Download and use local version if available

parent 684487a6
...@@ -9,14 +9,15 @@ ...@@ -9,14 +9,15 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 1,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"%matplotlib inline\n", "%matplotlib inline\n",
"import matplotlib.pyplot as plt\n", "import matplotlib.pyplot as plt\n",
"import pandas as pd\n", "import pandas as pd\n",
"import isoweek" "import isoweek\n",
"import os"
] ]
}, },
{ {
...@@ -28,10 +29,8 @@ ...@@ -28,10 +29,8 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 2,
"metadata": { "metadata": {},
"collapsed": true
},
"outputs": [], "outputs": [],
"source": [ "source": [
"data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\"" "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\""
...@@ -56,16 +55,1059 @@ ...@@ -56,16 +55,1059 @@
"| geo_insee | Code de la zone géographique concernée (Code INSEE) http://www.insee.fr/fr/methodes/nomenclatures/cog/ |\n", "| geo_insee | Code de la zone géographique concernée (Code INSEE) http://www.insee.fr/fr/methodes/nomenclatures/cog/ |\n",
"| geo_name | Libellé de la zone géographique (ce libellé peut être modifié sans préavis) |\n", "| geo_name | Libellé de la zone géographique (ce libellé peut être modifié sans préavis) |\n",
"\n", "\n",
"La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant `skiprows=1`." "La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant `skiprows=1`. Si le fichier existe déjà en version locale, nous utilisons la version locale et nous la sauvegardons."
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 3,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Reading local version\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>0</th>\n",
" <th>202011</th>\n",
" <th>3</th>\n",
" <th>101704</th>\n",
" <th>93652.0</th>\n",
" <th>109756.0</th>\n",
" <th>154</th>\n",
" <th>142.0</th>\n",
" <th>166.0</th>\n",
" <th>FR</th>\n",
" <th>France</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" <td>202010</td>\n",
" <td>3</td>\n",
" <td>104977</td>\n",
" <td>96650.0</td>\n",
" <td>113304.0</td>\n",
" <td>159</td>\n",
" <td>146.0</td>\n",
" <td>172.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2</td>\n",
" <td>202009</td>\n",
" <td>3</td>\n",
" <td>110696</td>\n",
" <td>102066.0</td>\n",
" <td>119326.0</td>\n",
" <td>168</td>\n",
" <td>155.0</td>\n",
" <td>181.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>3</td>\n",
" <td>202008</td>\n",
" <td>3</td>\n",
" <td>143753</td>\n",
" <td>133984.0</td>\n",
" <td>153522.0</td>\n",
" <td>218</td>\n",
" <td>203.0</td>\n",
" <td>233.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4</td>\n",
" <td>202007</td>\n",
" <td>3</td>\n",
" <td>183610</td>\n",
" <td>172812.0</td>\n",
" <td>194408.0</td>\n",
" <td>279</td>\n",
" <td>263.0</td>\n",
" <td>295.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>5</td>\n",
" <td>202006</td>\n",
" <td>3</td>\n",
" <td>206669</td>\n",
" <td>195481.0</td>\n",
" <td>217857.0</td>\n",
" <td>314</td>\n",
" <td>297.0</td>\n",
" <td>331.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>6</td>\n",
" <td>202005</td>\n",
" <td>3</td>\n",
" <td>187957</td>\n",
" <td>177445.0</td>\n",
" <td>198469.0</td>\n",
" <td>285</td>\n",
" <td>269.0</td>\n",
" <td>301.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>7</td>\n",
" <td>202004</td>\n",
" <td>3</td>\n",
" <td>122331</td>\n",
" <td>113492.0</td>\n",
" <td>131170.0</td>\n",
" <td>186</td>\n",
" <td>173.0</td>\n",
" <td>199.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>8</td>\n",
" <td>202003</td>\n",
" <td>3</td>\n",
" <td>78413</td>\n",
" <td>71330.0</td>\n",
" <td>85496.0</td>\n",
" <td>119</td>\n",
" <td>108.0</td>\n",
" <td>130.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>9</td>\n",
" <td>202002</td>\n",
" <td>3</td>\n",
" <td>53614</td>\n",
" <td>47654.0</td>\n",
" <td>59574.0</td>\n",
" <td>81</td>\n",
" <td>72.0</td>\n",
" <td>90.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>10</td>\n",
" <td>202001</td>\n",
" <td>3</td>\n",
" <td>36850</td>\n",
" <td>31608.0</td>\n",
" <td>42092.0</td>\n",
" <td>56</td>\n",
" <td>48.0</td>\n",
" <td>64.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>11</td>\n",
" <td>201952</td>\n",
" <td>3</td>\n",
" <td>28135</td>\n",
" <td>23220.0</td>\n",
" <td>33050.0</td>\n",
" <td>43</td>\n",
" <td>36.0</td>\n",
" <td>50.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>12</td>\n",
" <td>201951</td>\n",
" <td>3</td>\n",
" <td>29786</td>\n",
" <td>25042.0</td>\n",
" <td>34530.0</td>\n",
" <td>45</td>\n",
" <td>38.0</td>\n",
" <td>52.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>13</td>\n",
" <td>201950</td>\n",
" <td>3</td>\n",
" <td>34223</td>\n",
" <td>29156.0</td>\n",
" <td>39290.0</td>\n",
" <td>52</td>\n",
" <td>44.0</td>\n",
" <td>60.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>14</td>\n",
" <td>201949</td>\n",
" <td>3</td>\n",
" <td>25662</td>\n",
" <td>21414.0</td>\n",
" <td>29910.0</td>\n",
" <td>39</td>\n",
" <td>33.0</td>\n",
" <td>45.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>15</td>\n",
" <td>201948</td>\n",
" <td>3</td>\n",
" <td>22367</td>\n",
" <td>18055.0</td>\n",
" <td>26679.0</td>\n",
" <td>34</td>\n",
" <td>27.0</td>\n",
" <td>41.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>16</td>\n",
" <td>201947</td>\n",
" <td>3</td>\n",
" <td>18669</td>\n",
" <td>14759.0</td>\n",
" <td>22579.0</td>\n",
" <td>28</td>\n",
" <td>22.0</td>\n",
" <td>34.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>17</td>\n",
" <td>201946</td>\n",
" <td>3</td>\n",
" <td>16030</td>\n",
" <td>12567.0</td>\n",
" <td>19493.0</td>\n",
" <td>24</td>\n",
" <td>19.0</td>\n",
" <td>29.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>18</td>\n",
" <td>201945</td>\n",
" <td>3</td>\n",
" <td>10138</td>\n",
" <td>7160.0</td>\n",
" <td>13116.0</td>\n",
" <td>15</td>\n",
" <td>10.0</td>\n",
" <td>20.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>19</td>\n",
" <td>201944</td>\n",
" <td>3</td>\n",
" <td>7822</td>\n",
" <td>5010.0</td>\n",
" <td>10634.0</td>\n",
" <td>12</td>\n",
" <td>8.0</td>\n",
" <td>16.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>20</td>\n",
" <td>201943</td>\n",
" <td>3</td>\n",
" <td>9487</td>\n",
" <td>6448.0</td>\n",
" <td>12526.0</td>\n",
" <td>14</td>\n",
" <td>9.0</td>\n",
" <td>19.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>21</td>\n",
" <td>201942</td>\n",
" <td>3</td>\n",
" <td>7747</td>\n",
" <td>5243.0</td>\n",
" <td>10251.0</td>\n",
" <td>12</td>\n",
" <td>8.0</td>\n",
" <td>16.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td>22</td>\n",
" <td>201941</td>\n",
" <td>3</td>\n",
" <td>7122</td>\n",
" <td>4720.0</td>\n",
" <td>9524.0</td>\n",
" <td>11</td>\n",
" <td>7.0</td>\n",
" <td>15.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>23</td>\n",
" <td>201940</td>\n",
" <td>3</td>\n",
" <td>8505</td>\n",
" <td>5784.0</td>\n",
" <td>11226.0</td>\n",
" <td>13</td>\n",
" <td>9.0</td>\n",
" <td>17.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23</th>\n",
" <td>24</td>\n",
" <td>201939</td>\n",
" <td>3</td>\n",
" <td>7091</td>\n",
" <td>4462.0</td>\n",
" <td>9720.0</td>\n",
" <td>11</td>\n",
" <td>7.0</td>\n",
" <td>15.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>25</td>\n",
" <td>201938</td>\n",
" <td>3</td>\n",
" <td>4897</td>\n",
" <td>2891.0</td>\n",
" <td>6903.0</td>\n",
" <td>7</td>\n",
" <td>4.0</td>\n",
" <td>10.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25</th>\n",
" <td>26</td>\n",
" <td>201937</td>\n",
" <td>3</td>\n",
" <td>3172</td>\n",
" <td>1367.0</td>\n",
" <td>4977.0</td>\n",
" <td>5</td>\n",
" <td>2.0</td>\n",
" <td>8.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26</th>\n",
" <td>27</td>\n",
" <td>201936</td>\n",
" <td>3</td>\n",
" <td>2295</td>\n",
" <td>728.0</td>\n",
" <td>3862.0</td>\n",
" <td>3</td>\n",
" <td>1.0</td>\n",
" <td>5.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>27</th>\n",
" <td>28</td>\n",
" <td>201935</td>\n",
" <td>3</td>\n",
" <td>1010</td>\n",
" <td>2.0</td>\n",
" <td>2018.0</td>\n",
" <td>2</td>\n",
" <td>0.0</td>\n",
" <td>4.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>28</th>\n",
" <td>29</td>\n",
" <td>201934</td>\n",
" <td>3</td>\n",
" <td>1672</td>\n",
" <td>279.0</td>\n",
" <td>3065.0</td>\n",
" <td>3</td>\n",
" <td>1.0</td>\n",
" <td>5.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>29</th>\n",
" <td>30</td>\n",
" <td>201933</td>\n",
" <td>3</td>\n",
" <td>1593</td>\n",
" <td>68.0</td>\n",
" <td>3118.0</td>\n",
" <td>2</td>\n",
" <td>0.0</td>\n",
" <td>4.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1815</th>\n",
" <td>1816</td>\n",
" <td>198521</td>\n",
" <td>3</td>\n",
" <td>26096</td>\n",
" <td>19621.0</td>\n",
" <td>32571.0</td>\n",
" <td>47</td>\n",
" <td>35.0</td>\n",
" <td>59.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1816</th>\n",
" <td>1817</td>\n",
" <td>198520</td>\n",
" <td>3</td>\n",
" <td>27896</td>\n",
" <td>20885.0</td>\n",
" <td>34907.0</td>\n",
" <td>51</td>\n",
" <td>38.0</td>\n",
" <td>64.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1817</th>\n",
" <td>1818</td>\n",
" <td>198519</td>\n",
" <td>3</td>\n",
" <td>43154</td>\n",
" <td>32821.0</td>\n",
" <td>53487.0</td>\n",
" <td>78</td>\n",
" <td>59.0</td>\n",
" <td>97.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1818</th>\n",
" <td>1819</td>\n",
" <td>198518</td>\n",
" <td>3</td>\n",
" <td>40555</td>\n",
" <td>29935.0</td>\n",
" <td>51175.0</td>\n",
" <td>74</td>\n",
" <td>55.0</td>\n",
" <td>93.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1819</th>\n",
" <td>1820</td>\n",
" <td>198517</td>\n",
" <td>3</td>\n",
" <td>34053</td>\n",
" <td>24366.0</td>\n",
" <td>43740.0</td>\n",
" <td>62</td>\n",
" <td>44.0</td>\n",
" <td>80.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1820</th>\n",
" <td>1821</td>\n",
" <td>198516</td>\n",
" <td>3</td>\n",
" <td>50362</td>\n",
" <td>36451.0</td>\n",
" <td>64273.0</td>\n",
" <td>91</td>\n",
" <td>66.0</td>\n",
" <td>116.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1821</th>\n",
" <td>1822</td>\n",
" <td>198515</td>\n",
" <td>3</td>\n",
" <td>63881</td>\n",
" <td>45538.0</td>\n",
" <td>82224.0</td>\n",
" <td>116</td>\n",
" <td>83.0</td>\n",
" <td>149.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1822</th>\n",
" <td>1823</td>\n",
" <td>198514</td>\n",
" <td>3</td>\n",
" <td>134545</td>\n",
" <td>114400.0</td>\n",
" <td>154690.0</td>\n",
" <td>244</td>\n",
" <td>207.0</td>\n",
" <td>281.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1823</th>\n",
" <td>1824</td>\n",
" <td>198513</td>\n",
" <td>3</td>\n",
" <td>197206</td>\n",
" <td>176080.0</td>\n",
" <td>218332.0</td>\n",
" <td>357</td>\n",
" <td>319.0</td>\n",
" <td>395.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1824</th>\n",
" <td>1825</td>\n",
" <td>198512</td>\n",
" <td>3</td>\n",
" <td>245240</td>\n",
" <td>223304.0</td>\n",
" <td>267176.0</td>\n",
" <td>445</td>\n",
" <td>405.0</td>\n",
" <td>485.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1825</th>\n",
" <td>1826</td>\n",
" <td>198511</td>\n",
" <td>3</td>\n",
" <td>276205</td>\n",
" <td>252399.0</td>\n",
" <td>300011.0</td>\n",
" <td>501</td>\n",
" <td>458.0</td>\n",
" <td>544.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1826</th>\n",
" <td>1827</td>\n",
" <td>198510</td>\n",
" <td>3</td>\n",
" <td>353231</td>\n",
" <td>326279.0</td>\n",
" <td>380183.0</td>\n",
" <td>640</td>\n",
" <td>591.0</td>\n",
" <td>689.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1827</th>\n",
" <td>1828</td>\n",
" <td>198509</td>\n",
" <td>3</td>\n",
" <td>369895</td>\n",
" <td>341109.0</td>\n",
" <td>398681.0</td>\n",
" <td>670</td>\n",
" <td>618.0</td>\n",
" <td>722.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1828</th>\n",
" <td>1829</td>\n",
" <td>198508</td>\n",
" <td>3</td>\n",
" <td>389886</td>\n",
" <td>359529.0</td>\n",
" <td>420243.0</td>\n",
" <td>707</td>\n",
" <td>652.0</td>\n",
" <td>762.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1829</th>\n",
" <td>1830</td>\n",
" <td>198507</td>\n",
" <td>3</td>\n",
" <td>471852</td>\n",
" <td>432599.0</td>\n",
" <td>511105.0</td>\n",
" <td>855</td>\n",
" <td>784.0</td>\n",
" <td>926.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1830</th>\n",
" <td>1831</td>\n",
" <td>198506</td>\n",
" <td>3</td>\n",
" <td>565825</td>\n",
" <td>518011.0</td>\n",
" <td>613639.0</td>\n",
" <td>1026</td>\n",
" <td>939.0</td>\n",
" <td>1113.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1831</th>\n",
" <td>1832</td>\n",
" <td>198505</td>\n",
" <td>3</td>\n",
" <td>637302</td>\n",
" <td>592795.0</td>\n",
" <td>681809.0</td>\n",
" <td>1155</td>\n",
" <td>1074.0</td>\n",
" <td>1236.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1832</th>\n",
" <td>1833</td>\n",
" <td>198504</td>\n",
" <td>3</td>\n",
" <td>424937</td>\n",
" <td>390794.0</td>\n",
" <td>459080.0</td>\n",
" <td>770</td>\n",
" <td>708.0</td>\n",
" <td>832.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1833</th>\n",
" <td>1834</td>\n",
" <td>198503</td>\n",
" <td>3</td>\n",
" <td>213901</td>\n",
" <td>174689.0</td>\n",
" <td>253113.0</td>\n",
" <td>388</td>\n",
" <td>317.0</td>\n",
" <td>459.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1834</th>\n",
" <td>1835</td>\n",
" <td>198502</td>\n",
" <td>3</td>\n",
" <td>97586</td>\n",
" <td>80949.0</td>\n",
" <td>114223.0</td>\n",
" <td>177</td>\n",
" <td>147.0</td>\n",
" <td>207.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1835</th>\n",
" <td>1836</td>\n",
" <td>198501</td>\n",
" <td>3</td>\n",
" <td>85489</td>\n",
" <td>65918.0</td>\n",
" <td>105060.0</td>\n",
" <td>155</td>\n",
" <td>120.0</td>\n",
" <td>190.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1836</th>\n",
" <td>1837</td>\n",
" <td>198452</td>\n",
" <td>3</td>\n",
" <td>84830</td>\n",
" <td>60602.0</td>\n",
" <td>109058.0</td>\n",
" <td>154</td>\n",
" <td>110.0</td>\n",
" <td>198.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1837</th>\n",
" <td>1838</td>\n",
" <td>198451</td>\n",
" <td>3</td>\n",
" <td>101726</td>\n",
" <td>80242.0</td>\n",
" <td>123210.0</td>\n",
" <td>185</td>\n",
" <td>146.0</td>\n",
" <td>224.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1838</th>\n",
" <td>1839</td>\n",
" <td>198450</td>\n",
" <td>3</td>\n",
" <td>123680</td>\n",
" <td>101401.0</td>\n",
" <td>145959.0</td>\n",
" <td>225</td>\n",
" <td>184.0</td>\n",
" <td>266.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1839</th>\n",
" <td>1840</td>\n",
" <td>198449</td>\n",
" <td>3</td>\n",
" <td>101073</td>\n",
" <td>81684.0</td>\n",
" <td>120462.0</td>\n",
" <td>184</td>\n",
" <td>149.0</td>\n",
" <td>219.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1840</th>\n",
" <td>1841</td>\n",
" <td>198448</td>\n",
" <td>3</td>\n",
" <td>78620</td>\n",
" <td>60634.0</td>\n",
" <td>96606.0</td>\n",
" <td>143</td>\n",
" <td>110.0</td>\n",
" <td>176.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1841</th>\n",
" <td>1842</td>\n",
" <td>198447</td>\n",
" <td>3</td>\n",
" <td>72029</td>\n",
" <td>54274.0</td>\n",
" <td>89784.0</td>\n",
" <td>131</td>\n",
" <td>99.0</td>\n",
" <td>163.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1842</th>\n",
" <td>1843</td>\n",
" <td>198446</td>\n",
" <td>3</td>\n",
" <td>87330</td>\n",
" <td>67686.0</td>\n",
" <td>106974.0</td>\n",
" <td>159</td>\n",
" <td>123.0</td>\n",
" <td>195.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1843</th>\n",
" <td>1844</td>\n",
" <td>198445</td>\n",
" <td>3</td>\n",
" <td>135223</td>\n",
" <td>101414.0</td>\n",
" <td>169032.0</td>\n",
" <td>246</td>\n",
" <td>184.0</td>\n",
" <td>308.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1844</th>\n",
" <td>1845</td>\n",
" <td>198444</td>\n",
" <td>3</td>\n",
" <td>68422</td>\n",
" <td>20056.0</td>\n",
" <td>116788.0</td>\n",
" <td>125</td>\n",
" <td>37.0</td>\n",
" <td>213.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>1845 rows × 11 columns</p>\n",
"</div>"
],
"text/plain": [
" 0 202011 3 101704 93652.0 109756.0 154 142.0 166.0 FR \\\n",
"0 1 202010 3 104977 96650.0 113304.0 159 146.0 172.0 FR \n",
"1 2 202009 3 110696 102066.0 119326.0 168 155.0 181.0 FR \n",
"2 3 202008 3 143753 133984.0 153522.0 218 203.0 233.0 FR \n",
"3 4 202007 3 183610 172812.0 194408.0 279 263.0 295.0 FR \n",
"4 5 202006 3 206669 195481.0 217857.0 314 297.0 331.0 FR \n",
"5 6 202005 3 187957 177445.0 198469.0 285 269.0 301.0 FR \n",
"6 7 202004 3 122331 113492.0 131170.0 186 173.0 199.0 FR \n",
"7 8 202003 3 78413 71330.0 85496.0 119 108.0 130.0 FR \n",
"8 9 202002 3 53614 47654.0 59574.0 81 72.0 90.0 FR \n",
"9 10 202001 3 36850 31608.0 42092.0 56 48.0 64.0 FR \n",
"10 11 201952 3 28135 23220.0 33050.0 43 36.0 50.0 FR \n",
"11 12 201951 3 29786 25042.0 34530.0 45 38.0 52.0 FR \n",
"12 13 201950 3 34223 29156.0 39290.0 52 44.0 60.0 FR \n",
"13 14 201949 3 25662 21414.0 29910.0 39 33.0 45.0 FR \n",
"14 15 201948 3 22367 18055.0 26679.0 34 27.0 41.0 FR \n",
"15 16 201947 3 18669 14759.0 22579.0 28 22.0 34.0 FR \n",
"16 17 201946 3 16030 12567.0 19493.0 24 19.0 29.0 FR \n",
"17 18 201945 3 10138 7160.0 13116.0 15 10.0 20.0 FR \n",
"18 19 201944 3 7822 5010.0 10634.0 12 8.0 16.0 FR \n",
"19 20 201943 3 9487 6448.0 12526.0 14 9.0 19.0 FR \n",
"20 21 201942 3 7747 5243.0 10251.0 12 8.0 16.0 FR \n",
"21 22 201941 3 7122 4720.0 9524.0 11 7.0 15.0 FR \n",
"22 23 201940 3 8505 5784.0 11226.0 13 9.0 17.0 FR \n",
"23 24 201939 3 7091 4462.0 9720.0 11 7.0 15.0 FR \n",
"24 25 201938 3 4897 2891.0 6903.0 7 4.0 10.0 FR \n",
"25 26 201937 3 3172 1367.0 4977.0 5 2.0 8.0 FR \n",
"26 27 201936 3 2295 728.0 3862.0 3 1.0 5.0 FR \n",
"27 28 201935 3 1010 2.0 2018.0 2 0.0 4.0 FR \n",
"28 29 201934 3 1672 279.0 3065.0 3 1.0 5.0 FR \n",
"29 30 201933 3 1593 68.0 3118.0 2 0.0 4.0 FR \n",
"... ... ... .. ... ... ... ... ... ... .. \n",
"1815 1816 198521 3 26096 19621.0 32571.0 47 35.0 59.0 FR \n",
"1816 1817 198520 3 27896 20885.0 34907.0 51 38.0 64.0 FR \n",
"1817 1818 198519 3 43154 32821.0 53487.0 78 59.0 97.0 FR \n",
"1818 1819 198518 3 40555 29935.0 51175.0 74 55.0 93.0 FR \n",
"1819 1820 198517 3 34053 24366.0 43740.0 62 44.0 80.0 FR \n",
"1820 1821 198516 3 50362 36451.0 64273.0 91 66.0 116.0 FR \n",
"1821 1822 198515 3 63881 45538.0 82224.0 116 83.0 149.0 FR \n",
"1822 1823 198514 3 134545 114400.0 154690.0 244 207.0 281.0 FR \n",
"1823 1824 198513 3 197206 176080.0 218332.0 357 319.0 395.0 FR \n",
"1824 1825 198512 3 245240 223304.0 267176.0 445 405.0 485.0 FR \n",
"1825 1826 198511 3 276205 252399.0 300011.0 501 458.0 544.0 FR \n",
"1826 1827 198510 3 353231 326279.0 380183.0 640 591.0 689.0 FR \n",
"1827 1828 198509 3 369895 341109.0 398681.0 670 618.0 722.0 FR \n",
"1828 1829 198508 3 389886 359529.0 420243.0 707 652.0 762.0 FR \n",
"1829 1830 198507 3 471852 432599.0 511105.0 855 784.0 926.0 FR \n",
"1830 1831 198506 3 565825 518011.0 613639.0 1026 939.0 1113.0 FR \n",
"1831 1832 198505 3 637302 592795.0 681809.0 1155 1074.0 1236.0 FR \n",
"1832 1833 198504 3 424937 390794.0 459080.0 770 708.0 832.0 FR \n",
"1833 1834 198503 3 213901 174689.0 253113.0 388 317.0 459.0 FR \n",
"1834 1835 198502 3 97586 80949.0 114223.0 177 147.0 207.0 FR \n",
"1835 1836 198501 3 85489 65918.0 105060.0 155 120.0 190.0 FR \n",
"1836 1837 198452 3 84830 60602.0 109058.0 154 110.0 198.0 FR \n",
"1837 1838 198451 3 101726 80242.0 123210.0 185 146.0 224.0 FR \n",
"1838 1839 198450 3 123680 101401.0 145959.0 225 184.0 266.0 FR \n",
"1839 1840 198449 3 101073 81684.0 120462.0 184 149.0 219.0 FR \n",
"1840 1841 198448 3 78620 60634.0 96606.0 143 110.0 176.0 FR \n",
"1841 1842 198447 3 72029 54274.0 89784.0 131 99.0 163.0 FR \n",
"1842 1843 198446 3 87330 67686.0 106974.0 159 123.0 195.0 FR \n",
"1843 1844 198445 3 135223 101414.0 169032.0 246 184.0 308.0 FR \n",
"1844 1845 198444 3 68422 20056.0 116788.0 125 37.0 213.0 FR \n",
"\n",
" France \n",
"0 France \n",
"1 France \n",
"2 France \n",
"3 France \n",
"4 France \n",
"5 France \n",
"6 France \n",
"7 France \n",
"8 France \n",
"9 France \n",
"10 France \n",
"11 France \n",
"12 France \n",
"13 France \n",
"14 France \n",
"15 France \n",
"16 France \n",
"17 France \n",
"18 France \n",
"19 France \n",
"20 France \n",
"21 France \n",
"22 France \n",
"23 France \n",
"24 France \n",
"25 France \n",
"26 France \n",
"27 France \n",
"28 France \n",
"29 France \n",
"... ... \n",
"1815 France \n",
"1816 France \n",
"1817 France \n",
"1818 France \n",
"1819 France \n",
"1820 France \n",
"1821 France \n",
"1822 France \n",
"1823 France \n",
"1824 France \n",
"1825 France \n",
"1826 France \n",
"1827 France \n",
"1828 France \n",
"1829 France \n",
"1830 France \n",
"1831 France \n",
"1832 France \n",
"1833 France \n",
"1834 France \n",
"1835 France \n",
"1836 France \n",
"1837 France \n",
"1838 France \n",
"1839 France \n",
"1840 France \n",
"1841 France \n",
"1842 France \n",
"1843 France \n",
"1844 France \n",
"\n",
"[1845 rows x 11 columns]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [ "source": [
"raw_data = pd.read_csv(data_url, skiprows=1)\n", "fname = data_url.split('/')[-1]\n",
"if os.path.isfile(fname):\n",
" print(\"Reading local version\")\n",
" raw_data = pd.read_csv(fname, skiprows=1)\n",
"else:\n",
" print(\"Downloading remote version at\", data_url)\n",
" raw_data = pd.read_csv(data_url, skiprows=1)\n",
" raw_data.to_csv(fname)\n",
"raw_data" "raw_data"
] ]
}, },
...@@ -78,9 +1120,75 @@ ...@@ -78,9 +1120,75 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 4,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>0</th>\n",
" <th>202011</th>\n",
" <th>3</th>\n",
" <th>101704</th>\n",
" <th>93652.0</th>\n",
" <th>109756.0</th>\n",
" <th>154</th>\n",
" <th>142.0</th>\n",
" <th>166.0</th>\n",
" <th>FR</th>\n",
" <th>France</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1608</th>\n",
" <td>1609</td>\n",
" <td>198919</td>\n",
" <td>3</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 0 202011 3 101704 93652.0 109756.0 154 142.0 166.0 FR \\\n",
"1608 1609 198919 3 0 NaN NaN 0 NaN NaN FR \n",
"\n",
" France \n",
"1608 France "
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [ "source": [
"raw_data[raw_data.isnull().any(axis=1)]" "raw_data[raw_data.isnull().any(axis=1)]"
] ]
...@@ -94,9 +1202,1038 @@ ...@@ -94,9 +1202,1038 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 5,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>0</th>\n",
" <th>202011</th>\n",
" <th>3</th>\n",
" <th>101704</th>\n",
" <th>93652.0</th>\n",
" <th>109756.0</th>\n",
" <th>154</th>\n",
" <th>142.0</th>\n",
" <th>166.0</th>\n",
" <th>FR</th>\n",
" <th>France</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" <td>202010</td>\n",
" <td>3</td>\n",
" <td>104977</td>\n",
" <td>96650.0</td>\n",
" <td>113304.0</td>\n",
" <td>159</td>\n",
" <td>146.0</td>\n",
" <td>172.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2</td>\n",
" <td>202009</td>\n",
" <td>3</td>\n",
" <td>110696</td>\n",
" <td>102066.0</td>\n",
" <td>119326.0</td>\n",
" <td>168</td>\n",
" <td>155.0</td>\n",
" <td>181.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>3</td>\n",
" <td>202008</td>\n",
" <td>3</td>\n",
" <td>143753</td>\n",
" <td>133984.0</td>\n",
" <td>153522.0</td>\n",
" <td>218</td>\n",
" <td>203.0</td>\n",
" <td>233.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4</td>\n",
" <td>202007</td>\n",
" <td>3</td>\n",
" <td>183610</td>\n",
" <td>172812.0</td>\n",
" <td>194408.0</td>\n",
" <td>279</td>\n",
" <td>263.0</td>\n",
" <td>295.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>5</td>\n",
" <td>202006</td>\n",
" <td>3</td>\n",
" <td>206669</td>\n",
" <td>195481.0</td>\n",
" <td>217857.0</td>\n",
" <td>314</td>\n",
" <td>297.0</td>\n",
" <td>331.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>6</td>\n",
" <td>202005</td>\n",
" <td>3</td>\n",
" <td>187957</td>\n",
" <td>177445.0</td>\n",
" <td>198469.0</td>\n",
" <td>285</td>\n",
" <td>269.0</td>\n",
" <td>301.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>7</td>\n",
" <td>202004</td>\n",
" <td>3</td>\n",
" <td>122331</td>\n",
" <td>113492.0</td>\n",
" <td>131170.0</td>\n",
" <td>186</td>\n",
" <td>173.0</td>\n",
" <td>199.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>8</td>\n",
" <td>202003</td>\n",
" <td>3</td>\n",
" <td>78413</td>\n",
" <td>71330.0</td>\n",
" <td>85496.0</td>\n",
" <td>119</td>\n",
" <td>108.0</td>\n",
" <td>130.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>9</td>\n",
" <td>202002</td>\n",
" <td>3</td>\n",
" <td>53614</td>\n",
" <td>47654.0</td>\n",
" <td>59574.0</td>\n",
" <td>81</td>\n",
" <td>72.0</td>\n",
" <td>90.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>10</td>\n",
" <td>202001</td>\n",
" <td>3</td>\n",
" <td>36850</td>\n",
" <td>31608.0</td>\n",
" <td>42092.0</td>\n",
" <td>56</td>\n",
" <td>48.0</td>\n",
" <td>64.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>11</td>\n",
" <td>201952</td>\n",
" <td>3</td>\n",
" <td>28135</td>\n",
" <td>23220.0</td>\n",
" <td>33050.0</td>\n",
" <td>43</td>\n",
" <td>36.0</td>\n",
" <td>50.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>12</td>\n",
" <td>201951</td>\n",
" <td>3</td>\n",
" <td>29786</td>\n",
" <td>25042.0</td>\n",
" <td>34530.0</td>\n",
" <td>45</td>\n",
" <td>38.0</td>\n",
" <td>52.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>13</td>\n",
" <td>201950</td>\n",
" <td>3</td>\n",
" <td>34223</td>\n",
" <td>29156.0</td>\n",
" <td>39290.0</td>\n",
" <td>52</td>\n",
" <td>44.0</td>\n",
" <td>60.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>14</td>\n",
" <td>201949</td>\n",
" <td>3</td>\n",
" <td>25662</td>\n",
" <td>21414.0</td>\n",
" <td>29910.0</td>\n",
" <td>39</td>\n",
" <td>33.0</td>\n",
" <td>45.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>15</td>\n",
" <td>201948</td>\n",
" <td>3</td>\n",
" <td>22367</td>\n",
" <td>18055.0</td>\n",
" <td>26679.0</td>\n",
" <td>34</td>\n",
" <td>27.0</td>\n",
" <td>41.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>16</td>\n",
" <td>201947</td>\n",
" <td>3</td>\n",
" <td>18669</td>\n",
" <td>14759.0</td>\n",
" <td>22579.0</td>\n",
" <td>28</td>\n",
" <td>22.0</td>\n",
" <td>34.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>17</td>\n",
" <td>201946</td>\n",
" <td>3</td>\n",
" <td>16030</td>\n",
" <td>12567.0</td>\n",
" <td>19493.0</td>\n",
" <td>24</td>\n",
" <td>19.0</td>\n",
" <td>29.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>18</td>\n",
" <td>201945</td>\n",
" <td>3</td>\n",
" <td>10138</td>\n",
" <td>7160.0</td>\n",
" <td>13116.0</td>\n",
" <td>15</td>\n",
" <td>10.0</td>\n",
" <td>20.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>19</td>\n",
" <td>201944</td>\n",
" <td>3</td>\n",
" <td>7822</td>\n",
" <td>5010.0</td>\n",
" <td>10634.0</td>\n",
" <td>12</td>\n",
" <td>8.0</td>\n",
" <td>16.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>20</td>\n",
" <td>201943</td>\n",
" <td>3</td>\n",
" <td>9487</td>\n",
" <td>6448.0</td>\n",
" <td>12526.0</td>\n",
" <td>14</td>\n",
" <td>9.0</td>\n",
" <td>19.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>21</td>\n",
" <td>201942</td>\n",
" <td>3</td>\n",
" <td>7747</td>\n",
" <td>5243.0</td>\n",
" <td>10251.0</td>\n",
" <td>12</td>\n",
" <td>8.0</td>\n",
" <td>16.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td>22</td>\n",
" <td>201941</td>\n",
" <td>3</td>\n",
" <td>7122</td>\n",
" <td>4720.0</td>\n",
" <td>9524.0</td>\n",
" <td>11</td>\n",
" <td>7.0</td>\n",
" <td>15.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>23</td>\n",
" <td>201940</td>\n",
" <td>3</td>\n",
" <td>8505</td>\n",
" <td>5784.0</td>\n",
" <td>11226.0</td>\n",
" <td>13</td>\n",
" <td>9.0</td>\n",
" <td>17.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23</th>\n",
" <td>24</td>\n",
" <td>201939</td>\n",
" <td>3</td>\n",
" <td>7091</td>\n",
" <td>4462.0</td>\n",
" <td>9720.0</td>\n",
" <td>11</td>\n",
" <td>7.0</td>\n",
" <td>15.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>25</td>\n",
" <td>201938</td>\n",
" <td>3</td>\n",
" <td>4897</td>\n",
" <td>2891.0</td>\n",
" <td>6903.0</td>\n",
" <td>7</td>\n",
" <td>4.0</td>\n",
" <td>10.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25</th>\n",
" <td>26</td>\n",
" <td>201937</td>\n",
" <td>3</td>\n",
" <td>3172</td>\n",
" <td>1367.0</td>\n",
" <td>4977.0</td>\n",
" <td>5</td>\n",
" <td>2.0</td>\n",
" <td>8.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26</th>\n",
" <td>27</td>\n",
" <td>201936</td>\n",
" <td>3</td>\n",
" <td>2295</td>\n",
" <td>728.0</td>\n",
" <td>3862.0</td>\n",
" <td>3</td>\n",
" <td>1.0</td>\n",
" <td>5.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>27</th>\n",
" <td>28</td>\n",
" <td>201935</td>\n",
" <td>3</td>\n",
" <td>1010</td>\n",
" <td>2.0</td>\n",
" <td>2018.0</td>\n",
" <td>2</td>\n",
" <td>0.0</td>\n",
" <td>4.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>28</th>\n",
" <td>29</td>\n",
" <td>201934</td>\n",
" <td>3</td>\n",
" <td>1672</td>\n",
" <td>279.0</td>\n",
" <td>3065.0</td>\n",
" <td>3</td>\n",
" <td>1.0</td>\n",
" <td>5.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>29</th>\n",
" <td>30</td>\n",
" <td>201933</td>\n",
" <td>3</td>\n",
" <td>1593</td>\n",
" <td>68.0</td>\n",
" <td>3118.0</td>\n",
" <td>2</td>\n",
" <td>0.0</td>\n",
" <td>4.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1815</th>\n",
" <td>1816</td>\n",
" <td>198521</td>\n",
" <td>3</td>\n",
" <td>26096</td>\n",
" <td>19621.0</td>\n",
" <td>32571.0</td>\n",
" <td>47</td>\n",
" <td>35.0</td>\n",
" <td>59.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1816</th>\n",
" <td>1817</td>\n",
" <td>198520</td>\n",
" <td>3</td>\n",
" <td>27896</td>\n",
" <td>20885.0</td>\n",
" <td>34907.0</td>\n",
" <td>51</td>\n",
" <td>38.0</td>\n",
" <td>64.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1817</th>\n",
" <td>1818</td>\n",
" <td>198519</td>\n",
" <td>3</td>\n",
" <td>43154</td>\n",
" <td>32821.0</td>\n",
" <td>53487.0</td>\n",
" <td>78</td>\n",
" <td>59.0</td>\n",
" <td>97.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1818</th>\n",
" <td>1819</td>\n",
" <td>198518</td>\n",
" <td>3</td>\n",
" <td>40555</td>\n",
" <td>29935.0</td>\n",
" <td>51175.0</td>\n",
" <td>74</td>\n",
" <td>55.0</td>\n",
" <td>93.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1819</th>\n",
" <td>1820</td>\n",
" <td>198517</td>\n",
" <td>3</td>\n",
" <td>34053</td>\n",
" <td>24366.0</td>\n",
" <td>43740.0</td>\n",
" <td>62</td>\n",
" <td>44.0</td>\n",
" <td>80.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1820</th>\n",
" <td>1821</td>\n",
" <td>198516</td>\n",
" <td>3</td>\n",
" <td>50362</td>\n",
" <td>36451.0</td>\n",
" <td>64273.0</td>\n",
" <td>91</td>\n",
" <td>66.0</td>\n",
" <td>116.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1821</th>\n",
" <td>1822</td>\n",
" <td>198515</td>\n",
" <td>3</td>\n",
" <td>63881</td>\n",
" <td>45538.0</td>\n",
" <td>82224.0</td>\n",
" <td>116</td>\n",
" <td>83.0</td>\n",
" <td>149.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1822</th>\n",
" <td>1823</td>\n",
" <td>198514</td>\n",
" <td>3</td>\n",
" <td>134545</td>\n",
" <td>114400.0</td>\n",
" <td>154690.0</td>\n",
" <td>244</td>\n",
" <td>207.0</td>\n",
" <td>281.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1823</th>\n",
" <td>1824</td>\n",
" <td>198513</td>\n",
" <td>3</td>\n",
" <td>197206</td>\n",
" <td>176080.0</td>\n",
" <td>218332.0</td>\n",
" <td>357</td>\n",
" <td>319.0</td>\n",
" <td>395.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1824</th>\n",
" <td>1825</td>\n",
" <td>198512</td>\n",
" <td>3</td>\n",
" <td>245240</td>\n",
" <td>223304.0</td>\n",
" <td>267176.0</td>\n",
" <td>445</td>\n",
" <td>405.0</td>\n",
" <td>485.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1825</th>\n",
" <td>1826</td>\n",
" <td>198511</td>\n",
" <td>3</td>\n",
" <td>276205</td>\n",
" <td>252399.0</td>\n",
" <td>300011.0</td>\n",
" <td>501</td>\n",
" <td>458.0</td>\n",
" <td>544.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1826</th>\n",
" <td>1827</td>\n",
" <td>198510</td>\n",
" <td>3</td>\n",
" <td>353231</td>\n",
" <td>326279.0</td>\n",
" <td>380183.0</td>\n",
" <td>640</td>\n",
" <td>591.0</td>\n",
" <td>689.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1827</th>\n",
" <td>1828</td>\n",
" <td>198509</td>\n",
" <td>3</td>\n",
" <td>369895</td>\n",
" <td>341109.0</td>\n",
" <td>398681.0</td>\n",
" <td>670</td>\n",
" <td>618.0</td>\n",
" <td>722.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1828</th>\n",
" <td>1829</td>\n",
" <td>198508</td>\n",
" <td>3</td>\n",
" <td>389886</td>\n",
" <td>359529.0</td>\n",
" <td>420243.0</td>\n",
" <td>707</td>\n",
" <td>652.0</td>\n",
" <td>762.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1829</th>\n",
" <td>1830</td>\n",
" <td>198507</td>\n",
" <td>3</td>\n",
" <td>471852</td>\n",
" <td>432599.0</td>\n",
" <td>511105.0</td>\n",
" <td>855</td>\n",
" <td>784.0</td>\n",
" <td>926.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1830</th>\n",
" <td>1831</td>\n",
" <td>198506</td>\n",
" <td>3</td>\n",
" <td>565825</td>\n",
" <td>518011.0</td>\n",
" <td>613639.0</td>\n",
" <td>1026</td>\n",
" <td>939.0</td>\n",
" <td>1113.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1831</th>\n",
" <td>1832</td>\n",
" <td>198505</td>\n",
" <td>3</td>\n",
" <td>637302</td>\n",
" <td>592795.0</td>\n",
" <td>681809.0</td>\n",
" <td>1155</td>\n",
" <td>1074.0</td>\n",
" <td>1236.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1832</th>\n",
" <td>1833</td>\n",
" <td>198504</td>\n",
" <td>3</td>\n",
" <td>424937</td>\n",
" <td>390794.0</td>\n",
" <td>459080.0</td>\n",
" <td>770</td>\n",
" <td>708.0</td>\n",
" <td>832.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1833</th>\n",
" <td>1834</td>\n",
" <td>198503</td>\n",
" <td>3</td>\n",
" <td>213901</td>\n",
" <td>174689.0</td>\n",
" <td>253113.0</td>\n",
" <td>388</td>\n",
" <td>317.0</td>\n",
" <td>459.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1834</th>\n",
" <td>1835</td>\n",
" <td>198502</td>\n",
" <td>3</td>\n",
" <td>97586</td>\n",
" <td>80949.0</td>\n",
" <td>114223.0</td>\n",
" <td>177</td>\n",
" <td>147.0</td>\n",
" <td>207.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1835</th>\n",
" <td>1836</td>\n",
" <td>198501</td>\n",
" <td>3</td>\n",
" <td>85489</td>\n",
" <td>65918.0</td>\n",
" <td>105060.0</td>\n",
" <td>155</td>\n",
" <td>120.0</td>\n",
" <td>190.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1836</th>\n",
" <td>1837</td>\n",
" <td>198452</td>\n",
" <td>3</td>\n",
" <td>84830</td>\n",
" <td>60602.0</td>\n",
" <td>109058.0</td>\n",
" <td>154</td>\n",
" <td>110.0</td>\n",
" <td>198.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1837</th>\n",
" <td>1838</td>\n",
" <td>198451</td>\n",
" <td>3</td>\n",
" <td>101726</td>\n",
" <td>80242.0</td>\n",
" <td>123210.0</td>\n",
" <td>185</td>\n",
" <td>146.0</td>\n",
" <td>224.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1838</th>\n",
" <td>1839</td>\n",
" <td>198450</td>\n",
" <td>3</td>\n",
" <td>123680</td>\n",
" <td>101401.0</td>\n",
" <td>145959.0</td>\n",
" <td>225</td>\n",
" <td>184.0</td>\n",
" <td>266.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1839</th>\n",
" <td>1840</td>\n",
" <td>198449</td>\n",
" <td>3</td>\n",
" <td>101073</td>\n",
" <td>81684.0</td>\n",
" <td>120462.0</td>\n",
" <td>184</td>\n",
" <td>149.0</td>\n",
" <td>219.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1840</th>\n",
" <td>1841</td>\n",
" <td>198448</td>\n",
" <td>3</td>\n",
" <td>78620</td>\n",
" <td>60634.0</td>\n",
" <td>96606.0</td>\n",
" <td>143</td>\n",
" <td>110.0</td>\n",
" <td>176.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1841</th>\n",
" <td>1842</td>\n",
" <td>198447</td>\n",
" <td>3</td>\n",
" <td>72029</td>\n",
" <td>54274.0</td>\n",
" <td>89784.0</td>\n",
" <td>131</td>\n",
" <td>99.0</td>\n",
" <td>163.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1842</th>\n",
" <td>1843</td>\n",
" <td>198446</td>\n",
" <td>3</td>\n",
" <td>87330</td>\n",
" <td>67686.0</td>\n",
" <td>106974.0</td>\n",
" <td>159</td>\n",
" <td>123.0</td>\n",
" <td>195.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1843</th>\n",
" <td>1844</td>\n",
" <td>198445</td>\n",
" <td>3</td>\n",
" <td>135223</td>\n",
" <td>101414.0</td>\n",
" <td>169032.0</td>\n",
" <td>246</td>\n",
" <td>184.0</td>\n",
" <td>308.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1844</th>\n",
" <td>1845</td>\n",
" <td>198444</td>\n",
" <td>3</td>\n",
" <td>68422</td>\n",
" <td>20056.0</td>\n",
" <td>116788.0</td>\n",
" <td>125</td>\n",
" <td>37.0</td>\n",
" <td>213.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>1844 rows × 11 columns</p>\n",
"</div>"
],
"text/plain": [
" 0 202011 3 101704 93652.0 109756.0 154 142.0 166.0 FR \\\n",
"0 1 202010 3 104977 96650.0 113304.0 159 146.0 172.0 FR \n",
"1 2 202009 3 110696 102066.0 119326.0 168 155.0 181.0 FR \n",
"2 3 202008 3 143753 133984.0 153522.0 218 203.0 233.0 FR \n",
"3 4 202007 3 183610 172812.0 194408.0 279 263.0 295.0 FR \n",
"4 5 202006 3 206669 195481.0 217857.0 314 297.0 331.0 FR \n",
"5 6 202005 3 187957 177445.0 198469.0 285 269.0 301.0 FR \n",
"6 7 202004 3 122331 113492.0 131170.0 186 173.0 199.0 FR \n",
"7 8 202003 3 78413 71330.0 85496.0 119 108.0 130.0 FR \n",
"8 9 202002 3 53614 47654.0 59574.0 81 72.0 90.0 FR \n",
"9 10 202001 3 36850 31608.0 42092.0 56 48.0 64.0 FR \n",
"10 11 201952 3 28135 23220.0 33050.0 43 36.0 50.0 FR \n",
"11 12 201951 3 29786 25042.0 34530.0 45 38.0 52.0 FR \n",
"12 13 201950 3 34223 29156.0 39290.0 52 44.0 60.0 FR \n",
"13 14 201949 3 25662 21414.0 29910.0 39 33.0 45.0 FR \n",
"14 15 201948 3 22367 18055.0 26679.0 34 27.0 41.0 FR \n",
"15 16 201947 3 18669 14759.0 22579.0 28 22.0 34.0 FR \n",
"16 17 201946 3 16030 12567.0 19493.0 24 19.0 29.0 FR \n",
"17 18 201945 3 10138 7160.0 13116.0 15 10.0 20.0 FR \n",
"18 19 201944 3 7822 5010.0 10634.0 12 8.0 16.0 FR \n",
"19 20 201943 3 9487 6448.0 12526.0 14 9.0 19.0 FR \n",
"20 21 201942 3 7747 5243.0 10251.0 12 8.0 16.0 FR \n",
"21 22 201941 3 7122 4720.0 9524.0 11 7.0 15.0 FR \n",
"22 23 201940 3 8505 5784.0 11226.0 13 9.0 17.0 FR \n",
"23 24 201939 3 7091 4462.0 9720.0 11 7.0 15.0 FR \n",
"24 25 201938 3 4897 2891.0 6903.0 7 4.0 10.0 FR \n",
"25 26 201937 3 3172 1367.0 4977.0 5 2.0 8.0 FR \n",
"26 27 201936 3 2295 728.0 3862.0 3 1.0 5.0 FR \n",
"27 28 201935 3 1010 2.0 2018.0 2 0.0 4.0 FR \n",
"28 29 201934 3 1672 279.0 3065.0 3 1.0 5.0 FR \n",
"29 30 201933 3 1593 68.0 3118.0 2 0.0 4.0 FR \n",
"... ... ... .. ... ... ... ... ... ... .. \n",
"1815 1816 198521 3 26096 19621.0 32571.0 47 35.0 59.0 FR \n",
"1816 1817 198520 3 27896 20885.0 34907.0 51 38.0 64.0 FR \n",
"1817 1818 198519 3 43154 32821.0 53487.0 78 59.0 97.0 FR \n",
"1818 1819 198518 3 40555 29935.0 51175.0 74 55.0 93.0 FR \n",
"1819 1820 198517 3 34053 24366.0 43740.0 62 44.0 80.0 FR \n",
"1820 1821 198516 3 50362 36451.0 64273.0 91 66.0 116.0 FR \n",
"1821 1822 198515 3 63881 45538.0 82224.0 116 83.0 149.0 FR \n",
"1822 1823 198514 3 134545 114400.0 154690.0 244 207.0 281.0 FR \n",
"1823 1824 198513 3 197206 176080.0 218332.0 357 319.0 395.0 FR \n",
"1824 1825 198512 3 245240 223304.0 267176.0 445 405.0 485.0 FR \n",
"1825 1826 198511 3 276205 252399.0 300011.0 501 458.0 544.0 FR \n",
"1826 1827 198510 3 353231 326279.0 380183.0 640 591.0 689.0 FR \n",
"1827 1828 198509 3 369895 341109.0 398681.0 670 618.0 722.0 FR \n",
"1828 1829 198508 3 389886 359529.0 420243.0 707 652.0 762.0 FR \n",
"1829 1830 198507 3 471852 432599.0 511105.0 855 784.0 926.0 FR \n",
"1830 1831 198506 3 565825 518011.0 613639.0 1026 939.0 1113.0 FR \n",
"1831 1832 198505 3 637302 592795.0 681809.0 1155 1074.0 1236.0 FR \n",
"1832 1833 198504 3 424937 390794.0 459080.0 770 708.0 832.0 FR \n",
"1833 1834 198503 3 213901 174689.0 253113.0 388 317.0 459.0 FR \n",
"1834 1835 198502 3 97586 80949.0 114223.0 177 147.0 207.0 FR \n",
"1835 1836 198501 3 85489 65918.0 105060.0 155 120.0 190.0 FR \n",
"1836 1837 198452 3 84830 60602.0 109058.0 154 110.0 198.0 FR \n",
"1837 1838 198451 3 101726 80242.0 123210.0 185 146.0 224.0 FR \n",
"1838 1839 198450 3 123680 101401.0 145959.0 225 184.0 266.0 FR \n",
"1839 1840 198449 3 101073 81684.0 120462.0 184 149.0 219.0 FR \n",
"1840 1841 198448 3 78620 60634.0 96606.0 143 110.0 176.0 FR \n",
"1841 1842 198447 3 72029 54274.0 89784.0 131 99.0 163.0 FR \n",
"1842 1843 198446 3 87330 67686.0 106974.0 159 123.0 195.0 FR \n",
"1843 1844 198445 3 135223 101414.0 169032.0 246 184.0 308.0 FR \n",
"1844 1845 198444 3 68422 20056.0 116788.0 125 37.0 213.0 FR \n",
"\n",
" France \n",
"0 France \n",
"1 France \n",
"2 France \n",
"3 France \n",
"4 France \n",
"5 France \n",
"6 France \n",
"7 France \n",
"8 France \n",
"9 France \n",
"10 France \n",
"11 France \n",
"12 France \n",
"13 France \n",
"14 France \n",
"15 France \n",
"16 France \n",
"17 France \n",
"18 France \n",
"19 France \n",
"20 France \n",
"21 France \n",
"22 France \n",
"23 France \n",
"24 France \n",
"25 France \n",
"26 France \n",
"27 France \n",
"28 France \n",
"29 France \n",
"... ... \n",
"1815 France \n",
"1816 France \n",
"1817 France \n",
"1818 France \n",
"1819 France \n",
"1820 France \n",
"1821 France \n",
"1822 France \n",
"1823 France \n",
"1824 France \n",
"1825 France \n",
"1826 France \n",
"1827 France \n",
"1828 France \n",
"1829 France \n",
"1830 France \n",
"1831 France \n",
"1832 France \n",
"1833 France \n",
"1834 France \n",
"1835 France \n",
"1836 France \n",
"1837 France \n",
"1838 France \n",
"1839 France \n",
"1840 France \n",
"1841 France \n",
"1842 France \n",
"1843 France \n",
"1844 France \n",
"\n",
"[1844 rows x 11 columns]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [ "source": [
"data = raw_data.dropna().copy()\n", "data = raw_data.dropna().copy()\n",
"data" "data"
...@@ -122,9 +2259,38 @@ ...@@ -122,9 +2259,38 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 6,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [
{
"ename": "KeyError",
"evalue": "'week'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 2524\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2525\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2526\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n",
"\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n",
"\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n",
"\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n",
"\u001b[0;31mKeyError\u001b[0m: 'week'",
"\nDuring handling of the above exception, another exception occurred:\n",
"\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-6-4f9c04a6e476>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mPeriod\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mw\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mday\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'W'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'period'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mconvert_week\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0myw\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0myw\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'week'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 2137\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_multilevel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2138\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2139\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_column\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2140\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2141\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_getitem_column\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m_getitem_column\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 2144\u001b[0m \u001b[0;31m# get column\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2145\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_unique\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2146\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_item_cache\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2147\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2148\u001b[0m \u001b[0;31m# duplicate columns & possible reduce dimensionality\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m_get_item_cache\u001b[0;34m(self, item)\u001b[0m\n\u001b[1;32m 1840\u001b[0m \u001b[0mres\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcache\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1841\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mres\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1842\u001b[0;31m \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_data\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1843\u001b[0m \u001b[0mres\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_box_item_values\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1844\u001b[0m \u001b[0mcache\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mres\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/internals.py\u001b[0m in \u001b[0;36mget\u001b[0;34m(self, item, fastpath)\u001b[0m\n\u001b[1;32m 3841\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3842\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0misna\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3843\u001b[0;31m \u001b[0mloc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3844\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3845\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0misna\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 2525\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2526\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2527\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_maybe_cast_indexer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2528\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2529\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_indexer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmethod\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtolerance\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtolerance\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n",
"\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n",
"\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n",
"\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n",
"\u001b[0;31mKeyError\u001b[0m: 'week'"
]
}
],
"source": [ "source": [
"def convert_week(year_and_week_int):\n", "def convert_week(year_and_week_int):\n",
" year_and_week_str = str(year_and_week_int)\n", " year_and_week_str = str(year_and_week_int)\n",
...@@ -153,9 +2319,7 @@ ...@@ -153,9 +2319,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"metadata": { "metadata": {},
"collapsed": true
},
"outputs": [], "outputs": [],
"source": [ "source": [
"sorted_data = data.set_index('period').sort_index()" "sorted_data = data.set_index('period').sort_index()"
...@@ -253,9 +2417,7 @@ ...@@ -253,9 +2417,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"metadata": { "metadata": {},
"collapsed": true
},
"outputs": [], "outputs": [],
"source": [ "source": [
"first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n",
...@@ -341,9 +2503,7 @@ ...@@ -341,9 +2503,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"metadata": { "metadata": {},
"collapsed": true
},
"outputs": [], "outputs": [],
"source": [] "source": []
} }
...@@ -364,7 +2524,7 @@ ...@@ -364,7 +2524,7 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.6.1" "version": "3.6.4"
} }
}, },
"nbformat": 4, "nbformat": 4,
......
This source diff could not be displayed because it is too large. You can view the blob instead.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment