkHAKSgGhAdDJmfnToIt76d0+taYV1ejqNsfksnjm1uAIzVTcqbqwSRR2AA5KAbX1h+//LG4cXR+KYTOQwMpvBpp4Qfv26YXz1/dfh8qEOAHm3Eutm0BORuXJoEG1vHADLX9lRJlMJsJRDPf1e1gqWcSj9s7P+SnMZ1al3YMqhUp0DACQVrewciFaFGcNoQHSMw3zWul5MffZF/E5A+hvPncPRiUTFSXvf2TeKHx++uApnvnRYWu7jizxPRTeRUsrHEIqTGYKSgM6QjN6IjNNT+TkZv/f1F/HH3z2AczNpbO4JQxJ8ePOl6xw1y5InWNZhT1jmMYcGwY0DLP85cwcUE5ZFqHrr+NZVvbpxiKdVJyA9l9FAqVW9Wgyb6fDk0Slc+Zc/xhNHJlfwrL1DXjmIZZUDYM3Ynk4pmE0pePb0rH1c+R30/U+fxTefP78KZ750WLrpE0cmy97oK8FcmOXUQznlAADb+iKOcjBMinhaxc9PTGM2rWJzb9h5PtuwzLuylQA7u7CFYoTNhBsHAP/rrivx4Zt3lH2s1dp2qwYtaxxYfv5kIleyyy3vVrKMw8P7x5DM6bj3315yboStDNvxxuzMpKlkznHDMePQF/VjJqXg8cOTYPfSSsZB0U3PF8zl7Jv8bFrFiyNzdR/Hkh8qGQe/6EO//b5j77Ft/XnjUGxANtsZYgBcyiGfrcTWvX491wrcOAC4fks3trh2JW5Y2+5WiTtoRnk3UUdQQjQg4nw842SAMCoVwQHA2Zk0dg/G0BWScP/TZ1fmpD0Eu2HFAiI2dYcwmVAwmcgBcCsHGRPzOXz92XNgoZ3iGx1DXQPGIasa2Ngdgiz6cP/TZ+rOXFJdLbWLSeQ0xIISLhmIwi/6nBjYtr4I5jIaZlOKE2xmKrWccnBnK7HvWY9fz7UCNw41YMoh3SJSlQWkiyGEYFNPCCOzGcxl1IL25WXbZ/jzDX1v2tmLTT3htqh7yMccJGyxA6gvj87DL/qc3exrtvVC9BEcu5h0smvcyiGZ0xyDYCkHb7ssFd1Ab0TGx2/ZiccPT+Lhl8bqPI4Zh3LKQUcsIOKmHb3YuS7qrOeD0mnHZfSxW3bid27cgu12NhNgFXEKPlLiVgpIPs9fz7UCNw41CMutpxzKuZUAYFN3GCOzacxl1AIJX65CmgWkAeDajV0Iya3VvbYS7oA0U5uvjM4XpELfvmcABz59K17405vxqbfuso/LG87/ev8L+OsfHQdgZfR4faebVa2W2L9301Zcv6Ubn/73w44qqIRhUic+US7dmSmH37tpK/79v73OWXens7JYzpXDnfjzt+8umGMOAAHR5ySLMLcSUw5LqcvgFMKNQw1C/tZSDpUC0gCwsSeEkXgGmkGxqadUwrvxiz5HgVyzqctO+W2Na1QO3TDxzedHMJnIOa3cN9vXKJHTSwZFEULQHw049SPuvP7x+azjilIN77uVcro1xlPwEbz9ikEkc7pz466E23gU1zQAlputIyiBkEIVu6EzCFn04dxM2vk/KtUg+V3dDdh7lK0pNYwXpzZtP+ynFp3BfBZPK6AatKR1BmNTdwhsw1WgHMq4lQghiAYkp2VEqM75v2uV/aPz+NPvH4LgI4gGRBBCEPaLGIgFcDGRKzEOjLAswFc0UjWnGlB0a3er2sNqvExWNRCQ89lAAJBWdCeJoRxu41DWrZTTCzYgDJ/PLmRLKiWB/mIC9vs4aBfAAflAdU4zyhZvcuqHK4cabOiyyvTH5ktL+tcimm7CX8mt5PqwFiiHMm4lwDIgb7ykDwDrQeXtm1w9ZFQd399/ocQtMWtX3RomLXCpMddSR7B8KnS5kapZzYCiW+MxTZqfaeBVcpqJgFhoHGp1DXBXU1fKVooFy+9N+6J+TNVhHPyuIDQj6BgHb1/TtUBN40AI+SohZIoQcsi19mlCyBgh5GX7622uxz5FCDlFCDlOCLnNtX4tIeSg/dgXiG3qCSF+QsiD9vrzhJDNjX2Jy6MjKCHqFzE2l232qTQEzTAhiaUBaQDY5FILG2soBwB48IOvwZ++zfKpV+rFr+jGotsuNJO/f/IUPvbgKzg6kSxYj9tZMZcORJ2OrEA+g6bSDQywgtcsW4nNTFY009ldq4YJ3f7yYj1NTjMQlK1bBYvB1WpjrxQoh0K3EqUUC1kNsUD5a9YftZTDQlZDxC9WdIMyV5JbIbAuy1531a0F6lEOXwNwe5n1z1NKr7K/HgMAQshuAHcDuMw+5ouEEPaX+xKAewDssL/Y7/wAgDlK6XYAnwfw2SW+lhVjQ1cQY/MtZBwqfNgGYgHI9geuJyw7O+RyMQfAyhhhQcKQJEA1zJJA5ccfegW/+8C+Rp3+irKQ0fCNZ0cAwIkJMFg+/fc+9Fp89f2vcta31mEcYkHJqY9gLiSl6FrldBMff+gVfOTb+xvwShpLVjNcysGOwdVI0FBdRq44IJ3VDOgmLdsFGWDKIYf5rFr1ujKjEJJLlYPXXXVrgZrGgVL6CwDxOn/fHQC+TSlVKKVnAZwCcD0hZBBAjFL6LLX0+tcBvMN1zAP2z98FcDMpjlI1maGuIC60iHJQqgSkfT6CYduN1h2WnQ9moIJbyU3Idje41UM8reLxQxcxsZCrdJin+Pqz5xwXyFSy8JzjaRUhWUDY7vzJYG6lSkFTwMpsYrvnnH19FM0ouIHmNAPnZtN4aWS+Ia+lUVBKbeVg3XQjTsyh+s23WswhYXdkrawcApjLaJhOKlWvK9u0uAd2uWMOnOWxnJjDHxJCDthupy57bQOAUddzLthrG+yfi9cLjqGU6gAWAPQs47wazobOYEu5leQKxgGwYg0+Yn1w2Ye3klvJDRvbmNHyN4JHD4xDN6knXSXFaIaJB549hxu3W2+9qURhf565jIquMv23WK1DtZtYLCCWKAdVL1QOWdVqUncxkfNU2rRqmDBp/qbrDkhXQynIVioyDrahrBZzAIAz0+m6lEOhW4krh0axVOPwJQDbAFwFYALA/7bXy+34aZX1aseUQAi5hxCyjxCyb3q6/ISplWBDVxBJpXb63lpAM2jBzreYazZ2Ynt/BD4fcT6YldxKboJligX/z8vj1v+5BtIKnzw2hZmUig+8bgs6glJJ2+e5tOr0n3KztTeMv3rn5Xj7Fesr/u5YQHKUQ9ZV/OaOxSi64fQEOjfjneQHFtgtNg61AtJuw1dcHJnIVg80s5YaY/PZqkaXKdqQXBpz8HqQfy2wJONAKZ2klBqUUhPAPwO43n7oAoBh11OHAIzb60Nl1guOIYSIADpQwY1FKf0ypfQ6Sul1fX19Szn1JbGh0wrOrkX1sPdcHEfGE86/K1VIM/7gjdvx2IdvApDf2dWnHArdSmPzWbw4MgfRRwrcJ17lO/tG0R/14/U7+iyfd5FyiGc0p2bBDSEE77l+Y9nHGJZbyVYOzK2kGwW766xqOrvxszPp0l/SJJh7ht10w3V2DGDGwf3aGY5yqOBWcqfIVsoCA/Lvy4JsJZkrh0axJONgxxAYdwJgmUw/AHC3nYG0BVbg+QVK6QSAJCHkBjue8F4Aj7iOeZ/987sBPEk9Vt6YT2dde8bhzx85jL95/Jjz72oBacCKO7Ags6Mc6ok5yIWByrPT1g1ux7pozWraZjOVyOGnx6fxrmuHIApWM7jimMNcWkV3lV1sNaK2cqCUFiiHAreSZuSv3UzpsJtmwYwDuwGLgg9+0VczIM1UUV/EXznmUEk5xPLGoR7l4DYOLHDOYw7Lp2YRHCHkWwDeCKCXEHIBwF8AeCMh5CpY7p9zAD4IAJTSw4SQhwAcAaADuJdSyv5KH4KV+RQE8EP7CwDuB/ANQsgpWIrh7ka8sEYyZBuHC3Pekfv1kshqEF2DfaoFpIthxqFajIIRKmpQyGYc9Ef9zohHr/KzE9MwTIp3XGWFwfqjfuwr6j46l1arqoNqRAMiTGpNkctVMA5zGdXp4HrWQ26lrKMc8jfgiF+sGXNgr607LONM0d9/wdW8sBw9YbdyqBaQtmMOMlcOK0FN40ApfU+Z5furPP8+APeVWd8HYE+Z9RyAu2qdRzPpCcsISL416VYq9g1X6spajrdfuR4hWSyZGleOcFFrc1bA1Bf1e96txG50zNfdHwtgKqmAUgpCiDXuUtGdaXmLhe2QkzkNWdWubdDNAreSe3qZt5SDdY7u3Xm4HuNg/817IjJeuTDvXEsgH3OIVnAryaLPmZVRaUIj4Io5lFUO3n7PrQV4+4w6IIRgfefaq3WglCKl6AU7VK3CPIdyXDHUiSuGOut6LtuxsaAq65bZH/U7TdiEOoxMM2DXh7nP+qN+qLrp9Exir2U5ygGw3CnuHa3bcLMK7KAk4Nysh5SDWqocwn4RqRoxB2b4eiJ+aAYtmEWeyGkISkLVxIi+iN8yDlXdSnbMwR2QlnkRXKPg7TPqZKgrVHbwuZdRdBOKzHe6AAAgAElEQVSGafm5s6rh3KTrNQ6LwamcZW6ljObUBQDwdDoru5Ex9xkLiE7bcQc2NrVctlI9RAMu5eC6ablnPMzavbt2r4/Zc7y90csrpxcGpAEg4hfqTmXtjVjX8uDYgpMYsVCldQaDxR2qB6RLK6RlwQdCuHFoBNw41Mkbd/bhxGQKJyaTtZ/sEdyBwLmM6tygK7XPWA6se63jVspq6AxKzg3Xy64lRTcguALxzDiwjCXWdLFcnUM9OPO2c7pTBAcUKocZWznsWR8D4J2MpVxRS2wACMli7Qppphxsg/o7/7LXqf6eWMhhoCNY9fg+26jUoxzcqayEEAREPg2uEXDjUCd3XLUeoo/gey9eqP1kj+De3cXTqnODrifAvFhke/iKE5DOqOgIyY7rwMu1DqpeGIfpjwYAAFNJ64bNpo0tVTmwlM1EsXLIud1KlgG6dNAyDl6pyHeUg7i0gHRPxLpmSUXHudk0DJNiZDaDjd2haoejz1EOVQLSZRrvAZYh4wHp5cONQ530RPx44yX9eHj/GHQP74LdpIqMA7tBV/P1LhVCSMHAn/mMhq6Q5LiwNMNT2ckFKLpZcE2YS2OqyK3UFV5aKivLyknkCmMO7oZ0s2nLELFhN8W9nZoFC6C7lUPYL9Rd58Ayj6IBEZpBMRrPYGw+i001jMNl6zvQE5arGuRy7TMAq5U3D0gvH24cFsG7r92A6aSCF87W22qquZQYB/sGvRIxBwD2TAeXWykkOTddL9c6KFqhcoj6RQQkH6Yd5bBct5I7W8ltHEqVw2BHAAHJh4se6UflFMGJ9WUrmSYFpRSKbkD0EVw53IHffPVG/OUdlwEAnj0zC8OkNZXD268YxN4/fUvVmQzl2mcAVmprqyiH//c/juCerzencSXPVloEbNZtcWsFr+LuhmkZBzvmsELGIezyRc9nNHQEZaca28sxB9UwC6rACSHoi/rx/Nk4XhyJI55WEQ1Ubh1di4BkTc1LZPUCXzgLSPtFn6NOIq4BQl7AqXOQ3QFp6+/sTk9lvP9re7GxO4iAaGUjhWQR//POyzFuZ/o9ddJqezNcwzgQQlCr/SYz6KES5SBAaRHjcOxiAuPzzXkvcOWwCNjNwcu7YDdu5TCXUZ0MkmrtM5ZDyC8gq1oTzuYzVhqi7LiVvHvNFN0ocbX92pXrcWwiiXd96Vk8/NKFJccbAOtGFwtIWMhqZVNZY0HJmcAX8gsY6Ah4RjkomgFCCuNUIdkq6ivencfTKp46OY1TUymoRqGrjrWDf/rkDIDCeSFLhSm5YkUXlIWWcSslsnrTGjFy47AImHHQTe/6z92wm4+PWKmS2goGpAEgJFk7yrRq9evvWqNuJQD4o9suxYt/9ha8/7Wbkcjp6FyiS4nRFZYxn1FL3EqCjzhtsCWBwC8KnlMO7jGcgJXKCpT2V3rq5DQotW5oql7Y/dfnI9jUHUIip0MSCAZigWWf26s2d+E7v/8aXGZneDECkq9l3EqJnNa02ezcrbQI2I7by7tgN8w4DHYEMec2DisQkAasXa87R78zKLsC0t69ZmqFqvFoQMKnf+0y7F4fQ9S/vI9Kd8iq+JVFy8WkGRTJnAa/6HO5R6z/Y11HAFMJpazbZrXJaWaJT7/SHOmfn7BcRklFg6KbJT25NvWEcXIqhaGuUEMKIgkheNXm7pL1oCQ4FfprnURWKzthcTXgymERiGvMrZRWdPiINY9idhViDixbyZn968pW8nLMQdHMqgbz168bxlsvH6z4eD10hSXMZVTkNMMp7ErmdMiir2SQzkAsANUwnfqKZsKUg5tybbtNk+IXJyyXUTJXqhwAa+Y4gJrB6OXil1ojIE0pRTKnQzdpU+453DgsAnmNuZWSOR1hv4ieiIy5tApVX+lsJREZRXeMQ5erzsHLBlXRjbraki8Hq1eQFXNghV3JnA5Z8JWM4GQuFy+4lnKaUaIAImUG/hyZSGAmpWB9RwDJnG7HcQqv6SZ7at5KG4egJLTEPAc2ThVAU9QDNw6LwHErefhG5yal6Ij6RXTZTcycIrgVqJAGrOZ7Gc1wOrIWBqS9a1AVvf5mhEulOyxjLqMioxpOMzkWtGXKgbmVBjps49DEoPRCRsOpqZQ1IrSSW8kVKN17zkrvvvWyARgmxXxGK1Fjq6UcWiXmwFqbA4UTFlcLbhwWAfOTetl/7iat2MrBvjGx9D5ZWJldclAWkVEMzNnKoTMoOa06vHzNVL26W6kRdIVkGCbFVKJwLrIs+pybr+NW6mi+cvjiz0/hnV/8JTKqURpzKDPw58CFBfRH/U6690xKKTG4l63vwKaeEF69tTRO0EiCUmu0z0i4iiSbEZTmxmEREEIgCz5oa8StlFJ0RAIiukIyTJpv7rYSvZUA66ahGiZm7OKxDpdy8LZbyVwVtxJg/U3czeRkwee4bVi+fl/EDx8BJpuoHOIpFYmcjhOTycrKweVWOnBhHlcMdTh9pGZTaolx6A7L+PkfvanuTr9LJWAbB4/NDFs07gp67lZaA0gCWVNupYgdcwDybooViznYN42JhSxCsgC/KKyNgHSZzJpG42737e4X5JeEEuUgCj70RvxNVQ4Ze+c9k1ILOrICpQHpZE7DmZk0rhjqzM+uUPQVS5muRUASYFJvv+fqocCtxI2D9xEF35oJSKdylnFgu1ZmHFaszsHe+Y7NZx2/utN4z8MfVEU3VvxG5h4UFPELznQ+v+DLdxf153foAx0BXEw0rxI/41IFtdxKB8cWQCkKlAOwcinTtWDnu9YL4QrdSjzm4HkkwbdmdiRMObBc9PEFq4XBSqayAsDIbMYpGlszbqUVVg7uCuuALDguF3fMIeyqpeiPBjDVTOXg2qkWGwdR8CEg5edIH7iwAMAaDhVzTXdb6SB/JZjSWetxB/e8D+5WWgOsNbdS2C86LahZG+gVK4Kzs20uzGWxtc9KW5Q8rhwopXbL7tWJOQBWwJS1m3ZnK7GBSQAQC4oFjflWG3e2T3HMAbBcYMytdPDCAoa7g+gOywVzoZulHIKOcljjxiHXXLcSr5BeJNIacStRSpFWdEQDot06mzhjTleqt9KrNnfhnddswBt29uFtdtGY11NZmQpc6V1uSLYa0am6aRkHphyEfIW0WzlEXTffZlCoHMpXjzPjdXQigT3rO5x1RrPdSms9nbXArdSE18KNwyKRBLIm3EpZzYBJrRsOIQR9ET/GVzgg3RmS8blfv6pgjRkixaNqi53XShsHQgi6QzIuJnIIyvn5yYXKwTVQJ2AZh2a10MiqBnojfsyklLLKIRoQnWyaeEZ1XJesA61m0BVLma5FsFViDlkdQbvaO8tjDt5HEnxrwq3E2nWzDBh3D5zVzCIhhNg3C+9cs0NjC86uTF0l4wDkM5bcysEvuiuk83u1iF+CYdKm3eAyqo5rN1kpp6EyfaUs46A7LR5YrIEQ4qiHlY7jVMLfKjGHnIZ19uApnq20BlgrbiXmkmDZI3123EH0Efga0PRsMcgeMqgnJ5O44x9/ifv+4yiAvHJYDRdItz1JLmin+bL/t7i3EmApB8BqYtcMMqqBzT1h/MNvXo13XrOh5PGI31IOGdWAYdKCLCX2c7NSWYMt4lZK2t2A/aKPB6TXAl7bBVeCGQcW5GSjL1fKpVQNSWxOhtf+83MlWVL3PXYUhknxg1fGkchpTtX4SgekgfzcgYKYgytbyT20hnWBTTUhKG2YFIpuIigL+NUr1jsJDW5YzIHFHWKu2g2mIpodc8g1qZtpo0hkNUQDIoKu8burCTcOi0QUfJ5Oy2Q4biV7F9cfZcZh9f3XkuBbdYM6lczhnV96Bg/uPe+sPX1yBj87Po1fu3I9spqBR14eX7WANAD02G6lgCQ4rg9Z9OGGrT346Ft24OqNXc5zI2U6n64WLKe+eMKaG+ZWYu65csqhWamsA7EAfMRqBriWSeQ0xIISQhI3DmsCeY25ldhNhu3+mrGbkwWf0xF2tbDmIQCHxvI3iKdOTkMWfPibu67A7sEY/u35845PfzWuixNzcLmV/ILlVvroW3YWnAMz6s1QDsyFEZQr56tEAxJSrg687voGx63UJOPQFZbxmm09ePTAxJpuoZHIWrGcoCwgyxvveZ+14laasvsbsRtSXjk0wTg0wa00Zw8cOjaZdNYSOQ0dIQl+UcDbr1yPoxMJpw/UariVeiLW3yAsi44/vtINlBn1ZFOUg2UcwlWUA6tnmLALK8u5lZqlHADgbZcP4sxMGscuJms/2aNYykG0WuFz5eB91opb6dxMGn7Rh0F7NgCLOTRjN9eMwkE2KOfkZBKmrfQWsprT16jX7jfFjOhqZNbccdV6/O1vXIWBjoDz/1UyStEmKgd2I6rlVgLyhZWFbqXmxhwA4LbLBuAjwGMHJ5p2DsshpxlQddNRDtw4rAHWilvp3Gwam3pCTmZSX7spB9s4ZFQDo3MZAEymWzcxZiSmkivbb8pNLCDhHVdbmT/ugHQ5mhlzYC6MWm4lABi3CyvdbqVYkGUrNafOAQB6I37csLUHPz482bRzWA5OoD8gIiQLPFtpLbBW3EpnZ9LY3BN2/t0b8YOQJmUrNSEgHXfNEGauBbdyYN+nV1E5uHGnspbDiTk00a1Uj3JgxsFrygEA9mzowLnZ9JqMO7BAfywo2eN3PRhzIIR8lRAyRQg55FrrJoQ8QQg5aX/vcj32KULIKULIcULIba71awkhB+3HvkDssk9CiJ8Q8qC9/jwhZHNjX2JjET2Us18Jw6QYjWexpTdvHCTBh+6QDLkJ2UpyE1xxc2nVubkdt40Dy/4ArFkTgMs4rELMwY27fUb5xwXIgq8p/ZWYcShXGc1gBmBsPgtZ9BU052t2thJjsCMARTed4VNriXk7ZhYLSghKomeVw9cA3F609kkAP6GU7gDwE/vfIITsBnA3gMvsY75ICGHvmi8BuAfADvuL/c4PAJijlG4H8HkAn13qi1kNpDUw7Gd8PgvVMAuMA2C5ltrFrRTPqBjoCGBTT8gxDuWUA4s5rPYu153KWgmrhcbq39jqSWVlbq+xuWyBSwlofp0DY9CeqMeC5msJFssZ7gpaykEzcGhsAT86dHHVzqHmX49S+gsA8aLlOwA8YP/8AIB3uNa/TSlVKKVnAZwCcD0hZBBAjFL6LLU03teLjmG/67sAbibNaCZTJ/IacCudnUkDADYXGYd3XL0Bt+xet+rn0wy30lxaRXdIxiXrojh2MQHTpEhkNefGxb7nlcPq3siYP76qcfCLTQ5IV445sNhNWjWcGAPjsvUx7FwXwdai999qM9ARBABMzDev9flSGZm14mRDXSHbrWTg735yEp96+MCqncNSG++to5ROAACldIIQ0m+vbwDwnOt5F+w1zf65eJ0dM2r/Lp0QsgCgB8DMEs9tRWmWWymZ0zCX1rCxp/Zw9nOzlnEoVg6//4ZtK3JutbDaZ6yu2oqnVQx3h7ClL4yfHZ9GStVh0rxiCMnWwJ3pVHOMQz5bqYZxaEZAmhkHf223UvHPADDcHcKPP/aGlTm5ReAohybOxVgqI7MZDMQCCEgCgrIAVTdx/GIScxnNmdOy0jT6E1Fux0+rrFc7pvSXE3IPIWQfIWTf9PT0Ek9xeTTLrfS/Hj+Ou/7pmbqee3YmjZAsOLUNzaYZ7TPmMpZy6I8GoBomRuPWToztcgkh6AhKTixk1d1KNbKVAMut1MyYQ6hKzCEg+Zxpdu4ZDl6iN+KH6CO46CG30gPPnMOLI3M1nzcaz2Bjt7URZO698/Z7eGxudV7PUj8Rk7arCPb3KXv9AoBh1/OGAIzb60Nl1guOIYSIADpQ6sYCAFBKv0wpvY5Sel1fX98ST315MLfSamdAvHR+HpMJBYpeOzB1biaNTT3hprR6LockkFUNSFNKMZfR0BWWHQN5aioFoHB+s/vn1W4S51RIVzEOzZrpkFGtsalilWtidV+1jIK7AM5LCD6CdbGAZ9xKlFLc99hRPLR3tOZzR+Jpx0tQnFLMNjorzVI/ET8A8D775/cBeMS1fredgbQFVuD5BdsFlSSE3GDHE95bdAz7Xe8G8CT1cO6ZKPhAqZURtFowSQnki7uqcXo6jS29td1Pq4VfXN2YQ0a1Coi6w1KJcSjMx89X8q62Ic1nK1UJ+gaa5VbSnU6x1Yg68RtvKgfAmsU9seAN4zCf0aDqZs1OuznNwGRCcZRDcdbYhTmPGAdCyLcAPAvgEkLIBULIBwB8BsAthJCTAG6x/w1K6WEADwE4AuBHAO6llLKt7ocAfAVWkPo0gB/a6/cD6CGEnALwcdiZT16FZfusZiHcicmk45aZSVY3DuPzWZyPZ3CNq4lbs1ntudvMgHaFZKf47+SkbRyCpcahGVk1XeHCrKlyNDMgXS1TieEoh4A3lQNgxR0ueiTmMGkXXCay1f+mTBkUu5UEH4Ff9DmZTCtNTZNPKX1PhYdurvD8+wDcV2Z9H4A9ZdZzAO6qdR5egXU1VQ2zZPD6YoinVYgCqeuDdXh8wfl5Jq1Ufe4vT1lx/Nft6F3yuTWa1R6QxPoqdYdl9NvtQ05NV3YrrXaNAwC8YWc/Hrn3xqoJBpGAiKSi4/v7L+D4xRQ++dZLV+XcMppRp3IQC757kcGOAJ44Mtm0iXpuLtoKJpkrrxwopTg7k3ZiC3m3kvW32NQTgo8Q7xgHTiFMOSz3ZvfBb+zDcFcIn/uNq2o+191ZdDZVqhwMk+LuLz+LN13ajxMXk+iNWCmcXkEWfas6Q9pRDmEZEb/VfuCcnd4bKzAOzSvWEnwEVw53Vn1O1C9C1U3808/PYDqprJ5xUHRnDkg1HLeSR2MOgJXOqugm5u0YVDOZTDDjUF45PHVyBu/96gu4eqP1vnCUg70J3dEfgaKbTjuYlYYbh0XSKLfSmel03QVpB8cWcPmGDhwcW8BMKq8cnjgyid3rYzgwOo+95+bwyugCgrKAN17S1/RdkhvmVlqt3ZujHEL5jrTnZjMgJD9EB3ArB292kWHpiscuJiH4yKpdv4y6OOXgZbfSeqcQLucB42B9dhMVlMPPjlsZmPvPzyMsC878D1ZvsqM/ivmsiv3n51fhbHlvpUUjMrfSMpSDqpuYTat1dVrUDRNHJxK4fks3ApIPs7ZxyKg6PviNffitrzyPf/zZKWzoDEIUCBayGm7c7h2XEpC/+a6WeoinrQ8fuxmwuEPULxaMSO1oYsyhHiKum65hUiRWKf6Q1eqMOfi971Ya8FCVNIt9VPo7PnN6Btv7I5BFH4a7Q85GoD/mh+AjuGq4E8NdISxktYoGppF496/qUVjK43Kyb6ZdN/hanJ5OQ9FNXL6hAz1hP2Zst9KZ6TRMCpyx3SV/ecdlSCsGPv/ECbx+R3PSfCvB4jSaYa74jXhiIYvJRA6CjzhZNGzQUbH7Y60oB8ZCRqsawG4UGdXAUNcispU87FZa32lVSY/NN984TNoxB1U3kdOMgpjlTErBsYtJ/NFtl2B7fwSCSyGuiwXw7CffjL6o35l5PjaXRWxwZa87Nw6LpBFuJeZ7rEc5HByzgtF7NnSgN+p33EosNfODb9iKgxcW8O5rhxCUBLz72iFnp+wV2DVTdRPhFTy1iYUsbvzMkzAp60Jb2K68+MaaH0rTvNbS1Sjekc9l1Loq5GvxuSdOQNXNkhjGc2dmcWY6jaxqICjVE3PwvlupP+pHSBZwZjrd7FNxspUAK+7gNg7Pnp4FALx2W0/BuFgGS6wY6rKM3Wg8g12DsZU8XW4cFksj3EpTCaYcahuHQ2MLCMkCtvSG0RuWMW7vPk5NpeAjwMdv2Vlwc/OaYQDybpuVrnUYn8/CpMDrd/bhddt7nHV2TYpvYo5yWOV23fXClMOVw514ZXQe89nGuBJ+cWIaF+Yy+JPbLymIYXz16bN48tgURIHU5VYa7AxC9BFncJIXIYRgW18Ep+1stWZycUFBUBKQ1Qwkc1rBZ/WZ0zOI+kVcvqGj6u9wjMMqZCxx47BIGuFWYgNm6nErHRpbwO7BGAQfQW/E7yiJU1MpbO4Je3bX68ZRDitsHFj++MfesqNg99VfSTmwmEMTOtXWw1BXENGAiLuuHbKMQ6Z2AWQ9ZFQdMykV4ws5bLDdLoDletFNCt2kdRmHX7l8EFcOdTjjT73Ktr4w9p6r3bJiJdEME7NpBXvWW4kl7owlw6R48tgUXrOtp2pVOmClZ//yk2/GgK0kVhJvfio8TCPdSjnNrFppbZgURyYS2GPvJnqjMuJpFaZJcWo6hW39kSWfw2oiu9xKK8lCNj8gxQ2T5MXdQ72uHHoifhz4i1tx+54BAFaFbSNIK5ZiPTBamPXi9stX68jKEHwEm3qa23m1Hrb1RTA2n23KwBzGdFIBpVY6KlCYsfSLk9OYTCi48+oNlQ53IIRgQ2cQgm/ls9a8+anwMMyttJw6B+ZWAqzMkEqcnUkjoxqOcegJ+6GbFLNpFedm0ti+VozDKmUrMeNQrBAqKQc28MfL6osQgk77vOcapBzS9k3ylQv54sq0omPeFfCuRzmsFdgmqplxB5aptH2ddS5u5fCdfaPoDsu4edfqt9OvBjcOi6QRLpLJZN44ZKr0zjnkBKOtwFOvfZN7cWQOukmxvW9tGAepAa64ekgw5RAobxyK1yOyCEK861ZiiIIPUb/YMOWQYcrhQl45MNXwvtduBiGW+6JV2GZ/TpoZd2CZSjv6reJUViU9m1LwxJFJ3Hn1Bs+lVPOYwyJhNxJ9GbvgKVevl2pB6UNjC/CLPscI9Nof2OfPWpkNa0U5sFRWZRXcSkFJKPmQ9UT8+Iu378ZbinZmPp8l0b0YxC+mMyw1JOag6qazsTl4YQGmSeHzEacN9Bt29uGtewawtc/77qJ6sdpOWGnhzYK5ktlnlimHZ07PQjMo3nFVbZfSasONwyIRXTn7S2UykUNf1I/ppOJI/HIcGl/ArsGYE6RiyuFxe1Tgmok5rFK2knsMaDG/feOWsusPf+i1JcNqvEhnUG5IthLzu186EMWxi0mcnU1jW18EF2zlMNQVxLpVCHauJgFJwHB3qKnKYTqlQPQRbOwOgZC8ymVGoxEpyo3GWzpmDbBct5KiG5jLaNhiB/IqKQfTpDg8lihIbWPl9BOJHD5y845VmQbVCBqR4VUPidzii8T6Y4G6WkU0m86QhLkGuJVYC/Cbd/VD8BF87okToJRibC4LSSDo83jm0VLZ1hfB6akmGoekgt6IVekckUWnSnoqqcAv+jzZ9pwbh0WyXLcSm1m82Z63UMk4nI9nkFR0J94AWH7gP/vV3fi3370BH7tl55L+/2YgrWK2UnFGUqvQGZIb4lZi77ddgzF84tadePTABB7cO4qx+SwGO4IF7UVaiY3doRXtZqrqJt7/Ly/goCvI72Y6qeTrbYKS41aaSuTQH/N7qhcaozU/SSvIct1KrPnWll7LJVQpIH3IbtN92fq8ciCE4AOvK+8e8TLMrbTyMQcdGzpbyyXC6ApJDQlIM+UQ9ov4/ddvw1MnZvBXPzyG9Z3BgpqHViMaEJFW9RVrXjiVzOFnx6dx/ZZuXD5UWsg2nVIcVRYNiE4q61RScdq7eA2uHBbJcjNvmI9xSw3lcHBsAbLgw04Ptd5eKoMdAYRkAf/089PIVUndXS6JrObpPj/LoTMoIZHTlj2BkGUqhWWrCeEnbt2JhayGoxMJbOhqXeMQ9ougtHrq+HLI2p9jd5q6G7dyiAZEJ1vJMg7edOVx47BI8v7zpX1I2ZQndtOvVJhzeCyBSwainktvWwqdIRl/d/fVODC2gD9/5NCK/T+JKgHptU5nSAal+UDmUskrByvOcu2mLmeuRCsrh7Adn1upsavM6EwlS6fOmSbFTEotaONS4FbixqE1WK5baSSeQVdIcjJCyikHSikOji0UxBvWOrfsXodfu3I9fmr3rG80hkmRVHRPN4FbDp2hxhTCsc0IG+ZDCMHv3WS5Koe7vZcx0yjCdtIBqw5vNNWUw1xGhWHSErdSTjOQyOlOBb/X4MZhkSzXrTQaz2Bjd8gZGp4uMg4P7R3FzZ/7ORaymlMZ3SoMxAJOFfNyGJvP4q7/7xknuA/kd9Stqhy67MFFy01nTbtiDoy37RnE53/jSrzt8oFl/W4vw15veoWUQ8ZWDpNllANrs99nxxaitnJg71+v1tlw47BI8rMJluZWGpnNYGNPGD4fsTo0FrmVvr9/DMmcjnvftA2/esX6ZZ+vl+gISU4v++Ww//wc9p6bwwtn484aC/C1qnFgymG5GUtsM8LcSoBVDHjn1UN19VNaq0RW2DjkXMqB0sJ7Q7ERiAVFJHO6E3/kbqUWgRAC0UeWpBw0w8TYfBabbPke9gslymEmpeDajV34o9subbkbHXs9y826YTOiT7ny1is13WsVOplyWOa1yyg6CIGjXNsFRzmsUPM9FnNQdBMLWQ0fe/BlPH7YKladTllGIB+QlmCYFOdmrfgjz1ZqISTBtyTjMD6fhWFSpxoyKAuOr5Ixk1LQG22dvjZumHFYrmtp1pbp7orXSk33WoVGXbuUYiAsi57Mq19JVjrm4I4dvnA2ju/vH8MffPMlPHZwokQ5sL8l653WH+PKoWUQBbIkt9KIvVNwlIMsFshczTAxl9HQ26JVqo26wZVTDmyWQ6saBzZ1LbnMOdIZVW+pjqv10oiYg2aYFTeFblfpz09YSRdDXUF87MGXcXoqjaAkOAbqNVutQVQPv3QBoo+gO+TNzSA3DktAXqJyGLHTWFkP/KAsFORds5teqxqHzqD1IWiUcTgzk4Jp5/3n3Uqt6TeXBB8Cks/Jj18qKUVfM21XGkkjUlk//tAr+PC39pd9zO0B+NnxaQg+gs+88woouon/ODCOvmi+CnpzbxhXDnUgkdPRG/F7tiqdG4clsFS30mg8A1n0OQGoYuXA5GerGod8zGF5QdXZtHWdcprptJpudbcSkM9yWQ4Z1UDI33RRAp4AABg1SURBVIbKwd611zOatxLHLybwStGAJEbGtckbm89ia28Yr97SjcGOANKqUTJK9dfsLqxedSkB3DgsCVEgS+qtNDKbxsbukLNTCMlCwZt1OsV8k96UmculkW4l1oSQxR0SOQ2SQFo60GpV1i7POKQU3alxaCdEwQe/6FuWW2k6qWAikYOilxqYrGogGhAdI7RrMAafj+CtewYBlKar/uoVgyDEu5lKADcOS0IWfEvqyjoym3HiDUCpcZhpceUQDYgF7YqXSjyt4rrN1oxoFndg7bpbOdAaDUgF4yWXQkbVC2oc2omIX1yyW4nFAykFRuOlDfxymoGgJDgFbbsGrQJWVjtSbBzWxQL48Jt34M6rh5Z0PqsBNw5LQBJ8i1YOGVXHqakULhnI90oK+cVC45Bq7ZiDz0cQC0jLUg6mSTGX0bCjP4qukOQMcFnIai1bHc2INUA5pBWjbY1DyC8s2a3EMuQA4Hw8jX/55Vl85ofHnLWMaiAkC44R2DVofc6v2diFmy/tx+u295X8zo/dshO/csXgks5nNWjPd8kysbKVFqcc9p+fh25SvGpLt7MWkoSC3kozKcXKamjhD29HcHnGYSFrNZ/rDsvY0R/F0YkEAODkZBJDLdz+AbCU1/j88tpOpxXdcX20G2F56cphJpWvxh+ZzeBfnxvBbFrFn9x+CQghyGoGApLguIl228rB5yO4//2vWv7JNwGuHJaAtAS30gtn4/ARq9EZgykHlnHTyjUOjI6gtKwWELN2plJPRMb1W7pxcGwB52czODGZwqtdhrcVifqXH5BOK+3tVlpqzMHdquXghQWcnk5jPqM578ecZiAoC7hiqAOXrIt6tiXGYliWcSCEnCOEHCSEvEwI2WevdRNCniCEnLS/d7me/ylCyClCyHFCyG2u9Wvt33OKEPIF4nHHsbwEt9ILZ+PYNRgrcH2wfPOcHeCaSSkt61JiLFc5sDTW7rCMG7f3wjAp/v7JkwDQ+sZhmW4l06TIaEbbKoeQXyzpSFAvLFkkFhCdymcgH/PK2m6le16/DT/66E0tEftqhHJ4E6X0Kkrpdfa/PwngJ5TSHQB+Yv8bhJDdAO4GcBmA2wF8kRDC3qVfAnAPgB321+0NOK8VY7FuJVU3sX90Dq/aXHjzKq7anEmqrW8cQss1DtaHtDss45pNnQhIPjy8fwx+0YcrhjobdZqeJBqQkNUM6Ets+pjVDFCKNlYOwrKVwzWbugoMDDMOGdVwMuVawTAAK+NWugPAA/bPDwB4h2v925RShVJ6FsApANcTQgYBxCilz1KrY9XXXcd4ksXWORwaX0BOM3F90c42aKcUsgKadlEOy8lWYkH7nrAfflHA9Vt6YJgU12zsaonZF9WIBJZXyMX6CoXa1DgU1xUthpmUgohfdBJKLh2IIiQLTip1zo45tBLL/TRRAD8mhLxICLnHXltHKZ0AAPt7v72+AcCo69gL9toG++fidc9iGYf63UpHxq2g6VXDhTtbRzmoOnTDRDyjoi/SBjGHjFbSubIaL47EcW7GykpibqWusOWee912qxXBq7e2tksJWH4LjfwUuNa6idVLeJkxh96IjE3dVneDazZ1YWtfOO9W0oyWa0uyXONwI6X0GgBvBXAvIeT1VZ5bTmvRKuulv4CQewgh+wgh+6anV2ZoTD1Ii3QrsRtacZAqGsgPcIlnVFAK9LZAIKsaHUEJukkXlVL44W+9jM//5wkA1rWM+kX4ReuDeMvuAXSFJLxl17oVOV8vEbONw1JrHVJlZjm0E6wL8mI2Jgw25nOz3TTz6uFObO+L4HQZt1KrsCzjQCkdt79PAfg+gOsBTNquItjfp+ynXwAw7Dp8CMC4vT5UZr3c//dlSul1lNLr+vpK84ZXi8W6ldgNjQ0KYuxYFwEAnLiYxEyytWscGJ2LrJI2TIqLiZzj851Nq+h2qastvWHs//NbW24wUjnYZmLJyoHNcmjDCmnAMoqGSaHoi4/ZzKQs43D9lm7891/ZhV+9Yj2290cwvpBDWtGtVFauHCwIIWFCSJT9DOBWAIcA/ADA++ynvQ/AI/bPPwBwNyHETwjZAivw/ILtekoSQm6ws5Te6zrGk3SGJMym1Lp3IPMZFV3hUndRf9SP7rCMoxNJHJ+0XE+b7aZ8rcpiW2jE09aIRaa+4mkF3WWuZTuwXLcS62nVqs0Ja7GcgT+WW8kPUfDhd2/aiqAsYHu/tbk7OZWCqpsISa11XZfzatYB+L4dmRcB/Bul9EeEkL0AHiKEfADAeQB3AQCl9DAh5CEARwDoAO6llDLfwocAfA1AEMAP7S/PsqU3jKSiYzql1DWoI57R0BUqrd4lhGDXYBRHLyYgi76CgFersljjwAa2s3zy2ZSKoa7gypycx8krh6W5lSYWrGs52NGe149NuksrBnoi9R+n6Nas574iVb+tz/olh8etuQxBubUSIpZsHCilZwBcWWZ9FsDNFY65D8B9Zdb3Adiz1HNZbbbab4oz0+m6jMN8Rq242901EMM3nhuBopm4emMnBI+2720UsUVOg2MD2+NpFaZJMZVUcI2rkLCdWK5yGJ/PQhZ9TtPCdiNid6NdTLaXbpi4aBvV4njgYKdlZM/aLVx4zIGDrb2W6+eM/aaoRTytVhzosWswBkU3cXwyias3tv5Nb7GzkJlyMEyKmbSCeFrFOo+OVVxp8sZhacphbD6L9R0Bz84PWGmWMir0t7+2F7f97S8AoEQ5RPwiIn4R52Zt49BisZzWejWrxIbOIPyiD2dcYyqrMZdWnRnAxbDujUBha41WZSAWgF/0FYz4rAZTDgBw4qJ1jJd74K8kflGALPqWpRzWd7anSwlwu5Xqu366YeKFs3H0hGWoholLB0tdvutifpyZ4cqBY+PzEWzpDTtvimoouoG0aqA7XL5j6Pb+CCSBgJDSOohWRBR8uGQgiiMTCVBK8ZWnzmBktvJ1nLSVAwCnyd66NjUOgN2ZdZFukWdOzQAAxudzbW0c8gHp+tKoz82moegmPnHrJdj332/BUFdpY8fBjiDO2+N/Wy3m0FqvZhXZ2heuSzkw33ol5SCLPmzvj2Jnf7Slp5i52T0Yw5HxBE5Pp/A/Hj2Kz/7oWMXnTiUUMC8IMw71xHlalWhAwnRSwVv/7in8l688h0cPTFR9/qMHJ/CbX3keL52fw2SyvY1D2M/a1dRnXI9MJAEUqvti1sUC0O3GmcEWy1bixmGJbO2NYHQuC7VGzvRcJt8orhL33bkHf/Wuyxt6fl5m9/oY5jIavvfSGADg8cOTmFgo34p6Kqk4CQBHmHFoY+UQDYj4+YlpHJ1I4Mh4Ah/+9n4YZuWU6hOT1g3u0QMToBTY0Nm+hpXVd9QbkD46kYAkECdltRwDHfn3YpDXOXAASzkYJsX5eHXXEsvP7yyTysq4ZmMXrmmDYDSD7cS++dwIusMyTErxzefOl33udFLBpXZ67+npFAQfQU+4vY2Dqpvojfhx75u2wzBp1V5Vp6es9+djBy2F0c7KIRaU0Bf147GDE3XVKB2dSGBbX6Rqz64BV1owjzlwAOTTWVlvlUowt1K7Fm6Vg93sEzkdt+5eh5svXYdv7z1f8oGllGIqmcNQVwhRvwjNoOiNyC2f7luNqN/aZLzt8gHnPVWtZuTMjPX+ZDUO7WwcBB/BJ27ZiX0jc3j0YHV3HGAZh91VXEqAlWDB4L2VOACAS9ZF0R2W8Q8/PVXVteTMH6gQc2hHogEJG+2pba/d3ovXbe/BTEp1Ct0YcxkNmkGtSnK7Zca6WPu6RYB8Ouvbr1yfTwuuYBx0w8S5mYwTiAWA9W1aAMe467ph7BqM4TM/PFZVPcTTKiYTStV4A1BoHHhXVg4Ay7/4P++8HIfGEvjCT05WfB7L568UkG5X2I7stdt6MGwbivPxTMFzWI3DuljA2SW3czAaAC4f6sCVQx24dmMXOoLVlcOFuSxUw8SvXG7NKe4Oyy3nF18sgo/g7lcN48JcFlOu6W5uDo8v4L5HjwKoHowGgHU85sApx+17BvArVwziX3551tmFUEpxxz/+Eg/utXzo8bSGiF9s+VkDi+W3XrMJH7l5B3ojfkdFjBYZh0m7xqE/5nfiDO0cjAaA975mMx75w9fB5yNOdlulgkLmUrrjqvWQBIL1bRyMdsPaXlSqtbn3my/h3w+M45bd62rWHvWG/RBtNyePOXAKuM6eDMVcItMpBa+MzuMffnoKpkkxn1GrBqPblRu39+Jjt+wEACd/vNg4XLQzmPqjfqflQ7tWR5eDva8qKQcWjN69PoYbtvbg8jboXFsP2/qtDgeny3Q4oJRiYiGH337tZvzze6+rqQZ8PoJ1sQBk0ddysbDWSsxtAsOuG1tvxI8RuyBmNJ7Fz09OI16lrxLHIigL6I34MRovTGd9aWQesYCIoa6QE3Nod+XgxmliWKFP1enpFHrCMjpDMr7229ejxe5dS2YgFkBIFsrWKSUVHYpulsxeqca6mH/J0/m8DFcOy2So2wrwjc5ZNzY2sSwg+fCvz45gLqOhi8cbarKxO1gSc3jmzAxu2Npjp6+ygDQ3DgxJ8CEsCxUD0ienUo4LRfCRlpltvFwIIdjaFy6rHNjckMUYh8GOYEtO1+PGYZkw5XBhzrqxjcxmIPgIfufGLfjJsSkcvDBftl03p5Dh7hBG5/LGYTSewWg8i9dus8aAsg9ru2crFdMZkks63FJK8bkfH8eLI3Mlc8s5Flt7I2WVg2McFjF06w/etA3/zx1rpql03XDjsEzCfhHdYdlxiZybTWOoK4iPvmUn/q9bdyIgCdixrrVnNDSC4a4QJhZy2Hcujo8/+DIeP3wRgBWbAIBbdw/gr999Rc2883ajIyiVxBwefmkMX3jyFH7jumF89C07mnRm3mZbXwRj81nktMI+S0tRDpet78Atu1tvTC2POTSA4a5ggXLY1BOGLPrwh2/egd9/wzb4uJyvycbuEAyT4hPfeQUjsxl8/+Ux9Eb8TuuCoCzg168brvFb2g/LOBRmK/3r8yPY0R/BZ951OXclVWBrXxiUAmdn0gXpqksxDq0KVw4NYKg7hNF4BpRSnJtNO0PIAasLabv2z18MLHYzMpvBTTt6QSlw4/YefnOrQWdIKnArnZhMYv/5efzGq4b5tavCNtfALjfTKQWSQNqmCWY1uHJoAMNdIfz48EXMpFQkczo2tfgc6JWAxW6CkoB/eM81OD6ZxJZefh1r0RkqdCs9uHcUkkBw59UbmnhW3mdLbxiElLa/mU4q6Iv4uWEFNw4NYbg7CM2geOFsHAAKlAOnPgY7Aoj6Rdx5zQZ0hCQeSK2TWFDCfFYDpRSEEPz7K+N486X96FlEQLUdCcoCNnaHcHwyUbA+nVS4S8mGG4cGwHa9T5+aBgCuHJaAKPjw2Edu4nUMi6QzKEPVTeQ0E4puYCqptMVEwUawayCGo/bMBsZ0UsFgB8+IA3jMoSGw3kDf3z8GwUcw3N3ezc2WynB3CH6x9fLFVxJ3lfRZu8ZmS2/l+QOcPLsGYzg3m0bGNVN6OsWVA4MrhwawoTOIPRti6AhK+M3rN/EbHGfVcPorZVWXceDKtR52DUZBKXDsYvL/b+9eY6Q66ziOf3/sslYo94vSQkUqsWDV0hKl2pakpqb4ppqayMYI1he9aL28szUm9o2JJbapFBMkLaZV06KpjYC1iI1W6x0sga6bUkC0tARYi1yWKFL+vjjP4JTZBWb37J5zmN8nOZmZZ84+83/+OTv/OWfOPIcrL5nA6yeDf7o4nOLikIOO9hGs//y1RYdhLWh83RQau3t6GSFOTWRoZ1Y7hbV772E62kYwsm0EJ8Onsda4OJhV2Li6azrs6ullxsRRngH4HE2f8GbGXNDOhq593LO269ReWDO/jj6feSsyq7D6yff+1tPrQ0pNkMSct47l19sPEAE9R7MfE3rPIePiYFZhtYtI1b5zcHFozpxp2dQ2d17/Dj6cpsDw/F0ZH1Yyq7DRHW2M6mjj5137OHb8dWa5ODRl0bun8ffXjnHrdbM4fuIki17cf+rsw1bn4mBWYZK4Y+Gl3LdxO+DTWJu1YNYkFszKZv4d1QEfmze94IjKw4eVzCrutoWXMjtNUDhzsj/1Wj6852BWcR3tI1jeOY/1W1/l4vH+AablozTFQdKNwLeANuChiPhGwSGZVcacaWPfMPW02WCV4rCSpDbg28AiYC7QKWlusVGZmbWuUhQH4H3AjojYFRHHgceBmwqOycysZZWlOFwMvFz3eE9qewNJt0raJGnTgQMHhi04M7NWU5bi0NeVNaKhIWJVRMyPiPlTpkwZhrDMzFpTWYrDHqD+AsHTgVcLisXMrOWVpTj8GZgt6e2SOoDFwNqCYzIza1mlOJU1Ik5IuhPYQHYq6+qI6Co4LDOzllWK4gAQEU8BTxUdh5mZgSIavvetBElHgBfTw3HAoRy7L3t/k4GeHPvLM76y564mrxxWYbyttP1Vob+i8ld73bdFxNnP6ImISi7Aprr7q3Luu+z9bcq5v9ziK3vu8s5hFcbbSttfRforJH/Nvm5ZvpAerHUt1l/e8ozPuStXf0PVZ57KnsNWyx9Q7cNKmyJiftFxFKGVx54X53DgnLvBKSp/zb5ulfccVhUdQIFaeex5cQ4HzrkbnKLy19TrVnbPwczMhk6V9xzMzGyIuDiUgKQZkn4pqVtSl6QvpvaJkjZKeindTkjtk9L6RyWtqOtnjKQtdUuPpAeKGtdwyiuH6blOSdskbZX0tKTJRYxpuOScu0+kvHVJWlbEeIbbAPJ3g6TNaRvbLOn6ur6uSu07JC2X1Ne8c8Mjz1OqvAz4VLRpwJXp/hhgO9l1LZYBd6X2u4B70/3RwDXA7cCKM/S7Gbiu6PFVKYdkPwzdD0xOj5cB9xQ9vorkbhLwD2BKevwI8KGix1fC/M0DLkr3LwdeqevrT8DVZJOR/gxYVNS4vOdQAhGxNyL+ku4fAbrJpiy/iewfjHT70bROb0Q8B/y7vz4lzQamAr8ZwtBLI8ccKi2j06e2sZznk0DmmLtZwPaIqM2n/wvg5iEOv3ADyN/zEVHbprqACyS9SdI0YGxE/D6ySvFo7W+K4OJQMpJmkn2y+CPwlojYC9kGSPZmf646gTVpI2spg8lhRPwXuAPYRlYU5gIPD2G4pTLI7W8HcJmkmZLayd7YZpzlb84rA8jfzcDzEfEfsoKyp+65Pq9rM1xcHEpE0oXAE8CXIuLwILtbDDw2+KiqZbA5lDSSrDjMAy4CtgJ35xpkSQ02dxFxkCx3a8j2WHcDJ/KMscyazZ+kdwH3ArfVmvpYrbAPdy4OJZHelJ4AfhARP07N+9KuJul2/zn29V6gPSI2D0mwJZVTDq8AiIidaa/rh8AHhijk0shr+4uIdRHx/oi4mmzus5eGKuYyaTZ/kqYDTwJLImJnat5Ddi2bmkKva+PiUALp2PbDQHdE3F/31Fpgabq/FPjJOXbZSYvtNeSYw1eAuZJqE5PdQHYM+byV5/YnaWq6nQB8Fngo32jLp9n8SRoP/BS4OyJ+W1s5HXo6ImlB6nMJ5/4/n7+iv+n3EpCd+RFkhzC2pOUjZGd/PEP26esZYGLd3+wGXgOOkn3imFv33C7gsqLHVdUckp2F0536WgdMKnp8FcrdY8Bf07K46LGVMX/AV4HeunW3AFPTc/OBF4CdwArSD5WLWPwLaTMza+DDSmZm1sDFwczMGrg4mJlZAxcHMzNr4OJgZmYNXBzMhoCk2yUtaWL9mZJeGMqYzJrRXnQAZucbSe0RsbLoOMwGw8XBrA9pArWnySZQm0c2DfMSYA5wP3Ah0AN8OiL2SvoV8Dvgg8BaSWOAoxHxTUlXACuBUWQ/bvpMRByUdBWwGjgGPDd8ozM7Ox9WMuvfO4FVEfEe4DDwOeBB4OMRUXtj/3rd+uMjYmFE3HdaP48CX079bAO+ltq/C3whsnmIzErFew5m/Xs5/j/3zfeBr5BdnGVjukBXG7C3bv01p3cgaRxZ0Xg2NT0C/KiP9u8Bi/IfgtnAuDiY9e/0uWWOAF1n+KTf20Tf6qN/s9LwYSWz/l0iqVYIOoE/AFNqbZJGpjn5+xURh4CDkq5NTZ8Cno2IfwGHJF2T2j+Zf/hmA+c9B7P+dQNLJX2HbGbNB4ENwPJ0WKgdeIDsUo9nshRYKWkU2Yy5t6T2W4DVko6lfs1Kw7OymvUhna20PiIuLzgUs0L4sJKZmTXwnoOZmTXwnoOZmTVwcTAzswYuDmZm1sDFwczMGrg4mJlZAxcHMzNr8D+IdB0SL0q8EgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'][-200:].plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Étude de l'incidence annuelle" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Etant donné que le pic de l'épidémie se situe au printemps, à cheval\n", "entre deux années civiles, nous définissons la période de référence\n", "entre deux minima de l'incidence, du 1er septembre de l'année $N$ au\n", "1er septembre de l'année $N+1$.\n", "\n", "Notre tâche est un peu compliquée par le fait que l'année ne comporte\n", "pas un nombre entier de semaines. Nous modifions donc un peu nos périodes\n", "de référence: à la place du 1er août de chaque année, nous utilisons le\n", "premier jour de la semaine qui contient le 1er septembre.\n", "\n", "Comme l'incidence de syndrome grippal est très faible en été, cette\n", "modification ne risque pas de fausser nos conclusions.\n", "\n", "Encore un petit détail: les données commencent en décembre 1990, ce qui\n", "rend la première année incomplète. Nous commençons donc l'analyse en 1991." ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "first_september_week = [pd.Period(pd.Timestamp(y, 9, 1), 'W')\n", " for y in range(1991,\n", " sorted_data.index[-1].year)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "En partant de cette liste des semaines qui contiennent un 1er septembre, nous obtenons nos intervalles d'environ un an comme les périodes entre deux semaines adjacentes dans cette liste. Nous calculons les sommes des incidences hebdomadaires pour toutes ces périodes.\n", "\n", "Nous vérifions également que ces périodes contiennent entre 51 et 52 semaines, pour nous protéger contre des éventuelles erreurs dans notre code." ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "year = []\n", "yearly_incidence = []\n", "for week1, week2 in zip(first_september_week[:-1],\n", " first_september_week[1:]):\n", " one_year = sorted_data['inc'][week1:week2-1]\n", " assert abs(len(one_year)-52) < 2, week1\n", " yearly_incidence.append(one_year.sum())\n", " year.append(week2.year)\n", "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Voici les incidences annuelles :" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAD8CAYAAACyyUlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHgNJREFUeJzt3X+QVeWd5/H3B5uAOmLAgBEQYSLjBswOBqox4242LhPAZEuwRjM9OkplqMIxmElSW5Vo6RaW8sc4lawbytKVxETUiLJsKNmNRFvc1Li7TANGE0HC0BkJIkh3qolgtujY8N0/znPldNt03+57u++P/ryqTt3T33uew3k8Vn/7+XGeo4jAzMysFKMqfQFmZlb7nEzMzKxkTiZmZlYyJxMzMyuZk4mZmZXMycTMzErmZGJmZiVzMjEzs5I5mZiZWckaKn0B5faxj30spk+fXunLMDOrKa+88spvI2LiYMvXXTKZPn06O3furPRlmJnVFEm/KaV8Ud1ckr4habekXZLWSxor6R5Jb0t6LW1fyB1/p6RWSXslLcrF50p6PX23RpJSfIykZ1K8RdL0XJllkvalbVkplTUzs6HRbzKRNAX4O2BeRFwOnAU0pa8fiIg5aXsuHT8rfT8bWAw8JOmsdPzDwApgZtoWp/hy4GhEXAo8ANyfzjUBWAXMBxqBVZLGl1ZlMzMrt2IH4BuAsyU1AOcAh/o4dgnwdER0RsSbQCvQKOkiYFxEbItsqeLHgaW5MuvS/kZgQWq1LAKaI6IjIo4CzZxOQGZmViX6TSYR8TbwbeAAcBh4NyJeSF/fLumXkn6QazFMAd7KneJgik1J+z3j3cpERBfwLnBBH+cyM7MqUkw313iylsMMYDJwrqS/Juuy+gQwhyzJfKdQpJfTRB/xwZbJX+MKSTsl7Wxvb++jNmZmNhSK6eb6c+DNiGiPiPeBHwN/FhFHIuJkRJwCvkc2pgFZ6+HiXPmpZN1iB9N+z3i3Mqkr7Xygo49zdRMRayNiXkTMmzhx0DPbzEastmMn+NIj22g7fqLSl2I1qphkcgC4UtI5aRxjAbAnjYEUXAfsSvubgaY0Q2sG2UD79og4DByXdGU6zy3As7kyhZla1wMvpXGV54GFksanFtLCFDOzMlqzdR879new5sV9lb4Uq1H9PmcSES2SNgI/B7qAV4G1wPclzSHrdtoP3JqO3y1pA/BGOn5lRJxMp7sNeAw4G9iSNoBHgScktZK1SJrSuTok3QfsSMfdGxEdpVTYzE677O4tdHad+uDnJ1sO8GTLAcY0jGLv6msqeGVWa1Rv74CfN29e+KFFs+K0HTvB6uf28MLudzjx/inGjh7Fotkf564vfpJJ542t9OXZMJL0SkTMG2x5r81lNoJNGjeW88Y00Nl1ijENo+jsOsV5YxqcSGzA6m45FTMbmN++18lN8y/hxsZpPLX9AO0ehLdBcDdXTtuxE9y+/lUevPEK/2VmZiOKu7nKyDNazMwGx91ceEaL2UC5FW89uWUCvPzNq7l2zmTGjs7+c4wdPYolcybz8reurvCVmVUnt+KtJ7dM8IwWs2K5FW9n4pZJUpjRsukrV3HT/Etof6+z0pdkVnXcirczccskeeTm05MYVi+9vIJXYla93Iq3M3EyMbMB8XMp1hs/Z2JmZn7OxMzMKs/JxMzMSuZkYmZmJXMyMTOzkjmZmJlZyZxMzMysZE4mZmZWMicTMzMrmZOJmZmVzMnEzMxKVlQykfQNSbsl7ZK0XtJYSRMkNUvalz7H546/U1KrpL2SFuXicyW9nr5bI0kpPkbSMyneIml6rsyy9G/sk7SsfFU3M7Ny6TeZSJoC/B0wLyIuB84CmoA7gK0RMRPYmn5G0qz0/WxgMfCQpLPS6R4GVgAz07Y4xZcDRyPiUuAB4P50rgnAKmA+0AisyictMzOrDsV2czUAZ0tqAM4BDgFLgHXp+3XA0rS/BHg6Ijoj4k2gFWiUdBEwLiK2Rba65OM9yhTOtRFYkFoti4DmiOiIiKNAM6cTkJmZVYl+k0lEvA18GzgAHAbejYgXgAsj4nA65jAwKRWZAryVO8XBFJuS9nvGu5WJiC7gXeCCPs5lZmZVpJhurvFkLYcZwGTgXEl/3VeRXmLRR3ywZfLXuELSTkk729vb+7g0MzMbCsV0c/058GZEtEfE+8CPgT8DjqSuK9JnWzr+IHBxrvxUsm6xg2m/Z7xbmdSVdj7Q0ce5uomItRExLyLmTZw4sYgqmZlZORWTTA4AV0o6J41jLAD2AJuBwuyqZcCzaX8z0JRmaM0gG2jfnrrCjku6Mp3nlh5lCue6Hngpjas8DyyUND61kBammJmZVZF+X9sbES2SNgI/B7qAV4G1wB8BGyQtJ0s4N6Tjd0vaALyRjl8ZESfT6W4DHgPOBrakDeBR4AlJrWQtkqZ0rg5J9wE70nH3RkRHSTU2M7Oy82t7zczMr+01M7PKczIxM7OSOZmYmVnJnEzMzErQduwEX3pkG23HT1T6UirKycTMrARrtu5jx/4O1ry4r9KXUlH9Tg02M7MPu+zuLXR2nfrg5ydbDvBkywHGNIxi7+prKnhlleGWiVkR3JVhPb38zau5ds5kxo7Ofo2OHT2KJXMm8/K3rq7wlVWGk4lZEdyVYT1NGjeW88Y00Nl1ijENo+jsOsV5YxqYdN7YSl9aRbiby6wP7sqwvvz2vU5umn8JNzZO46ntB2gfwS1XPwFv1oe2YydY/dweXtj9DifeP8XY0aNYNPvj3PXFT47Yv0CtPvkJeLMh5K4Ms+K4m8usH+7KMOufu7nMzMzdXGZmVnlOJmZmVjInEzMzK5mTiZmZlczJxEYsL5FiVj5OJlYWtfiL2UukmJWPnzOxssj/Yl593acqfTl98hIpZuXn50ysJD1/MRdU8y9mL5Fi9mF+zsQqqhaX4fYSKWbl128ykXSZpNdy2zFJX5d0j6S3c/Ev5MrcKalV0l5Ji3LxuZJeT9+tkaQUHyPpmRRvkTQ9V2aZpH1pW1be6lupavUXc2GJlE1fuYqb5l9C+3udlb4ks5rW75hJROwF5gBIOgt4G9gEfBl4ICK+nT9e0iygCZgNTAZelPQnEXESeBhYAfwT8BywGNgCLAeORsSlkpqA+4G/lDQBWAXMAwJ4RdLmiDhacs2tbGpx7apHbj7dml+99PIKXsnQaTt2gtvXv8qDN15R9cndat9AB+AXAL+OiN+kRkVvlgBPR0Qn8KakVqBR0n5gXERsA5D0OLCULJksAe5J5TcCD6ZWyyKgOSI6UplmsgS0foDXbUNoJPxirkW1NCnCat9Ak0kT3X+R3y7pFmAn8B9Ti2EKWcuj4GCKvZ/2e8ZJn28BRESXpHeBC/LxXsp8QNIKshYP06ZNG2CVzOqLZ6tZJRQ9AC/pI8C1wH9LoYeBT5B1gR0GvlM4tJfi0Ud8sGVOByLWRsS8iJg3ceLEM9bBbCSoxUkRVvsGMpvrGuDnEXEEICKORMTJiDgFfA9oTMcdBC7OlZsKHErxqb3Eu5WR1ACcD3T0cS4zO4NanRRhtW0gyeSvyHVxSboo9911wK60vxloSjO0ZgAzge0RcRg4LunKNB5yC/Bsrkxhptb1wEuRPQDzPLBQ0nhJ44GFKWZmffBsNRtuRY2ZSDoH+Dxway78D5LmkHU77S98FxG7JW0A3gC6gJVpJhfAbcBjwNlkA+9bUvxR4Ik0WN9BNjZDRHRIug/YkY67tzAYb2Zn5kkRNtz8BLyZmfkJeDMzqzwnEzMzK5mTiZmZlczJxMzMSuZkYmZmJXMyMTOzkjmZmJlZyZxMzMysZE4mZmZWMicTMzMrmZOJmZmVzMnErIa0HTvBlx7ZRlsNvBrZRhYnE7Makn8Vr1k1Gehre82sAvwqXqt2bpmY1QC/iteqnZOJWQ3wq3it2rmby6xGFF7Fe2PjNJ7afoB2D8JbFfGbFs3MzG9aNDOzynMyMTOzkjmZmJlZyfpNJpIuk/Rabjsm6euSJkhqlrQvfY7PlblTUqukvZIW5eJzJb2evlsjSSk+RtIzKd4iaXquzLL0b+yTtKy81Tczs3LoN5lExN6ImBMRc4C5wP8DNgF3AFsjYiawNf2MpFlAEzAbWAw8JOmsdLqHgRXAzLQtTvHlwNGIuBR4ALg/nWsCsAqYDzQCq/JJy8zMqsNAu7kWAL+OiN8AS4B1Kb4OWJr2lwBPR0RnRLwJtAKNki4CxkXEtsimkD3eo0zhXBuBBanVsghojoiOiDgKNHM6AZnZCOZ1yqrLQJNJE7A+7V8YEYcB0uekFJ8CvJUrczDFpqT9nvFuZSKiC3gXuKCPc5nZCOd1yqpL0Q8tSvoIcC1wZ3+H9hKLPuKDLZO/thVk3WdMmzatn8szs1rmdcqq00BaJtcAP4+II+nnI6nrivTZluIHgYtz5aYCh1J8ai/xbmUkNQDnAx19nKubiFgbEfMiYt7EiRMHUCUzqzVep6w6DSSZ/BWnu7gANgOF2VXLgGdz8aY0Q2sG2UD79tQVdlzSlWk85JYeZQrnuh54KY2rPA8slDQ+DbwvTDEzG6G8Tll1KqqbS9I5wOeBW3Phvwc2SFoOHABuAIiI3ZI2AG8AXcDKiDiZytwGPAacDWxJG8CjwBOSWslaJE3pXB2S7gN2pOPujYiOQdTTzOqI1ymrPl6by8zMvDaXmVkxPJV4aDmZmNmI4KnEQ8vvMxlB2o6d4Pb1r/LgjVd4sNJGDE8lHh5umYwg/svMRiJPJR4ebpmMAP7LzEYyTyUeHm6ZjACD+cvMg5VWTwpTiTd95Spumn8J7e91VvqS6o5bJiPAYP4yy3eJrb7uU8N4tWbl98jNp2e8rl56eQWvpH45mYwQxT7k5S4xMxsMP7Ro3bQdO8Hq5/bwwu53OPH+KcaOHsWi2R/nri9+0n3MZnXMDy1aWXmw0swGw91c9iFe98jMBsrdXGZm5m4uMzOrPCcTMzMrmZOJmZmVzMlkGPhpcjOrd04mw8ALLJpZvfPU4CHkp8nNbKRwy2QIeelrMxspnEyGkJ8mN7ORwslkiA106WsP1ptZLSoqmUj6qKSNkn4laY+kz0i6R9Lbkl5L2xdyx98pqVXSXkmLcvG5kl5P362RpBQfI+mZFG+RND1XZpmkfWlbVr6qD49Hbp7H6qWXM2vyOFYvvbzbUti98WC9mdWiopZTkbQOeDkivi/pI8A5wNeB9yLi2z2OnQWsBxqBycCLwJ9ExElJ24GvAf8EPAesiYgtkr4C/OuI+FtJTcB1EfGXkiYAO4F5QACvAHMj4uiZrrVWl1PpOVhf4MF6MxsOQ76ciqRxwGeBRwEi4g8R8bs+iiwBno6Izoh4E2gFGiVdBIyLiG2RZbDHgaW5MuvS/kZgQWq1LAKaI6IjJZBmYPGAa1kDPFhvZrWsmG6uPwbagR9KelXS9yWdm767XdIvJf1A0vgUmwK8lSt/MMWmpP2e8W5lIqILeBe4oI9z1R0P1ptZLSsmmTQAnwYejogrgN8DdwAPA58A5gCHge+k49XLOaKP+GDLfEDSCkk7Je1sb2/voyrVze+pNrNaVcxDiweBgxHRkn7eCNwREUcKB0j6HvA/c8dfnCs/FTiU4lN7iefLHJTUAJwPdKT453qU+VnPC4yItcBayMZMiqhTydqOneD29a/y4I1XlK314PdUm1mt6rdlEhHvAG9JuiyFFgBvpDGQguuAXWl/M9CUZmjNAGYC2yPiMHBc0pVpPOQW4NlcmcJMreuBl9K4yvPAQknjUzfawhSrOM+6MiuOp7uPDMUup/JV4EdpJte/AF8G1kiaQ9bttB+4FSAidkvaALwBdAErI+JkOs9twGPA2cCWtEE2uP+EpFayFklTOleHpPuAHem4eyOiY3BVLQ8vkWI2MPk/vFZf96lKX44NEb9pcYDajp1g9XN7eGH3O5x4/xRjR49i0eyPc9cXP+nBcrMcT3evLX7T4jDzrCuz4ni6+8jiVYMHoTDr6sbGaTy1/QDt7gs2+xD/4TWyOJkMgmddWbkMxazAauI/vEYOj5mYVdDdm17nR9sPcFPjNA9OW0WVOmbilolZBXhWoNUbD8CblVkxz1V4cNrqjZOJWZkV80CrB6et3riby6xMBtp15cHpD6v3CQn1zAPwZmXiB1pL5wkJleMBeLMq4a6rwfOEhNrnMROzMvJrBAbHExJqn1smVtVqrQ/dD7QOjlt1tc8tExt2A1mS3Ev9jxxu1dU2D8DbsCtmkNUrzpoNr1IH4J1MbNgMJEF4ZpTZ8PIS9FYzBjLI6j50s9riAXgbNgNNEH6oz6x2OJnYsBpIgvDMKLPa4TETMzPzmImZmVWek4mZWQ8DeRbKMk4mZmY9+GHZgSsqmUj6qKSNkn4laY+kz0iaIKlZ0r70OT53/J2SWiXtlbQoF58r6fX03RpJSvExkp5J8RZJ03NllqV/Y5+kZeWruplZd5fdvYXpd/yEJ1sOEJEtODn9jp9w2d1bKn1pVa/Ylsl3gZ9GxL8C/hTYA9wBbI2ImcDW9DOSZgFNwGxgMfCQpLPSeR4GVgAz07Y4xZcDRyPiUuAB4P50rgnAKmA+0AisyictM7Ny8oKTg9dvMpE0Dvgs8ChARPwhIn4HLAHWpcPWAUvT/hLg6YjojIg3gVagUdJFwLiI2BbZFLLHe5QpnGsjsCC1WhYBzRHRERFHgWZOJyAzs7Lyw7KDV0zL5I+BduCHkl6V9H1J5wIXRsRhgPQ5KR0/BXgrV/5gik1J+z3j3cpERBfwLnBBH+fqRtIKSTsl7Wxvby+iSmZmvfOCk4NTzEOLDcCnga9GRIuk75K6tM5AvcSij/hgy5wORKwF1kL2nEkf12Zm1ic/LDs4xbRMDgIHI6Il/byRLLkcSV1XpM+23PEX58pPBQ6l+NRe4t3KSGoAzgc6+jiXmZlVkX6TSUS8A7wl6bIUWgC8AWwGCrOrlgHPpv3NQFOaoTWDbKB9e+oKOy7pyjQeckuPMoVzXQ+8lMZVngcWShqfBt4XppiZmVWRYtfm+irwI0kfAf4F+DJZItogaTlwALgBICJ2S9pAlnC6gJURcTKd5zbgMeBsYEvaIBvcf0JSK1mLpCmdq0PSfcCOdNy9EdExyLqamdkQ8dpcZmbmtbnMzKzynEzMzOpApdcTczIxM6sDlV5PzC/HMjOrYZfdvYXOrlMf/PxkywGebDnAmIZR7F19zbBdh1smZmY1rFrWE3MyMTOrYdWynpi7uczMalxhPbEbG6fx1PYDtFdgEN7PmZiZmZ8zMTOzynMyMTOzkjmZmJlZyZxMzMysZE4mZmZWMieTGlfp9XjMzMDJpOZVej0eMzPwQ4s1q1rW4zEzA7dMala1rMdjZgZOJjWrWtbjMTMDd3PVtGpYj8fMDLw2l5mZ4bW5zMysChSVTCTtl/S6pNck7UyxeyS9nWKvSfpC7vg7JbVK2itpUS4+N52nVdIaSUrxMZKeSfEWSdNzZZZJ2pe2ZeWquJnZcKvn58IG0jK5OiLm9GgGPZBicyLiOQBJs4AmYDawGHhI0lnp+IeBFcDMtC1O8eXA0Yi4FHgAuD+dawKwCpgPNAKrJI0fRD3NzCqunp8LG4oB+CXA0xHRCbwpqRVolLQfGBcR2wAkPQ4sBbakMvek8huBB1OrZRHQHBEdqUwzWQJaPwTXbWY2JEbCc2HFtkwCeEHSK5JW5OK3S/qlpB/kWgxTgLdyxxxMsSlpv2e8W5mI6ALeBS7o41xmZjVjJDwXVmwyuSoiPg1cA6yU9FmyLqtPAHOAw8B30rHqpXz0ER9smQ9IWiFpp6Sd7e3tfVbEzGy4jYTnwopKJhFxKH22AZuAxog4EhEnI+IU8D2yMQ3IWg8X54pPBQ6l+NRe4t3KSGoAzgc6+jhXz+tbGxHzImLexIkTi6mSmdmwKjwXtukrV3HT/Etof6+z3zK1NGDfbzKRdK6k8wr7wEJgl6SLcoddB+xK+5uBpjRDawbZQPv2iDgMHJd0ZRoPuQV4NlemMFPreuClyB6AeR5YKGl86kZbmGJmZjXlkZvnsXrp5cyaPI7VSy/nkZv7f6SjlgbsixmAvxDYlGbxNgBPRcRPJT0haQ5Zt9N+4FaAiNgtaQPwBtAFrIyIk+lctwGPAWeTDbxvSfFHgSfSYH0H2WwwIqJD0n3AjnTcvYXBeDOzelWLA/Z+At7MrMq0HTvB6uf28MLudzjx/inGjh7Fotkf564vfnLIxln8BLyZWZ2pxQF7L/RoZlaFam0hV3dzmZmZu7nMzKzynEzMzKxkTiZmZlYyJxMzMyuZk4mZmZXMycTMzErmZGJmZiVzMjEzs5I5mZiZWcmcTKxu1NK7H8zqjZOJ1Y1aeveDWb3xQo9W82rx3Q9m9cYtE6t5L3/zaq6dM5mxo7P/nceOHsWSOZN5+VtXV/jKzEYOJxOrebX47gezeuNuLqsLtfbuB7N64/eZmJmZ32diZmaV52RiZmYlKyqZSNov6XVJr0namWITJDVL2pc+x+eOv1NSq6S9khbl4nPTeVolrZGkFB8j6ZkUb5E0PVdmWfo39klaVq6Km5lZ+QykZXJ1RMzJ9andAWyNiJnA1vQzkmYBTcBsYDHwkKSzUpmHgRXAzLQtTvHlwNGIuBR4ALg/nWsCsAqYDzQCq/JJy8zMqkMp3VxLgHVpfx2wNBd/OiI6I+JNoBVolHQRMC4itkU26v94jzKFc20EFqRWyyKgOSI6IuIo0MzpBGRmZlWi2GQSwAuSXpG0IsUujIjDAOlzUopPAd7KlT2YYlPSfs94tzIR0QW8C1zQx7nMzKyKFPucyVURcUjSJKBZ0q/6OFa9xKKP+GDLnP4HswRXSHLvSdrbx/XVgo8Bv630RQyxeq9jvdcP6r+OI61+l5RysqKSSUQcSp9tkjaRjV8ckXRRRBxOXVht6fCDwMW54lOBQyk+tZd4vsxBSQ3A+UBHin+uR5mf9XJ9a4G1xdSlFkjaWcp871pQ73Ws9/pB/dfR9RuYfru5JJ0r6bzCPrAQ2AVsBgqzq5YBz6b9zUBTmqE1g2ygfXvqCjsu6co0HnJLjzKFc10PvJTGVZ4HFkoanwbeF6aYmZlVkWJaJhcCm9Is3gbgqYj4qaQdwAZJy4EDwA0AEbFb0gbgDaALWBkRJ9O5bgMeA84GtqQN4FHgCUmtZC2SpnSuDkn3ATvScfdGREcJ9TUzsyFQd8up1ANJK1LXXd2q9zrWe/2g/uvo+g3wfE4mZmZWKi+nYmZmJXMyGSaSfiCpTdKuXOxPJW1LS8z8D0njUvwjkn6Y4r+Q9LlcmZ+lZWpeS9ukXv65YSfpYkn/S9IeSbslfS3Fy7bsTiWVuX51cQ8lXZCOf0/Sgz3OVfP3sJ/6Vd09HET9Pq/s2cHX0+e/z51r4PcvIrwNwwZ8Fvg0sCsX2wH8u7T/N8B9aX8l8MO0Pwl4BRiVfv4ZMK/S9emlfhcBn0775wH/DMwC/gG4I8XvAO5P+7OAXwBjgBnAr4Gz0nfbgc+QPWe0BbimzupXL/fwXODfAH8LPNjjXPVwD/uqX9Xdw0HU7wpgctq/HHi7lPvnlskwiYh/JJuplncZ8I9pvxn4i7Q/i2y9MyKiDfgdUNXz3SPicET8PO0fB/aQrVZQzmV3KqZc9Rveqx6YgdYxIn4fEf8b6PYmsnq5h2eqX7UaRP1ejfQMIbAbGKvskY5B3T8nk8raBVyb9m/g9MOevwCWSGpQ9qzOXLo/CPrD1LT+T9XQfdCTslWfrwBaKO+yO1WhxPoV1MM9PJN6uYf9qdp7OIj6/QXwakR0Msj752RSWX8DrJT0Clmz9A8p/gOyG7gT+C/A/yV7Zgfgpoj4FPBv03bzsF5xPyT9EfDfga9HxLG+Du0lVvQSOpVShvpB/dzDM56il1gt3sO+VO09HGj9JM0mW6n91kKol8P6vX9OJhUUEb+KiIURMRdYT9avTkR0RcQ3IlvyfwnwUWBf+u7t9HkceIoq6jqRNJrsf+IfRcSPU/hIajYXuj9KWXanospUv3q6h2dSL/fwjKr1Hg60fpKmApuAWyLi1yk8qPvnZFJBhRkgkkYBdwP/Nf18jrKla5D0eaArIt5I3V4fS/HRwH8g6yqruNTMfxTYExH/OfdVOZfdqZhy1a/O7mGv6ugenuk8VXkPB1o/SR8FfgLcGRH/p3DwoO9fpWYejLSNrOVxGHifLPMvB75GNuPin4G/5/RDpNOBvWQDaC8Cl6T4uWQzu35JNmD2XdIMoUpvZLNeIl3ba2n7AtmrBLaStay2AhNyZe4ia43tJTdbhGyywa703YOF/y71UL86vIf7ySaWvJf+v55VZ/fwQ/Wr1ns40PqR/QH7+9yxrwGTBnv//AS8mZmVzN1cZmZWMicTMzMrmZOJmZmVzMnEzMxK5mRiZmYlczIxM7OSOZmYmVnJnEzMzKxk/x+qftJYVEr3+gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "yearly_incidence.plot(style='*')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Une liste triée permet de plus facilement répérer les valeurs les plus élevées (à la fin)." ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2002 516689\n", "2018 542312\n", "2017 551041\n", "1996 564901\n", "2019 584066\n", "2015 604382\n", "2000 617597\n", "2001 619041\n", "2012 624573\n", "2005 628464\n", "2006 632833\n", "2011 642368\n", "1993 643387\n", "1995 652478\n", "1994 661409\n", "1998 677775\n", "1997 683434\n", "2014 685769\n", "2013 698332\n", "2007 717352\n", "2008 749478\n", "1999 756456\n", "2003 758363\n", "2004 777388\n", "2016 782114\n", "2010 829911\n", "1992 832939\n", "2009 842373\n", "dtype: int64" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "yearly_incidence.sort_values()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Enfin, un histogramme montre bien que la variabilité des épidémies est très étalée." ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEICAYAAABcVE8dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFGtJREFUeJzt3XuQJWV9h/Hnxy4oMLggDKgLukbIRGFVZL2gVTqDxhKXaGm8IZpotNYqFTFlyqCoaLytF7zESyobJZB4nShUkDUaDI6oUZQV4oI4amBVlighKjCI4Oovf3QvGadmdmZO95lzOu/zqdraPrfu73mn53v69Ok+E5mJJOn/v70GHUCStDIsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhVq/kwg488MA88sgjV3KRrbn11lvZf//9Bx1j2bqaG8w+KF3N3tXcsHj2bdu23ZiZo02Xs6KFf9hhh3HZZZet5CJbMzU1xfj4+KBjLFtXc4PZB6Wr2buaGxbPHhE/bGM57tKRpEJY+JJUCAtfkgph4UtSISx8SSpEo8KPiLGIuGLWv5sj4uVthZMktafRYZmZOQ08GCAiVgE7gfNbyCVJalmbu3QeC/xnZrZyvKgkqV3R1t+0jYizgW9l5vvnXL8J2AQwOjp63OTkZCvLW2kzMzOMjIwMOsay9Zp7+86b+pBmcevXrrlzuqtjDmYfhK7mhsWzT0xMbMvMDU2X00rhR8Q+wPXA0Zn504XuNzY2ltPT042XNwhdPYuv19zrTt/afpgl2LF5453TXR1zMPsgdDU3LOlM21YKv61dOidSbd0vWPaSpMFqq/BPBj7e0rwkSX3QuPAjYj/gD4HzmseRJPVL42/LzMxfAge3kEWS1EeeaStJhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IKYeFLUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUiMaFHxEHRsSnIuK7EXF1RBzfRjBJUrtWtzCP9wKfy8ynRcQ+wH4tzFOS1LJGhR8RdwMeDTwPIDPvAO5oHkuS1LbIzN4fHPFgYAvwHeBBwDbgtMy8ddZ9NgGbAEZHR4+bnJxsFHhQZmZmGBkZGXSMZes19/adN/UhzeLWr11z53RXxxzMPghdzQ2LZ5+YmNiWmRuaLqdp4W8Avg48KjMvjYj3Ajdn5mvnu//Y2FhOT0/3vLxBmpqaYnx8fNAxlq3X3OtO39p+mCXYsXnjndNdHXMw+yB0NTcsnj0iWin8ph/aXgdcl5mX1pc/BTyk4TwlSX3QqPAz8yfAjyNirL7qsVS7dyRJQ6aNo3ROBT5aH6FzDfD8FuYpSWpZ48LPzCuAxvuWJEn95Zm2klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IKYeFLUiEsfEkqROM/Yh4RO4BbgN8AuzLTP2guSUOoceHXJjLzxpbmJUnqA3fpSFIhIjObzSDiWuDnQAJ/m5lb5ty+CdgEMDo6etzk5GSj5Q3KzMwMIyMjg46xbL3m3r7zpj6kWdz6tWvunO7qmIPZB6GruWHx7BMTE9va2F3eRuHfKzOvj4hDgYuAUzPzkvnuOzY2ltPT042WNyhTU1OMj48POsay9Zp73elb2w+zBDs2b7xzuqtjDmYfhK7mhsWzR0Qrhd94l05mXl//fwNwPvCwpvOUJLWvUeFHxP4RccDuaeDxwJVtBJMktavpUTqHAedHxO55fSwzP9c4lSSpdY0KPzOvAR7UUhZJUh95WKYkFcLCl6RCWPiSVAgLX5IKYeFLUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSIRoXfkSsiojLI+LCNgJJkvqjjS3804CrW5iPJKmPGhV+RBwObAQ+1E4cSVK/RGb2/uCITwFvBQ4A/iIzT5rnPpuATQCjo6PHTU5O9ry8QZqZmWFkZGTQMZat19zbd97UhzSLW792zZ3TXR1zMPsgdDU3LJ59YmJiW2ZuaLqc1b0+MCJOAm7IzG0RMb7Q/TJzC7AFYGxsLMfHF7zrUJuamqKL2XvN/bzTt7YfZgl2nDJ+53RXxxzMPghdzQ0rl73JLp1HAU+KiB3AJ4ATIuIjraSSJLWu58LPzFdl5uGZuQ54FnBxZj6ntWSSpFZ5HL4kFaLnffizZeYUMNXGvCRJ/eEWviQVwsKXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IKYeFLUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCtGo8CPirhHxjYj4j4i4KiLe0FYwSVK7Vjd8/O3ACZk5ExF7A1+JiH/JzK+3kE2S1KJGhZ+ZCczUF/eu/2XTUJKk9jXehx8RqyLiCuAG4KLMvLR5LElS26LaSG9hRhEHAucDp2bmlbOu3wRsAhgdHT1ucnKyleWttJmZGUZGRgYdY9l6zb195019SLM8h+0LP71t0Cl6s5zs69eu6W+YPZjv57wS496P57yUdX2Q6/WenvNi2ScmJrZl5oamGVorfICIOBO4NTPfOd/tY2NjOT093dryVtLU1BTj4+ODjrFsveZed/rW9sMs0yvW7+Ks7U0/ZhqM5WTfsXljn9MsbL6f80qMez+e81LW9UGu13t6zotlj4hWCr/pUTqj9ZY9EbEv8Djgu01DSZLa1/Rl/J7AuRGxiurFYzIzL2weS5LUtqZH6XwbOLalLJKkPvJMW0kqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLCl6RCNCr8iDgiIr4YEVdHxFURcVpbwSRJ7Vrd8PG7gFdk5rci4gBgW0RclJnfaSGbJKlFjbbwM/O/MvNb9fQtwNXA2jaCSZLaFZnZzowi1gGXAMdk5s2zrt8EbAIYHR09bnJysqf5b995U/OQDRy2L/z0toFG6ElXc0M52devXdPfMHsw3+9VV8d92HPv6ec8MzPDyMjIgrdPTExsy8wNTTO0UvgRMQJ8CXhzZp630P3GxsZyenq6p2WsO31rj+na8Yr1uzhre9M9YCuvq7mhnOw7Nm/sc5qFzfd71dVxH/bce/o5T01NMT4+vuDtEdFK4Tc+Sici9gY+DXx0T2UvSRqspkfpBPBh4OrMfFc7kSRJ/dB0C/9RwHOBEyLiivrfE1vIJUlqWaMdXpn5FSBayiJJ6iPPtJWkQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IKYeFLUiEsfEkqRKPCj4izI+KGiLiyrUCSpP5ouoV/DvCEFnJIkvqsUeFn5iXAz1rKIknqo8jMZjOIWAdcmJnHLHD7JmATwOjo6HGTk5M9LWf7zpt6TNiOw/aFn9420Ag96WpuMPugdDX7sOdev3bNgrfNzMwwMjKy4O0TExPbMnND0wx9L/zZxsbGcnp6uqflrDt9a0+Pa8sr1u/irO2rB5qhF13NDWYflK5mH/bcOzZvXPC2qakpxsfHF7w9IlopfI/SkaRCWPiSVIimh2V+HPgaMBYR10XEC9qJJUlqW6MdXpl5cltBJEn95S4dSSqEhS9JhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IKYeFLUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVonHhR8QTImI6In4QEae3EUqS1L5GhR8Rq4APACcCDwBOjogHtBFMktSuplv4DwN+kJnXZOYdwCeAJzePJUlqW2Rm7w+OeBrwhMx8YX35ucDDM/Ols+6zCdhUXzwGuLL3uAN1CHDjoEP0oKu5weyD0tXsXc0Ni2e/T2aONl3I6oaPj3mu+51XkMzcAmwBiIjLMnNDw2UORFezdzU3mH1Qupq9q7lh5bI33aVzHXDErMuHA9c3nKckqQ+aFv43gaMi4r4RsQ/wLOCC5rEkSW1rtEsnM3dFxEuBzwOrgLMz86o9PGRLk+UNWFezdzU3mH1Qupq9q7lhhbI3+tBWktQdnmkrSYWw8CWpEBa+JBVi6As/Ik6IiPsOOsdydTU3mH1Qupq9q7mhvOxD+6Ft/Z08nwB+AfwWODMzvzTYVIvram4w+6B0NXtXc0O52YdmCz8iDo+Iu8266pnApzPz0VRP7uSIOH4w6RbW1dxg9kHpavau5gaz7zbwwo+I+0fEZ4GvAH8VEbu/fO1XwH719CTV90w8IiLm+zqHFdfV3GD2Qelq9q7mBrPPNZDCj4j9Z118MHBdZq4DLgbeWV//M+D2iDggM38GfA84DFi3glF/R1dzg9kHpavZu5obzL4nK1b4EXFQRJwTEd8ENkfEaP2K9EDgqxERmXkB8IuI2Ej1JA4A1tez+D7VN8rdsVKZu5zb7GYvJbfZl559JbfwHw3sAp5I9S2brwbuVme4R/7fp8fnAs8GvgHcQvXHVcjMrwEnADevYGbobm4wu9mXp6u5wexLy56Zrf6j+k6dFwFfovoe/EPq6yeBl9XT9wU217c/lGof1ar6thHgv+v5rAWuBl4K/D3wQWC/tjN3ObfZzV5KbrM3z96PLfyTgCcBbwCOB95eX38R8Mh6+sfAl4ETM/ObVK9qEwCZOQNcCjw0M3cCz6XaP/UT4DWZ+cs2w876oOOPupR7jk6NOTjug8jumLuu9/RtmfU+pYyIh1K9xfgysDUzbwd+H7gmMy+OiGuBd0TE44FtwFMi4pDMvDEivg/cGhH3Bt4HPCciDqX6Tv3/oXrbQmZeBlzWS8495N8AvJDqbdE7gBuA3xv23HX2To55nd1xd11fSuZO90v9HIZy3Je9hR8Rd6t/GOPA2VSHCD0OeGt9l98C34uIfTPzWqq3HQ+sn/j1VMeQAvyG6q3JXsCnqb4e9BTgOGBLZv52udkWyT0SEXeNiHPr5V0LvDczb4iIvaheSYcud5394Pr/RwLn0JExrzMfFNVxxFuA8+jWuB8aEQfXv7zn0pFxj4hDIuIhEfF+4Hy6Neb71P3yGKpdFZ0Y8zr73hGxb0Scw7B2zBL3Pe0H/Cnwb1QH/AP8OfCSevog4NvAsXXozcC6+raT6sCH1NPbgTVUHzJ8Fthn1nL2arKPbA+5LwY+WV/3NuBFs+6zuv7/pcCbhiT37jOgn061D28KGANe3oExn539q8AXqFbqoR/3ep77A8+jept9E7CxI+O+O/cXqLYCn9qhMd8beDHwGeBvgCOB04Z9zOdkv5Bqa/zoOt9QjvuiW/gRsTdwFfA04B2Z+cf1Tcfuvk9m/hz4Z+BlVL8ohwL3r2++BHgMcEdmXgh8GPgU8AGqraZfz5pPa6+6c3K/PTN3v3puBx4QEW+tX4n/LCLuDnwOuMegc9fzy4hYAzwDeE9mjmfmNNUr/O77DN2Yz5P93Zn5uMz8Nh0Y94g4kmr3wWOB1wA7gR9RfZC2ql7m0I37nNxnUO3T/WGdZ/0wj3ntJVQl9x6qv4n91Pryb+plDt2Yz5P93VTryFOo1pmxiNg8dOO+xFex84BT5lz3TODSWZfvBVxfT7+E6pTfg4B9qV657z3rvoe0/Uq7jNz3rrN9EjiZaiX73DDlrpf1YuCN9fTureanDvuYz81eX94XuGedb3JYx53qF/Yusy6fTbXB8ORhHvd5cn+Iamv/0I6s658B/qSefgFwat0v3xjWMV8g+/OBV9Ud88lhHPelPqmTqA72P4tq98LrgPtQnfF16Kz7XQQ8vJ5+E/CvVG8v/3KlfgB7yP1F4PVUH3ysnXWfvevndEJ9+c2Dzl3neEad6xTgW1Sv+E+m2s1wyKz7DdWYz5N9G/ARqiMUZq/YQznus/IdTLUP+XFU+1J/RnVM9NCO+5zcj68vd2FdfzHV7uJ/ojpK5UNUu0Z+DowO85jPyf4jqo2E+wNHDOO4L+eJfZ7qhIAjqF65TgO+RlX+Ady9/kHde9aTPAa466B+GPPk/ijV6clHzbr9HlQfhD5wyHIfVY/vX1NtDTwbeBfVcbivrEtoWMd8bvanU23Znzjs4z7neVwOPLWe/gjwtnp6KMd9Tu4n1dN7zbp+aMec6oiWs6n2Z78eOBOYrn93h3Zdnyf7GcDfAY8YxnFfzlE6T8nMt2Tmj4G3UB0e9T6qtyUXUL3KrcrMHwFk5q8z88rM/NUyltEPs3O/lWrwD4yIB0XEGVS7fX6Z1X7mYcr9I6pTpVdntQ/zwvq6C6k+jB7mMZ+bfSvwHeDYiPiDIR936iMqoPrA/Mh6+s3VTfEZhnTcF8i9V33EzqsZ4jEHHgBMZeaNVO9QVgEfZ/j7BX43+7nAbcD9IuLoYVvXl3wcfv7uQf2/oCr812bmxyLiOcBVmXl52wGbmpP7FqoTFa6meiXem+pIgGHMfXtEbKZ66wrVVs7xwObMvHzIx3xu9n2o3ua+keqoqX0Y0nGH6gOyiNj9bYQ/qK+7GnhlRJwCfGcYs8/JvaO+bldEPItq/RnKMY+IVcB1VF8x8A/ArVRnmb44M68d5nV9nuy/onqH+3aq3T13YYjGfcl/ACUi7gI8gersrqOpDp/6YGbu6l+85ubJvSUz3z3YVEsXEW+mOmHjWKr9fmfWW81Db072LwCvzP6ehdmqiJgGXpeZn9x9MtCgMy3F7NyDzrJUEXE/qkMU76BaZ84H3pTV2aVDbZ7sFwBnZOaKfxHbYpb1F68i4kVUJz7845C8lVqSrubeLSLGgB+afWXMOtPzwVSH9u7qQtl3Nfdu9ZmlRwH/npm3DTrPcnQl+9D+iUNJUrsG/hevJEkrw8KXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9JhfhfHCg3qEW8+c0AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "yearly_incidence.hist(xrot=20)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "celltoolbar": "Format de la Cellule Texte Brut", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }