From 83f26dbfe168aa882b086f77fd0ab28b606d79bd Mon Sep 17 00:00:00 2001 From: 4bbe46152f5ce7a964b2b665c8c81351 <4bbe46152f5ce7a964b2b665c8c81351@app-learninglab.inria.fr> Date: Mon, 16 Aug 2021 12:28:20 +0000 Subject: [PATCH] Update toy_document_fr.Rmd transfo des ** en __ et derniers blancs --- module2/exo1/toy_document_fr.Rmd | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/module2/exo1/toy_document_fr.Rmd b/module2/exo1/toy_document_fr.Rmd index 722f9a4..9b1b8ac 100644 --- a/module2/exo1/toy_document_fr.Rmd +++ b/module2/exo1/toy_document_fr.Rmd @@ -12,7 +12,7 @@ knitr::opts_chunk$set(echo = TRUE) ## En demandant à la lib maths Mon ordinateur m'indique que $\pi$ vaut *approximativement* -```{r car} +```{r cars} pi ``` @@ -28,7 +28,7 @@ theta = pi/2*runif(N) ``` ## Avec un argument "fréquentiel" de surface -Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait: +Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait : ```{r} set.seed(42) -- 2.18.1