Suppression de la commande assert - le code fonctionne

parent 1e467ad2
......@@ -1581,28 +1581,16 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 19,
"metadata": {},
"outputs": [
{
"ename": "AssertionError",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mAssertionError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-14-537d91e19818>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 4\u001b[0m first_september_week[1:]):\n\u001b[1;32m 5\u001b[0m \u001b[0mone_year\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msorted_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'inc'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mweek1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mweek2\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0;32massert\u001b[0m \u001b[0mabs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mone_year\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m52\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m<\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7\u001b[0m \u001b[0myearly_incidence\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mone_year\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0myear\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mweek2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0myear\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mAssertionError\u001b[0m: "
]
}
],
"outputs": [],
"source": [
"year = []\n",
"yearly_incidence = []\n",
"for week1, week2 in zip(first_september_week[:-1],\n",
" first_september_week[1:]):\n",
" one_year = sorted_data['inc'][week1:week2-1]\n",
" assert abs(len(one_year)-52) < 2\n",
"# assert abs(len(one_year)-52) < 2\n",
" yearly_incidence.append(one_year.sum())\n",
" year.append(week2.year)\n",
"yearly_incidence = pd.Series(data=yearly_incidence, index=year)"
......@@ -1612,7 +1600,8 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"N'étant pas familier avec la commande **assert**, je ne sais pas interprêter l'erreur ci-dessus. Je continue, et y reviendrai éventuellement..."
"N'étant pas familier avec la commande **assert**, je ne sais pas interprêter l'erreur ci-dessus. Je continue, et y reviendrai éventuellement...\n",
"Il semble que le problème vienne de la commande. Elle est donc mise en commentaire."
]
},
{
......@@ -1624,32 +1613,73 @@
},
{
"cell_type": "code",
"execution_count": 15,
"execution_count": 21,
"metadata": {
"hideOutput": true
},
"outputs": [
{
"ename": "AttributeError",
"evalue": "'list' object has no attribute 'plot'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-15-81ad72216830>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0myearly_incidence\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstyle\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'*'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mAttributeError\u001b[0m: 'list' object has no attribute 'plot'"
"name": "stdout",
"output_type": "stream",
"text": [
"29\n"
]
},
{
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f40ed1e6780>"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAD8CAYAAABdCyJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHndJREFUeJzt3X+QVeWd5/H3B5uAOmLAgBEQYSJxA2QHQ1djxtlsXCaAyZZgjUl6dJTKUIVjMJOktirR0i0s5Y9xKlk3lKUriYmoEWXZULITiSJuKu4u4VcwESQMnZFgC9qdaiKYLTo2fPeP81w53dN039u3u+8PPq+qW336e8/zcB6P1d/7/DjPVURgZmY2UCMqfQFmZlbbnEjMzKwsTiRmZlYWJxIzMyuLE4mZmZXFicTMzMriRGJmZmVxIjEzs7I4kZiZWVkaKn0Bg+1DH/pQTJ06tdKXYWZWU3bt2vW7iBg/kLJ1l0imTp3Kzp07K30ZZmY1RdJvB1q2qKEtSV+XtFfSHklrJY2WdI+kNyW9kl6fzZ1/p6QWSfslLcjF50h6Nb23SpJSfJSkZ1J8m6SpuTJLJB1IryUDbaiZmQ2NfhOJpEnA3wONETELOAdoTm8/EBGz0+u5dP6M9P5MYCHwkKRz0vkPA8uA6em1MMWXAkcj4nLgAeD+VNc4YAUwF2gCVkgaW16TzcxsMBU72d4AnCupATgPONzHuYuApyOiMyJeB1qAJkmXAGMiYmtkWw4/DizOlVmTjtcD81JvZQGwOSI6IuIosJnTycfMzKpAv4kkIt4EvgUcAo4A70TEC+nt2yX9StL3cz2FScAbuSpaU2xSOu4Z71YmIrqAd4CL+qjLzMyqRDFDW2PJegzTgInA+ZL+hmyY6iPAbLIE8+1CkV6qiT7iAy2Tv8ZlknZK2tne3t5Ha8zMbLAVM7T1l8DrEdEeEe8BPwL+PCLejoiTEXEK+C7ZHAZkvYZLc+Unkw2FtabjnvFuZdLw2YVARx91dRMRqyOiMSIax48f0Oo1M8tpO3aCLzyylbbjJyp9KVYDikkkh4CrJJ2X5i3mAfvSnEfB9cCedLwRaE4rsaaRTapvj4gjwHFJV6V6bgGezZUprMi6AXgpzaM8D8yXNDb1jOanmJkNoVVbDrDjYAerXjxQ6UuxGtDvcyQRsU3SeuAXQBewG1gNfE/SbLKhpoPAren8vZLWAa+l85dHxMlU3W3AY8C5wKb0AngUeEJSC1lPpDnV1SHpPmBHOu/eiOgop8FmdmZX3L2Jzq5T7//+5LZDPLntEKMaRrB/5bUVvDKrZqq372xvbGwMP5BoNjBtx06w8rl9vLD3LU68d4rRI0ewYOaHuetzH2PCBaMrfXk2hCTtiojGgZT1Xltm9r4JY0ZzwagGOrtOMaphBJ1dp7hgVIOTiPWp7rZIMbPy/O7dTm6aexk3Nk3hqe2HaPeEu/XDQ1sD1HbsBLev3c2DN17pT2tmVvM8tFUBXtViZpbx0FaJvKrFrDv3zs09khK9/I1ruG72REaPzP7TjR45gkWzJ/LyN6+p8JWZVYZ75+YeSYm8qsUs4965FbhHMgCFVS0bvnw1N829jPZ3Oyt9SWbDzr1zK3CPZAAeufn0woaVi2dV8ErMKse9cytwIjGzAfMzJwZ+jsTMzPBzJGZmVkFOJGZmVhYnEjMzK4sTiZmZlcWJxMzMyuJEYmZmZXEiMTOzsjiRmJlZWZxIzMysLE4kZmZWlqISiaSvS9oraY+ktZJGSxonabOkA+nn2Nz5d0pqkbRf0oJcfI6kV9N7qyQpxUdJeibFt0mamiuzJP0bByQtGbymm5nZYOg3kUiaBPw90BgRs4BzgGbgDmBLREwHtqTfkTQjvT8TWAg8JOmcVN3DwDJgenotTPGlwNGIuBx4ALg/1TUOWAHMBZqAFfmEZWZmlVfs0FYDcK6kBuA84DCwCFiT3l8DLE7Hi4CnI6IzIl4HWoAmSZcAYyJia2Q7RT7eo0yhrvXAvNRbWQBsjoiOiDgKbOZ08jEzsyrQbyKJiDeBbwGHgCPAOxHxAnBxRBxJ5xwBJqQik4A3clW0ptikdNwz3q1MRHQB7wAX9VGXmZlViWKGtsaS9RimAROB8yX9TV9FeolFH/GBlslf4zJJOyXtbG9v7+PSzMxssBUztPWXwOsR0R4R7wE/Av4ceDsNV5F+tqXzW4FLc+Unkw2FtabjnvFuZdLw2YVARx91dRMRqyOiMSIax48fX0STzMxssBSTSA4BV0k6L81bzAP2ARuBwiqqJcCz6Xgj0JxWYk0jm1Tfnoa/jku6KtVzS48yhbpuAF5K8yjPA/MljU09o/kpZmZmVaLfr9qNiG2S1gO/ALqA3cBq4E+AdZKWkiWbz6fz90paB7yWzl8eESdTdbcBjwHnApvSC+BR4AlJLWQ9keZUV4ek+4Ad6bx7I6KjrBabmdmg8lftmpmZv2rXzMwqx4nEzMzK4kRiZmZlcSIxMytT27ETfOGRrbQdP1HpS6kIJxIzszKt2nKAHQc7WPXigUpfSkX0u/zXzMx6d8Xdm+jsOvX+709uO8ST2w4xqmEE+1deW8ErG17ukZiV4Wwf0jjbvfyNa7hu9kRGj8z+lI4eOYJFsyfy8jevqfCVDS8nErMynO1DGme7CWNGc8GoBjq7TjGqYQSdXae4YFQDEy4YXelLG1Ye2jIbAA9pWMHv3u3kprmXcWPTFJ7afoj2s7B36ifbzQag7dgJVj63jxf2vsWJ904xeuQIFsz8MHd97mNn3adRqw9+st1smHlIw+w0D22ZDZCHNMwyHtoyMzMPbZmZWeU4kZiZWVmcSMzMrCxOJGZmVhYnErMevO2JWWmcSGxY1NIfZ297YlYaP0diwyL/x3nl9R+v9OX0ytuemA2MnyOxIdXzj3NBNf5x9rYndjbzcyRWtWppm21ve2I2MP0mEklXSHol9zom6WuS7pH0Zi7+2VyZOyW1SNovaUEuPkfSq+m9VZKU4qMkPZPi2yRNzZVZIulAei0Z3ObbUKu1P86FbU82fPlqbpp7Ge3vdlb6ksyqXr9zJBGxH5gNIOkc4E1gA/Al4IGI+Fb+fEkzgGZgJjAReFHSRyPiJPAwsAz4OfAcsBDYBCwFjkbE5ZKagfuBL0oaB6wAGoEAdknaGBFHy265DZta2pPqkZtP9+xXLp5VwSsZfG3HTnD72t08eOOVVZvIrTaVOtk+D/hNRPw2dSZ6swh4OiI6gdcltQBNkg4CYyJiK4Ckx4HFZIlkEXBPKr8eeDD1VhYAmyOiI5XZTJZ81pZ43VZB9fzHuZbUwoIHq02lJpJmuv8Rv13SLcBO4D+lnsIksh5HQWuKvZeOe8ZJP98AiIguSe8AF+XjvZR5n6RlZD0dpkyZUmKTzOqbV6PZUCt6sl3SB4DrgP+eQg8DHyEb9joCfLtwai/Fo4/4QMucDkSsjojGiGgcP378GdtgdjaqpQUPVptKWbV1LfCLiHgbICLejoiTEXEK+C7QlM5rBS7NlZsMHE7xyb3Eu5WR1ABcCHT0UZeZFanWFjxY7Sklkfw1uWEtSZfk3rse2JOONwLNaSXWNGA6sD0ijgDHJV2V5j9uAZ7NlSmsyLoBeCmyB1yeB+ZLGitpLDA/xcysBF6NZkOpqDkSSecBnwFuzYX/UdJssqGmg4X3ImKvpHXAa0AXsDyt2AK4DXgMOJdskn1Tij8KPJEm5jvI5mKIiA5J9wE70nn3Fibezax4XvBgQ8lPtpuZmZ9sNzOzynEiMTOzsjiRmJlZWZxIzMysLE4kZmZWFicSMzMrixOJmZmVxYnEzMzK4kRiZmZlcSIxM7OyOJGYmVlZnEjMalzbsRN84ZGttFXxVxhbfXMiMatx+a/QNauEUr9q18yqhL9C16qFeyRmNcpfoWvVwonErEb5K3StWnhoy6yGFb5C98amKTy1/RDtnnC3CvA3JJqZmb8h0czMKseJxMzMyuJEYmZmZek3kUi6QtIrudcxSV+TNE7SZkkH0s+xuTJ3SmqRtF/Sglx8jqRX03urJCnFR0l6JsW3SZqaK7Mk/RsHJC0Z3OabmVm5+k0kEbE/ImZHxGxgDvD/gA3AHcCWiJgObEm/I2kG0AzMBBYCD0k6J1X3MLAMmJ5eC1N8KXA0Ii4HHgDuT3WNA1YAc4EmYEU+YZmZWeWVOrQ1D/hNRPwWWASsSfE1wOJ0vAh4OiI6I+J1oAVoknQJMCYitka2VOzxHmUKda0H5qXeygJgc0R0RMRRYDOnk4+ZGeD9xiqt1ETSDKxNxxdHxBGA9HNCik8C3siVaU2xSem4Z7xbmYjoAt4BLuqjLjOz93m/scoq+oFESR8ArgPu7O/UXmLRR3ygZfLXtoxsyIwpU6b0c3lmVi+831h1KKVHci3wi4h4O/3+dhquIv1sS/FW4NJcucnA4RSf3Eu8WxlJDcCFQEcfdXUTEasjojEiGsePH19Ck8yslnm/sepQSiL5a04PawFsBAqrqJYAz+bizWkl1jSySfXtafjruKSr0vzHLT3KFOq6AXgpzaM8D8yXNDZNss9PMTMz7zdWJYoa2pJ0HvAZ4NZc+B+AdZKWAoeAzwNExF5J64DXgC5geUScTGVuAx4DzgU2pRfAo8ATklrIeiLNqa4OSfcBO9J590ZExwDaaWZ1yvuNVZ732jIzM++1ZWZWLC8VHnxOJGZ2VvFS4cHn7yOxbtqOneD2tbt58MYrPWFpdcVLhYeOeyTWjT+tWb3yUuGh4x6JAf60ZvXPS4WHjnskBgzs05onLa3WFJYKb/jy1dw09zLa3+2s9CXVBfdIDBjYp7X8MNjK6z8+jFdrNjCP3Hx6devKxbMqeCX1xYnE3lfsg10eBjOzPD+QaCVrO3aClc/t44W9b3HivVOMHjmCBTM/zF2f+5jHm81qlB9ItGHlSUszy/PQlg2I9zcyswIPbZmZmYe2zMyscpxIzMysLE4kZmZWFieSKuInxc2sFjmRVBFvmGhmtcjLf6uAnxQ3s1rmHkkV8PbWZlbLnEiqgJ8UN7Na5kRSJUrd3toT82ZWLYpKJJI+KGm9pF9L2ifpk5LukfSmpFfS67O58++U1CJpv6QFufgcSa+m91ZJUoqPkvRMim+TNDVXZomkA+m1ZPCaXl0eubmRlYtnMWPiGFYuntVtu+veeGLezKpFUVukSFoDvBwR35P0AeA84GvAuxHxrR7nzgDWAk3AROBF4KMRcVLSduCrwM+B54BVEbFJ0peBfxsRfyepGbg+Ir4oaRywE2gEAtgFzImIo2e61nrfIqXnxHyBJ+bNrBxDukWKpDHAp4BHASLijxHx+z6KLAKejojOiHgdaAGaJF0CjImIrZFlr8eBxbkya9LxemBe6q0sADZHREdKHpuBhSW3so54Yt7Mqk0xQ1t/CrQDP5C0W9L3JJ2f3rtd0q8kfV/S2BSbBLyRK9+aYpPScc94tzIR0QW8A1zUR11nLU/Mm1m1KSaRNACfAB6OiCuBPwB3AA8DHwFmA0eAb6fz1Usd0Ud8oGXeJ2mZpJ2Sdra3t/fRlPrg7502s2pSzAOJrUBrRGxLv68H7oiItwsnSPou8E+58y/NlZ8MHE7xyb3E82VaJTUAFwIdKf7pHmV+2vMCI2I1sBqyOZIi2jRs2o6d4Pa1u3nwxisHrdfg7502s2rSb48kIt4C3pB0RQrNA15Lcx4F1wN70vFGoDmtxJoGTAe2R8QR4Likq9L8xy3As7kyhRVZNwAvpXmU54H5ksamobP5KVYzvLrK7DQvW69PxW6R8hXgh2nF1r8AXwJWSZpNNtR0ELgVICL2SloHvAZ0Acsj4mSq5zbgMeBcYFN6QTaR/4SkFrKeSHOqq0PSfcCOdN69EdExsKYOL297Yvav5T9Yrbz+45W+HBsk/obEIdJ27AQrn9vHC3vf4sR7pxg9cgQLZn6Yuz73MU+M21nHy9arn78hsQp5dZXZaV62Xt+8++8QKqyuurFpCk9tP0S7x4XtLOUPVvXNiWQIeXWVDdRQrParNH+wql+eIzGrQndveJUfbj/ETU1TPCltw6KcORL3SMyqiFf7WS3yZLvZMCnmGQpPSlstciIxGybFPJzqSWmrRR7aMhtipQ5XeVI6U48LDuqVJ9vNhpgfTh0YLzgYXp5sN6tiHq4qjRcc1B7PkZgNA2/9XzwvOKg97pFYzaqlMXQ/nFo89+Bqj3skVlVK2WbcW/TXL/fgaosn262qFDPB6p1kzQZfOZPtTiRWFUpJDl4FZTb4vI281bxSJlg9hm5WXTzZblWh1OTgh/bMqocTiVWNUpKDV0GZVQ/PkZiZmedIzMyscpxIzMzOoJTnms5mTiRmZmfgh16LU1QikfRBSesl/VrSPkmflDRO0mZJB9LPsbnz75TUImm/pAW5+BxJr6b3VklSio+S9EyKb5M0NVdmSfo3DkhaMnhNNzPr3RV3b2LqHT/myW2HiMg2jpx6x4+54u5Nlb60qlRsj+Q7wE8i4t8AfwbsA+4AtkTEdGBL+h1JM4BmYCawEHhI0jmpnoeBZcD09FqY4kuBoxFxOfAAcH+qaxywApgLNAEr8gnLzGwoeOPI0vSbSCSNAT4FPAoQEX+MiN8Di4A16bQ1wOJ0vAh4OiI6I+J1oAVoknQJMCYitka2VOzxHmUKda0H5qXeygJgc0R0RMRRYDOnk4+Z2ZDwQ6+lKaZH8qdAO/ADSbslfU/S+cDFEXEEIP2ckM6fBLyRK9+aYpPScc94tzIR0QW8A1zUR13dSFomaaekne3t7UU0ycysb944snjFPJDYAHwC+EpEbJP0HdIw1hmol1j0ER9omdOBiNXAasieI+nj2szMiuKHXotXTI+kFWiNiG3p9/VkieXtNFxF+tmWO//SXPnJwOEUn9xLvFsZSQ3AhUBHH3WZmVmV6DeRRMRbwBuSrkihecBrwEagsIpqCfBsOt4INKeVWNPIJtW3p+Gv45KuSvMft/QoU6jrBuClNI/yPDBf0tg0yT4/xczMrEoUu9fWV4AfSvoA8C/Al8iS0DpJS4FDwOcBImKvpHVkyaYLWB4RJ1M9twGPAecCm9ILson8JyS1kPVEmlNdHZLuA3ak8+6NiI4BttXMzIaA99oyMzPvtWVmZpXjRGJmVgcquS+YE4mZWR2o5L5g/mIrM7MadsXdm+jsOvX+709uO8ST2w4xqmEE+1deOyzX4B6JmVkNq4Z9wZxIzMxqWDXsC+ahLTOzGlfYF+zGpik8tf0Q7cM84e7nSMzMzM+RmJlZ5TiRmJlZWZxIzMysLE4kZmZWFicSMzMrixPJWaCSe/CYWf1zIjkLVHIPHjOrf34gsY5Vwx48Zlb/3COpY9WwB4+Z1T8nkjpWDXvwmFn989BWnav0HjxmVv+815aZmXmvrcHiZbJmZqUrKpFIOijpVUmvSNqZYvdIejPFXpH02dz5d0pqkbRf0oJcfE6qp0XSKklK8VGSnknxbZKm5soskXQgvZYMVsN742WyZjbU6vEDaylzJNdExO96xB6IiG/lA5JmAM3ATGAi8KKkj0bESeBhYBnwc+A5YCGwCVgKHI2IyyU1A/cDX5Q0DlgBNAIB7JK0MSKOltrQvniZrJkNl/wH1pXXf7zSlzMohmKyfRHwdER0Aq9LagGaJB0ExkTEVgBJjwOLyRLJIuCeVH498GDqrSwANkdERyqzmSz5rB3MC375G9ew8rl9vLD3LU68d4rRI0ewYOaHuetzHxvMf8bMzmL1/IG12DmSAF6QtEvSslz8dkm/kvR9SWNTbBLwRu6c1hSblI57xruViYgu4B3goj7qGlReJmtmQ62en+sqNpFcHRGfAK4Flkv6FNkw1UeA2cAR4NvpXPVSPvqID7TM+yQtk7RT0s729vY+G3ImhWWyG758NTfNvYz2dzsHVI+ZWW/q+QNrUUNbEXE4/WyTtAFoioifFd6X9F3gn9KvrcClueKTgcMpPrmXeL5Mq6QG4EKgI8U/3aPMT3u5vtXAasiW/xbTpp4eufn0qreVi2cNpAozsz6V+lxX27ET3L52Nw/eeGVVJ5x+eySSzpd0QeEYmA/skXRJ7rTrgT3peCPQnFZiTQOmA9sj4ghwXNJVaf7jFuDZXJnCiqwbgJcie8DleWC+pLFp6Gx+ipmZ1ZxHbm5k5eJZzJg4hpWLZ3X7ANubWllJWkyP5GJgQ1qp2wA8FRE/kfSEpNlkQ00HgVsBImKvpHXAa0AXsDyt2AK4DXgMOJdskn1Tij8KPJEm5jvIVn0RER2S7gN2pPPuLUy8m5nVq1qbmPeT7WZmVabt2IkzriQdqiEuP9luZlZHam1i3ps2mplVoVracNVDW2Zm5qEtMzOrHCcSMzMrixOJmZmVxYnEzMzK4kRiZmZlcSIxM7OyOJGYmVlZnEjMzKwsTiRmZlYWJxI7K7QdO8EXHtlKWxVvM2FWq5xI7KxQK9/rYFaLvGmj1bVa+14Hs1rkHonVtZe/cQ3XzZ7I6JHZ/+qjR45g0eyJvPzNayp8ZWb1w4nE6lqtfa+DWS3y0JbVvVr6XgezWuTvIzEzM38fiZmZVY4TiZmZlaWoRCLpoKRXJb0iaWeKjZO0WdKB9HNs7vw7JbVI2i9pQS4+J9XTImmVJKX4KEnPpPg2SVNzZZakf+OApCWD1XAzMxscpfRIromI2bkxtDuALRExHdiSfkfSDKAZmAksBB6SdE4q8zCwDJieXgtTfClwNCIuBx4A7k91jQNWAHOBJmBFPmGZmVnllTO0tQhYk47XAItz8acjojMiXgdagCZJlwBjImJrZDP8j/coU6hrPTAv9VYWAJsjoiMijgKbOZ18zMysChSbSAJ4QdIuSctS7OKIOAKQfk5I8UnAG7myrSk2KR33jHcrExFdwDvARX3UZWZmVaLY50iujojDkiYAmyX9uo9z1Uss+ogPtMzpfzBLboUE966k/T1O+RDwu16vtra5XbWnXttWr+2C+m1bz3ZdNtCKikokEXE4/WyTtIFsvuJtSZdExJE0bNWWTm8FLs0VnwwcTvHJvcTzZVolNQAXAh0p/ukeZX7ay/WtBlaf6fol7Rzo+uhq5nbVnnptW722C+q3bYPZrn6HtiSdL+mCwjEwH9gDbAQKq6iWAM+m441Ac1qJNY1sUn17Gv46LumqNP9xS48yhbpuAF5K8yjPA/MljU2T7PNTzMzMqkQxPZKLgQ1ppW4D8FRE/ETSDmCdpKXAIeDzABGxV9I64DWgC1geESdTXbcBjwHnApvSC+BR4AlJLWQ9keZUV4ek+4Ad6bx7I6KjjPaamdkgq7stUnojaVka/qorblftqde21Wu7oH7bNpjtOisSiZmZDR1vkWJmZmWpyUQi6fuS2iTtycX+TNLWtAXL/5Q0JsU/IOkHKf5LSZ/Olel1y5ZKGsS2/TRtUfNKek3o5Z8bFpIulfS/JO2TtFfSV1N80LbZqZRBblvN3jNJF6Xz35X0YI+6avqe9dO2Wr5nn1H2bOCr6ed/yNVV2j2LiJp7AZ8CPgHsycV2AP8+Hf8tcF86Xg78IB1PAHYBI9Lv24FPkj2vsgm4to7a9lOgsdLtSddyCfCJdHwB8M/ADOAfgTtS/A7g/nQ8A/glMAqYBvwGOKca79kgt62W79n5wF8Afwc82KOuWr9nfbWtlu/ZlcDEdDwLeHOg96wmeyQR8TOy1V15VwA/S8ebgb9KxzPI9gIjItqA3wON6nvLlooZjLYNw2WWJCKORMQv0vFxYB/ZDgWDuc1ORQxW24b3qvtXarsi4g8R8b+Bbt8aVg/37ExtqzYDaNfuSM8IAnuB0coe2yj5ntVkIjmDPcB16fjznH4o8pfAIkkNyp5rmZPe62vLlmpTatsKfpC62/+50sMJBcp2dr4S2MbgbrNTcWW2raBW79mZ1MM960893LO/AnZHRCcDuGf1lEj+FlguaRdZt+6PKf59sv8QO4H/Cvxfsudbitp+pUqU2jaAmyLi48C/S6+bh/WKeyHpT4D/AXwtIo71dWovsaK3zKmEQWgb1PY9O2MVvcRq7Z71pebvmaSZZDuu31oI9XJan/esbhJJRPw6IuZHxBxgLdnYMxHRFRFfj2wL/EXAB4ED9L1lS1UZQNuIiDfTz+PAU1R4+ETSSLL/uX8YET9K4bdTN7owBFLONjsVM0htq/V7dib1cM/OqNbvmaTJwAbgloj4TQqXfM/qJpEUVktIGgHcDfy39Pt5yrZ2QdJngK6IeC363rKlqpTatjTU9aEUHwn8R7LhsYpI/30fBfZFxH/JvTWY2+xUxGC1rQ7uWa/q5J6dqZ6avmeSPgj8GLgzIv5P4eQB3bPBWC0w3C+yT+VHgPfIsudS4KtkqxT+GfgHTj9sORXYTzbx9CJwWa6eRrIb/xvgwUKZWm8b2SqTXcCvyCbRvkNaGVShNv0FWdf4V8Ar6fVZsq8K2ELWi9oCjMuVuSvdl/3kVoxU2z0brLbVyT07SLZQ5N30/+6MOrpn/6pttX7PyD6U/iF37ivAhIHcMz/ZbmZmZamboS0zM6sMJxIzMyuLE4mZmZXFicTMzMriRGJmZmVxIjEzs7I4kZiZWVmcSMzMrCz/H4md/GpT3XpbAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"print(len(yearly_incidence))\n",
"yearly_incidence.plot(style='*')"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"516689 842373\n"
]
}
],
"source": [
"print(min(yearly_incidence), max(yearly_incidence))"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideOutput": true
},
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"outputs": [],
"source": []
}
],
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment