From 4d68f44889de1321ec2ffe384a7dafee69255b18 Mon Sep 17 00:00:00 2001 From: 4a642ba48527aa325fddd8018b418100 <4a642ba48527aa325fddd8018b418100@app-learninglab.inria.fr> Date: Mon, 30 Mar 2020 01:25:08 +0000 Subject: [PATCH] version after first check --- module2/exo1/toy_notebook_en.ipynb | 24 +++--------------------- 1 file changed, 3 insertions(+), 21 deletions(-) diff --git a/module2/exo1/toy_notebook_en.ipynb b/module2/exo1/toy_notebook_en.ipynb index be233de..e1c831a 100644 --- a/module2/exo1/toy_notebook_en.ipynb +++ b/module2/exo1/toy_notebook_en.ipynb @@ -11,13 +11,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### 1.1. Asking the maths library" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ + "### 1.1. Asking the maths library\n", "My computer tells me that $\\pi$ is *approximatively*" ] }, @@ -43,13 +37,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### 1.2 Buffon’s needle" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ + "### 1.2 Buffon’s needle\n", "Applying the method of [Buffon’s needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the **approximation**" ] }, @@ -82,13 +70,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### 1.3 Using a surface fraction argument" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ + "### 1.3 Using a surface fraction argument\n", "A method that is easier to understand and does not make use of the sin function is based on the fact that if $X \\approx U(0, 1)$ and $Y \\approx U(0, 1)$, then $P[X^2 + Y^2 $\\le$ 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" ] }, -- 2.18.1