{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "hideCode": true }, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import isoweek" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Incidence des syndromes grippaux" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Pour nous protéger contre une éventuelle disparition ou modification du serveur du Réseau Sentinelles, nous faisons une copie locale de ce jeux de données que nous préservons avec notre analyse. Il est inutile et même risquée de télécharger les données à chaque exécution, car dans le cas d'une panne nous pourrions remplacer nos données par un fichier défectueux. Pour cette raison, nous téléchargeons les données seulement si la copie locale n'existe pas." ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "data_file = \"incidence-PAY-3(1).csv\"\n", "\n", "import os\n", "import urllib.request\n", "if not os.path.exists(data_file):\n", " urllib.request.urlretrieve(data_url, data_file)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "data_url=\"https://www.sentiweb.fr/datasets/incidence-PAY-3.csv\"" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020210232082516063.025587.03225.039.0FRFrance
120210132284118645.027037.03529.041.0FRFrance
220205332122016498.025942.03225.039.0FRFrance
320205231642812285.020571.02519.031.0FRFrance
420205132161917370.025868.03327.039.0FRFrance
520205031684513220.020470.02620.032.0FRFrance
62020493129399923.015955.02015.025.0FRFrance
720204831380410641.016967.02116.026.0FRFrance
820204731908515285.022885.02923.035.0FRFrance
920204632480120503.029099.03831.045.0FRFrance
1020204534251636857.048175.06556.074.0FRFrance
1120204434456738521.050613.06859.077.0FRFrance
1220204334373737523.049951.06657.075.0FRFrance
1320204233514529812.040478.05345.061.0FRFrance
1420204132787723206.032548.04235.049.0FRFrance
1520204032044316381.024505.03125.037.0FRFrance
1620203931981015900.023720.03024.036.0FRFrance
1720203832556221142.029982.03932.046.0FRFrance
1820203731848514649.022321.02822.034.0FRFrance
192020363103907646.013134.01612.020.0FRFrance
20202035399186842.012994.01510.020.0FRFrance
21202034360843090.09078.094.014.0FRFrance
22202033361063411.08801.095.013.0FRFrance
23202032359183330.08506.095.013.0FRFrance
24202031343512269.06433.074.010.0FRFrance
25202030381795442.010916.0128.016.0FRFrance
26202029386875860.011514.0139.017.0FRFrance
27202028383405701.010979.0139.017.0FRFrance
28202027340662406.05726.063.09.0FRFrance
29202026340392389.05689.063.09.0FRFrance
.................................
186019852132609619621.032571.04735.059.0FRFrance
186119852032789620885.034907.05138.064.0FRFrance
186219851934315432821.053487.07859.097.0FRFrance
186319851834055529935.051175.07455.093.0FRFrance
186419851733405324366.043740.06244.080.0FRFrance
186519851635036236451.064273.09166.0116.0FRFrance
186619851536388145538.082224.011683.0149.0FRFrance
18671985143134545114400.0154690.0244207.0281.0FRFrance
18681985133197206176080.0218332.0357319.0395.0FRFrance
18691985123245240223304.0267176.0445405.0485.0FRFrance
18701985113276205252399.0300011.0501458.0544.0FRFrance
18711985103353231326279.0380183.0640591.0689.0FRFrance
18721985093369895341109.0398681.0670618.0722.0FRFrance
18731985083389886359529.0420243.0707652.0762.0FRFrance
18741985073471852432599.0511105.0855784.0926.0FRFrance
18751985063565825518011.0613639.01026939.01113.0FRFrance
18761985053637302592795.0681809.011551074.01236.0FRFrance
18771985043424937390794.0459080.0770708.0832.0FRFrance
18781985033213901174689.0253113.0388317.0459.0FRFrance
187919850239758680949.0114223.0177147.0207.0FRFrance
188019850138548965918.0105060.0155120.0190.0FRFrance
188119845238483060602.0109058.0154110.0198.0FRFrance
1882198451310172680242.0123210.0185146.0224.0FRFrance
18831984503123680101401.0145959.0225184.0266.0FRFrance
1884198449310107381684.0120462.0184149.0219.0FRFrance
188519844837862060634.096606.0143110.0176.0FRFrance
188619844737202954274.089784.013199.0163.0FRFrance
188719844638733067686.0106974.0159123.0195.0FRFrance
18881984453135223101414.0169032.0246184.0308.0FRFrance
188919844436842220056.0116788.012537.0213.0FRFrance
\n", "

1890 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202102 3 20825 16063.0 25587.0 32 25.0 \n", "1 202101 3 22841 18645.0 27037.0 35 29.0 \n", "2 202053 3 21220 16498.0 25942.0 32 25.0 \n", "3 202052 3 16428 12285.0 20571.0 25 19.0 \n", "4 202051 3 21619 17370.0 25868.0 33 27.0 \n", "5 202050 3 16845 13220.0 20470.0 26 20.0 \n", "6 202049 3 12939 9923.0 15955.0 20 15.0 \n", "7 202048 3 13804 10641.0 16967.0 21 16.0 \n", "8 202047 3 19085 15285.0 22885.0 29 23.0 \n", "9 202046 3 24801 20503.0 29099.0 38 31.0 \n", "10 202045 3 42516 36857.0 48175.0 65 56.0 \n", "11 202044 3 44567 38521.0 50613.0 68 59.0 \n", "12 202043 3 43737 37523.0 49951.0 66 57.0 \n", "13 202042 3 35145 29812.0 40478.0 53 45.0 \n", "14 202041 3 27877 23206.0 32548.0 42 35.0 \n", "15 202040 3 20443 16381.0 24505.0 31 25.0 \n", "16 202039 3 19810 15900.0 23720.0 30 24.0 \n", "17 202038 3 25562 21142.0 29982.0 39 32.0 \n", "18 202037 3 18485 14649.0 22321.0 28 22.0 \n", "19 202036 3 10390 7646.0 13134.0 16 12.0 \n", "20 202035 3 9918 6842.0 12994.0 15 10.0 \n", "21 202034 3 6084 3090.0 9078.0 9 4.0 \n", "22 202033 3 6106 3411.0 8801.0 9 5.0 \n", "23 202032 3 5918 3330.0 8506.0 9 5.0 \n", "24 202031 3 4351 2269.0 6433.0 7 4.0 \n", "25 202030 3 8179 5442.0 10916.0 12 8.0 \n", "26 202029 3 8687 5860.0 11514.0 13 9.0 \n", "27 202028 3 8340 5701.0 10979.0 13 9.0 \n", "28 202027 3 4066 2406.0 5726.0 6 3.0 \n", "29 202026 3 4039 2389.0 5689.0 6 3.0 \n", "... ... ... ... ... ... ... ... \n", "1860 198521 3 26096 19621.0 32571.0 47 35.0 \n", "1861 198520 3 27896 20885.0 34907.0 51 38.0 \n", "1862 198519 3 43154 32821.0 53487.0 78 59.0 \n", "1863 198518 3 40555 29935.0 51175.0 74 55.0 \n", "1864 198517 3 34053 24366.0 43740.0 62 44.0 \n", "1865 198516 3 50362 36451.0 64273.0 91 66.0 \n", "1866 198515 3 63881 45538.0 82224.0 116 83.0 \n", "1867 198514 3 134545 114400.0 154690.0 244 207.0 \n", "1868 198513 3 197206 176080.0 218332.0 357 319.0 \n", "1869 198512 3 245240 223304.0 267176.0 445 405.0 \n", "1870 198511 3 276205 252399.0 300011.0 501 458.0 \n", "1871 198510 3 353231 326279.0 380183.0 640 591.0 \n", "1872 198509 3 369895 341109.0 398681.0 670 618.0 \n", "1873 198508 3 389886 359529.0 420243.0 707 652.0 \n", "1874 198507 3 471852 432599.0 511105.0 855 784.0 \n", "1875 198506 3 565825 518011.0 613639.0 1026 939.0 \n", "1876 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", "1877 198504 3 424937 390794.0 459080.0 770 708.0 \n", "1878 198503 3 213901 174689.0 253113.0 388 317.0 \n", "1879 198502 3 97586 80949.0 114223.0 177 147.0 \n", "1880 198501 3 85489 65918.0 105060.0 155 120.0 \n", "1881 198452 3 84830 60602.0 109058.0 154 110.0 \n", "1882 198451 3 101726 80242.0 123210.0 185 146.0 \n", "1883 198450 3 123680 101401.0 145959.0 225 184.0 \n", "1884 198449 3 101073 81684.0 120462.0 184 149.0 \n", "1885 198448 3 78620 60634.0 96606.0 143 110.0 \n", "1886 198447 3 72029 54274.0 89784.0 131 99.0 \n", "1887 198446 3 87330 67686.0 106974.0 159 123.0 \n", "1888 198445 3 135223 101414.0 169032.0 246 184.0 \n", "1889 198444 3 68422 20056.0 116788.0 125 37.0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 39.0 FR France \n", "1 41.0 FR France \n", "2 39.0 FR France \n", "3 31.0 FR France \n", "4 39.0 FR France \n", "5 32.0 FR France \n", "6 25.0 FR France \n", "7 26.0 FR France \n", "8 35.0 FR France \n", "9 45.0 FR France \n", "10 74.0 FR France \n", "11 77.0 FR France \n", "12 75.0 FR France \n", "13 61.0 FR France \n", "14 49.0 FR France \n", "15 37.0 FR France \n", "16 36.0 FR France \n", "17 46.0 FR France \n", "18 34.0 FR France \n", "19 20.0 FR France \n", "20 20.0 FR France \n", "21 14.0 FR France \n", "22 13.0 FR France \n", "23 13.0 FR France \n", "24 10.0 FR France \n", "25 16.0 FR France \n", "26 17.0 FR France \n", "27 17.0 FR France \n", "28 9.0 FR France \n", "29 9.0 FR France \n", "... ... ... ... \n", "1860 59.0 FR France \n", "1861 64.0 FR France \n", "1862 97.0 FR France \n", "1863 93.0 FR France \n", "1864 80.0 FR France \n", "1865 116.0 FR France \n", "1866 149.0 FR France \n", "1867 281.0 FR France \n", "1868 395.0 FR France \n", "1869 485.0 FR France \n", "1870 544.0 FR France \n", "1871 689.0 FR France \n", "1872 722.0 FR France \n", "1873 762.0 FR France \n", "1874 926.0 FR France \n", "1875 1113.0 FR France \n", "1876 1236.0 FR France \n", "1877 832.0 FR France \n", "1878 459.0 FR France \n", "1879 207.0 FR France \n", "1880 190.0 FR France \n", "1881 198.0 FR France \n", "1882 224.0 FR France \n", "1883 266.0 FR France \n", "1884 219.0 FR France \n", "1885 176.0 FR France \n", "1886 163.0 FR France \n", "1887 195.0 FR France \n", "1888 308.0 FR France \n", "1889 213.0 FR France \n", "\n", "[1890 rows x 10 columns]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data = pd.read_csv(data_url, skiprows=1)\n", "raw_data" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
165319891930NaNNaN0NaNNaNFRFrance
\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n", "1653 198919 3 0 NaN NaN 0 NaN NaN \n", "\n", " geo_insee geo_name \n", "1653 FR France " ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Cette ligne sera exclue de notre analyse car elle ne contient pas de données." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020210232082516063.025587.03225.039.0FRFrance
120210132284118645.027037.03529.041.0FRFrance
220205332122016498.025942.03225.039.0FRFrance
320205231642812285.020571.02519.031.0FRFrance
420205132161917370.025868.03327.039.0FRFrance
520205031684513220.020470.02620.032.0FRFrance
62020493129399923.015955.02015.025.0FRFrance
720204831380410641.016967.02116.026.0FRFrance
820204731908515285.022885.02923.035.0FRFrance
920204632480120503.029099.03831.045.0FRFrance
1020204534251636857.048175.06556.074.0FRFrance
1120204434456738521.050613.06859.077.0FRFrance
1220204334373737523.049951.06657.075.0FRFrance
1320204233514529812.040478.05345.061.0FRFrance
1420204132787723206.032548.04235.049.0FRFrance
1520204032044316381.024505.03125.037.0FRFrance
1620203931981015900.023720.03024.036.0FRFrance
1720203832556221142.029982.03932.046.0FRFrance
1820203731848514649.022321.02822.034.0FRFrance
192020363103907646.013134.01612.020.0FRFrance
20202035399186842.012994.01510.020.0FRFrance
21202034360843090.09078.094.014.0FRFrance
22202033361063411.08801.095.013.0FRFrance
23202032359183330.08506.095.013.0FRFrance
24202031343512269.06433.074.010.0FRFrance
25202030381795442.010916.0128.016.0FRFrance
26202029386875860.011514.0139.017.0FRFrance
27202028383405701.010979.0139.017.0FRFrance
28202027340662406.05726.063.09.0FRFrance
29202026340392389.05689.063.09.0FRFrance
.................................
186019852132609619621.032571.04735.059.0FRFrance
186119852032789620885.034907.05138.064.0FRFrance
186219851934315432821.053487.07859.097.0FRFrance
186319851834055529935.051175.07455.093.0FRFrance
186419851733405324366.043740.06244.080.0FRFrance
186519851635036236451.064273.09166.0116.0FRFrance
186619851536388145538.082224.011683.0149.0FRFrance
18671985143134545114400.0154690.0244207.0281.0FRFrance
18681985133197206176080.0218332.0357319.0395.0FRFrance
18691985123245240223304.0267176.0445405.0485.0FRFrance
18701985113276205252399.0300011.0501458.0544.0FRFrance
18711985103353231326279.0380183.0640591.0689.0FRFrance
18721985093369895341109.0398681.0670618.0722.0FRFrance
18731985083389886359529.0420243.0707652.0762.0FRFrance
18741985073471852432599.0511105.0855784.0926.0FRFrance
18751985063565825518011.0613639.01026939.01113.0FRFrance
18761985053637302592795.0681809.011551074.01236.0FRFrance
18771985043424937390794.0459080.0770708.0832.0FRFrance
18781985033213901174689.0253113.0388317.0459.0FRFrance
187919850239758680949.0114223.0177147.0207.0FRFrance
188019850138548965918.0105060.0155120.0190.0FRFrance
188119845238483060602.0109058.0154110.0198.0FRFrance
1882198451310172680242.0123210.0185146.0224.0FRFrance
18831984503123680101401.0145959.0225184.0266.0FRFrance
1884198449310107381684.0120462.0184149.0219.0FRFrance
188519844837862060634.096606.0143110.0176.0FRFrance
188619844737202954274.089784.013199.0163.0FRFrance
188719844638733067686.0106974.0159123.0195.0FRFrance
18881984453135223101414.0169032.0246184.0308.0FRFrance
188919844436842220056.0116788.012537.0213.0FRFrance
\n", "

1889 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202102 3 20825 16063.0 25587.0 32 25.0 \n", "1 202101 3 22841 18645.0 27037.0 35 29.0 \n", "2 202053 3 21220 16498.0 25942.0 32 25.0 \n", "3 202052 3 16428 12285.0 20571.0 25 19.0 \n", "4 202051 3 21619 17370.0 25868.0 33 27.0 \n", "5 202050 3 16845 13220.0 20470.0 26 20.0 \n", "6 202049 3 12939 9923.0 15955.0 20 15.0 \n", "7 202048 3 13804 10641.0 16967.0 21 16.0 \n", "8 202047 3 19085 15285.0 22885.0 29 23.0 \n", "9 202046 3 24801 20503.0 29099.0 38 31.0 \n", "10 202045 3 42516 36857.0 48175.0 65 56.0 \n", "11 202044 3 44567 38521.0 50613.0 68 59.0 \n", "12 202043 3 43737 37523.0 49951.0 66 57.0 \n", "13 202042 3 35145 29812.0 40478.0 53 45.0 \n", "14 202041 3 27877 23206.0 32548.0 42 35.0 \n", "15 202040 3 20443 16381.0 24505.0 31 25.0 \n", "16 202039 3 19810 15900.0 23720.0 30 24.0 \n", "17 202038 3 25562 21142.0 29982.0 39 32.0 \n", "18 202037 3 18485 14649.0 22321.0 28 22.0 \n", "19 202036 3 10390 7646.0 13134.0 16 12.0 \n", "20 202035 3 9918 6842.0 12994.0 15 10.0 \n", "21 202034 3 6084 3090.0 9078.0 9 4.0 \n", "22 202033 3 6106 3411.0 8801.0 9 5.0 \n", "23 202032 3 5918 3330.0 8506.0 9 5.0 \n", "24 202031 3 4351 2269.0 6433.0 7 4.0 \n", "25 202030 3 8179 5442.0 10916.0 12 8.0 \n", "26 202029 3 8687 5860.0 11514.0 13 9.0 \n", "27 202028 3 8340 5701.0 10979.0 13 9.0 \n", "28 202027 3 4066 2406.0 5726.0 6 3.0 \n", "29 202026 3 4039 2389.0 5689.0 6 3.0 \n", "... ... ... ... ... ... ... ... \n", "1860 198521 3 26096 19621.0 32571.0 47 35.0 \n", "1861 198520 3 27896 20885.0 34907.0 51 38.0 \n", "1862 198519 3 43154 32821.0 53487.0 78 59.0 \n", "1863 198518 3 40555 29935.0 51175.0 74 55.0 \n", "1864 198517 3 34053 24366.0 43740.0 62 44.0 \n", "1865 198516 3 50362 36451.0 64273.0 91 66.0 \n", "1866 198515 3 63881 45538.0 82224.0 116 83.0 \n", "1867 198514 3 134545 114400.0 154690.0 244 207.0 \n", "1868 198513 3 197206 176080.0 218332.0 357 319.0 \n", "1869 198512 3 245240 223304.0 267176.0 445 405.0 \n", "1870 198511 3 276205 252399.0 300011.0 501 458.0 \n", "1871 198510 3 353231 326279.0 380183.0 640 591.0 \n", "1872 198509 3 369895 341109.0 398681.0 670 618.0 \n", "1873 198508 3 389886 359529.0 420243.0 707 652.0 \n", "1874 198507 3 471852 432599.0 511105.0 855 784.0 \n", "1875 198506 3 565825 518011.0 613639.0 1026 939.0 \n", "1876 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", "1877 198504 3 424937 390794.0 459080.0 770 708.0 \n", "1878 198503 3 213901 174689.0 253113.0 388 317.0 \n", "1879 198502 3 97586 80949.0 114223.0 177 147.0 \n", "1880 198501 3 85489 65918.0 105060.0 155 120.0 \n", "1881 198452 3 84830 60602.0 109058.0 154 110.0 \n", "1882 198451 3 101726 80242.0 123210.0 185 146.0 \n", "1883 198450 3 123680 101401.0 145959.0 225 184.0 \n", "1884 198449 3 101073 81684.0 120462.0 184 149.0 \n", "1885 198448 3 78620 60634.0 96606.0 143 110.0 \n", "1886 198447 3 72029 54274.0 89784.0 131 99.0 \n", "1887 198446 3 87330 67686.0 106974.0 159 123.0 \n", "1888 198445 3 135223 101414.0 169032.0 246 184.0 \n", "1889 198444 3 68422 20056.0 116788.0 125 37.0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 39.0 FR France \n", "1 41.0 FR France \n", "2 39.0 FR France \n", "3 31.0 FR France \n", "4 39.0 FR France \n", "5 32.0 FR France \n", "6 25.0 FR France \n", "7 26.0 FR France \n", "8 35.0 FR France \n", "9 45.0 FR France \n", "10 74.0 FR France \n", "11 77.0 FR France \n", "12 75.0 FR France \n", "13 61.0 FR France \n", "14 49.0 FR France \n", "15 37.0 FR France \n", "16 36.0 FR France \n", "17 46.0 FR France \n", "18 34.0 FR France \n", "19 20.0 FR France \n", "20 20.0 FR France \n", "21 14.0 FR France \n", "22 13.0 FR France \n", "23 13.0 FR France \n", "24 10.0 FR France \n", "25 16.0 FR France \n", "26 17.0 FR France \n", "27 17.0 FR France \n", "28 9.0 FR France \n", "29 9.0 FR France \n", "... ... ... ... \n", "1860 59.0 FR France \n", "1861 64.0 FR France \n", "1862 97.0 FR France \n", "1863 93.0 FR France \n", "1864 80.0 FR France \n", "1865 116.0 FR France \n", "1866 149.0 FR France \n", "1867 281.0 FR France \n", "1868 395.0 FR France \n", "1869 485.0 FR France \n", "1870 544.0 FR France \n", "1871 689.0 FR France \n", "1872 722.0 FR France \n", "1873 762.0 FR France \n", "1874 926.0 FR France \n", "1875 1113.0 FR France \n", "1876 1236.0 FR France \n", "1877 832.0 FR France \n", "1878 459.0 FR France \n", "1879 207.0 FR France \n", "1880 190.0 FR France \n", "1881 198.0 FR France \n", "1882 224.0 FR France \n", "1883 266.0 FR France \n", "1884 219.0 FR France \n", "1885 176.0 FR France \n", "1886 163.0 FR France \n", "1887 195.0 FR France \n", "1888 308.0 FR France \n", "1889 213.0 FR France \n", "\n", "[1889 rows x 10 columns]" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = raw_data.dropna().copy()\n", "data" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ " def convert_week(year_and_week_int):\n", " year_and_week_str = str(year_and_week_int)\n", " year = int(year_and_week_str[:4])\n", " week = int(year_and_week_str[4:])\n", " w = isoweek.Week(year, week)\n", " return pd.Period(w.day(0), 'W')\n", "\n", "data['period'] = [convert_week(yw) for yw in data['week']]" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020210232082516063.025587.03225.039.0FRFrance
120210132284118645.027037.03529.041.0FRFrance
220205332122016498.025942.03225.039.0FRFrance
320205231642812285.020571.02519.031.0FRFrance
420205132161917370.025868.03327.039.0FRFrance
520205031684513220.020470.02620.032.0FRFrance
62020493129399923.015955.02015.025.0FRFrance
720204831380410641.016967.02116.026.0FRFrance
820204731908515285.022885.02923.035.0FRFrance
920204632480120503.029099.03831.045.0FRFrance
1020204534251636857.048175.06556.074.0FRFrance
1120204434456738521.050613.06859.077.0FRFrance
1220204334373737523.049951.06657.075.0FRFrance
1320204233514529812.040478.05345.061.0FRFrance
1420204132787723206.032548.04235.049.0FRFrance
1520204032044316381.024505.03125.037.0FRFrance
1620203931981015900.023720.03024.036.0FRFrance
1720203832556221142.029982.03932.046.0FRFrance
1820203731848514649.022321.02822.034.0FRFrance
192020363103907646.013134.01612.020.0FRFrance
20202035399186842.012994.01510.020.0FRFrance
21202034360843090.09078.094.014.0FRFrance
22202033361063411.08801.095.013.0FRFrance
23202032359183330.08506.095.013.0FRFrance
24202031343512269.06433.074.010.0FRFrance
25202030381795442.010916.0128.016.0FRFrance
26202029386875860.011514.0139.017.0FRFrance
27202028383405701.010979.0139.017.0FRFrance
28202027340662406.05726.063.09.0FRFrance
29202026340392389.05689.063.09.0FRFrance
.................................
186019852132609619621.032571.04735.059.0FRFrance
186119852032789620885.034907.05138.064.0FRFrance
186219851934315432821.053487.07859.097.0FRFrance
186319851834055529935.051175.07455.093.0FRFrance
186419851733405324366.043740.06244.080.0FRFrance
186519851635036236451.064273.09166.0116.0FRFrance
186619851536388145538.082224.011683.0149.0FRFrance
18671985143134545114400.0154690.0244207.0281.0FRFrance
18681985133197206176080.0218332.0357319.0395.0FRFrance
18691985123245240223304.0267176.0445405.0485.0FRFrance
18701985113276205252399.0300011.0501458.0544.0FRFrance
18711985103353231326279.0380183.0640591.0689.0FRFrance
18721985093369895341109.0398681.0670618.0722.0FRFrance
18731985083389886359529.0420243.0707652.0762.0FRFrance
18741985073471852432599.0511105.0855784.0926.0FRFrance
18751985063565825518011.0613639.01026939.01113.0FRFrance
18761985053637302592795.0681809.011551074.01236.0FRFrance
18771985043424937390794.0459080.0770708.0832.0FRFrance
18781985033213901174689.0253113.0388317.0459.0FRFrance
187919850239758680949.0114223.0177147.0207.0FRFrance
188019850138548965918.0105060.0155120.0190.0FRFrance
188119845238483060602.0109058.0154110.0198.0FRFrance
1882198451310172680242.0123210.0185146.0224.0FRFrance
18831984503123680101401.0145959.0225184.0266.0FRFrance
1884198449310107381684.0120462.0184149.0219.0FRFrance
188519844837862060634.096606.0143110.0176.0FRFrance
188619844737202954274.089784.013199.0163.0FRFrance
188719844638733067686.0106974.0159123.0195.0FRFrance
18881984453135223101414.0169032.0246184.0308.0FRFrance
188919844436842220056.0116788.012537.0213.0FRFrance
\n", "

1890 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202102 3 20825 16063.0 25587.0 32 25.0 \n", "1 202101 3 22841 18645.0 27037.0 35 29.0 \n", "2 202053 3 21220 16498.0 25942.0 32 25.0 \n", "3 202052 3 16428 12285.0 20571.0 25 19.0 \n", "4 202051 3 21619 17370.0 25868.0 33 27.0 \n", "5 202050 3 16845 13220.0 20470.0 26 20.0 \n", "6 202049 3 12939 9923.0 15955.0 20 15.0 \n", "7 202048 3 13804 10641.0 16967.0 21 16.0 \n", "8 202047 3 19085 15285.0 22885.0 29 23.0 \n", "9 202046 3 24801 20503.0 29099.0 38 31.0 \n", "10 202045 3 42516 36857.0 48175.0 65 56.0 \n", "11 202044 3 44567 38521.0 50613.0 68 59.0 \n", "12 202043 3 43737 37523.0 49951.0 66 57.0 \n", "13 202042 3 35145 29812.0 40478.0 53 45.0 \n", "14 202041 3 27877 23206.0 32548.0 42 35.0 \n", "15 202040 3 20443 16381.0 24505.0 31 25.0 \n", "16 202039 3 19810 15900.0 23720.0 30 24.0 \n", "17 202038 3 25562 21142.0 29982.0 39 32.0 \n", "18 202037 3 18485 14649.0 22321.0 28 22.0 \n", "19 202036 3 10390 7646.0 13134.0 16 12.0 \n", "20 202035 3 9918 6842.0 12994.0 15 10.0 \n", "21 202034 3 6084 3090.0 9078.0 9 4.0 \n", "22 202033 3 6106 3411.0 8801.0 9 5.0 \n", "23 202032 3 5918 3330.0 8506.0 9 5.0 \n", "24 202031 3 4351 2269.0 6433.0 7 4.0 \n", "25 202030 3 8179 5442.0 10916.0 12 8.0 \n", "26 202029 3 8687 5860.0 11514.0 13 9.0 \n", "27 202028 3 8340 5701.0 10979.0 13 9.0 \n", "28 202027 3 4066 2406.0 5726.0 6 3.0 \n", "29 202026 3 4039 2389.0 5689.0 6 3.0 \n", "... ... ... ... ... ... ... ... \n", "1860 198521 3 26096 19621.0 32571.0 47 35.0 \n", "1861 198520 3 27896 20885.0 34907.0 51 38.0 \n", "1862 198519 3 43154 32821.0 53487.0 78 59.0 \n", "1863 198518 3 40555 29935.0 51175.0 74 55.0 \n", "1864 198517 3 34053 24366.0 43740.0 62 44.0 \n", "1865 198516 3 50362 36451.0 64273.0 91 66.0 \n", "1866 198515 3 63881 45538.0 82224.0 116 83.0 \n", "1867 198514 3 134545 114400.0 154690.0 244 207.0 \n", "1868 198513 3 197206 176080.0 218332.0 357 319.0 \n", "1869 198512 3 245240 223304.0 267176.0 445 405.0 \n", "1870 198511 3 276205 252399.0 300011.0 501 458.0 \n", "1871 198510 3 353231 326279.0 380183.0 640 591.0 \n", "1872 198509 3 369895 341109.0 398681.0 670 618.0 \n", "1873 198508 3 389886 359529.0 420243.0 707 652.0 \n", "1874 198507 3 471852 432599.0 511105.0 855 784.0 \n", "1875 198506 3 565825 518011.0 613639.0 1026 939.0 \n", "1876 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", "1877 198504 3 424937 390794.0 459080.0 770 708.0 \n", "1878 198503 3 213901 174689.0 253113.0 388 317.0 \n", "1879 198502 3 97586 80949.0 114223.0 177 147.0 \n", "1880 198501 3 85489 65918.0 105060.0 155 120.0 \n", "1881 198452 3 84830 60602.0 109058.0 154 110.0 \n", "1882 198451 3 101726 80242.0 123210.0 185 146.0 \n", "1883 198450 3 123680 101401.0 145959.0 225 184.0 \n", "1884 198449 3 101073 81684.0 120462.0 184 149.0 \n", "1885 198448 3 78620 60634.0 96606.0 143 110.0 \n", "1886 198447 3 72029 54274.0 89784.0 131 99.0 \n", "1887 198446 3 87330 67686.0 106974.0 159 123.0 \n", "1888 198445 3 135223 101414.0 169032.0 246 184.0 \n", "1889 198444 3 68422 20056.0 116788.0 125 37.0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 39.0 FR France \n", "1 41.0 FR France \n", "2 39.0 FR France \n", "3 31.0 FR France \n", "4 39.0 FR France \n", "5 32.0 FR France \n", "6 25.0 FR France \n", "7 26.0 FR France \n", "8 35.0 FR France \n", "9 45.0 FR France \n", "10 74.0 FR France \n", "11 77.0 FR France \n", "12 75.0 FR France \n", "13 61.0 FR France \n", "14 49.0 FR France \n", "15 37.0 FR France \n", "16 36.0 FR France \n", "17 46.0 FR France \n", "18 34.0 FR France \n", "19 20.0 FR France \n", "20 20.0 FR France \n", "21 14.0 FR France \n", "22 13.0 FR France \n", "23 13.0 FR France \n", "24 10.0 FR France \n", "25 16.0 FR France \n", "26 17.0 FR France \n", "27 17.0 FR France \n", "28 9.0 FR France \n", "29 9.0 FR France \n", "... ... ... ... \n", "1860 59.0 FR France \n", "1861 64.0 FR France \n", "1862 97.0 FR France \n", "1863 93.0 FR France \n", "1864 80.0 FR France \n", "1865 116.0 FR France \n", "1866 149.0 FR France \n", "1867 281.0 FR France \n", "1868 395.0 FR France \n", "1869 485.0 FR France \n", "1870 544.0 FR France \n", "1871 689.0 FR France \n", "1872 722.0 FR France \n", "1873 762.0 FR France \n", "1874 926.0 FR France \n", "1875 1113.0 FR France \n", "1876 1236.0 FR France \n", "1877 832.0 FR France \n", "1878 459.0 FR France \n", "1879 207.0 FR France \n", "1880 190.0 FR France \n", "1881 198.0 FR France \n", "1882 224.0 FR France \n", "1883 266.0 FR France \n", "1884 219.0 FR France \n", "1885 176.0 FR France \n", "1886 163.0 FR France \n", "1887 195.0 FR France \n", "1888 308.0 FR France \n", "1889 213.0 FR France \n", "\n", "[1890 rows x 10 columns]" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n" ] } ], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", " delta = p2.to_timestamp() - p1.end_time\n", " if delta > pd.Timedelta('1s'):\n", " print(p1, p2)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztvXn8HEWd//96z8znzCf3CUkwAQIYTiEGEBQFBVRc+Am4uKuyiou6uLp+3XXB1cWV1QXX9cCbVU4PQDxgRcQQBLkEwpmbhCTkPj/JJ5987pmp3x9d1VPdU9XVM9Nz5fN+Ph7JzKe7uqqmurre9T6qmoQQYBiGYZhKSdW7AgzDMMzBAQsUhmEYJhFYoDAMwzCJwAKFYRiGSQQWKAzDMEwisEBhGIZhEoEFCsMwDJMILFAYhmGYRGCBwjAMwyRCpt4VqCVTpkwRc+bMqXc1GIZhmornnntutxBiqivdqBIoc+bMwZIlS+pdDYZhmKaCiF6Lk45NXgzDMEwisEBhGIZhEoEFCsMwDJMILFAYhmGYRGCBwjAMwySCU6AQ0c1EtJOIlmnHJhHRIiJaIz8naueuIaK1RLSaiM7Tjp9CREvluRuJiOTxNiK6Sx5/mojmaNdcLstYQ0SXa8fnyrRr5LWtlTcFwzAMUwlxNJRbAZwfOnY1gMVCiHkAFsu/QUTzAVwG4Fh5zfeJKC2v+QGAKwHMk/9UnlcA2CuEOBLANwHcIPOaBOBaAKcCWAjgWk1w3QDgm7L8vTIPhmEYpo44BYoQ4s8AukOHLwRwm/x+G4CLtON3CiGGhBDrAawFsJCIDgEwTgjxlPDeOXx76BqV1z0AzpHay3kAFgkhuoUQewEsAnC+PHe2TBsu/6Dn/pe3YW/fcL2rwTAMU0S5PpTpQohtACA/p8njMwFs0tJtlsdmyu/h44FrhBBZAD0AJkfkNRnAPpk2nNdBzdZ9A7jq58/jk794vt5VYRiGKSJppzwZjomI4+VcE5VXcYWIriSiJUS0ZNeuXbZkTUH/sCdDt/UM1rkmDMMwxZQrUHZIMxbk5055fDOA2Vq6WQC2yuOzDMcD1xBRBsB4eCY2W167AUyQacN5FSGEuEkIsUAIsWDqVOdWNA1NNu/JzZYUB+cxDNN4lDsy3QdARV1dDuBe7fhlMnJrLjzn+zPSLNZLRKdJH8iHQteovC4B8LD0szwI4Fwimiid8ecCeFCe+5NMGy7/oCab8wRKOmVS0hiGYeqLc3NIIvoFgLcCmEJEm+FFXl0P4G4iugLARgCXAoAQYjkR3Q1gBYAsgKuEEDmZ1SfgRYx1AHhA/gOAnwC4g4jWwtNMLpN5dRPRdQCelem+LIRQwQH/CuBOIvpPAC/IPA56lIaSSbNAYRim8XAKFCHE+y2nzrGk/wqArxiOLwFwnOH4IKRAMpy7GcDNhuPr4IUSjypy+TwA1lAYhmlM2BjfROQ8eYIMCxSGYRoQFihNRE6avOQmAwzDMA0FCxSGYRgmEVigNBG+pcu66oZhGKZ+sEBpIpSpS7BEYRimAWGB0oQIlicMwzQgLFCaCCElSZ4lCsMwDQgLlCaExQnDMI0IC5QmQgkSVlAYhmlEWKA0ESxIGIZpZFigNCEsVxiGaURYoDQRKlxYsKrCMEwDwgKlCWF5wjBMI8ICpZkQ6oMlCsMwjQcLlCak0TWUTd39mHP1/Xj0leZ+5TLDMKXBAqWJaJaw4ec37gUA/HLJpjrXhGGYWsICpYkQvsmrseHt9RlmdMICpQnhKC+GYRoRFihNRLM545urtgzDVAoLlCaEN4dkGKYRYYHSRDSbHGFPCsOMLligMFWjyeQfwzAVwgKliWiWAZo1E4YZnbBAaSKaLrqryarLMExlsEBhEoeXoTDM6IQFShPBE36GYRoZFihM1Wi2dTMMw1QGC5RmoknGZ2K3PMOMSligNBE842cYppFhgXKQccdTG/Dmrz1c72oAaL6FmAzDVEZFAoWIPkNEy4loGRH9gojaiWgSES0iojXyc6KW/hoiWktEq4noPO34KUS0VJ67keR2tUTURkR3yeNPE9Ec7ZrLZRlriOjySn5HsxBngP7ivcuxqXug+pWJgKO8GGZ0UrZAIaKZAD4FYIEQ4jgAaQCXAbgawGIhxDwAi+XfIKL58vyxAM4H8H0iSsvsfgDgSgDz5L/z5fErAOwVQhwJ4JsAbpB5TQJwLYBTASwEcK0uuBiGYZjaU6nJKwOgg4gyADoBbAVwIYDb5PnbAFwkv18I4E4hxJAQYj2AtQAWEtEhAMYJIZ4S3sq920PXqLzuAXCO1F7OA7BICNEthNgLYBEKQuigpdlMSM1WX4ZhKqNsgSKE2ALg6wA2AtgGoEcI8UcA04UQ22SabQCmyUtmAtBf4bdZHpspv4ePB64RQmQB9ACYHJEX0wCwxYthRieVmLwmwtMg5gI4FMAYIvpA1CWGYyLieLnXhOt5JREtIaIlu3Y19zvOm23Cz1FpDDO6qMTk9XYA64UQu4QQIwB+DeBNAHZIMxbk506ZfjOA2dr1s+CZyDbL7+HjgWukWW08gO6IvIoQQtwkhFgghFgwderUMn9qY9Ase3mxU55hRieVCJSNAE4jok7p1zgHwEoA9wFQUVeXA7hXfr8PwGUycmsuPOf7M9Is1ktEp8l8PhS6RuV1CYCHpZ/lQQDnEtFEqSmdK48xkkYQPrzAkWFGF5lyLxRCPE1E9wB4HkAWwAsAbgLQBeBuIroCntC5VKZfTkR3A1gh018lhMjJ7D4B4FYAHQAekP8A4CcA7iCitfA0k8tkXt1EdB2AZ2W6Lwshusv9Lc1CKSJCiPprCmzyYpjRRdkCBQCEENfCC9/VGYKnrZjSfwXAVwzHlwA4znB8EFIgGc7dDODmEqs8asgLgRRrCAzD1BBeKd9ElGLFYt2AYZhawwKlCYkjWBrAhdIQdWAYpnawQGkq4o/Q9fVfsKmNYUYjLFCaCDXjj+NsZ+2AYZhawwKlCWkak1cF1w5n8/i7W57Bsi09idWHYZjqwgKliSgpbLiOJq8kwpVf2dGLR1bvwufuebnyzBiGqQksUA5SGkFDSYJ6r6VhGCY+LFCaiFKERL4BJEoDVIFhmBrCAuUghWO8GIapNSxQmohS/CKNoR00RCUYhqkRLFCaiJKERB3HckrA8VFKiDTDMI0BC5SDlEbwoVSC0sZ4x2KGaR5YoDQRTaKgMAwzSmGBcpBSz/ehsE7BMKMTFihNRClCgjUUhmFqDQuUg5RG8KFUUoUGqD7DMCXCAuVgpa5RXo2ZF8Mw1YUFShPRLC/YSkK7YAWFYZoPFigHKY1gMkqiCqygMEzzwAKliShlpXw9fShspmKY0QkLlIOUBlBQKqKeYc8Mw5QHC5QmoiQfSgMMyInUgdUdhmkaWKA0EaUJlOrVwwXLAIYZnbBAOUhpAAWlIrNbA1SfYZgSYYHSRDTLK4CTFGas7DBM88ACpQmJM17XU0NJZB1KjDx6B0fQMzBSeWEMwyQCC5QSWLF1P/6wbHvdym+2vbyq7ZM/8T/+iBP/44+VF8IwTCJk6l2BZuJdNz4GANhw/bvrXBM39VyHUquS840gNRmG8WENpYkoyYdSV5MXj/QMMxphgdJMqNfilpKYYRimRrBAaUIa3imfYC4c5cUwzUNFAoWIJhDRPUS0iohWEtHpRDSJiBYR0Rr5OVFLfw0RrSWi1UR0nnb8FCJaKs/dSOS5YomojYjuksefJqI52jWXyzLWENHllfyOZqG0vbyqWBEHSUZ5Ea+SZJimoVIN5dsA/iCEOAbAiQBWArgawGIhxDwAi+XfIKL5AC4DcCyA8wF8n4jSMp8fALgSwDz573x5/AoAe4UQRwL4JoAbZF6TAFwL4FQACwFcqwsupr7rUAp1YBhmNFG2QCGicQDeAuAnACCEGBZC7ANwIYDbZLLbAFwkv18I4E4hxJAQYj2AtQAWEtEhAMYJIZ4Snjf39tA1Kq97AJwjtZfzACwSQnQLIfYCWISCEDpoaZatV1iUMMzopBIN5XAAuwDcQkQvENGPiWgMgOlCiG0AID+nyfQzAWzSrt8sj82U38PHA9cIIbIAegBMjsiLkTRCoBVHezHM6KISgZIBcDKAHwgh3gCgD9K8ZcFkDBcRx8u9Jlgo0ZVEtISIluzatSuieo1PKcNzXdeh8BsbGWZUUolA2QxgsxDiafn3PfAEzA5pxoL83Kmln61dPwvAVnl8luF44BoiygAYD6A7Iq8ihBA3CSEWCCEWTJ06tYyfacwzkXxKL7cuxZZMEtUUJYVIMwzTCJQtUIQQ2wFsIqKj5aFzAKwAcB8AFXV1OYB75ff7AFwmI7fmwnO+PyPNYr1EdJr0j3wodI3K6xIAD0s/y4MAziWiidIZf648VhMaeYW2CopqFuFjQ2lYHOTFMM1DpVuv/COAnxFRK4B1AD4MT0jdTURXANgI4FIAEEIsJ6K74QmdLICrhBA5mc8nANwKoAPAA/If4Dn87yCitfA0k8tkXt1EdB2AZ2W6Lwshuiv8LbHJ5QXSqdqPdKVEbjX7bsPNLhAZZjRSkUARQrwIYIHh1DmW9F8B8BXD8SUAjjMcH4QUSIZzNwO4uZT6JkWukVUUSX0XNlZeeCOEPTMMUxq8Ur4Mcg3sQ1F6Uz2d8oqKqlD/6jcdK7bux5yr78dLm/bVuyrMKIUFShnUS0Mp7QVb9SPJKC9it3xsHl61AwDw4PL6vWKBGd2wQCmDPJu8ostOIo/Gb+KaIYTAg8u3O/sdb1PD1BsWKGVQL5NXaaNs/UfkSvwgeY4b9rn3xa342B3P4dYnN8RKX/87z4xWWKCUQSNrKGqWWt/NIZNwyjOKnb2DAICt+wbqXJN4PLl2N/YP8quZRyMsUMqgbk75UtI2wIhcif+jUbZtyeUFrv7Vy1i780Dd6qDaMW6L1LPpuvuG8Tc/fhqf/PkL9asEUzdYoJRBvcOGowZbipGmVlRi8orae6eWrN7eizuf3YRP/vz5utVBuUYaIXLPxYHBLABg3a76CWCmfrBAKYO6RXmVsttw9arhLjsRr3wCeSRAe4v3iAyO5Bwpq4cyY7ratRF88sM5r51aM80/tDz16h7Mufp+rNq+v95VaRqa/67XgfoJFLUdiX3kaKTZbCVVqOXCxqFsDjv2DxrPqYFxKJuvWX3ClCon6rkoVLVTa7r5h5bFK70w7Mde2V3nmjQPzX/X60AjDNZOmn2lfA3r/w8/fR6nfnVxZJp6aigKV79rhDU7w1KgtB0EGkpnm7eRyIGhbJ1r0jw0/12vA7k6TVabJWg4CWGglMBamHEWr9ppPad+y3AdNRRFKm5j1PHmK6GXqsNed0nT2eq9ULZ/mAVKXFiglEEjO+ULaWpQkSrWwTfv1XDWHdWu2Tre87g7LzeCD+VgIpOqfwh+s8ECpQzqZfKKt5eXegiafLfhyrMovUxDoaodK51ELN/agy1lriNJxXTKK+o7/h18Uq0RJmfNAguUMqi3hhKHupq8ksijDj/AVKSqR6UayrtvfBxnXP9wWdcW3nHj8qFUzq7eITy0YkfF+fAgPDphgVIGzbGwsf5PdGXO+drX39Rm9W9FbW1RzPSV3PsP/uRpfPT2JRUEIQjtf2a0wQKlDKI0lF88sxEvVmn78FgDhZrNVqUG8Uhk65UaOuUVptvaCBF9ysFdi3Uo63f3xSrLRgM0FwBge88gjv/Sg1i9vbfivPjdPPFhgVIC6i2NUQLlml8vxUXfe6JWVSqiEVbKJ1FyLaO8FKaBoxEGyFLfcVNJnX1/TZl30b+qzg330Mod6B3Mxt5Q0wTv3lw6LFBKQEVCNvLmkIpGGAibZWGjX6axyPo3pKqBq9slERFXWBhb3vWqDevdau0tXsjvUALrhxrhWWoWWKCUgJqx1G37+hKoaxWTiPKqh1PeaPKqfT3C+IN0XA0lkTIry8V2+Y79g9hzYKiivOPgb5mTLV+gsH5SOixQSkBpKI28l1dDbb1Sp2vLL7MxTV5qcK+FD8U3r5W5jtMliE796mKc/l/lRbuVQnvG01B6Bngb/VrCAqUEUlT/NR5xqa+CkoRTvjFMXo3gkC2YvKrvQ6EK+7jwP+3XD9dgq4mudm/blNf29Fe9LKYAC5QSUAKlfluvuB9y/90ZDbCwMQmTQS1XypsG0XJn6kmiFOJa3NFSAwDCNMpcq2AmLD8P9smXDguUEqAmMHmVk7ZaVGTyapSFjY2gocQ0efnpE6hz2U55lFbXatEI9200wgKlBAoairmzNkL0V6VROkmQTNhwvP2rksRo8qr/LfVxrpRPoLEq9sEloBkkQZLlN8Ii4WaBBUoJ+OtQLB2s2hsIxsm9sKq6/iaveudRepmN6pT3PpvJh1JvkrhvbPEqHRYoJeBah9IIzvrCgFDnigAVjS51ifJqWKd8vO1MkhwAm30dSt43E9a7JqMLFiglQA6TV7V9K6X5UOq5Ur5Jo7yM9ah5Nax1qMWMmSpcvFvwodS34UToM4m8GDcsUErAX4dSN5NXnCgvmbaePpQkTF6VZ1F6maYorwaQKHFrkOg6lCr87loKmYKGUrMiGbBAKQl/HUoDO+UVjWSqKfPimmO6ffVvRX2jzHgSo5KBu1KTaVTRNX08mnRS0+ywQCmBlGPrlWpvyRIre99kUdWqRJJslFcN39hoXClf/2HFbwtHumR9KBUubDRcXkttL4my/PU/9e8CTUPFAoWI0kT0AhH9Tv49iYgWEdEa+TlRS3sNEa0lotVEdJ52/BQiWirP3UhyFCGiNiK6Sx5/mojmaNdcLstYQ0SXV/o74v1W77NePpRSqGtNkti+PoFqJFFoQw0mNXilfKW7VUddV8u2LCwGLb/QRphMNBtJaCifBrBS+/tqAIuFEPMALJZ/g4jmA7gMwLEAzgfwfSJKy2t+AOBKAPPkv/Pl8SsA7BVCHAngmwBukHlNAnAtgFMBLARwrS64qoVr+/pGECjVtIGXSkW7DdfQEa1oXJNX7WpRmDSVd33BGV5ff1SS7+RpBPNxs1CRQCGiWQDeDeDH2uELAdwmv98G4CLt+J1CiCEhxHoAawEsJKJDAIwTQjwlvF5we+galdc9AM6R2st5ABYJIbqFEHsBLEJBCFUN18LGWgmUqFJ8E1E9nfKJ5FGPKC/DINgAk4SCcI0Wr1HmpvhUuF9dhJmoLhpKRW68+t/7ZqNSDeVbAD4HQJ/PTBdCbAMA+TlNHp8JYJOWbrM8NlN+Dx8PXCOEyALoATA5Iq+q4q9DsflQqh42HCPKS9bxmt8srbvGVEnprp9ajVm7eR1K/Ylbh0QW81W4Uj5qEK6t1pycD4WJT9kChYguALBTCPFc3EsMx0TE8XKvCRZKdCURLSGiJbt27YpVURuuzSFr5ZSPYwbK5QVWbN1f1frYqEXYcDUedtOA1wCWw9h18ENlKxhMK9++Xn6azpWXZVkksaFmo4Qev7hpH377wpb6ViImlWgoZwD4KyLaAOBOAGcT0U8B7JBmLMjPnTL9ZgCztetnAdgqj88yHA9cQ0QZAOMBdEfkVYQQ4iYhxAIhxIKpU6eW90slru3ra2UeiTR51aQG0SRjv1ZRXu4yktJWzGaa+ksUJSBqEfBWsYbim5rq7UNpjDyS4KLvPYF/uuvFelcjFmULFCHENUKIWUKIOfCc7Q8LIT4A4D4AKurqcgD3yu/3AbhMRm7Nhed8f0aaxXqJ6DTpH/lQ6BqV1yWyDAHgQQDnEtFE6Yw/Vx6rKq4or0bYy+tgwaWN6W1RzWZPxB9U4ciUd7RFIZ0KL65c8lQ6+Bs1lBqGsiehXTTCZKLZyFQhz+sB3E1EVwDYCOBSABBCLCeiuwGsAJAFcJUQQr2f8xMAbgXQAeAB+Q8AfgLgDiJaC08zuUzm1U1E1wF4Vqb7shCiuwq/JUC9t16Jg75uo9wZ7Uub9iGdIhw3c3xZ19diENZPe2mrM4gmuZ6hbHxTVrxyKjN5uRc2bt03gOnj2v2oR52okmvp5E6ipFq+h+ZgIRGBIoR4BMAj8vseAOdY0n0FwFcMx5cAOM5wfBBSIBnO3Qzg5nLrXAnW7esbYWFjAlz4vScAABuuf3dZ19fGh6KZvCovzsvHkFESc4SK388eu5yKigHgNnlt3TeAN13/MD75tiPxz+cdbaiDfRSu5Xyr0OblF8oKSunwSvkSUJ20Xnt5xaERfCiKSgbS0jbCLLuYYD6GY42goRT8Eq5yKjfzFJzy5ky27x8EADy2drfxfFTRzbdSvjGc8s0EC5QyGBoxG4Or7ZRvlrj4RExervO6ySuhdjFHeSU3MJVLYfv66t9/115eqj0M1i55Xn5GnKsFcYVwdB6VazmjDRYoJaD6V99Q1ni+Ebavb4T3YCcb5WX+QfrgmpTj1WjyaoB3yscOG87H87XEK9Nm1vU+U9aOpmb11RHOcUnC/6GubYQ+0CywQCkBNYj1DddHoMSjASSKpKKH2RXlJczfSyV4y6rllE/Ih+LIJsneZ90AVTZY2iboIypRHx9K+aj71gjbGDULLFBKQPWrwZGc8XzVFzYWfSmmETSUJHCZd4JO+fLbPe/SUBJxyld2fdwBLREfiu+Ujy4jZRk5ooxE9ViHUolgUW3QEPPEJoEFSgmofmVzvjeGhlJ/arGoTD9dmYYitO+metRfQ/H3x3Ili6vKROCK8lLmH5vJK8p3UcunI5m3hqpPfq7jwgKlBPwor3oJlBjrEVpSla9DSYqKfBsl5J2Eac3Lx2TyqiDzhPKIe7lIQEMJ5xVGCRrTGpTA9XXeaDMRHwqbvEqGBUoJqG7VyAsb0+n627ySnB06fL8ybTVNXkmMzhVe7guK6Ix8J3IFdY67X12cYImiczX1oSSQh/xsgMe6aWCBUgqyY9lMXlVf2Kg+Y5aTxBYclVBZhE0pPpTy0W9l9VbKV+iUjznbLjiRyy/L9T6d2GHDRpNXLTWUyrU1pVE1iobSDKY3Figl4NJQqr6XV4yBpRH6XLI+FNtMOJnyXBpKAygoJa+UT2IAtJq8XD6UiDybL8pL5VVxVonQKPWIggVKCahOWm2nvBACO+WK5NKvTaQKFZFEFdx7eQnjdxvX/W4FFq/cUZyPY41BQ2kojmySGAAppsnL7pS3awb5Eu9ZJSTSB9FYGkq1o0iTgAVKCRQ0FMtK+YRu+K1PbsDCry7GKzt6Q+Un53StCRVUNOkor588vh5X3Lak6HgwyqtaTvnKBtK4/SqJAdBl8srmok1eUei/vdr+Rn+RZwJ9sFEESqPUIwoWKCWg7qd6qMLYjpfKk6/uAQCs29WXSH61Jkkzkc0pX4oPJWpQqbVTvpJx1P07Ky/DVVZWTqZsUV5RzSVitsOPH1uHs7/+SEVRYUk8iUn4pJKkCeQJC5RSUDPAau823JI2b5Nf8KHYy2kEx12SUV4RhWhpoxOPRAh6vYlNqZK0xZebX9xrkgxztZWp2jJlEygRW6+4AiAU/3n/Sqzb3YdeyxZHcUgmbFh9Rufyrm8/hlufWF9BSfFohChSFyxQSkD1K3vYsDuPrfsGsH53tOah7NPZkGlNlRo5C9S+13sdSiW4hJKwfDcxYNnZAAgOFi6TV7nCxbV40kXhvkdfnI85AEbiWNiYlZ3cvpeXrIPhmJ5nnMFxJM4DZSs/Qd+Xq6ortu3Hl/5vRVllfPS2Z/G7l40vm7XWp5FhgVICvsnLKlDyWlpzmjdd/zDe9vVHIsvJpKJf5BWnjvUk2Sgv93lX2qGsXaDkHflUKgyA4OBazqAQN2zYN3klsJmhrZqq75cVNhxTQ1EMZysRKOpL2VloW69U76F6aOVOfPLnL8SrTxNsUskCpQziLGysRDvNpL3bEhZccaJ99Jl9pRqKy4b98Kod1p2XK8U9G9d9H5WYvKJ1nbhmmij0diwni7gmxCQ3M7TdepeGElV0QDjHGBxdGspvXtiM/YMj5nok+BKFqMeglmYo1lAOMpxbryQw+ACFnVzLcfIn2eeifsOruw7gI7cuwdW/XmqvSwVlu8x7pZi8shEDUyl7edUrhLjU2XY13zI5LNsyY1FRon5fqRpKlEBZtX0/PnPXS/jnu1+y1EOW6SzFjhJ6UROWSsxypcJhwwcZ6nbGMXlVMnNRO7mGH7o4s64ku1xUB1aayfrdB4rrkIhT2P9mOR9/1j8SEerqMp3F0S6yuTw+fMszeGHjXuN5V2iyi7hdqbA6PMn2D6LMUBnLFj/+bsSmttbuZZzB8Ym1e6znBoY9M+YOy3qtJNoijsZXSz8PaygHGQWnvLkT6X3L7QOISuBweMacBVZKVF7K5BE3TLTksh1rbvTjrsFpxbb9AMyhri7TmcvHAgCvdffjT6t34f85Zsvh7/GRbeEKVEjQ5m8rSwkUm8lLTbZMe33FNR+2t3jD0kOGhajF9bQcT0JLk59R5rlKlgqU2heaQJ6wQCkF9ZDF2cvL9VBHdaY4GyLWgjhaltlMVHnZLkd0wHziqOenfuE5PU2DoCtsOM49VbnaBH3geDk+lBI1lGrukDwkZ03W96Uop71hZInrQznzyKkAgKOmj7WmsW1OqfBX7EemiiYJDWXRih1YurnHeK5UK0YzhA1n6l2BZsIVNqzPVlwCJZvPI51KR5dn+dsxT/W/Vbo5ZNRvUM+z8VWvFZUaLw99Bh13DzWXhmJ+p7w5rY4a3Gy1qNSxHycYQy+/mivllYZiE56FKLDitg6slI+ooyq7kgE0kdl8jHYfdgiUv7/d251hw/XvLjpX6n1ik9dBhrqdVh9KCSGmUTM0/1G0znjt1ybqlI+oY6kRZyWX7bCBB0xeFQgUl/YQJ2y4oKHYSo4/0TBfHW3+89MJd7qn1+3B2p3Ffq/ivMzH1YzcFeloFiiF71FapWqj8DosHVebJ7GvWTwNxX6u1xKBFs4/dn2aIGyYNZQScGko+kPiMsN4D4tZQ7Fp83GceEnOYaJmkaoNTEIj0dlh9OlAXVyYNRRznsbzVg1FXW8zhZq/xyVue8bxofz1TX8BYJ4xB/OyCQxVhvk6dS9MfTiupqbyqCSAKomw4TjrUKIiCLfui97gtVQNjDWUg46CKm564PQB2OUojtOZ7IOp/dokt16JfJD8zfcMdSjhYR7O5vHmrz0PlAv6AAAgAElEQVSMRSuCDljfvGfJqpyNBk2hru7NId0ailMbdTj+XRRMndHXFmb2lfcBa99zzNqjdiOOu0jUFfwSrGe0EK9EsBRMiPY0USavqB0agNI1Dg4bPshwmVlyJWgoUYOg8n2E+088M5P+vbIOGPUbsr5zNkq4ucvYfWAIm7oH8MXfLgtdqzQgS93KMHkZBzlHZF6cdSi5COEaPl7OWB97t2GZLGrWHLtMR+CJtS1ihmhH3TN1LkowOgfXBAIU4oQeR5m8XA77UjWORtinzwULlBIImFlMGorWe12zxEiBYjN5ReYo0yTY5+KsEDYlietEBqLMe64r42uDCmfYsOGaOGYa19sB40b//fQvr2HdLoN/I2Z7qrpGDXJxcQly10vmXE75qMFR3c+oCY1LiCexr5mIIZSihLdr65hSNY4mCPJigVIKLjOLfsw1a47TmcIPgz9wxbymUuESVUdfYBpNXqUT1qYKJi9zbuU45Z2OYofJy9YcrvIdfn+ZRuALv12G93zn8eJzkbkH8wCSWb1tN+/FE56m8wGtMlKzjaGhuNo8xrYpLuL4pKJMXi6BUur2/M0QNswCpQT022nq7MG9vKJvftSCqELoZqj8GvenODNEc6itW/ApbOY9V/sFtMWEwobNUV7uOhVmy27hZ2tTpVX0DRfb3eO2pzrvCmWNwg+BdvwWl4biEs5xTF5x0rg0lEoc2XHW9URpg677UKp8YKf8QUZgVmzoSLmYDwzgWuNBxjRxwkL1U5X2vzgLukwpCiYvdwVsM1WX2azUrdCBOCYvu3D00kbXxVaLSrWcgrZmTRIoJwkNxdXuVvNflCk0Rv5AYU+8SjQUXVMq/7UDkHlEPAcRWkjiJq8mCBtmgVICQgh/UDJ1hnwpGkqMQbDoBVuGb8WV1L/a0y3b0oNn1neXVL7pnFFD0aLhXCjBHGcwDpShC/eEwoZND2xwdXe0hhJngwPb7xmJGC3ijjsq3Ui28pms3V8U/AwTqaHENAmrdLF8KJbzugWg3IlVHJNX1BssnUKPw4YLENFsIvoTEa0kouVE9Gl5fBIRLSKiNfJzonbNNUS0lohWE9F52vFTiGipPHcjySk6EbUR0V3y+NNENEe75nJZxhoiurzc31EKAtHvKskGHpjovGINtkUaSrw6xuGC7zyO9/3oqcg0kc7IqLDhEswNOWHOxxWeGhAoMR+0jpbidT8Bn5PhmuA6FHO+7m123BMNk8ZbXK945VRi8nKV5IzyivCtxTUJq75ViYaiO8vLHYjjOOWH5X1LG/xzSUd5Hexhw1kAnxVCvB7AaQCuIqL5AK4GsFgIMQ/AYvk35LnLABwL4HwA3yci9YT/AMCVAObJf+fL41cA2CuEOBLANwHcIPOaBOBaAKcCWAjgWl1wVQ0BtFreVQIEZxxRq3yBeFFe4RmMyyHqnat8ZhYuz0SUDbtgKnCXYWsHddTWjLr2FXem15Yp7u4uH0ksYeAYv+OYzaI0lNhhwyqvCl5M5SrTuQ4lQkPJxWhLL4/o1fiAPqGxaXzuNv/en9ZiztX3W/OIs1L+T6t2AjDvXeYMzImzFi3wPJvTD2VzuHHxGgw61r3UgrIFihBimxDiefm9F8BKADMBXAjgNpnsNgAXye8XArhTCDEkhFgPYC2AhUR0CIBxQoinhNdit4euUXndA+Acqb2cB2CREKJbCLEXwCIUhFDVyAuBFjkouXwoLntnLA0llIcIfZpIcg4Ty4cSYfKKpaGUud5BPxw1k630RV0Bh7prVm6tg7s+kXnEFNAq70o0FJefTvVr+zuB5PUReXvX2+sQxynvDnpxayj//eBqAHbHuv+8RRT1mxe2AAAyBoniMmvHeT6CEx5zmp/9ZSO+segV/O+f1znzqzaJ+FCkKeoNAJ4GMF0IsQ3whA6AaTLZTACbtMs2y2Mz5ffw8cA1QogsgB4AkyPyMtXtSiJaQkRLdu3aVd4PlOSFZvIydIaAycvRWSoxeVW6mDAusaJsjJWQaUoSKCJ03Pus1IeSc9wTPX+X1ulyytsImM0saaKi/uIuUPV9KJUIFD8vh8CwVElNtIwailateFuvuDUU6/kYG7Uqv4dtRXspkWKm9nItMI2jWMdZiqAmEAeq9PbUUqhYoBBRF4BfAfgnIcT+qKSGYyLieLnXBA8KcZMQYoEQYsHUqVMjqudGQKBFmrxM20LEdToCrll1cX7ecfeDpg8+lQqXqOujt17xiBOV4ooWso2zgZc1Rc5kzd/9fByCKehDKVdDcQ9ucfqD63bqYa6l1Cl4QuUVfZ0rbNiUfVCDjxAoMl2U2dhl5oxj8mqRLwmzmYpc5j2ddoN/rpLFzYo4Jlc1yU1iQWulVCRQiKgFnjD5mRDi1/LwDmnGgvzcKY9vBjBbu3wWgK3y+CzD8cA1RJQBMB5Ad0ReVSUvCp2w0nUocdR5q4YSY/BJgnKjvPzQ0RiVsQ1AhZmwReCI4rTmdLqAdWgohgcyzv5TqnzbOzpckWRe2e4oL1d76qdNWop+vW2wK2go5jJcs/bIhY0xBnmgoOXE86FYzscwebVIM1W/Ye2PnnfUxOi4meMAAF3txfvsJuFDCUYZmtP4kacNEFdcSZQXAfgJgJVCiG9op+4DcLn8fjmAe7Xjl8nIrbnwnO/PSLNYLxGdJvP8UOgaldclAB6WfpYHAZxLRBOlM/5ceayqCFHQUEyDT0kr5WMIFJtTPm60R6V7eUXNsCLXocjPUlT6cFL/t9oGvoA9Pu4746M1ENOMOI524ZotV6yhxLyPehZDBse83pY2s5hrVu7ybcVe2BjRh1UekRMFl4ai/T5h6R5K/tvaIs5eXgcGPTOTK+rTVN84j7EraAQAMnJMGonzwFWZSravPwPABwEsJaIX5bHPA7gewN1EdAWAjQAuBQAhxHIiuhvACngRYlcJIdTU4BMAbgXQAeAB+Q/wBNYdRLQWnmZymcyrm4iuA/CsTPdlIUT0oooE8DSUlPxuECiBQa58gZKzOD79gTrqPSX69wr7V7woL/uDEkfwuQZpu99Cr0tU/nqe0eUbtc4YwsC9DYj23Tqjdmud7taMHsD032Izj+QdZRU0FMv5KJNXTA1enYtqE19DsdR0cCR+2LBduKrr7dcqv4WpCL3+2bxAa2itin4/BkdyRrOZywcIxHkfT+0oW6AIIR6HfS3XOZZrvgLgK4bjSwAcZzg+CCmQDOduBnBz3PomQV6I2CYv0yAT9411vp3aYvKKHKgT7FSxHmhDksILodyVUWWE06qibTPRwKw/ZjRQ1DYxgPme6WON3QwU/Tvj2MEj/QUx76nLDKgfspnY3NvIuDQU+y7U+vtBIneyjuGUdwUH9A8XHNS2uioTpa2fxwkbHokMQogWavrvW7vzAI6bOb4oTZyw4YKltf4ShVfKl4AQBfXStjlkVBRYUOC4zTThLEp2yltTxWPFNnuMRZzdhuMMhLZtSwoaimVg075HmoscAkG/DWYzpnum6wqqimO2iNZyogdPP5VDyAZNXuUJDJs5tlCGXuMg33zoFWNdbPWMfMGbo9EHAhpKZFKrMI/Tj6Mi0vR+aeqj+v2y+XGCr8Qw18G2H149YIESE3XzfQ3F4kPxTWIOk0McM41965Wombs931K57ncrrOfUDNc00y0lOsa6nsExqAQi6qIGHqcPJb6G4nLK23CtxgeiI3Ti3lOXhhI0eVk0FMfMXw1q1rbIR79z3lTX4jziaCjepy2FHrnlNnnZJi3R2hqga2Smc1rfcvhcdY1KJ07wSRJvp0wKFigxUTc2yoeim8Tc29u7QyLDHSiOU1M/Ws0X8kRtj6GOxFu8aR7AnAOb/qBFSGdXmwVm7YZ7EkdDcTvl9e+laygi9OlKZ8tP19ZsWp3LR6La0L6wUZblqGysrVcihKyrzYdKECh2k5f7+igToZ6vS8DbNBRXlKJeDmsoTYS6sVFbr2TzAq0Zz7HmEihRZhqbWUHvMFHRT8dLW2w5/SuuEMpFPPRxtogJ51P07hfHLDWwDiWinOADWXxeX1Vu3v1AK7Nsp7yuJZnTRG8O6Z4ph8+bstMHMJsPpbBbcLTwtJvu3G/ydJ133XvAvfXKcC7vP6u2fPwoL0vb6+t6XPUwT1byWjqTJl/4Hkeg2OZNhYjL+ksUFigxUfc1k7bHfOfzwt8vyrwbceF7nMV4kSavCA3F9hbEOMSd5agHaTiXL3qoC7bnGBqKbWBymM2CwjXeTr2mvPTwWnOghdsW31/Cu8OtvodYm0NG44oI0s/btmdxTQaiwoIBbbZcQl11hBDxwoYdfWtoJI+2lpTMM7ouNg0laq0V4N1Lv68bfo8exuuaYA5YTF5xIuPi7FxeK1igxETdzMh1KC6Tl8NeH04XafKK8KEUXpJkLcJK3I0I9RmuNby5BB9KOGXU5pPhvOPsC2Wrj/7OCtdDbxMGX/ztMnsFQuXabntUlFfc7fldUYauRZz6dS5tzFalqPVDh08Z43+PZcqM0lAcgmsol/d3ly5lZ2JjGQ7hakujTxJs44Xi90u3G8twTYi8vPNFaesFC5QYbOrux+KV3oL/KB9KNifQmok4n48evBS+UzucRu9cEYNoKQpK8WuG412nP0xhp2Zh1ubOx7bducojSnAq4qxpsNVH11DMPhQ9L2sxkeiXWe3ggcEpmKYcgeIKQCg3ssk1a7eF/H7pvuVYt7sPM8a1G8+H8weidw+I8rEJITCczaOjNR1ZV4VtQaDrt7o0wqzjfuj3+al1e5xl2OpRCF02nq4plSxsHDW869uPoVcuYFJhwcaNBIW+11dxPnFNXoUIp+DxoN/Afn0pcel5AaRJ/7twzZzJnc46Ap75pAOFRVmlRHm5HlZX+CoQb1FgisyDudJQiGyRONqKa8fvyaTNojxOlFfAgZsXgbziOl1dGnCcsGGXqdG/LzanvjKFhlbq3/rkBgDwzVBWU6dDyyqcs29xr36b0lCs61BUest2/yMOf5ASyilyTyDN5tTC92NmjDWWEWcH80JUXBNvvTKa6NV28XStQ4kbNhxl91QDSNHWKw6BpAaulMPkFbWYT79G/VZjHSNmkqX4UKyml1J8KDE0lEwqZZzBqYFvTGvGslJez8tQT+2g6SVL4brGsYOH6+F6t46ft8vkpWXj3m7EXEbhvpjP69F/pmfAtZ2Jyj+douhwcFl9kxaj/ENtvkAx5+EvbLS0r8u8p863Zsx9K+u4H+rYkdO6jFvlAKFn1aahyPo3/eaQoxHlI7GtfFUmL/dW6BECxWI2CEYLmQSK9+kyeenZhvMJzvztA5l+rsjkhcKD6JrV296f4dp6JbjbsNv/kEmbB6jhXA7pFKE1k7I89JqGYtAv9K3PU4bXwALh9jbXM9iewd/j2mbEr6uI7h/6+W3aqvVAmpg+lDgmK5Pjf2hEaRbGy30tsTVtvh+FcuQgakijJgkdLdFRXgrbQGzbxcE/L/NtSacsYcPRJm51zZi2DAasCxuL09vqWclrC5KCBUqJqBfpFL38Sghs2NOvbc0SvTlflJnGtqjP5bBUR3wNxZK/3vHCgk8fiKJmPEEfillDCX835iPLCA/FrvUOQW3Nnr+6vMUyQA1nvfDSdIqs2+kUJhHF+evrHWwaStCPE0NDCbV7bJNXHpFBIXo9tu8vFihCCP+e24oqRaDos24VwquEjMuM1NaScrwC2PsMm9a8cr174jJ5qQHatQ2NU0Ox9K2wGbPoell+V1s6YmGjnoe5Hqr+LFCaEH9wCXWQB5d7URpPrPWca6aO7nLSKVTHKHUdijqmtrO2mi0iVHH9z7iRR+GOHKUBhVHXhsdi13qH4IPmXsPRmkmZzSPZPFozKWRSZDzvbadjD7TQB81Y/h6bQNE1lNDvUffhlR0HjNf65egmV5NTXivb9DKmOA5glcYWdqxPgvRnQDnIlYZizV/dr3QKQkSEWeftg6ivoSinvKV7qKyt98TpQyn0LZfJK2rvvzGtmcBmlqY0UfVQWhqbvJoQfx1K6ObuOjAc+Nt0c+MMLIBdQ4HD5KWOpS2mF1PZtpd4AfE2hwTsJi+vTpFV8QeEsLnIt9XbNJSAcLXnrw9QpjYfznkCJZ0iq5BW9zzKqa+XZcpDYQ1RjaGh7D4wZLy2kEfeN7maitHr1zs4ElkH2zxADbKmCZNXriZQtEp0tXnxP4NSe7ALisIgHa5zIJ2wm3lU3dTuvdbte/w8ogWGEOZ7r8xzSoiH07iiOlXyrrYMhnN5yzZGxfUtqqe87vG1u/HoK5W9lbZSWKCUSDpl8ZGEO5Ohc7hUYD+dxawQ1B7sAiWVsg+A4brZzGpE0Sp0lM0fMR6CwrWyziEVpfAKYNuV8bQ99Uy3ZVJGATkkTV4tFoGTEwVzjSvsOI5GaJvZRwqUwEAf8VsFtChD+4wYKGgKtnJcZh6bQMnmBNTcQDcHjpUvoFLVt81VigSKVaMrCINwmwyFBIpryxybkB9x3FslMGxmxhGXyUtpKFLYml5FHOctl3p/eXLtbmOaWsECpURaLSav8L02zpwcTjqFTdWOu5usJXrVWHax0Iqe0RfqqGsoIR+KIT8bvskrdNy2hX8h38L37r5hYxq9/NZMymjCG8rm0RapoeR9DcVs8sppad0aijVcV0vTPxI0R+kDnu395yqP1giTly4ETFFFejk2waVMM6YdElS5na0ZP41iSlcbAOBTZx/ppXO0VZvcwsjWB/V2DAtp9bfvQ7GVpTQUi8N8YCTnm2KjTFZqu6Vwkmwury0zMJhTNac8AKNjPs6iWL3+U8e2mRPVCBYoMdBNSEp1tw3EgDcYR0WfAPHChqM0FOPWLkLVV6rglvyjtoQIDMAxAgeA4kEyzkOg8Ff5WvK3vwLYOz5pTCte6+635q8ub0l7du7w4BLwoVgWNhb8EsX5q3s6sbPFPpuOY/LS2rA7ZD7Vrzf5Pgp1jd6pQb9PJoGinzc1uxAC/cPZggZi8RMq34Xe34mAk2ZPwMffegQAt1+izaGhjAQ05JCGMhISKJbfoupnuidD2TzyApjY2QqgYKoz1bXVMuHI5kVBSzLcdtW3u9q8NKbJQpzI0Gwuj8Mmdfr1ricsUGKgm/dNavQ3/rga//F/3lbvbZkUMmkyLpbSH7Co3VILTvngcefWGr5T3vvbaoKJUMXV3+0t6Uin/FBWm31FRHm5NJThnNns4IryUtlOG9uG/QPF/oBwPrZw7mFNQ7G9D8VmIwcKD/D4jpZYTnmbGVFv6z19doFiMzV5ddUW1hrqopc9ZBwgowMM1CA7QQ6yJvNdPi/QaRAoI3KzRmXadL2WwGny0uoaftZ8DaXVvvVKNi8infJq+/uJnS2Bv3X0ZwUwhHvnCnv72SYrQEFDMW0QmY/xLI3kCm3OAqUJ0Dvc6UdMBhDspD98dJ3//a6PnW61xw/nCh0mSkPZ2+8NkOGHTn+Ao3aTdTvl7aYPNah2tKSNM3pF31DWOrAETF4OFcUXnqFk7lcAeycmdraiJ0KgZEPmj/CDvam7H3kBqaGYzRqRYcNyYG5vSTvt/YDbAQwUm/CyOfv90hnJaduNRGjI7S0pYz76gGaqpTLJTJCDrC2SUbV1eJ+0TJqci27DGoptUhNp8spG3/Nw3UxCXrXFpDFeH4/yOak2D9/bbD5fCAww+ueUhhLhQwlMIotOy+PepKc1k4qccNQCFigxUJ3/XcfPwHS1F5H2ROgD+OFTx6AlTcbZ2+fuedn/bpttDI7k/AEl3AmjnOl6ngWTl3vwCnfArD/r8vKwbe3dN5z1B5bivbzim7zUwxx+6PXfF/Xe+gmdLegZGLGaxlTd2lvMNvl1u/uwdEsPMpa1BK6wYX+lfVvGvmYmjoaS8zQlomgNxTRT9uuSy6M94vUJqk92tbUYBcq/Ovqn2lV5QoddoOQ1k9dQyCyVTpGv7bv8TUqg2JRkvR3D9RjWtEYAxpDcwC7TBiGvBnc1aTJrKEHBVfQsaRpK1MLGrtg+FHsfb0kT2tIpo+ZZS1iglMCxh473Z1j6DFAXKO2ZtKehFJmBBHZrtnGbf+Jrf1jtfw93IPVQAjaTl6yPwykftD+HBvJ8MELGVs/+oZw/sBSZq2LYfQvlK5NXMJ1zmxkpLCdI30WfZaVx1v89xbtEi9CkwOY4jdodQQ1MEzparO+0cK1HUMfbMilM6GjB1n0D1utdGoraKytK+I1tzxiFwZLX9hb+MFRTbbHua6YWDcVk8lLmuKj+qx9vdWgoQa0vbPIKalKmmX/Qn1lchhrcJ/kCxaTlhDWUYJqRfN7f/iVWlJeh/4wErBL2SWhHaxptLayhNAVnHTUVAPDxs47QHojCef2mt6TJ86GEBki9Q45ty1hnEq/u8havTelqLcpjJJdHe8RuxmpW76/psIzlel3CmpQ/o89EC5QDQwUNJTyQxl3A6ZWnNJRg+GdQKJmuK5i8AODAoNlZrZvwvHKKzUd/e+phyNiivHJC86EU56/i/ieNacXASM4ZrhsVbptJpzB3yhis3t4bOpf3o6RMphc974KJpfi8auux7eb+9/6FhwEApo9rM2sow0ENxSTccqJg8hoKmZXSKfL3z3IuFnS8HGs4pP0EzoU0FNO7RoImL/tvnShNXkahpNqzrTiqDfDuqT+RiSFQTO/VCS6cLTrt162jJY3WtNmUWUtYoMTgq+89Ho/+y1t9lT28RkO/iUSElnSqqHP1yU795QuPRe9QFj97emNROQPDOX+AOu3wyYE4fsDrlOPkQ2KK9lEzGOUstw3luvoeHuB8k0OEySuby2Mom8dsGVmyYU9f0flCnSyVkARmYFqFXftSKUGhBo0+y9YVKn+TxqXa4YipXUiniicBqh5RYcO/fn4LAGCyHPCjVqBHre3J5gUyKcLMiZ3o0/LIS+fxcTPHATA701UZeVEQnFFO+a62jFEwtaYJEzpbfP9ZGF+gSCFuqksuL9ChwoZDUY1K02vNpKy+JNXGrrBhfTYfrsdQkUAprqcuIExRXur8pDF2p7xu7tT/VoxoJi/b3n9AYY2OSfDF2YlhYCSH9pY02lrSrKE0AzMndOB1k72XAxERutoygQFMdYir33kMAKAlVWzyUoOEeuCB4tnX+370FADPftyWSRfNNkZyeT/OfK9h7YUe8gvYH8YogeI7GiNMXsq8NHNCB7raMugNaQelaCh6/oHtvnPRD5IaHJWW1GcJpw37hPQ2V4NGu5zdmQb7XF44BzfA0yht9RjJ5UEkF1daHfde1FxnSzrQt7KhWaxtBloQnPbdrtW97mrLWJ3yHS1ppIginfLTx3l9MHzfhRDI5QU6LU555dtry9ht/ao/+O8VsrRX/3DW6iPxNRTf5FX8W/WdAkwh/mpwnxjhQ/EFtHz+TebjtghNX9XTN80ZBJ9ertXvOqxrKOxDaTrGtmUCJhb1YF355sMBAC2Z4tmuitxSHRQA9vUHhcLSLT0AgKvediTaW1JFnXhwJIe5U8agoyWNlzf3FNXLD2OUndj2noe+wOwu2odiGmR39XpbgEzpasOYtnRRPUccwkDHtthzOJv3Z7T/9ftVmHP1/cYy1GzZtj4jrKHodVMDUUdrCp1tGaMPZGgk7w8YUetylOb4wLLiN+/1DmbR1ZbxNFfLPdm8dwDpNKGjNY3+oUI91O+KCl8FCtrDGMs6KaAQot1lMXkNSFs8LO/3WL/b00RnjPcCU/b1B6PrVJGdcl2FXteRXB4tUnM2TZYUar2HanNbuv7hHCaPMQ/26ppx7XYfiv5KimgNRa1DsUeKKae6KWzYNJHR65kiYGybNB07TV52DYV9KE1Me2saj63xtjjQO6PyXYxtaylaG9Hd5w3Ck7paceP73yCPFQTKVT9/3v+elbNivTP9+73LsGP/EMa2Z3DktC6s2x00Mwkh8H8vbQOgmasMD8rmvf341C9e8P+2+lAiHoQdcqfa6ePa0dGSLvahOF59qqPvsjoScLQKTBvrDVx3/OU1mVfQhAIU7Pl9Q9EzXlOUl5oRtmfS6GpLF824AW+AG2sZMHTUTPq6360oOvfQyh0Y05qRuw8U5/H0uj14at0ebOoewKET2tE7lPU1UCW8Z0+MXrj23YfXAiiYeaJMXmPbzE75ATnTNWnYAPBl+dsOndABAPjho68Gzqt7qe6b3p5ZLaCkLZOy+oLUc6Pe7GgSoL2DI9jWM+j7tsICo2/IW3zZmk6ho6V4wqPXrb3FbH4Lm/ciTV6tZuE3omsoRoGSQ1smjfYWL1jBpN3qx2wbSPZrGspwYMKUw7ceegXbe8yvKqgGLFDKYN2uPmzfP4i1O3vxuV95oZZvf/10//xhkzqxentvYAB6cNkOAMCUMW3+zEoJlMGRHO5/eZufNkUo0lBuf8obVHfuH/JDZXWWbdmPbz70CoCChmIKXV62ZX/g7/DAogYFNbszDYDLt3ra0Yzx7WhvSRc90PrDYxqkFUIIrNpWcEDrq+OHc3lMGxfcRkKfJWZDGopt+2814x1r0DLUufbWtGfGDD3Quby3nbttBvqLZwp+sEtOmWUsf+W2/di8dwDb9w9iTFvGFxA6y7YW7smkMUFz0s5ebzA4fGoXAFgXcd78xHoAhdmySZBf/8AqL027Z/IKh1or525Ha/EkQWeufDe80qgV6ppxHRmMaU1jT9+Qdi7rR3+1GbRvxX75u5VZzVSPXy7ZDABYvcPrO+G8Vm7bj3nTxiKVIoxpyxjbTJm8JnW2GicKa3ceQEdLGjOl8Az7MwFg/Z4+tKTJX0pQtA5F11AsEYJtLSnfjG4KLPn9Um9cmD6uzbihZz4vMCSDMdpagoL6sTW78a2H1uBbclyoBSxQKqBvKOc7Zd9z4iH+8VPmTETvUBZb9nrhn5u6+3HXkk0APA1Fmb2UQAmbDlJEaMukkc2LopnixafMwrj2lqLOtVczn431bbrFnXhXb3C2Eh5Eu/vkDHG8miEWP2yLVuzAkRZtDaEAABr0SURBVNO6MGdyJzpai2eA2Xzen9VHLTq85YkNgTUXSiioek+XM11F0IQSdMqbTF4bdvfh336zDEBB8OgCUuXXnkl7LzkayQXa2zdptJujeK759VIAwOsmdyKTTuH9Cw/zo7HCvwkATpg1HqtCEVzebwlGCepl7dzvDcpHTutCazqFXY4dh5WJ5sBQsN17tD5m2mvLq6tnOulsTVtf+ASg6Dcq1D3oasvgyOljsXKbJyiFEDgwlMVYOUl53aROXxiEUf16mhykTeYqpQlc/97jvTShur62px9HTPOE3qET2rElFIbtlVMIgTYJ3637BjB7Uod/703Pwd6+YUzsbMW4Dvm8hSY8Xgi1NEEahNbgSM532pt8kQB80/bY9hbj+eVyMtLRWqyhbO/xfrfp3TfVggVKGZx82AQAwcFyguYbmSMd+GqPqX+/d5l/rqstg8nSgdsthcB3Hl4TyD+dIn9mox6e1kwKHz5jDs47dgbGthfPZnZonUbVxTTzem1PcN+ra+9b7n8fHMnhn3/5EgDgiGnejDi8yO67D6/Bsxv24sRZE0BE6GgpHnxGsgJTZPDAvgHzxo2rtu/3TSjqtyrBquod1lD0coalE1s98CZzgf7bxhkcp8pM1ik1FKDgXxoYzuFXz3szYTUQjmRtDmLpv2gtflGSPhAdPmUMNnX3G7RC7/qWNPkDjKrnDX/wtIrp49owdWybUcPRNY0TZ08AUVAzzOUF1u4qDOCqjLCJZlBqKJ2tGaOAPmR8Oy4+2dPE3v766Xj9IeMC55VPcHxHCw4d3+77DW97cgPyojDROX7WBKzdecBodts/kEWrXI8DFAuLwZGc3yZvOmKKlyYkdPYPjmB8h/cM2HZSWLalB2PbMxjf0WLUwnfsH8L0ce1+mL5JsN357Cb0DIz4AQR631L+ENXvTCavnoERf0I0tj0T8OsoZk7owFlHTfXOGwTKxT98EkAheETXUJQgyTh2zkgSFihl8LVLTgAAvLhpn39MmbEAb8YKABtlOK16MdK58z2zmIrqeGnTPjy/cS/+uGJHIH9PQyk89EPZHIazhbUIps6lCxQV3WLahXeDFCi6iU7xvT+t9b8fLs0a4QHs63/01OdDpAazensvlry2NzCoHRjKYtZEz1Rg01DO/9Zj/vfvvv9kAAXhpR5epSUpdOG2r38EEzpb/IiiAwYfypi2QkSd0gr3Sg1s+dYe3PRnzwcwuavVFyhqIP3un9bgC7/1JgKdrWmkyL7ITrVRKkXoH87hhY3eAsF7X9yCv/3x0wCAb/31SZg7dQzyAtgY2syyRw7Ev/mHM3y/gBpsVft1tmZwyPh2LFq+IxD5tGr7fsz7twf8v4+Y2lU0273itmdx8Q+8CMI7rljo+5P6Q23WP5xDZ2saU8e2GgXXgaGsPxsfY3jL4A6pTU0f147p49qxcU8/BoZz+JLc507dzzVSO7lxcXAiBXjCYFx7iz+zDw/ken9SEY96GiFE8UAdelaGsjn87uVtOGn2BOOasVd3HcDmvf2YNrYdmXQKXW2ZIivCJnkPh7KFvd507WAg5IMx+b7C9TSZvHoGRnD41DFGqwQATJHjzsmHTfS2XpF1GMrm8L0/ef17894BLNtSHMRTDViglMERU7swpasN31hUsE0eJoUI4G1Y2JZJ+QPHSC6P0w+fjB9+4BQAXpTL2LYM7l6yGe/9/pO48MRDAQDvPsEzm6VTQKcc4Lb1DPgPhBr0utpaMDCSC8zw9NnIsYd6M8f/fnB1QOh99u6X8NDKHXjX8TPw48sX4C1HTcXhU8f45/UXOKmHVR9YdLOJKkMN8uqB2bF/EFv2DWDa2HakCNjhcAieOncS5so6KEf0Pc95mkHY5LVBC0TY1z+MCZ2tfiDEfS9uCaR9bM0u/H6pF3GlZveA5/cYHMnh3Tc+jmc3eAP/lK62Ik1HhbgC3oy+s9U8Q9Q5+bCJAIBfPrcZf1i2DZ++80X/3FuPnor5h4wHADz3Wrd/vHdwBLc99RpeN7kTx80c7w9OarZ76IQOXCD7xbiOFvQOZfGdhwuC/6u/X+XPfq+78FgvnWYe2T84gkdWF166dMYRU3wfiFpECwCnfXUxNnb3o6M1jVkTO7GnbzggMO58ZqMfrQZ40WRhrVBNamaMa8eCORMxnMsH1iidOtfbB09pNut2B99A+eSru/HzpzdiXHvGD1vXfSjZXB6nfnWx/3d7i7dVzaBMMziSw9xrfo+RnMAMqd2O6ygOkPminCgcNqkTk8e0YmN3v9/e/cNZnPM/j2L3gWHfjzO5qzXgD9q6b8D3RwEFs6sudJQlYPq4dqRTZPTx9QxkfU1qXHtLwGwNeM/jgaEspnS1YXxHi6/x6WTSKbzt6Kk4/YjJGNue8SeR63YV2n3V9l5c8J3Ha+Kcb2qBQkTnE9FqIlpLRFfXsFz8/Zvn+n9/7C2H+05sdX5sewb/+9h69PSPYGfvEM44cnLgrYRh9ba9JeUPoCkivO3oaQCA3728zR8clMlALbY66gsP4LnXupHPC2zvGcK8aV145t/e7kfZAMAKaWMdHCmYcE6XpoKZE9qxblefP9tSs7/Pv+sYdLZm0NWWwWvagPCqHAA+8/ajcP5xMwAA/+8dRwEoDMTqge8ZGMYxM8bhoZU7A7/zty9s8UOAzz92Bu762On+YH/LE+vRMzDiP6xD2Tzee/JMnDjLG4jXawLlD8u3+/tCHTF1DDbs6ce9Uqjk8gIf/MkzftqnP/9238y4eNVO3/dRaPu0H26rR/8o9vaPYEpXKx5ZvRPffXgNBoZzAS3hjXM8QXL+cTNw9PSxWL+rDx//6fPQmdDZiqOmd2Fsewb/+qul+OaiV7By234c/6U/AijMePXZ7sBwDut39/lOX2W6+OZDr/jld2sD3ZHTxgLw+sl+OZvdHdI0UinCPGnOXCcFyp4DQ/6EZMa4Dl+7VD7AvX3DuFq2mZpxj2lNF0XWvbBxn0zT4pt91YTmsEmdvobyybd570RRA7Hib/7X0+bW7e5De6vXDv3ac/Jf2iD+ww+cAiLCpM5W36/0iuaXUWbKse0Z7Okbxpyr78fGPf3Yc2AIdy9Rz8FkvO2YaejuG8banV5b6NveqH45eUwr9mjbJn3unpdxv3SWf+2SEzCxsxXpFPmTr+FsHu//378AABbOnYTOUFtlc3l85q4XsXLbfrRmvHt66ISOoi13nl7nTTzmTevCYZM6sWXfQGAS2d03jI3d/f6GtUdNH4uegRG8uutAoL61pGkFChGlAXwPwDsBzAfwfiKaX6vyP3bWEf5300tt1L5dZ37tYQDwBwWFbiL78ePrMXdKF46Z4Q0IR0zrwtSxbZg5oQM/eORVvO3rj3jXSJPX0TMKtuuLf/AUbvjDKjy0cgcOmdDhO2Vv/8hCAF60yqOv7AoMxn+9YDYAbzU+ALznu49jx/5B7Ng/hNMOn4Qr3+L9thnj23Hns5uwea832C3Z4HXwi0+Z6W+hoUJIv/r7VQEN58sXHodzj52Oldv349VdBzCU9bYlWbSyYN77wgWvB1CIKHtpc48/sALe6vBvvO8k3PvJMzFzQgde3uwNTpf+8EkIUTAl/st53oJSpRGsD4VUA4WV1wDwmxcK2szZx0yTdfAEyt6+YWzZNxDYU21f/zA27OnHhj39+PofX8HZ//OIL3hOnTsJP/voaX7aUw+fhJc2F7RCHSLy+8q3F6/BO79dMPt97nzvN6h9oX706Dp/14TZcoC/6A0z/fTnfuvPuO3JDZgso8LaW1KYL2f+Myd0YNGKHdjbN+zPeudM7sQdV3h9QplEf/qXjcjnBR5eVRD6Hzz9dZglQ5QfXL4dew4MBRzoF53kadPjOzwtefeBIXT3DePPr+zCfS9t9X/nHKkFKeGtm/lSKcKZR07BH5fvQDaXx8OrdmBgOBfYE681ncKsiR2B/cV+8vh6/7ua0Myc2IHNeweQywv8Smq2AHCS9HPqE71H1+zCRd9/wv/7ghMO9QXfc9Js+yNt53BlMZg6ts0f7HsHR/C4fCviu084BO9bMBvpFGHymIKZ8A/Lt/sRi1PHtqElncKtT27wAz5e2LTP74PqOZrS1Yb9g1lfU+oZGPGXEpx19FTMnTIGubzAJvks5vICb77BG1uOO9SbcKktom55Yj2+KP22Snjf/pGFRSbkapCpegnVYyGAtUKIdQBARHcCuBBA8UKAKvG1i0/A5371Mo6VN1TnV594Ey7+wZP+wKMGb8Vv/uEMvPcHT/iC54SZ43Hpglk4buZ4zJfmpItPmRWwMyu/xsK5k/D5dx2Dr/7em7H96M/eQ6D8LgDwlqOmoqstg5ufWI+bn1iPtx3tdbZ7rzrDdyL+1YmH4tN3voh9/SO+ZqGEDeBpKh+5dQnOvOFPgbqrAQcoCMZfPb/Z14Cuu/BYHDqhA/MPGQchgHP+59Gi9vnpFacG8vnYWYfjR4+uw2fv9oICfnvVGThh1gT//NtfPw23PfUa/uq7j/uRL7/4e28gVw8SgKIFkF+7+ISishVfvGA+PvymOQCAw6d4s/aP3r6kKN27TzgEz27oxl/kjHFbzyBO/LKnWVy2cLbfnoDnq9HNNCfNnoBv/fVJ/t8qdFbn0lNm4WNv8RbFHjXdq8ejr+zyBcqZ8zyN8l3HH4LxHV7I+NqdB/ygg0tOmYWvX3qin58SSm+4bpF/7JYPL/RNXUq4rt7Ri4u+/4SvKcye5E1I1MD39T++4vvMAOA3//Amf1KzYM4k7/M/Hwr8FvVGRmUaU/z5X94W+Pttx0zD42t340jN/6O4/r3Hg4jw7hMOwY8eXVd0T//7ksI9Hd/RgsfW7MYRn/+9f2zpl871NRQ1SQMKpi4AuPXDbwRQ8Hd+4bfLfJ8ZALz07+f6grclncK63X244DuP4dDxHf7v/OTZ8/z0eQHctWSTH80JAF96jze/Pe/YGfjFMxvx8Z8+ByE8LVnxT+fMk7/Da695//YAvnjBfNwiw8BPPmwC2jJp3zR9za+X4v0LZ2Nbz6AfQHLi7An+b+lsTeOnfymEs3/23KPwybOP9P1m1aZpNRQAMwFs0v7eLI/VjPe9cTae/+I7fJVT55TXTcQHT3sdAO9BVfteKQ6b3In7P/VmAJ6N/3PnHw0i8oUJAHzm7fOwUD64l71xdiCPK99yBJ7+/Dk4de4k/9jfycFRsUCaYgDgT9KOftT0wgNGRFj82bNw/MyCQDxKewDPPmZ6IH8A+JtTDwv8bfrt5x/nzezOnDfFN9PpXHjSof4gqfjIGXPR3pLC6h29OHR8e2AgAID3SD+TEib/fO5RftkdrWn88AMnF5Wz4svn4X1vLAjI6997PD7x1oJmedFJh/pmyIljWn2bueLqdx6DDde/G8fMGIeff/Q0f7DU0dsTAP6/NwS74Jf+6lh/tg4An3/X64vy+O9LT/Rnqp2tGZx5ZLBtZk4o3PenP3+O3ycU7z05WOZFJxU/BnMmB/ufMtO9vLkHj63ZjdcfMg6P/rM36NteI6tm80DBX6Rz9PSx+H/nHu3/veq683H2MdPwww+cHPAxAsBHzphT9DsB4MV/fwcuk5tUqp0ndL592Um4VJv0qEgvxbnzp/vCBDD3z4+fdQTeKk3KenSm4lPnzPOFCQB8+AzPvL1sy34/gObKs44ITCSukdsuKS486VD8nbzuH2W/eWjlTl+YTB/XhieuPhvzZP85SWvP6363Apv3DuCSU2bh+3/r+V3VM/rM+m585q6X8LU/rMaMce14/ovv8M21RISPam12y4ffCCKqmTABALK9R6LRIaJLAZwnhPio/PuDABYKIf4xlO5KAFcCwGGHHXbKa6+9VrM6DmfzuPfFLVgwZ5I/OwzjLfgqX1HMSzPSWUdNLeo4gyM53PrkBoxrb8FtT27AFy+YXzSQK37zwmZ0tbXg7GOmFb2gKyt3ih3JicBDpNPTP4I9fUOYM3lMwFcEeNFsNz+xHi3pFD59zjzMnNBRlAbwzAl3/OU1vOeEQ4sEMOAFKNz34lZ09w/j0+fMK2q3V3b0Ysu+ATz/2l589MzDA4OCzmNrduGwSZ3+/myKkVweBM9k1pZJFw2Cipv+/Cp+8cwmfO9vTg5MABSDIznc/tQGHBjK+T6mMC9s3IvnXtuL84+bEdDUVD027O7Dut19aM2kfH9amIHhHFbv6MVJsycUnRscyfnmzotPnmU0d+zrH8a7vv0Y9vaPYPFnz/LNl6oOW/YO4L8eWInlW/fj3y+Yj3OPnVFU/p3PbsTcKWPQkk7h+FnjAyYmF0IIvLS5B+PaM7j1yQ346JmHF7X5gaEsXtvTh8Urd+Ly0+cU3dORXB6v7jqANBGICn4knSdf3Y22TAqrtx/AIRPai9oznxfY0zeMdIqw58AQXjd5TFE/F0Jgw55+PLxqJ8a2ZQITFZ0lG7qxs3cI5x07I/Ac/fzpjVizsxevm9SJt8+fjvEdLQHBBwAPLN2GpVt6cNrhk5ETAm89aqo/0QCAjXv6sXjVDqzZeQCHTxmDc+fPMPZR9VrrJCGi54QQC5zpmlignA7gS0KI8+Tf1wCAEOK/bNcsWLBALFlSbNJgGIZh7MQVKM1s8noWwDwimktErQAuA3BfnevEMAwzamlap7wQIktEnwTwIIA0gJuFEMsdlzEMwzBVomkFCgAIIX4P4PfOhAzDMEzVaWaTF8MwDNNAsEBhGIZhEoEFCsMwDJMILFAYhmGYRGCBwjAMwyRC0y5sLAci6gWwOiLJeABRLw44DMDGiPNx8nCdTyoPV10boZ7N0p7NUk+gOe47wPVMOo9q1/NoIUTxNgRhhBCj5h+AJY7zNznO74pRhiuPyPMJ5hFZ10aoZ7O0Z7PUs1nuO9ez+erpGjvVPzZ5Bfk/x3nzvuSl5eE6n1Qerro2Qj2bpT2bpZ5Ac9x3gOuZdB61qKeT0WbyWiJi7EdTretrSTPUtRnqCDRPPYHmqSvXM1mqXc+4+Y82DeWmOl9fS5qhrs1QR6B56gk0T125nslS7XrGyn9UaSgMwzBM9RhtGgrDMAxTJUa9QCGim4loJxEt046dSERPEdFSIvo/Ihonj7cQ0W3y+Er1DhZ57hEiWk1EL8p/5rci1aaerUR0izz+EhG9VbvmFHl8LRHdSPobfBqrnlVrTyKaTUR/kvdwORF9Wh6fRESLiGiN/JyoXXONbLPVRHSedrza7ZlkXRumTYloskx/gIi+G8qram2acD0bqT3fQUTPyXZ7jojO1vKqah8NECcU7GD+B+AtAE4GsEw79iyAs+T3jwC4Tn7/GwB3yu+dADYAmCP/fgTAggap51UAbpHfpwF4DkBK/v0MgNMBEIAHALyzQetZtfYEcAiAk+X3sQBeATAfwNcAXC2PXw3gBvl9PoCXALQBmAvgVQDpGrVnknVtpDYdA+BMAB8H8N1QXlVr04Tr2Ujt+QYAh8rvxwHYUov2DP8b9RqKEOLPALpDh48G8Gf5fRGAi1VyAGOIKAOgA8AwgP0NWM/5ABbL63bCCylcQESHABgnhHhKeD3tdgAXNVo9k6yPpY7bhBDPy++9AFYCmAngQgC3yWS3odA2F8KbSAwJIdYDWAtgYY3aM5G6JlmnJOophOgTQjwOYFDPp9ptmlQ9q00Z9XxBCLFVHl8OoJ2I2mrRR3VGvUCxsAzAX8nvlwJQL5C+B0AfgG3wVqV+XQihD563SNX3i1VVK931fAnAhUSUIaK5AE6R52YC2Kxdv1kea7R6KqrenkQ0B97s7mkA04UQ2wDvgYanNQFeG23SLlPtVtP2rLCuikZpUxs1a9MK66loxPa8GMALQogh1LiPskAx8xEAVxHRc/DUzWF5fCGAHIBD4ZkTPktEh8tzfyuEOB7Am+W/D9axnjfD6zhLAHwLwJMAsvBU3jC1CPMrtZ5ADdqTiLoA/ArAPwkhojRNW7vVrD0TqCvQWG1qzcJwLPE2TaCeQAO2JxEdC+AGAB9ThwzJqvbMs0AxIIRYJYQ4VwhxCoBfwLNDA54P5Q9CiBFponkC0kQjhNgiP3sB/By1MTMY6ymEyAohPiOEOEkIcSGACQDWwBu8Z2lZzAKwNZxvA9Sz6u1JRC3wHtSfCSF+LQ/vkCYCZXrZKY9vRlBzUu1Wk/ZMqK6N1qY2qt6mCdWz4dqTiGYB+A2ADwkh1JhV02eeBYoBFa1BRCkAXwDwQ3lqI4CzyWMMgNMArJImmynymhYAF8Az89SlnkTUKesHInoHgKwQYoVUkXuJ6DSpnn8IwL2NVs9qt6f87T8BsFII8Q3t1H0ALpffL0ehbe4DcJm0Sc8FMA/AM7Voz6Tq2oBtaqTabZpUPRutPYloAoD7AVwjhHhCJa75M5+0l7/Z/sGbMW8DMAJPml8B4NPwoipeAXA9CgtAuwD8Ep7TawWAfxGFSJDnALwsz30bMrKmTvWcA29X5ZUAHgLwOi2fBfA6/qsAvquuaaR6Vrs94UXtCJn/i/LfuwBMhhcksEZ+TtKu+TfZZquhRcnUoD0TqWuDtukGeAEcB2RfmV/tNk2qno3WnvAman1a2hcBTKtFH9X/8Up5hmEYJhHY5MUwDMMkAgsUhmEYJhFYoDAMwzCJwAKFYRiGSQQWKAzDMEwisEBhmAaBiD5ORB8qIf0c0nZ1Zph6k6l3BRiG8RbKCSF+6E7JMI0LCxSGSQi5id8f4G3i9wZ4Czk/BOD1AL4Bb2HsbgB/J4TYRkSPwNu/7AwA9xHRWAAHhBBfJ6KT4O0o0AlvQdpHhBB7iegUeHug9QN4vHa/jmHcsMmLYZLlaAA3CSFOgPdqg6sAfAfAJcLby+xmAF/R0k8QQpwlhPifUD63A/hXmc9SANfK47cA+JQQ4vRq/giGKQfWUBgmWTaJwl5KPwXweXgvPFokdzdPw9uaRnFXOAMiGg9P0DwqD90G4JeG43cAeGfyP4FhyoMFCsMkS3gvo14AyyM0ir4S8iZD/gzTMLDJi2GS5TAiUsLj/QD+AmCqOkZELfKdFVaEED0A9hLRm+WhDwJ4VAixD0APEZ0pj/9t8tVnmPJhDYVhkmUlgMuJ6EfwdoT9DoAHAdwoTVYZeC8TW+7I53IAPySiTgDrAHxYHv8wgJuJqF/myzANA+82zDAJIaO8fieEOK7OVWGYusAmL4ZhGCYRWENhGIZhEoE1FIZhGCYRWKAwDMMwicAChWEYhkkEFigMwzBMIrBAYRiGYRKBBQrDMAyTCP8/CliXw8BqP/4AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'].plot()" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xt8nGWZ8PHflZnJOU2TNG3TpqWlB6AtJ6kFZHVVDsXDCu6C1l2h6+KiLL6r62GVfff94OqyK7yr7KKvB5TKwV0B0RVUkK2gIAiFAqWlLbTpiaanpDk1ySRzvN4/nnvSSTrJTJKZJpm5vp9PPpnc8zx3nnmazjX3dZ9EVTHGGGMyUTTRF2CMMWbqsKBhjDEmYxY0jDHGZMyChjHGmIxZ0DDGGJMxCxrGGGMyZkHDGGNMxixoGGOMyZgFDWOMMRnzT/QFZNuMGTN0wYIFE30Zxhgzpbz00ktHVbU+3XF5FzQWLFjAxo0bJ/oyjDFmShGRfZkcZ+kpY4wxGbOgYYwxJmMZBw0R8YnIKyLyS/dzrYisF5Gd7ntN0rE3iUiTiLwhIquTys8TkS3uuTtERFx5iYg84Mo3iMiCpHPWut+xU0TWZuNFG2OMGZvRtDQ+DWxP+vlLwBOqugR4wv2MiCwD1gDLgcuBb4uIz53zHeB6YIn7utyVXwd0qOpi4HbgVldXLXAzcD6wCrg5OTgZY4w5uTIKGiLSCLwP+EFS8RXAPe7xPcCVSeX3q2pIVfcATcAqEWkApqnqc+pt4nHvkHMSdT0EXOxaIauB9ararqodwHqOBxpjjDEnWaYtjX8H/h6IJ5XNUtVDAO77TFc+F9ifdFyzK5vrHg8tH3SOqkaBLqBuhLoGEZHrRWSjiGxsbW3N8CUZY4wZrbRBQ0TeD7So6ksZ1ikpynSE8rGec7xA9U5VXamqK+vr0w4zNsYYM0aZtDQuAj4gInuB+4F3i8iPgCMu5YT73uKObwbmJZ3fCBx05Y0pygedIyJ+oBpoH6EuY6aEeFx58MX9hKKxib4UY7IibdBQ1ZtUtVFVF+B1cD+pqh8FHgESo5nWAg+7x48Aa9yIqIV4Hd4vuBRWt4hc4Porrh1yTqKuq9zvUOBx4DIRqXEd4Je5MmOmhM0Huvj7n27m6R1HJ/pSjMmK8cwI/xrwoIhcB7wJXA2gqltF5EFgGxAFblTVxMesG4C7gTLgMfcFcBdwn4g04bUw1ri62kXkq8CL7rivqGr7OK7ZmJOqrScEQDAcneArMSY7RhU0VPV3wO/c4zbg4mGOuwW4JUX5RmBFivJ+XNBJ8dw6YN1ortOYyaKtNwxAKBJPc6QxU4PNCDcmhzpc0Oi3Pg2TJyxoGJND7UEXNCIWNEx+sKBhTA4NtDQsPWXyhAUNY3KovddaGia/WNAwJofaraVh8owFDWNyqCMYAawj3OQPCxrG5JClp0y+saBhTI5EYnG6+ryWhs3TMPnCgoYxOdLpUlNgLQ2TPyxoGJMjHW6OBlifhskfFjSMyZFEf4a/SGz0lMkbFjSMyZFE0Jg1rdTSUyZvWNAwJkcSQWPOdAsaJn9Y0DAmRxJLiMyuLrP0lMkbFjSMyZH2YJiqEj9VpX7buc/kDQsaxuRIe2+YmopiSv0+a2mYvJE2aIhIqYi8ICKvishWEfknV/5lETkgIpvc13uTzrlJRJpE5A0RWZ1Ufp6IbHHP3eG2fcVtDfuAK98gIguSzlkrIjvd11qMmSI6ghGmlwcoDRRZn4bJG5ns3BcC3q2qPSISAJ4RkcQ2rber6r8lHywiy/C2a10OzAF+IyJL3Zav3wGuB54HHgUux9vy9TqgQ1UXi8ga4FbgwyJSC9wMrAQUeElEHlHVjvG9bGNyLxSJURrwURrwEY0r0Vgcv88a92ZqS/sXrJ4e92PAfekIp1wB3K+qIVXdAzQBq0SkAZimqs+pqgL3AlcmnXOPe/wQcLFrhawG1qtquwsU6/ECjTGTXjgWp8RfRGnA+2/WH7UUlZn6MvrYIyI+EdkEtOC9iW9wT31KRDaLyDoRqXFlc4H9Sac3u7K57vHQ8kHnqGoU6ALqRqhr6PVdLyIbRWRja2trJi/JmJwLR+MU+4ooDfgAW0rE5IeMgoaqxlT1HKARr9WwAi/VtAg4BzgEfN0dLqmqGKF8rOckX9+dqrpSVVfW19eP+FqMOVnC0TjF/iJK/RY0TP4YVYJVVTuB3wGXq+oRF0ziwPeBVe6wZmBe0mmNwEFX3piifNA5IuIHqoH2EeoyZtILx+IEfEWUJNJTNoLK5IFMRk/Vi8h097gMuAR43fVRJHwQeM09fgRY40ZELQSWAC+o6iGgW0QucP0V1wIPJ52TGBl1FfCk6/d4HLhMRGpc+usyV2bMpDfQ0rD0lMkjmYyeagDuEREfXpB5UFV/KSL3icg5eOmivcAnAFR1q4g8CGwDosCNbuQUwA3A3UAZ3qipxCisu4D7RKQJr4WxxtXVLiJfBV50x31FVdvH8XqNOWkiscFBwyb4mXyQNmio6mbg3BTl14xwzi3ALSnKNwIrUpT3A1cPU9c6YF266zRmsgklOsL9lp4y+cMGjRuTI+FoYsitpadM/rCgYUwOqOpAR/jxoGEtDTP1WdAwJgeicUUV16eRSE9ZS8NMfRY0jMmBSMxrVQwaPWUd4SYPWNAwJgfCbskQryPc0lMmf1jQMCYHBoKGP3lyn7U0zNRnQcOYHAglBw035DZkQcPkAQsaxuRAOHY8PSUilPiLbJVbkxcsaBiTA8kd4QClAZ+lp0xesKBhTA4kd4QDtnufyRsWNIzJgeSOcEi0NCw9ZaY+CxrG5MAJQcNv6SmTHyxoGJMDIdenEUhOT1lHuMkDFjSMyYGICxCJ4bYl1hFu8oQFDWNyIJxi9JTN0zD5wIKGMTlwwugpf5F1hJu8kMl2r6Ui8oKIvCoiW0Xkn1x5rYisF5Gd7ntN0jk3iUiTiLwhIquTys8TkS3uuTvctq+4rWEfcOUbRGRB0jlr3e/YKSJrMWYKGNoRXhLwDczdMGYqy6SlEQLerapnA+cAl4vIBcCXgCdUdQnwhPsZEVmGt13rcuBy4Ntuq1iA7wDX4+0bvsQ9D3Ad0KGqi4HbgVtdXbXAzcD5wCrg5uTgZMxkFR7SER7wyUCZMVNZ2qChnh73Y8B9KXAFcI8rvwe40j2+ArhfVUOqugdoAlaJSAMwTVWfU1UF7h1yTqKuh4CLXStkNbBeVdtVtQNYz/FAY8ykNbSlESgqspaGyQsZ9WmIiE9ENgEteG/iG4BZqnoIwH2f6Q6fC+xPOr3Zlc11j4eWDzpHVaNAF1A3Ql0mS7771C6e2Xl0oi8j7yRaFYnRUwG/EInpRF6SMVmRUdBQ1ZiqngM04rUaVoxwuKSqYoTysZ5z/BeKXC8iG0VkY2tr6wiXZob6zu928fNNByb6MvLO0I7wgM9aGiY/jGr0lKp2Ar/DSxEdcSkn3PcWd1gzMC/ptEbgoCtvTFE+6BwR8QPVQPsIdQ29rjtVdaWqrqyvrx/NSyp4feEYwXB0oi8j74SjcfxFQlGR97mn2IKGyROZjJ6qF5Hp7nEZcAnwOvAIkBjNtBZ42D1+BFjjRkQtxOvwfsGlsLpF5ALXX3HtkHMSdV0FPOn6PR4HLhORGtcBfpkrM1kQjcUJx+L0hmz+QLaFo/GBTnAAv8/SUyY/+DM4pgG4x42AKgIeVNVfishzwIMich3wJnA1gKpuFZEHgW1AFLhRVRPvSjcAdwNlwGPuC+Au4D4RacJrYaxxdbWLyFeBF91xX1HV9vG8YHNc0E026w1ZSyPbwrH4QCc4eOmpWFyJxRVfUaqsqzFTQ9qgoaqbgXNTlLcBFw9zzi3ALSnKNwIn9Ieoaj8u6KR4bh2wLt11mtELuhZGb9haGtkWSRE0EuW+It9wpxkz6dmM8AKW6MuwPo3sC0XjA53gcLxDPBq3FJWZ2ixoFLBgOJGespZGtoWj8YHhtuBN7oPjCxkaM1VZ0ChgfdankTPh6OD0lD8pPWXMVGZBo4AlWhp9kRgxS5tkVTg2ePRUIj1lS4mYqc6CRgELJrUw+mzZ7qw6oSPc76Wnojbs1kxxFjQKWDBp1FTQUlRZFR7SER6w9JTJExY0ClgwqXXRY0Ejq4b2aQQsPWXyhAWNAtaXNNQ2aHM1sip0QtBwo6csPWWmOAsaBSw5UNgIquwKxyw9ZfKTBY0CNqhPw1oaWTXSjHBjpjILGgUseSa49Wlk1/Ad4ZaeMlObBY0CFgzHBhbPs6VEsuvEjnCbEW7ygwWNAtYXjlFbUQzYUiLZNtzoKUtPmanOgkYBC4Zj1FeWuMfW0simoTPCB4KGzbw3U5wFjQIWDEepLgsQ8Ak91tLIGlUlEtNBLY1E/4alp8xUZ0GjgAXDMcqLfVSU+K2lkUWJCXwlKZYRsfSUmeoy2e51noj8VkS2i8hWEfm0K/+yiBwQkU3u671J59wkIk0i8oaIrE4qP09Etrjn7nDbvuK2hn3AlW8QkQVJ56wVkZ3uay0ma/rCMcqKfVQU+61PI4vCrjWRPHrKX2R9GiY/ZLLdaxT4nKq+LCJVwEsist49d7uq/lvywSKyDG+71uXAHOA3IrLUbfn6HeB64HngUeByvC1frwM6VHWxiKwBbgU+LCK1wM3ASkDd735EVTvG97INHG9plBf7rKWRRQNBI0V6KmxDbs0Ul7aloaqHVPVl97gb2A7MHeGUK4D7VTWkqnuAJmCViDQA01T1OVVV4F7gyqRz7nGPHwIudq2Q1cB6VW13gWI9XqAxWRAMRykv9lNR4rd5GlmUSE+lXuXWWhpmahtVn4ZLG50LbHBFnxKRzSKyTkRqXNlcYH/Sac2ubK57PLR80DmqGgW6gLoR6jJZcLxPw2czwrMoEvVaEylHT1nQMFNcxkFDRCqBnwKfUdVjeKmmRcA5wCHg64lDU5yuI5SP9Zzka7teRDaKyMbW1tYRX4fxhKNxonF16Sm/rT2VReGYF4AH7dznJlFaespMdRkFDREJ4AWM/1TVnwGo6hFVjalqHPg+sMod3gzMSzq9ETjoyhtTlA86R0T8QDXQPkJdg6jqnaq6UlVX1tfXZ/KSCl6fa1mUFfupLPFbSyOLQik6wkWEgE+spWGmvExGTwlwF7BdVb+RVN6QdNgHgdfc40eANW5E1EJgCfCCqh4CukXkAlfntcDDSeckRkZdBTzp+j0eBy4TkRqX/rrMlZlxCka8lkWiI9xaGtmT6AhPHnILXorK+jTMVJfJ6KmLgGuALSKyyZX9A/ARETkHL120F/gEgKpuFZEHgW14I69udCOnAG4A7gbK8EZNPebK7wLuE5EmvBbGGldXu4h8FXjRHfcVVW0f20s1yRJDbBPzNHpt9FTWpBo9BV7QsAULzVSXNmio6jOk7lt4dIRzbgFuSVG+EViRorwfuHqYutYB69JdpxmdgfRUwJun0R+JE4vrwAKGZuwSo6eSO8ITP9vOfWaqsxnhBSoxL6OixE9FiW9QmRmfUMQLDKWBoUFDbBkRM+VZ0ChQif3By9zoKbCVbrMl0RFeGvANKvfSUxY0zNRmQaNAJdJT5cU+qssCAHT1RSbykvJGvwvIJ3aEi61ya6Y8CxoFKjFaqjzgp6bCCxptvaGJvKS8ERoYPZWipWHpKTPFWdAoUH1J6am6Cm9Pjfbe8EReUt4IRb17e2KfhqWnzNRnQaNAJVIopYGigd37LGhkR39kuJaG2JBbM+VlMk/D5KHjI3x8lLkO27YeCxrZkGhppJqnYUNuzVRnLY0CFY7FKRJvTSS/r4jp5QFraWRJKBon4JMT5rwU+21GuJn6LGgUqFA0Tonfh9sHi9ryYgsaWRKKxCkdkpoCmxFu8oMFjQIVisQGpU9qKyxoZEt/NEZJ4MT/Wv4iW7DQTH0WNAqU19KwoJELoUj8hE5wgIDf+jTM1GdBo0CFovFBn4brKotps6CRFaFhWhrFviKilp4yU5wFjQIVjg7+NFxbUUxHMEzcZiyPW/9wLQ3bT8PkAQsaBSoUjQ1JT5UQiyvH+m0pkfEaem8TbHKfyQcWNApUKBof0hGeWErEUlTjNbS/KCHgKxrYa8OYqcqCRoHyOmsHtzTAZoVnQygaP2GFW7AZ4WNxtCfEm23Bib4MkyST7V7nichvRWS7iGwVkU+78loRWS8iO933mqRzbhKRJhF5Q0RWJ5WfJyJb3HN3uG1fcVvDPuDKN4jIgqRz1rrfsVNE1mKywkuhHH9jq7OlRLImFBk+PRWNW0tjNG5+eCsfv/fF9AeakyaTlkYU+JyqngFcANwoIsuALwFPqOoS4An3M+65NcBy4HLg2yKSeHf6DnA93r7hS9zzANcBHaq6GLgduNXVVQvcDJwPrAJuTg5OZuxSDbkFCxrZ4I1MG35yn6q1NjK17dAx9hztJWYDNCaNtEFDVQ+p6svucTewHZgLXAHc4w67B7jSPb4CuF9VQ6q6B2gCVolIAzBNVZ9T73/NvUPOSdT1EHCxa4WsBtararuqdgDrOR5ozDiEh7yxWdDInlAkRmnKloY3+95SVJnpj8TY19ZLJKYcPtY/0ZdjnFH1abi00bnABmCWqh4CL7AAM91hc4H9Sac1u7K57vHQ8kHnqGoU6ALqRqjLjFMoGqc4aQ/r0oCPimKfLVqYBf1D5sAkJPYMtxFUmdnb1kuigWH9GpNHxkFDRCqBnwKfUdVjIx2aokxHKB/rOcnXdr2IbBSRja2trSNcmklINQGttrLYNmLKAq9PI3V6CrAJfhnaeaRn4PH+dgsak0VGQUNEAngB4z9V9Weu+IhLOeG+t7jyZmBe0umNwEFX3piifNA5IuIHqoH2EeoaRFXvVNWVqrqyvr4+k5dU8IaOngKYV1POXvtEN27DDrl1ZbaUSGZ2tvRQJOArEt60oDFpZDJ6SoC7gO2q+o2kpx4BEqOZ1gIPJ5WvcSOiFuJ1eL/gUljdInKBq/PaIeck6roKeNL1ezwOXCYiNa4D/DJXZsYpFDtx1vKi+kp2t/ZYR+04RGNxonFNOeS2eKBPw4JGJna19DC/tpw500staEwimWzCdBFwDbBFRDa5sn8AvgY8KCLXAW8CVwOo6lYReRDYhjfy6kZVjbnzbgDuBsqAx9wXeEHpPhFpwmthrHF1tYvIV4HEmLuvqGr7GF+rcVTVLSMy+DPDqfUVdPdHOdoTpr6qZIKubmo7vj94qlVurU9jNHa2dLN4ZhV9kSj7OyxoTBZpg4aqPkPqvgWAi4c55xbglhTlG4EVKcr7cUEnxXPrgHXprtNkLvHGNnRnuUX1lQDsau2xoDFGIwWNRHrKgkZ6kVicPUd7effps+jqC7N+25GJviTj2IzwAjTcG9up9RUA7G7tPenXlC8SW72OnJ6y9F86b7YHicSUxTMrmVdbztGeML2h6ERflsGCRkFKvLENnYA2p7qM0kARu1p7Up1mMtDv9l63Ibfj0xn0hn7PrCphXk05gKWoJgkLGgUoPExLo6hIWDjD6ww3YzMQkFMMufVb0MhYb8i7jxUlPubXekHD5mpMDhY0CtBIefdF9RXssvTUmIUiI/RpuPRUOGrpqXSCYS8VVRbw01BdCkBLt80hmgwsaBSgkd7YFtVX0twRpD8SO+E5k14iIKfu07CWRqaSWxrTy70lbjpsiZtJwYJGARophbJkViVxhZ9s3H/Ccya9RLAdbpVbwFa6zUCipVFe7KfYX0RliZ+OoG0QNhlY0ChAI6WnLjljFu88rZ7/8/BWfvzCmyf70qa84/d2+GVELD2VXm/4eEsDYHp5gI6gtTQmAwsaBWigIzzFCJ/SgI87r1nJWY3V/NcGCxqjdXxk2kir3FpLI51gOIYIlLrgm9jD3kw8CxoFaGByn+/ET8PgTfpbtaCWnS3dto/BKCWG3JaO2NKwoJFOMBSlPOCjqMgLtNPLi61PY5KwoFGARvo0nLB0dhX9kbit+TNKI93bROd4yIJGWr3hGOUlxxesqC0P0G4tjUnBgkYBGmn0VMJps6oAeONw90m5pnwx0r0tdYHERqalFwxHqSg+3lqrqSims9c6wicDCxoFaKTO2oQlsyoRgR1HLGiMxkhDbhNlfRY00uoNxSgvPt7SqCkvpjsUtdTeJGBBowCFo8MPC00oL/Yzv7acNyxojEqiFZG8K2JCib8IEW+TJjOyYDhK+ZCWBkBnn6WoJpoFjQI03Cq3Qy2dVWXpqVFKbKOb6MBNJiKU+Ivot0/LaQ3t06gpDwDQYSmqCWdBowCNNE8j2WmzqthztHegc9ekF4rGRryvpQEffWG7n+n0DenTqHWzwtttBNWEs6BRgELRGL4iGVhAbzhLZ1cRiyu7Wmwtqkz1R+InrB6crCzgs47wDAzt00gsJdJpI6gmXCbbva4TkRYReS2p7MsickBENrmv9yY9d5OINInIGyKyOqn8PBHZ4p67w235itsW9gFXvkFEFiSds1ZEdrqvxHawZpxS7dqXypKZ3qZMO1ssRZWpTFoalp5KLxiODswGB29yH2DDbieBTFoadwOXpyi/XVXPcV+PAojIMrytWpe7c74tIol/+e8A1+PtGb4kqc7rgA5VXQzcDtzq6qoFbgbOB1YBN7t9ws04hTIMGgtnVFAk3l7NJjOhaHzE+S8l/iJraWSgNzy0peH1aXTa+lMTLu07h6o+jbdvdyauAO5X1ZCq7gGagFUi0gBMU9XnVFWBe4Erk865xz1+CLjYtUJWA+tVtV1VO4D1pA5eZpRCkXjaTnDwPhXPqy2nyfbXyFgoEk85Gzyh1NJTaUViccLR+KA+jdKAj/Jin/VpTALj6dP4lIhsdumrRAtgLpC8PGqzK5vrHg8tH3SOqkaBLqBuhLrMOHkplOHf2JItrq+kyVoaGQtFYyO2NKxPI72gGyiQPHoKvLkatv7UxBtr0PgOsAg4BzgEfN2VnzjOEHSE8rGeM4iIXC8iG0VkY2tr60jXbcg8PQWweGYle472ErVF9jISiox8b0sDRQPrU5nUji+LPviDTU1FwNafmgTGFDRU9YiqxlQ1Dnwfr88BvNbAvKRDG4GDrrwxRfmgc0TED1TjpcOGqyvV9dypqitVdWV9ff1YXlJBCafJuydbNLOSSExtDaoM9adpxVl6Kr3EBkwnBI3yYtqtT2PCjSlouD6KhA8CiZFVjwBr3IiohXgd3i+o6iGgW0QucP0V1wIPJ52TGBl1FfCk6/d4HLhMRGpc+usyV2bGyWtpZJieciOoLEWVmWA4dsKbXbLSgM+WEUkjMY+lojhFespaGhPOn+4AEfkx8E5ghog0441oeqeInIOXLtoLfAJAVbeKyIPANiAK3Kiqif8hN+CNxCoDHnNfAHcB94lIE14LY42rq11Evgq86I77iqpm2iFvRhCKxlIuc5FKImhsO3SMaFy5dNmsgSW+zYn6wjHK0gQNS0+NrDeRnioZfB/rKoutI3wSSBs0VPUjKYrvGuH4W4BbUpRvBFakKO8Hrh6mrnXAunTXaEYnFI1TUZH2nx6AaaUBZlaV8B9P7EQVbvngCv7i/FNyfIVT19A1k4YqDRTZ2lNpJPo0hrY0ZlSW0BOKpg3MJrfsI2MBStdZO9Q586ZTVeKnvqqEx7YczuGVTX3BIfMLhrL0VHqJPo2KIS2N+qoSAI72hE76NZnjMvu4afJKOJZ5nwbA1z90Ngp876ldfPep3bT3hgdm6JrjYnElFI1TlmYZkWhcicbiaZdxKVTHR08Nfnuqr/SCRkt3iHm15Sf9uozH/moLUCgy8lIXQ1WVBphWGuA9KxqIxZX/2WqtjVQSo6LSpacAW0pkBAMtjaFBw1oak4IFjQIUimY2I3yo5XOmMb+2nEdfs6CRysCktDQd4WC7940k0dIY2m+RCBqt3RY0JpIFjQI0miG3yUSEC0+tY9vBrhxc1dSXGCpaNlKfhrvvtjz68HrDMQI+OeGDTSIlakFjYlnQKDCqSn8kNpAmGa35deUc7QkPfBo0xwUjqWcyJyt1z9keJcPrG2YwQcBXRG1FsaWnJpgFjQITjsWJxpWKkrGNgWisKQNgf3tfNi8rLwQHWhojBA336dnmagyvNzR4A6Zk9ZUl1tKYYBY0CkxwmCUaMjXfjVrZb8uKnCCRciofYfSU9WmkFxyy1WuyGVXW0phoFjQKTO8wE6cylRjquL/DgsZQGbU0XNCwuRrD6wkNP0GyvrKEVgsaE8qCRoE5vuz02FoadRXFlBf7bAHDFIZbnTVZ2UBLw9JTwznWH6G6LJDyuRkuPeUtT2cmggWNAtMbGl9LQ0SYV1NufRopZDR6KjFPw1oaw+rqGz5o1FeV0B+J02ujzyaMBY0C05fBXIJ05tWWW59GCsFR9GlYemp4XcGRgwbYsNuJZEGjwPQOBI2xryAzr7aM/R1BSxEMkQgEI/VpJPYxsUULU1NVOvsiA3uCDzWj0maFTzQLGgUmOMyy06Mxr6acYDhmy1QP0ReOUSSMuESL9WmMrCcUJRZXppelXtvMWhoTz4JGgRluXZ/RSAy7tc7wwRIr3Hr7jKVmQ25H1tXn7cxXPUxLY9a0UgBeP3TspF2TGcyCRoHJRktjfp0FjVT6ItG0+zwEfEX4isT6NIbR6bZzHa5Po7aimEvOmMUPn907sItfe2+Ybz6xk8//5FVeebPjpF1roUobNERknYi0iMhrSWW1IrJeRHa67zVJz90kIk0i8oaIrE4qP09Etrjn7nDbvuK2hn3AlW8QkQVJ56x1v2OniCS2hDXjMLD/8gidteksqKug2F/E1oP2aS9Zuq1eE0r9RZaeGkaipTF9mKAB8IXVp9ETjvLdp3Z5P//kVb6+fgcPvdTMT19uPinXWcgyaWncDVw+pOxLwBOqugR4wv2MiCzD2651uTvn2yKS+F/0HeB6vH3DlyTVeR3QoaqLgduBW11dtXhby54PrAJuTg5OZmyC4Sgl/qJx7eVQ7C/ijIZpbG7uzOKVTX3BcGzEvTQSyop99NvaUyklWhrTy4ffr+W02VX86bmN3PXMHv7t8Td44vUWvnj56Syqr7B+tpMg7TuHqj6Nt3d3siuAe9zje4Ark8rvV9WQqu4BmoBVItIATFPV59QbcnPvkHMSdT0EXOwkZJD0AAAgAElEQVRaIauB9ararqodwHpODF5mlILh2JjXnUp21txqXjtwjHjcRlAl9GXY0ijx+6xPYxgDLY1h+jQSbv7AMk5vqOJbv22iobqUj120gLqKEtp6LGjk2lg/bs5S1UMA7vtMVz4X2J90XLMrm+seDy0fdI6qRoEuoG6Eusw49KbZwzpTZzZW0xOKsretNwtXlR+C4fR9GuBN8LOgkVpnn/emP1yfRsK00gD3fGwV7z59Jv985QpKAz7qKotps5ZGzmV7u9dUw0Z0hPKxnjP4l4pcj5f6Yv78+emvsoAFQ5l9Gk7nzLnVAGw50MWp9ZXjri8fBMMxaitK0h5XVuyzPo1hdAUjlPiLBkaZjaSusoR1f/nWgZ9rK4pps/kbOTfWlsYRl3LCfW9x5c3AvKTjGoGDrrwxRfmgc0TED1TjpcOGq+sEqnqnqq5U1ZX19fVjfEmFwWtpjP+zwpKZlZT4i9jcbBsyJfRFMu0It/TUcDqDw0/sS6eusoTOvgjRmAXkXBpr0HgESIxmWgs8nFS+xo2IWojX4f2CS2F1i8gFrr/i2iHnJOq6CnjS9Xs8DlwmIjWuA/wyV2bGwevTGH9Lw+8rYvmcaWyxoDEg0z6N0oDPhtwOo7MvPOzEvnRmVBajCh2uM93kRiZDbn8MPAecJiLNInId8DXgUhHZCVzqfkZVtwIPAtuAXwM3qmrif8cNwA/wOsd3AY+58ruAOhFpAj6LG4mlqu3AV4EX3ddXXJkZh95QdloaAGc0TGNHS3dW6soHfeHYKPo07NNwKl19kWEn9qWT2A7WRlDlVtp3D1X9yDBPXTzM8bcAt6Qo3wisSFHeD1w9TF3rgHXprtFkLhiODbsr2mg1VJfSGYy47WOzU+dUpaoEM01PBXy29tQwOoORgT1bRqvO9Sd5/RpVWbwqk8xmhBeYkXZFG63Z1d7Wr4e7+rNS31QWjsWJxTWjVpylp4bX1RcZcWLfSGZUei2No9bSyCkLGgUmGB5+/+XRaqj21gE6fMyCxsBeGhm0uKrLAhzrs7x7KuPpCB9IT9kIqpyyoFFA4nH1Zi1nqU8jsXictTSS9tLIICDXVhTTG47ZCKohQtEYfZHYiLPBRzK9vJgiweZq5JgFjQKSSIlkq6Ux21oaAzLZHzyhxr0pdgTtzS1ZYjb4tDGmp3xF4s3VsKCRUxY0CkjvwAq32WlpVJb4qSrxW0uD5B0R09/b2grvTdFG+QzWFUy/WGE6NsEv9yxoFJBgKLstDfBaGxY0ji85n0mfxkBLo9f6NZJ19o28LHombP2p3LOgUUAGWhpZ6tMAL2gcsvQUwQy2ek2oc6N82i09Ncgh9+EjkfYci7rKYmvB5ZgFjQKSSKFkY0Z4wuxppRyxlsbAaKjqsvQB+XhLw97ckjV3eJt6zZ1eNuY66iqKbf/wHLOgUUB6R5F3z9Ts6lJauvsLfr2f5o4+AOZk8IZXXRZAbJTPCQ509FFTHhjX0v11lSUc648Sjhb232MuWdAoIMGQl57KakujupS4wtECzyMf6PTe8DIJyH5fEdVlAWtpDNHc0UdjzdhmgyckUn9tvdbayBULGgVkoKURyGJLw83VONTVl7U6p6IDHX3Mrck8rVJbUWx9GkMc6OwbV2oKYFaV9/fYcsyCRq5Y0CggwYEht9ltaQAcKfDO8NG+4dWWF1tLI4mq0twRHFXgTWXmNG/9qUL/e8wlCxoFpHdgyG32WhqJN8q9bcGs1TnVqKrX0pieeWqlpsJG+SRr7w3TH4nTOM6gkViloKXbWhq5YkGjgHQGwxT7iygNZO+ffXp5MafUlfPyvo6s1TnVdAQj9EVio0tPlRfbjPAkiYEE401P1VUUIwIt1tLIGQsaBeRAZx9zqkvx9sHKnpWn1PLSvg68vbMKz4ExvOElWhqFes+GOtDp3cPxdoT7fUXMqCyxlkYOWdAoIAc7+zIaEjpaKxfU0NYbZs/R3qzXPRUc6PRSc6NJrdRVFBOJKT1uRFuhG5ijMc70FMDMqhLr08ihcQUNEdkrIltEZJOIbHRltSKyXkR2uu81ScffJCJNIvKGiKxOKj/P1dMkIne4LWFx28Y+4Mo3iMiC8VxvoTvY2Z+ToPHWBd4/8cYCTVGNJbVSU2FLiSQ70NFHVal/XEuIJMyaVmotjRzKRkvjXap6jqqudD9/CXhCVZcAT7ifEZFlwBpgOXA58G0RSQzj+Q5wPd6e4kvc8wDXAR2quhi4Hbg1C9dbkCKxOC3duQkap86oZHp5gI17C3M33oOd/ZQX+0a1D8TAooXWrwF4gXe8/RkJXkvDgkau5CI9dQVwj3t8D3BlUvn9qhpS1T14e4WvEpEGYJqqPqdegvfeIeck6noIuFiynZAvEEeO9RNXmDOOdX2GU1QkrDylho17C7OlcaAzyNzpZaPqK7KlRAbb09bL/DFu8zrUzGmltPWGCn6VglwZb9BQ4H9E5CURud6VzVLVQwDu+0xXPhfYn3Rusyub6x4PLR90jqpGgS6gbpzXXJAOdno53ly0NADOapzO7qO9A+tbFZLmUU7sg6T9rC1o0BeOsfdoL6c3TMtKfTOrSlBbpSBnxhs0LlLVtwDvAW4UkXeMcGyqj2E6QvlI5wyuWOR6EdkoIhtbW1vTXXNBOtiZ+dpIY7F4ZiUAu4/25KT+yaovHGPHkW5Om101qvPqq7ygkfh3KWQ7jnQTV1jWMLp7OJyZ7t62dFtneC6MK2io6kH3vQX4b2AVcMSlnHDfW9zhzcC8pNMbgYOuvDFF+aBzRMQPVAMnJM5V9U5VXamqK+vr68fzkvLWgYGgkf30FMCiei9oNLUUVtB45c0OIjHlgoWjawCXFftorCljZ4Hdr1ReP3wMgNNnZ6elkZjgZ/0auTHmoCEiFSJSlXgMXAa8BjwCrHWHrQUedo8fAda4EVEL8Tq8X3AprG4RucD1V1w75JxEXVcBT6oNbB+TQ12ZL6g3FqfUlVMksKu1sIbdPr+nnSLxhh2P1tJZVew80p2Dq5path/qprzYl8U+janT0lBV7nx6F+//5u9ZffvT/GHX0Ym+pLTG09KYBTwjIq8CLwC/UtVfA18DLhWRncCl7mdUdSvwILAN+DVwo6omEuA3AD/A6xzfBTzmyu8C6kSkCfgsbiSWGb2Dnf00VOcmNQVQGvAxr7acXa2F9cl5w+42ls+ppqp09ENFl8yqZHdrb8F32G4/dIzTZldRVJSdMS4zKksQmRotjZff7OBfHn0dnwihaIw///4GHttyaKIva0Rj/tipqruBs1OUtwEXD3POLcAtKco3AitSlPcDV4/1Gs1xBzvHv+x0OovqK9lVIOmWN9uCiMAr+zu59oJTxlTH0plVhGNx9rYFB/qECo2q8vrhbt53VkPW6gy4WeGHpkB/0cObDlLiL+JHHz8ff1ERF936JL99o4X3nJm9+5FtuclVmEnnQGcf5y+szenvWDyzkmebjhKLK74sfWqcjGJx5YPffpb2YBhVOP/UsQ3oWzrL6/jdeaS7YIPGoa5+uvoinDHKgQTpLK6vZMck/wATicX55eZDXLJs1kBL9fTZVbxxZHJfty0jUgBajvXT3R9lXpZyxsNZVF9BKBofWIspX712oIu23jAXLZrBqgW1XHDq2ILx4pmViMCOSf4mkUubm7sAOCNLw20TzmiYxo7D3cTik7cL9JmdR2nvDXPlOXMHyhL9XPFJfN0WNArAC26m9lsX5LalkRhBle/9Gs80eZ2V/77mHB785IVj6s8AbwTVvJpydrQUTmf4vzy6nZ+/cmDg50e3HKKmPMDZ86Zn9fec3lBFXyTGm+2Td8n+h15uZnp5gD9eenzE52mzqwiGYwOjHScjCxoF4IU97ZQX+1g+J7uf5oZKBI038nxE0LNNRzl9dhUzKkvGXdfSWZU0FUhLY19bL3c+vZsv/nQzTS099IairN92hPee2UDAl923ojPc8N3th45ltd5saTnWz+OvHeaqtzRS7D/+2hMpyzcOT97/QxY0CsALe9o575Qa/Fn+jzlUTUUxS2dV8vSO/J1g2ReOsXFvB3+0eEZW6lvWMI2m1h46C2ANqoc3edOvSgM+/u6BTdz/4n76IjE+cPacrP+uJbMqKRJ4fZIGjftf3E80rvzFkEEUS2dN/g9eFjTyXGcwzOuHu3PeCZ5wyRmz2LCnna5gfq7eunFfO+FYnIuWZCdoXHzGLGJxZf22I1mpb7JSVX6+6QDnL6zltqvOYvuhY3z1l9toqC7NSdq0NOBj4YwKtk/CT+zRWJz/2vAm71haz8IZFYOeqyoNMHd6GTssaJiJ8qJbRHDVKGcsj9Uly7w3wd/taEl/8BT02GuHKQ0UsSpLb3RnNVYzd3oZv37tcFbqm6y2HOhid2svV547l9XLZ7P+s3/M1ec18rnLTsva/IyhzmiYNjDbfCLtPNLNawe6Bn7+zfYWDh/r55phhmqfNrvK0lNm4rywp41ifxFnNVaflN93TuN0ZlQW85vt+Rc0+iMxfvHqQd67ooGKkuyMVhcRLl8xm9/vPEp3f362ztp7w3z2wVepKvHz3hXe/IOFMyr4v1efzVXnNaY5e+zOaJjG/vY+uvom7r7G48pf37uRa+7aMPDv+6Pn9zF3ehnvPn1mynOWzqpiV2vPpF0B2YJGnnu2qY3z5tdQGvClPzgLioqEi0+fxe9ebyEYzq9d6R7fepju/ihXrczuG917VswmHIvzm+35l6Lqj8T42N0v8mZ7kO+vXUn1KPYcGa+LXL/T/S+8edJ+51C/29HC3rYgHcEIP/j9Hna19vBM01H+/Pz5w85l+tO3zCUWV+54cmfK5zft72Sv2yXzYGcfn3vwVVbc/Dj//MttJ2WVaQsaeaytJ8S2Q8e4aPHJXU3+6pWNdIei/PiF/ekPngI6g2F+/MKb3Pn0bhpryka9OGE6b5lfw6kzKvj2b3dN6nkFo6Wq/P1Dm9nc3Mk3P3IuF4xxEuRYnTNvOm9fMoPvPb2b3gnaVveHz+5l1rQSLls2i+//fjc3/OglAj7hQyvnDXvO0llVfPit87jvuX0nbKG892gvH/7ec3z0rg2094b50Pee45ebD3LeKTX84Jk9fOh7z+V8jocFjTz23O424PgnrpNl5YJaVi2s5ftP7yYUndr7awTDUT561wZu+tkWth48xscuWpj1HHxRkfD51aexs6WHn77cnP6EKSAeV/75V9t55NWDfP6y01i9fPaEXMdnLllKe2+YW3/9Ov2Rk/u32NTSw+93HuWaC07hS+85neqyAGXFfv75yhUDS+MP5+8uWUqxv4jbfv36QJmq8g//vQURbw+XK/7fMzR39HHfdedzz1+t4r8+fj5//Y5Tc9ZHlGDLiEwxkVgcn0hGfxjPNh2lqsTPmXNPTn9Gsk+9azHXrnuBn79ygA+/df5J//3ZoKp8+v5NbDt4jO9+9C286/SZlPhzk+Z7z4rZnD1vOt/4nx1ctmwW093OflORqvK/7n+FX20+xF++bQF/885FE3Yt551Sw4dWNnLvc/v47RstPHD9hTnbU2aon7y0H3+R8OG3zqe+qoTnbkq5JF9KM6eV8ol3LOL23+xg4952Vi6o5b7n9/GHXW3c8sEVPLPzKI+9dpg/P38+q9zIyLedpA+H1tKYQrqCEd5/xzNcevtTbD3YNexxzzYd5cuPbOXJ11u4YFFdzudnpPL2JTNYUFc+pUcF3f/iftZvO8L/ft8yLl/RkLOAAV6H+D99YDltvSE+ff+mKZ2menzrEX61+RCfu3QpX/7A8lFtg5sLt111Nvddt4qj3WH+8eevcTJ2V4jG4vzs5QO887SZaVsVw/nrdyxkZlUJX/7FVn72cjNf/eU23nVaPR9563z+6QPLufFdi/jSe07P8pWnZ0FjigiGo1x/30b2HO3lWH+UP/nmM1zwL0/wxYc2D2p2B8NR/u6BTdz9h70cORYadoRGrokIb19Sz4Y97USm2NLfbT0hnt/dxr/8ajsXnlrHX1204KT83nPmTefmP1nOUzta+cHvd5+U35ltsbjyjfVvcOqMCm6YwBbGUG9fUs/nLlvKk6+38LOXD6Q/YZx+v/Mord2hcY0OKy/283/ev4zth7r57IOv0lBdxr9/+FyKioSZ00r5wurTmTbGJWzGw9JTSTp6w9RUTL60wG+2HeEff/4ah4/18x9rzuHtS+q55w972XO0lwdf2s/rR7r5/jXnMXNaKd9/eg8t3SEe/MSFzK0po2Fabnbqy8RFi2dw3/P72LS/M+frXmXLawe6uOq7f6A/Eqcs4ONrf3bmSf2k/Bfnz+fxrYf5/u/3sPZtC07aqLfxaO4I0hmMsGJuNT96fh87jvRwx0fOnZAW7kg+dtFCHnvtMF946FUOH+vnb965KOv/tm09Ib75ZBNPvt5CbUXxuD+0/cnZc3j7khk8t6uNFXOrT+ros+FY0HA6esNc8K9PsHJBDde/Y9GgRcQmUldfhL+9/xXm15bzzT8/d+DN9+8uXQrA+89q4NP3b+KK//csHzx3Lj98di/vWTF7IM85kS48tY4i8VbznOigcairjz2tvZQV+zjWH2V3aw87jnRTFvBz+uwq3ndWA36f8LkHX6WqNMC3PnImZ8yZxtyTlP9OEBE+8Y5FfPSuDTy8aXL1B/WEovzXhn08uuUwb18yg/NOqeH3O49y33P7CMfinD67itcPd/O2RXW8fxLuB+ErEu79q1V88aeb+b+Pv0F7b5h/fN8ZaQNHfyTGFx7azMv7OuiPxFhUX8mn3r2Ydwx5j4jE4tzwo5fZtL+TFXOn8cXLTx+0rtRYTS8vnlT7a8hU2D1VRC4H/gPwAT9Q1a8Nd+zKlSt148aNo/4dXcEI9zy3lwde3M+RY/387gvvzPqmRZ3BMHvbgtRVFNNYU5bRp5zvPbWLf33sdX71t3/E8jmpO7RfO9DFx+/ZyOFj/bx9yQxuu+qsnO7SNxpXfOsZAr4iHrrhbRN2DY9uOcTnf/IqwSFj2GvKA4SicYLhGGUBH2XFPtp7w/zwL9/KuyYorQdeR/J773iGcDTGz2+8aMyr6GbTht1tfOaBTRzq6mfJzEqaWntQBRH403MbWTqrkh8+u5cPnDOHL6w+LesLEGaTqvJPv9jG3X/Yyyf/eBF/v3rkWelffmQrd/9hL+8/q4HKEj9/2NVGW0+I//zrC9i4t529bb2Eo3H2tQXZsKed/1hzDlckLXc+VYjIS6q6Mu1xkz1oiIgP2IG3dWwz8CLwEVXdlur4sQaNhAOdffzxbb/loxecwpc/sDzlMV19EV7d38mKudXUpkln9YaiPNN0lN+90cp/v9JMf8TL7y+dVckH3X+2hTMqmFdbfsJ/tGgszjtu+y3z68q5//oLR/w9XcEI3aFIznfnG63bfv0633t6N9/6yLksn1NNc0eQCxfVDQqY/ZEYrd2hgUD6h11HWffMHo4cC3HhojqWz5nGW+bXjHo/kOaOILf9+g0eefUg586fzmcvXUokFmdaaYDGmnJmV5eiqrz8Zge/ePUQfeEYbzll+qT4dP8/Ww/zyR+9xJzpZdzwzkWcv7COxTMriceVptYeqkr9zKgsyfmb8+Gufv7jiR3c/+J+Tqkt5+sfOpvzTqll79FeDnb1sbxhcqRMRiseV/7x4df4rw1vcskZs5g1zbuX7z+rgUX1lexp6+WRTQdp6w3zi1cP8pdvWzDwfnC4q5/3f/MZjvZ428nWVhRT7Cui2F/Eh986jxvftXgiX9qY5VPQuBD4sqqudj/fBKCq/5rq+PEGDYDP/+RVfrn5IL//+3dTV1HM9sPH+ENTG9sPHaMvEuOpHa0Dn1rfeVo9n7lkKYI3O/NoTwhfUREN00spD/j43E9epbmjj9JAER84ew4XnzGLw139/PTl5oENaMBrOjfWlBHwFREMRQlGYgRDMcKxON+/diWXLps1rtc0UVq7Q3z83o28ur9zoOx9ZzbQWFPGQy814ysSOoJhIjHlkjNmUewXHt1ymBmVxZw6o5JX9ncQiSlFAh88t5E500uHXRaiNODj9NlVVJT4efnNDn747F6KBP767afyqXcvzunop1x4aV87X/jJZna7CV5/cvYcDnb28dI+bz0xEairKGZmVSkzp5XQUF3GxafPZGF9Ba8d6KLlWIg9bb1sP3SMt8yv4dz503l+dxvhqPfB5WBnP7OrSzlzbjVF4nViB/xFnNEwja0HuvjJS97fqL9IuPbCBXz2sqVUZmn5lMlAVbnz6d3c+uvXqSj2E4nHBz7UAZQGvG1jT589jW/9+bmD+pdeebOD+57bxzUXnsK582sm4vKzLp+CxlXA5ar6cffzNcD5qvqpVMdnI2g0tXRz6e1P4xOh3OXAAWZPK6U0UMRbTqnhfWc28GpzF3c/u2fg+VTmTi/jX/70TC48te6E/GZHb5g9bb3sae1lz9Fe9rT1oqqUF/spL/ZRXuynobqUay44JecTdnIpHI1z3/P7UFX6IzG+vn4HAJcvn01VqZ+aimJK/T6++9QuVOHTlyzhuj9aSGnARygaY8/RXn6ysZn7nt9HNBanqjRAqtvRG44NvCEC/Om5c/n86tNO2rj8XFBV9rUF+dnLzXz36d1Ulvj51LsWUxrwceRYPy3dIVrc931tvSf8LVaV+lk8s5ItzV1E40pliZ+KEh+q0FBdyr52rxM7leVzpvGeFbN5/1lzWDBkNdZ80heOUeIvojcc5akdrbQcCzGtLMDlK2bnVZBMJ5+CxtXA6iFBY5Wq/q+kY64HrgeYP3/+efv27Rv3731xbztPvt5CZzDMWxfUcuGiupT9BB29YX6z/QjTy4tpqPY+8cXjsPtoD7tae3n/mQ2TckTWRHrlzQ7Ki/2cNmRf6AOdfcRiyvy61Gmo/kiMgK9o2DV7orE4e9t6CUXjzKgsYdYEjhzLha6+CAGfUF6c+o0sEovz9I5WjvaEOKtxOnNryqgq8SMitBzrZ39HH2c1Vg9KacXj6qVZBHwiBMMxth7sYnZ1GWc3Vk/4HAtz8uRT0Djp6SljjCk0mQaNyTvE4bgXgSUislBEioE1wCMTfE3GGFOQJn3CTlWjIvIp4HG8IbfrVHXrBF+WMcYUpEkfNABU9VHg0Ym+DmOMKXRTIT1ljDFmkrCgYYwxJmMWNIwxxmTMgoYxxpiMWdAwxhiTsUk/uW+0RKQbeGOc1VQDw2+Nl3/1AcwAjmaprqnwerNdZzbvH0z+e5jN+uzejU827t8MoEJV0+8Joap59QVszEIdd2b5miZ1fdm6b1Ps9Wb7GrN2/6bCPcxmfXbvJv7+jaYOS0+l9osCqy/bpsLrtXs4uerLpsn+WifzvUsrH9NTGzWD9VPMYHbfxsfu39jZvRufbNy/0dSRjy2NOyf6AqYou2/jY/dv7OzejU827l/GdeRdS8MYY0zu5GNLwxhjTI5Y0MhTIjJPRH4rIttFZKuIfNqV14rIehHZ6b7XuPI6d3yPiHxrSF0fEZEtIrJZRH4tIjMm4jWdTFm+fx92926riNw2Ea/nZBrDvbtURF5yf2Mvici7k+o6z5U3icgdUgC7QmX5/t0iIvtFpCdrF5jNoV/2NXm+gAbgLe5xFbADWAbcBnzJlX8JuNU9rgD+CPgk8K2kevxACzDD/Xwb3qZYE/4ap8j9qwPeBOrdz/cAF0/065tk9+5cYI57vAI4kFTXC8CFgACPAe+Z6Nc3xe7fBa6+nmxdn7U08pSqHlLVl93jbmA7MBe4Au+NC/f9SndMr6o+A/QPqUrcV4X7lDcNOJj7VzCxsnj/TgV2qGqr+/k3wJ/l+PIn1Bju3Suqmvib2gqUikiJiDQA01T1OfXeAe9NnJPPsnX/3HPPq+qhbF6fBY0CICIL8D6NbABmJf6I3PeZI52rqhHgBmALXrBYBtyVw8uddMZz/4Am4HQRWSAifrz/6PNyd7WTyxju3Z8Br6hqCO+NsjnpuWZXVjDGef9ywoJGnhORSuCnwGdU9dgYzg/gBY1zgTnAZuCmrF7kJDbe+6eqHXj37wHg98BeIJrNa5ysRnvvRGQ5cCvwiURRisMKZrhnFu5fTljQyGPuDf+nwH+q6s9c8RHX7Md9b0lTzTkAqrrLpQgeBN6Wo0ueVLJ0/1DVX6jq+ap6Id66aDtzdc2TxWjvnYg0Av8NXKuqu1xxM9CYVG0jBZAahazdv5ywoJGnXP/DXcB2Vf1G0lOPAGvd47XAw2mqOgAsE5HEQmaX4uVY81oW7x8iMtN9rwH+BvhBdq92chntvROR6cCvgJtU9dnEwS4F0y0iF7g6ryWD+z3VZev+5cxEjxSwr9x84Y3kUbx00ib39V680TxP4H3afQKoTTpnL9AO9OB9ylvmyj+JFyg2462bUzfRr2+K3b8fA9vc15qJfm2T7d4B/wj0Jh27CZjpnlsJvAbsAr6Fm5Ccz19Zvn+3ub/FuPv+5fFen80IN8YYkzFLTxljjMmYBQ1jjDEZs6BhjDEmYxY0jDHGZMyChjHGmIxZ0DDmJBORT4rItaM4foGIvJbLazImU/6JvgBjComI+FX1uxN9HcaMlQUNY0bJLSL3a7xF5M7FW7r6WuAM4BtAJXAU+EtVPSQivwP+AFwEPCIiVXhLVf+biJwDfBcox5vA9leq2iEi5wHrgCDwzMl7dcaMzNJTxozNacCdqnoWcAy4EfgmcJWqJt7wb0k6frqq/rGqfn1IPfcCX3T1bAFuduU/BP5WvfWqjJk0rKVhzNjs1+Pr/PwI+Ae8DXDWu83lfEDyPgYPDK1ARKrxgslTruge4Ccpyu8D3pP9l2DM6FnQMGZshq6/0w1sHaFl0DuKuiVF/cZMCpaeMmZs5otIIkB8BHgeqE+UiUjA7W8wLFXtAjpE5O2u6BrgKVXtBLpE5I9c+V9k//KNGRtraRgzNtuBtSLyPbxVR78JPA7c4dJLfuDf8bbfHMla4LsiUg7sBj7myrUTaUEAAABZSURBVD8GrBORoKvXmEnBVrk1ZpTc6KlfquqKCb4UY046S08ZY4zJmLU0jDHGZMxaGsYYYzJmQcMYY0zGLGgYY4zJmAUNY4wxGbOgYYwxJmMWNIwxxmTs/wN76zoWiDy4vgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'][-200:].plot()" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", " for y in range(1985,\n", " sorted_data.index[-1].year)]" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "year = []\n", "yearly_incidence = []\n", "for week1, week2 in zip(first_august_week[:-1],\n", " first_august_week[1:]):\n", " one_year = sorted_data['inc'][week1:week2-1]\n", " assert abs(len(one_year)-52) < 2\n", " yearly_incidence.append(one_year.sum())\n", " year.append(week2.year)\n", "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAD8CAYAAABQFVIjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3X+QldWd5/H3B0FxElEg6PBDhY3GCppZHLrQLfdHxB0gPyrgjJmwOkrVWEXijy1nNrWiE7fMKFMVU5M4y7ohMWNG1FF0TCzdRIa0UWucWQSaoFE0TjMrgygjWI2KUwVj43f/eL53fLhpbt9ubve9t/vzqrrVT5/nnHNPPzT9vefH8xxFBGZmZkdrTLMbYGZmI4MDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNcTYZjdgOH3sYx+LmTNnNrsZZmZtZcuWLW9FxJT+8o2qgDJz5ky6urqa3Qwzs7Yi6R/ryechLzMzawgHFDMzawgHFDMza4i6AoqkHZJekPScpK5M+7qk1zPtOUmfLeW/UdJ2Sa9IWlhKn5v1bJe0SpIy/ThJD2b6RkkzS2WWSerO17JS+qzM251ljz36y2FmZoM1kB7KhRExJyI6Smm3Z9qciHgcQNJsYClwNrAI+I6kYzL/amA5cGa+FmX6lcC+iDgDuB24LeuaBNwMnAfMA26WNDHL3JbvfyawL+swM7MmGYohr8XA2og4GBGvAtuBeZKmAhMiYkMUu3rdAywplVmTxw8DF2XvZSHQGRE9EbEP6AQW5bn5mZcsW6mrre159wC/+70N7Nl/oNlNMTMbkHoDSgA/lbRF0vJS+rWSfiHpB6Wew3TgtVKeXZk2PY+r0w8rExG9wDvA5Bp1TQbezrzVdbW1VT/rZvOOHlY90d3sppiZDUi996FcEBFvSDoZ6JT0S4rhq1spgs2twLeA3wfUR/mokc4gytSq6zAZAJcDnHbaaX1laQln3bSOg70f/Ov3923cyX0bd3Lc2DG8svIzTWyZmVl96uqhRMQb+XUP8AgwLyLejIhDEfEB8H2KOQ4oegunlorPAN7I9Bl9pB9WRtJY4ESgp0ZdbwEnZd7quqrbfmdEdEREx5Qp/d7o2TTPXH8hX5gzjfHjin+S8ePGsHjONJ5ZcWGTW2ZmVp9+A4qkj0g6oXIMLABezDmRiouBF/P4MWBprtyaRTH5vikidgP7JZ2fcyBXAI+WylRWcF0CPJnzLOuBBZIm5pDaAmB9nnsq85JlK3W1pZMnjOeE48ZysPcDjhs7hoO9H3DCcWM5+YTxzW6amVld6hnyOgV4JFf4jgXuj4i/lnSvpDkUQ007gC8DRMQ2SQ8BLwG9wDURcSjrugq4GzgeWJcvgLuAeyVtp+iZLM26eiTdCmzOfLdERE8erwDWSloJbM062tpb7x3ksvNO59J5p3H/pp3s9cS8mbURFR/2R4eOjo7ws7zMzAZG0paqW0b65DvlzcysIRxQzMysIRxQzMysIRxQzMysIRxQzMysIRxQ2pCf92VmrcgBpQ35eV9m1opG1Z7y7c7P+zKzVuYeShvx877MrJU5oLQRP+/LzFqZh7zajJ/3ZWatys/yqsOedw9w7QNbuePSc90bMLNRx8/yaiCvqjIz65+HvGrwqiozs/q5h1KDV1WZmdXPAaUGr6oyM6tfXQFF0g5JL0h6TlJXpk2S1CmpO79OLOW/UdJ2Sa9IWlhKn5v1bJe0KrcCJrcLfjDTN0qaWSqzLN+jW9KyUvqszNudZY89+svxqyqrqh65+gIuO+909r53cCjexsys7dW1ykvSDqAjIt4qpX0T6ImIb0i6AZgYESskzQYeAOYB04AngE9ExCFJm4DrgGeBx4FVEbFO0tXAb0TEVyQtBS6OiC9JmgR0AR0UWw1vAeZGxL7cZvhHEbFW0neB5yNida2fwzs2mpkN3HCs8loMrMnjNcCSUvraiDgYEa8C24F5kqYCEyJiQxRR7J6qMpW6HgYuyt7LQqAzInoiYh/QCSzKc/Mzb/X7m5lZE9QbUAL4qaQtkpZn2ikRsRsgv56c6dOB10pld2Xa9DyuTj+sTET0Au8Ak2vUNRl4O/NW12VmZk1Q77LhCyLiDUknA52Sflkjr/pIixrpgylTq67DG1MEwOUAp512Wl9ZzMysAerqoUTEG/l1D/AIxfzImzmMRX7dk9l3AaeWis8A3sj0GX2kH1ZG0ljgRKCnRl1vASdl3uq6qtt+Z0R0RETHlClT6vlxzcxsEPoNKJI+IumEyjGwAHgReAyorLpaBjyax48BS3Pl1izgTGBTDovtl3R+zoFcUVWmUtclwJM5z7IeWCBpYq4iWwCsz3NPZd7q9zczsyaoZ8jrFOCRXOE7Frg/Iv5a0mbgIUlXAjuBLwJExLZcgfUS0AtcExGHsq6rgLuB44F1+QK4C7hX0naKnsnSrKtH0q3A5sx3S0T05PEKYK2klcDWrMPMzJrED4c0M7Oa/HBIMzMbVg4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEHUHFEnHSNoq6cf5/dclvS7puXx9tpT3RknbJb0iaWEpfa6kF/Lcqtxbntx//sFM3yhpZqnMMknd+VpWSp+Vebuz7LFHdynMzOxoDKSHch3wclXa7RExJ1+PA0iaTbEn/NnAIuA7ko7J/KuB5cCZ+VqU6VcC+yLiDOB24LasaxJwM3AeMA+4WdLELHNbvv+ZwL6sw8zMmqSugCJpBvA54M/ryL4YWBsRByPiVWA7ME/SVGBCRGyIYiP7e4AlpTJr8vhh4KLsvSwEOiOiJyL2AZ3Aojw3P/OSZSt1mZlZE9TbQ/kz4Hrgg6r0ayX9QtIPSj2H6cBrpTy7Mm16HlenH1YmInqBd4DJNeqaDLydeavrMjOzJug3oEj6PLAnIrZUnVoNfByYA+wGvlUp0kc1USN9MGVq1XUYScsldUnq2rt3b19ZzMysAerpoVwAfEHSDmAtMF/SfRHxZkQciogPgO9TzHFA0Vs4tVR+BvBGps/oI/2wMpLGAicCPTXqegs4KfNW13WYiLgzIjoiomPKlCl1/LhmZjYY/QaUiLgxImZExEyKyfYnI+L3ck6k4mLgxTx+DFiaK7dmUUy+b4qI3cB+SefnHMgVwKOlMpUVXJfkewSwHlggaWIOqS0A1ue5pzIvWbZSl5mZNcHY/rMc0TclzaEYatoBfBkgIrZJegh4CegFromIQ1nmKuBu4HhgXb4A7gLulbSdomeyNOvqkXQrsDnz3RIRPXm8AlgraSWwNeswM7MmUfFhf3To6OiIrq6uZjfDzKytSNoSER395fOd8mZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGY2Kux59wC/+70N7Nl/oNlNGbEcUMxsVFj1s2427+hh1RPdzW7KiHU0z/IyM2t5Z920joO9H27ldN/Gndy3cSfHjR3DKys/08SWjTzuoZjZiPbM9RfyhTnTGD+u+HM3ftwYFs+ZxjMrLmxyy0YeBxQza5rhmNc4ecJ4TjhuLAd7P+C4sWM42PsBJxw3lpNPGD9k7zlaOaCYWdMM17zGW+8d5LLzTueRqy/gsvNOZ+97B4f0/UYrP77ezIZd9bxGhec1WpMfX29mLcvzGiOTA4qZDTvPa4xMdQcUScdI2irpx/n9JEmdkrrz68RS3hslbZf0iqSFpfS5kl7Ic6tyb3ly//kHM32jpJmlMsvyPbolLSulz8q83Vn22KO7FGY2nDyvMfLUPYci6b8BHcCEiPi8pG8CPRHxDUk3ABMjYoWk2cADwDxgGvAE8ImIOCRpE3Ad8CzwOLAqItZJuhr4jYj4iqSlwMUR8SVJk4CufN8AtgBzI2Jf7lv/o4hYK+m7wPMRsbrWz+A5FDOzgWvoHIqkGcDngD8vJS8G1uTxGmBJKX1tRByMiFeB7cA8SVMpgtGGKKLYPVVlKnU9DFyUvZeFQGdE9ETEPqATWJTn5mfe6vc3M7MmqHfI68+A64HysoxTImI3QH49OdOnA6+V8u3KtOl5XJ1+WJmI6AXeASbXqGsy8Hbmra7rMJKWS+qS1LV37946f1wzMxuofgOKpM8DeyJiS511qo+0qJE+mDK16jo8MeLOiOiIiI4pU6b0lcXMzBqgnh7KBcAXJO0A1gLzJd0HvJnDWOTXPZl/F3BqqfwM4I1Mn9FH+mFlJI0FTgR6atT1FnBS5q2uy6wmP3XWbGj0G1Ai4saImBERM4GlwJMR8XvAY0Bl1dUy4NE8fgxYmiu3ZgFnAptyWGy/pPNzDuSKqjKVui7J9whgPbBA0sRcRbYAWJ/nnsq81e9vVpOfOms2NI7macPfAB6SdCWwE/giQERsyxVYLwG9wDURcSjLXAXcDRwPrMsXwF3AvZK2U/RMlmZdPZJuBTZnvlsioiePVwBrJa0EtmYdZkfkp86aDS0/esVGjT3vHmDl4y/z023/xIH3P2D8uDEsPPvX+drnPukb6sxq8KNXzKoM5O7sdpxnacc228jigGKjSr13Z7fjPEs7ttlGFg95mZW041Nw27HN1l485GU2CO34FNx2bLONTA4oZiXt+BTcdmyzjUxHs2zYbESqzLNcOu807t+0k71tMMndjm22kcdzKGZmVpPnUMzMbFg5oJiZWUM4oJiZDYBvID0yBxQzswHwDaRH5lVe1lb2vHuAax/Yyh2XnutlsTas/HDR/rmHYm3Fnw6tWXwDaf/cQ7G2MNo/Hbpn1ny+gbR/7qFYWxjtnw7dM2sN9T5cdLRyD8VaRq1P4aP10+Fo75m1mu9d/uG9fSuXnNPElrSmfnsoksZL2iTpeUnbJP1xpn9d0uuSnsvXZ0tlbpS0XdIrkhaW0udKeiHPrcqtgMntgh/M9I2SZpbKLJPUna9lpfRZmbc7yx7bmEtiA9WoZZT9fQofjZ8OR3vPzNpLPT2Ug8D8iHhP0jjgbyVVtu69PSL+tJxZ0myKLXzPBqYBT0j6RG4DvBpYDjwLPA4sotgG+EpgX0ScIWkpcBvwJUmTgJuBDiCALZIei4h9mef2iFgr6btZx+rBXwobrHIgWHnxpwZcvt5P4aPx0+Fo7ZlZe+q3hxKF9/Lbcfmq9QCwxcDaiDgYEa8C24F5kqYCEyJiQxQPELsHWFIqsyaPHwYuyt7LQqAzInoyiHQCi/Lc/MxLlq3UZcPkrJvWMfOGn3Dfxp1EFIFg5g0/4ayb1vVfuMSfwmsbjT0za091zaFIOgbYApwB/O+I2CjpM8C1kq4AuoCv5h/96RQ9kIpdmfZ+Hlenk19fA4iIXknvAJPL6VVlJgNvR0RvH3XZMHnm+guPuEf7QPhTeG2jsWdm7amuVV4RcSgi5gAzKHob51AML30cmAPsBr6V2dVXFTXSB1OmVl2HkbRcUpekrr179/aVxQapkYHAn8JHHj+iZPQZ0CqviHhb0tPAovLciaTvAz/Ob3cBp5aKzQDeyPQZfaSXy+ySNBY4EejJ9E9XlXkaeAs4SdLY7KWU66pu853AnVA8vn4gP6/1r1H7cPhT+MhztHNr1n763Q9F0hTg/QwmxwM/pZgQ3xIRuzPPHwLnRcRSSWcD9wPzKCblfwacGRGHJG0G/iuwkWJS/n9FxOOSrgE+FRFfyUn5346I381J+S3Ab2Zzfg7MjYgeSX8F/LA0Kf+LiPhOrZ/F+6GYDT3vcT/y1LsfSj09lKnAmpxHGQM8FBE/lnSvpDkUQ007gC8DRMQ2SQ8BLwG9wDW5wgvgKuBu4HiK1V2V2du7gHslbafomSzNunok3Qpszny3RERPHq8A1kpaCWzNOsysyRo1t2btp9+AEhG/AM7tI/3yGmX+BPiTPtK7gF8Zz4iIA8AXj1DXD4Af9JH+/yh6QWbWQrzIYvTynfJm1nDe43508p7yZmZWk/eUNzOzYeWAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYjaEvCeIjSYOKGZDqLwniNlI54dDmg2B6j1B7tu4k/s27vSeIDaiuYdiNgSeuf5CvjBnGuPHFf/Fxo8bw+I503hmxYVNbpnZ0HFAMRsC3hPERiMHFBtRWmkSvLInyCNXX8Bl553O3vcONrtJZkOq34AiabykTZKel7RN0h9n+iRJnZK68+vEUpkbJW2X9IqkhaX0uZJeyHOrJCnTj5P0YKZvlDSzVGZZvke3pGWl9FmZtzvLHtuYS2LtrJUmwb93eQcrl5zD7GkTWLnkHL53eb/bSZi1tX432Mo/+h+JiPckjQP+FrgO+G2gJyK+IekGYGJErJA0G3iAYnveacATwCci4pCkTVn2WeBxYFVErJN0NfAbEfEVSUuBiyPiS5ImAV1AB8Xe9VuAuRGxL/et/1FErJX0XeD5iFhd62fxBlsjV/UkeIUnwc2OXsM22IrCe/ntuHwFsBhYk+lrgCV5vBhYGxEHI+JVYDswT9JUYEJEbIgiit1TVaZS18PARRnIFgKdEdETEfuATmBRnpufeavf30YhT4IPr1YaWrTWUdcciqRjJD0H7KH4A78ROCUidgPk15Mz+3TgtVLxXZk2PY+r0w8rExG9wDvA5Bp1TQbezrzVdVW3fbmkLklde/furefHtTbkSfDh1UpDi9Y66roPJSIOAXMknQQ8IumcGtnVVxU10gdTplZdhydG3AncCcWQV195bGSoTIJfOu807t+0k73+9Nxwvr/GahnQjY0R8bakp4FFwJuSpkbE7hzO2pPZdgGnlorNAN7I9Bl9pJfL7JI0FjgR6Mn0T1eVeRp4CzhJ0tjspZTrslGqPOm9ckmtzzw2WM9cfyErH3+Zn277Jw68/wHjx41h4dm/ztc+98lmN81aQD2rvKZkzwRJxwP/Gfgl8BhQWXW1DHg0jx8DlubKrVnAmcCmHBbbL+n8nAO5oqpMpa5LgCdznmU9sEDSxFxFtgBYn+eeyrzV729mQ8RDi1ZLPT2UqcAaScdQBKCHIuLHkjYAD0m6EtgJfBEgIrblCqyXgF7gmhwyA7gKuBs4HliXL4C7gHslbafomSzNunok3Qpszny3RERPHq8A1kpaCWzNOsxsiHlo0Y6k32XDI8lQLhve8+4Brn1gK3dceq4/rZk1UDv+32rHNtfSsGXDVh+vejEbGu34f6sd29wI7qEcJd9QZzY02vH/Vju2uR7uoQwT31BnNjTa8f9WO7a5kRxQjtJAVr347mJrB63ye9qOK8rasc2N5IDSAPU+VXa0jqtae2ml39N2fGJzO7a5UTyHMgxG6riqjSz+PbUj8RxKCxnt46rWHvx72npaZfixXg4ow6Cdx1Xb7RfaBq+df09HqlYafqzHgJ7lZYPXrncXl3+hV178qWY3x4ZYu/6ejjTt+hBOz6FYnzyebtY8e949cMSHcDajx+g5FDsqHk83a552HX70kJf1qV1/oc1GinYcfnRAsSNqx19os5GiHff38RzKKDbSnohqZkPDcyjWr3Zbkmhmrc1DXqNQuy5JbDXu4Zkdrp4tgE+V9JSklyVtk3Rdpn9d0uuSnsvXZ0tlbpS0XdIrkhaW0udKeiHPrcqtgMntgh/M9I2SZpbKLJPUna9lpfRZmbc7yx7bmEsy8nkFV2O4h2d2uHp6KL3AVyPi55JOALZI6sxzt0fEn5YzS5pNsYXv2cA04AlJn8htgFcDy4FngceBRRTbAF8J7IuIMyQtBW4DviRpEnAz0AFEvvdjEbEv89weEWslfTfrWD34SzF6eAXX0XEPz6xv/fZQImJ3RPw8j/cDLwPTaxRZDKyNiIMR8SqwHZgnaSowISI2RLES4B5gSanMmjx+GLgoey8Lgc6I6Mkg0gksynPzMy9ZtlKX1WE0PxH1aLmHZ9a3Ac2h5FDUucBG4ALgWklXAF0UvZh9FMHm2VKxXZn2fh5Xp5NfXwOIiF5J7wCTy+lVZSYDb0dEbx91WR3acUliq3APz6xvda/ykvRR4IfAH0TEuxTDSx8H5gC7gW9VsvZRPGqkD6ZMrbqq271cUpekrr179/aVxWzA3MMz+1V19VAkjaMIJn8ZET8CiIg3S+e/D/w4v90FnFoqPgN4I9Nn9JFeLrNL0ljgRKAn0z9dVeZp4C3gJEljs5dSruswEXEncCcU96HU8/Oa9cc9PLNfVc8qLwF3AS9HxLdL6VNL2S4GXszjx4CluXJrFnAmsCkidgP7JZ2fdV4BPFoqU1nBdQnwZM6zrAcWSJooaSKwAFif557KvGTZSl1mZtYE9fRQLgAuB16Q9Fym/RHwXyTNoRhq2gF8GSAitkl6CHiJYoXYNbnCC+Aq4G7geIrVXesy/S7gXknbKXomS7OuHkm3Apsz3y0R0ZPHK4C1klYCW7MOMzNrEj96xczMavKjV8zMbFg5oJiZNcFI3F7bAcVsFBmJf8Ta1Uh8dI8fDmk2ipT/iK28+FPNbs6oNJIf3eNJebNRoPqPWMVI+CPWbhq5X/xwPfHak/Jm9q/8/LHW0chH97TasJmHvMyabDg+Zfr5Y63laLfXbtVhMwcUsyYbrnmNo/0jZo1ztI/ueeb6C484bNZMDihmTTLcnzL9/LGRo1V7nJ5DMWsSz2s0zmhcDt2KT7x2D8WsSVr1U2Y7Go3LoVuxx+mAYtZEntc4Oq06OT1a+T4UM2tbjbynw47M96GY2YjnYcPW4iEvM2trHjZsHR7yMjMbwRpx46yHvMzMbFgfz1LPnvKnSnpK0suStkm6LtMnSeqU1J1fJ5bK3Chpu6RXJC0spc+V9EKeW5V7y5P7zz+Y6RslzSyVWZbv0S1pWSl9VubtzrLHNuaSmJm1v7NuWsfMG37CfRt3ElGsgJt5w08466Z1/RcepHp6KL3AVyPik8D5wDWSZgM3AD+LiDOBn+X35LmlwNnAIuA7ko7JulYDy4Ez87Uo068E9kXEGcDtwG1Z1yTgZuA8YB5wcylw3Qbcnu+/L+swMzOac+NsvwElInZHxM/zeD/wMjAdWAysyWxrgCV5vBhYGxEHI+JVYDswT9JUYEJEbIhi4uaeqjKVuh4GLsrey0KgMyJ6ImIf0AksynPzM2/1+5uZjXrNWAE3oFVeORR1LrAROCUidkMRdCSdnNmmA8+Wiu3KtPfzuDq9Uua1rKtX0jvA5HJ6VZnJwNsR0dtHXWZmxvCvgKs7oEj6KPBD4A8i4t2c/ugzax9pUSN9MGVq1XV4Y6TlFMNsnHbaaX1lMTMbkYb78Sx1rfKSNI4imPxlRPwok9/MYSzy655M3wWcWio+A3gj02f0kX5YGUljgROBnhp1vQWclHmr6zpMRNwZER0R0TFlypR6flwzMxuEelZ5CbgLeDkivl069RhQWXW1DHi0lL40V27Noph835TDY/slnZ91XlFVplLXJcCTOc+yHlggaWJOxi8A1ue5pzJv9fubmVkT1DPkdQFwOfCCpOcy7Y+AbwAPSboS2Al8ESAitkl6CHiJYoXYNRFxKMtdBdwNHA+syxcUAeteSdspeiZLs64eSbcCmzPfLRHRk8crgLWSVgJbsw4zM2sS3ylvZmY1+U55aymjcQMks9HGAcWGxXA+/sHMmsNPG7Yh5Q2QzEYP91BsSHnfdLPRwwHFhpQ3QDIbPTzkZUPOGyCZjQ5eNmxmZjV52bCZmQ0rBxQzM2sIB5QRyjcSmtlwc0AZoXwjoZkNN6/yGmF8I6GZNYt7KCOMbyQ0GzwPFR8dB5QRxjcSmg2eh4qPjoe8RiDfSGg2MB4qbgzf2Ghmo96edw+w8vGX+em2f+LA+x8wftwYFp7963ztc590754G3tgo6QeS9kh6sZT2dUmvS3ouX58tnbtR0nZJr0haWEqfK+mFPLcqtwEmtwp+MNM3SppZKrNMUne+lpXSZ2Xe7ix7bD0XxcysLx4qbox65lDuBhb1kX57RMzJ1+MAkmZTbN97dpb5jqRjMv9qYDnFHvNnluq8EtgXEWcAtwO3ZV2TgJuB84B5wM25rzyZ5/aIOBPYl3WYmQ1aZaj4kasv4LLzTmfveweb3aS20+8cSkT8TbnX0I/FwNqIOAi8mnvEz5O0A5gQERsAJN0DLKHYU34x8PUs/zBwR/ZeFgKdlT3kJXUCiyStBeYDl2aZNVl+dZ1tNDP7Fd+7/MMRnZVLzmliS9rX0azyulbSL3JIrNJzmA68VsqzK9Om53F1+mFlIqIXeAeYXKOuycDbmbe6LjMza5LBBpTVwMeBOcBu4FuZrj7yRo30wZSpVdevkLRcUpekrr179x4pm5mZHaVBBZSIeDMiDkXEB8D3KeY4oOgtnFrKOgN4I9Nn9JF+WBlJY4ETgZ4adb0FnJR5q+vqq613RkRHRHRMmTJloD+qmZnVaVABRdLU0rcXA5UVYI8BS3Pl1iyKyfdNEbEb2C/p/JwfuQJ4tFSmsoLrEuDJKNYyrwcWSJqYQ2oLgPV57qnMS5at1GVmZk3S76S8pAeATwMfk7SLYuXVpyXNoRhq2gF8GSAitkl6CHgJ6AWuiYhDWdVVFCvGjqeYjF+X6XcB9+YEfg/FKjEiokfSrcDmzHdLZYIeWAGslbQS2Jp1mJlZE/nGRjMzq6neGxtHVUCRtBf4xz5OfYxibqaduM1Dr93aC27zcGm3Nh9te0+PiH4noUdVQDkSSV31RN9W4jYPvXZrL7jNw6Xd2jxc7fXThs3MrCEcUMzMrCEcUAp3NrsBg+A2D712ay+4zcOl3do8LO31HIqZmTWEeyhmZtYQIzKgHGEPl38raUPuyfJ/JE3I9HGS1mT6y5JuLJV5Ovd1qez7cnKLtPlYSX+R6c9L+nSpTJ/7zrR4m4flOks6VdJT+e+8TdJ1mT5JUmfur9NZetjpgPf3afE2t+R1ljQ5878n6Y6qulryOvfT5iG/zoNo729J2pLXcouk+aW6GneNI2LEvYD/CPwm8GIpbTPwn/L494Fb8/hSikfuA/waxZ3/M/P7p4GOFmzzNcBf5PHJwBZgTH6ruEO0AAADpklEQVS/Cfh3FA/RXAd8pg3aPCzXGZgK/GYenwD8PTAb+CZwQ6bfANyWx7OB54HjgFnAPwDHDOd1bnCbW/U6fwT498BXgDuq6mrV61yrzUN+nQfR3nOBaXl8DvD6UFzjEdlDiYi/oXiMS9lZwN/kcSfwO5XswEdUPGzyeOBfgHeHo51lA2zzbOBnWW4P8DbQoeIZaxMiYkMUvymVfWdats1D1ba+RMTuiPh5Hu8HXqbY+mAxxb465NfKNfvX/X0i4lWgsr/PsF3nRrV5KNrWqDZHxD9HxN8CB8r1tPJ1PlKbh8sg2rs1IioP0d0GjFfxzMWGXuMRGVCO4EXgC3n8RT58kvHDwD9TPIZ/J/Cn8eEzwwD+Irut/2Moh4+O4Ehtfh5YLGmsiodwzs1ztfadGS4DbXPFsF5nFZvGnQtsBE6J4gGm5NfKEMVg9vcZMkfZ5opWvM5H0srXuT/Ddp0H0d7fAbZGsRFiQ6/xaAoovw9cI2kLRRfxXzJ9HnAImEYxRPBVSf8mz10WEZ8C/kO+Lh/eJh+xzT+g+IfvAv4M+L8UD+Mc0F4xQ2SgbYZhvs6SPgr8EPiDiKjVG23InjyN0IA2Q+te5yNW0Udaq1znWobtOg+0vZLOpthC/cuVpD6yDfoaj5qAEhG/jIgFETEXeIBibBmKOZS/joj3cyjm78ihmIh4Pb/uB+5n+IcO+mxzRPRGxB9GxJyIWAycBHRTe9+ZVm3zsF5nSeMo/gP+ZUT8KJPfzK5/ZZhlT6YPZn+fVm1zK1/nI2nl63xEw3WdB9peSTOAR4ArIqLy96+h13jUBJTKSgtJY4CbgO/mqZ3AfBU+ApwP/DKHZj6WZcYBn+fDfV+a2mZJv5ZtRdJvAb0R8VLU3nemJds8nNc5r8ldwMsR8e3SqfKePOX9dQazv09LtrnFr3OfWvw6H6meYbnOA22vpJOAnwA3RsTfVTI3/BoPdja/lV8Un4x3A+9TROArgesoVkL8PfANPryp86PAX1FMVL0E/Pf4cBXHFuAXee5/kqtlWqDNM4FXKCbinqB4Emilng6KX+B/AO6olGnVNg/ndaZYlRP5Xs/l67PAZIoFA935dVKpzNfyWr5CafXLcF3nRrW5Da7zDooFHu/l79LsNrjOv9Lm4brOA20vxYe7fy7lfQ44udHX2HfKm5lZQ4yaIS8zMxtaDihmZtYQDihmZtYQDihmZtYQDihmZtYQDihmZtYQDihmZtYQDihmZtYQ/x/rFzgxQKYDrwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "yearly_incidence.plot(style='*')" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2014 1600941\n", "1991 1659249\n", "1995 1840410\n", "2020 2042389\n", "2012 2175217\n", "2003 2234584\n", "2019 2254386\n", "2006 2307352\n", "2017 2321583\n", "2001 2529279\n", "1992 2574578\n", "1993 2703886\n", "2018 2705325\n", "1988 2765617\n", "2007 2780164\n", "1987 2855570\n", "2016 2856393\n", "2011 2857040\n", "2008 2973918\n", "1998 3034904\n", "2002 3125418\n", "2009 3444020\n", "1994 3514763\n", "1996 3539413\n", "2004 3567744\n", "1997 3620066\n", "2015 3654892\n", "2000 3826372\n", "2005 3835025\n", "1999 3908112\n", "2010 4111392\n", "2013 4182691\n", "1986 5115251\n", "1990 5235827\n", "1989 5466192\n", "dtype: int64" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "yearly_incidence.sort_values()" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEKCAYAAAAGvn7fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGbhJREFUeJzt3X2UJXV95/H3h5kBhmkYjAONDkr7QAjIqDgXXWQ13WhcdNCcGE5QQcVIGo0PRCdnM8v6sLrLOj5MsphgkklUiAodw8PZyBjUE2hQNEgPqA2OEBdmlSEMAjLSMAuMfPePX7XctP1wq27dvsXPz+ucPn3vrbpVn/rdut9b9auqexURmJlZPvbqdwAzM6uXC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLzNJeTnzVqlUxNDQ067AHH3yQFStW9HL2lTU5GzQ7n7NV1+R8zlZd2Xxbt269JyIO6mqmEdGzv7Vr18ZcrrrqqjmH9VuTs0U0O5+zVdfkfM5WXdl8wER0WXvdFWNmlhkXdjOzzLiwm5llxoXdzCwzLuxmZpkpVdglvUfSzZJuknSRpH17FczMzKrpuLBLWg28G2hFxNHAEuB1vQpmZmbVlO2KWQosl7QU2A+4s/5IZmbWDUWJ3zyVdBZwDrAb+GpEnDrLOKPAKMDg4ODasbGxWac1NTXFwMBAlcw91+RsUH++yR27apvW4HLYubvz8desXlnbvBfyq/a61snZqiubb2RkZGtEtLqZZ8eFXdKTgEuAU4D7gX8ALo6Iz8/1nFarFRMTE7MOGx8fZ3h4uGzeRdHkbFB/vqENW2qb1vo1e9g02fk3VWzfuK62eS/kV+11rZOzVVc2n6SuC3uZrpiXA7dHxE8i4lHgUuDF3czczMzqV6aw/wj4D5L2kyTgZcC23sQyM7OqOi7sEXEdcDFwAzBZPHdzj3KZmVlFpb62NyI+CHywR1nMzKwGvvLUzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMdF3ZJR0j6TtvfzyT9US/DmZlZeR3/NF5E3AI8H0DSEmAHcFmPcpmZWUVVu2JeBvyfiPi/dYYxM7PuKSLKP0n6DHBDRPzFLMNGgVGAwcHBtWNjY7NOY2pqioGBgdLzXgxNzgb155vcsau2aQ0uh527Ox9/zeqVtc17Ie3tVucylzHf8jZ5vXO26srmGxkZ2RoRrW7mWbqwS9obuBN4TkTsnG/cVqsVExMTsw4bHx9neHi41LwXS5OzQf35hjZsqW1a69fsYdNkxz18bN+4rrZ5L6S93epc5jLmW94mr3fOVl3ZfJK6LuxVumJeSdpan7eom5lZf1Qp7K8HLqo7iJmZ1aNUYZe0H/BbwKW9iWNmZt3qvDMUiIiHgCf3KIuZmdXAV56amWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZabsT+MdKOliST+QtE3Scb0KZmZm1ZT6aTzgXOCKiDhZ0t7Afj3IZGZmXei4sEs6AHgpcDpARDwCPNKbWGZmVpUiorMRpecDm4HvA88DtgJnRcSDM8YbBUYBBgcH146Njc06vampKQYGBqon75HJHbsYXA47dy/+vNesXtnReHW33eSOXbVNq2zbdbrMdWhvtzqXuYz5lrep7wlwtm6UzTcyMrI1IlrdzLNMYW8B/wIcHxHXSToX+FlEvH+u57RarZiYmJh12Pj4OMPDw+UT99jQhi2sX7OHTZNle6m6t33juo7Gq7vthjZsqW1aZduu02WuQ3u71bnMZcy3vE19T4CzdaNsPkldF/YyB0/vAO6IiOuK+xcDL+hm5mZmVr+OC3tE3AX8WNIRxUMvI3XLmJlZg5Ttb3gX8IXijJjbgLfUH8nMzLpRqrBHxHeArvp+zMyst3zlqZlZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmSv2CkqTtwAPAz4E93f6StpmZ1a/sb54CjETEPbUnMTOzWrgrxswsM4qIzkeWbgd+CgTw1xGxeZZxRoFRgMHBwbVjY2OzTmtqaoqBgYEqmXtqcscuBpfDzt2LP+81q1d2NF7dbTe5Y1dt0yrbdp0ucx3a263OZS5jvuVt6nsCnK0bZfONjIxs7babu2xhf2pE3CnpYOBrwLsi4pq5xm+1WjExMTHrsPHxcYaHh0vG7b2hDVtYv2YPmyar9FJ1Z/vGdR2NV3fbDW3YUtu0yrZdp8tch/Z2q3OZy5hveZv6ngBn60bZfJK6LuylumIi4s7i/93AZcALu5m5mZnVr+PCLmmFpP2nbwOvAG7qVTAzM6umTH/DIHCZpOnnXRgRV/QklZmZVdZxYY+I24Dn9TCLmZnVwKc7mpllxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWWmdGGXtETSjZIu70UgMzPrTpUt9rOAbXUHMTOzepQq7JIOBdYBf9ubOGZm1i1FROcjSxcDHwH2B/44Ik6aZZxRYBRgcHBw7djY2KzTmpqaYmBgoErmnprcsYvB5bBzd7+TzK3J+cpmW7N6Ze/CzNC+zk3u2LVo82033/I29T0BztaNsvlGRka2RkSrm3ku7XRESScBd0fEVknDc40XEZuBzQCtViuGh2cfdXx8nLmG9dPpG7awfs0eNk123DSLrsn5ymbbfupw78LM0L7Onb5hy6LNt918y9vU9wQ4Wzf6ka9MV8zxwGskbQfGgBMkfb4nqczMrLKOC3tE/JeIODQihoDXAVdGxGk9S2ZmZpX4PHYzs8xU6qiNiHFgvNYkZmZWC2+xm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMdFzYJe0r6duSvivpZkkf6mUwMzOrpswvKD0MnBARU5KWAd+Q9E8R8S89ymZmZhV0XNgjIoCp4u6y4i96EcrMzKpTqtcdjiwtAbYCzwbOi4g/mWWcUWAUYHBwcO3Y2Nis05qammJgYGDOeU3u2NVxrroNLoedu/s2+wU1OV/ZbGtWr+xdmBna17l+rV/zLe9C74l+eqJma8LrXLbtRkZGtkZEq5v5lyrsv3iSdCBwGfCuiLhprvFarVZMTEzMOmx8fJzh4eE55zG0YUvpXHVZv2YPmyYr/c73omhyvrLZtm9c18M0/177Otev9Wu+5V3oPdFPT9RsTXidy7adpK4Le6WzYiLifmAcOLGbmZuZWf3KnBVzULGljqTlwMuBH/QqmJmZVVNmf/4pwAVFP/tewBcj4vLexDIzs6rKnBXzPeCYHmYxM7Ma+MpTM7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8yU+c3Tp0m6StI2STdLOquXwczMrJoyv3m6B1gfETdI2h/YKulrEfH9HmUzM7MKOt5ij4h/i4gbitsPANuA1b0KZmZm1Sgiyj9JGgKuAY6OiJ/NGDYKjAIMDg6uHRsbm3UaU1NTDAwMzDmPyR27Sueqy+By2Lm7b7NfUJPzOVt1vc63ZvXKys9d6P3aT/Nl61cdaW/rsm03MjKyNSJa3cy/dGGXNABcDZwTEZfON26r1YqJiYlZh42PjzM8PDznc4c2bCmVq07r1+xh02SZXqrF1eR8zlZdr/Nt37iu8nMXer/203zZ+lVH2tu6bNtJ6rqwlzorRtIy4BLgCwsVdTMz648yZ8UI+DSwLSL+tHeRzMysG2W22I8H3gicIOk7xd+repTLzMwq6rhDLyK+AaiHWczMrAa+8tTMLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsM2V+8/Qzku6WdFMvA5mZWXfKbLGfD5zYoxxmZlaTjgt7RFwD3NfDLGZmVgNFROcjS0PA5RFx9DzjjAKjAIODg2vHxsZmHW9qaoqBgYE55zW5Y1fHueo2uBx27u7b7BfU5HzOVl2v861ZvbLycxd6v/bTfNn6VUfa27ps242MjGyNiFY386+9sLdrtVoxMTEx67Dx8XGGh4fnfO7Qhi0d56rb+jV72DS5tG/zX0iT8zlbdb3Ot33jusrPXej92k/zZetXHWlv67JtJ6nrwu6zYszMMuPCbmaWmTKnO14EfAs4QtIdkt7au1hmZlZVxx16EfH6XgYxM7N6uCvGzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDOlCrukEyXdIumHkjb0KpSZmVVX5jdPlwDnAa8EjgJeL+moXgUzM7NqymyxvxD4YUTcFhGPAGPAb/cmlpmZVaWI6GxE6WTgxIg4o7j/RuBFEfHOGeONAqPF3SOAW+aY5CrgniqhF0GTs0Gz8zlbdU3O52zVlc13WEQc1M0Ml5YYV7M89kufChGxGdi84MSkiYholZj/omlyNmh2Pmerrsn5nK26fuQr0xVzB/C0tvuHAnfWG8fMzLpVprBfDxwu6RmS9gZeB/xjb2KZmVlVHXfFRMQeSe8EvgIsAT4TETd3Me8Fu2v6qMnZoNn5nK26JudztuoWPV/HB0/NzOyJwVeempllxoXdzCwzLuxmZpl5QhZ2Saslre53jtlIeqak90g6od9ZZmpyNmh2Pmerrsn5mpwNqud7QhV2SUOSrgauAD4u6SX9ztRO0n8Evkb6Lp23SXp7nyP9QpOzQbPzOVt1Tc7X5GzQZb6IaPQfsG/b7dcCnyhuvxn4B2BNcV99yHYC8Izp+QMfAE4r7r8I+BIw3I98Tc7W9HzOlme+JmerO18jt9glHSDpryTdCnxC0mHFoN8BflTcHgN+CJwx/bRFzHeUpO8B/w34rKQTIrX2UcAhABFxHfBN4C2Lma/J2Zqez9nyzNfkbL3K18jCDpwI7EtasEeAD0haTtoteTVARDwMXAy8pLj/WK/CSDpU0gFtD50CXBIRLyV9wLxB0uHAhdP5CpcBR0vap1f5mpyt6fmcLc98Tc62WPn6VtiVLJX0Vklfl3SWpGcVg58NPBIRe4A/A34KnAZ8FXiKpF8rxrsV+LGk43qU8UhJXwa+AXxY0vTXFP8/YL/i9heBu4B1pE/UJ7ftYdxH+nbL5/0qZWt6PmfLM1+Tsy12vr4V9mJX4zeBNwEfA/YB/qYYfBdwd/HJ9GPSwjyL1ADf5/GvBV4G3Fs8XgtJK9ruPh+4IyKGgCuBTxSP3wc8LGn/iLgP+FfgqUWObwLvLcbbG/g5sD33bE3P52x55mtytn7mW7TCLuk4SR+VdHpxX8CRwBUR8aWI+BhwmKQXAztIn2BHFk/fBgwUj/0F8CpJryZ9KAwC3+0y25MknS/pemCjpIOKfGuAayUpIv4RuF/SOtKewv7FcIr7BwOPkfYwDpb0N8BFwJ6IuDvHbE3P52zVNTlfk7M1Jd+iFHZJzwH+EngA+D1J7y3mvRp4oFhogPOBN5AK9R7gxcXjN5COGD8UEdcAG4DTgeOB/x4Rj7VNo4qXFvN7FemgxNnAAaQvOzuk2LsAuKDI9+1iWV4JEBHfKqaxNCK2AWcCNwP/MyLeQneanK3p+Zwtz3xNztaMfHOdLlP1j7RlfQZpt2Np8difAmcVt1vAJ4GTgZcDX2l77tNIuyqQCvmNpF9hOgb438BT2sYtfTpS0bBnAleTunNWFY9/EXh3cfsZwMZi+LGk/rAlbcv2k2I6q0l7Eu8EPgt8CljRRbs1NlvT8zmbX1e33b//q3WLXdLzSQc4fxv4IPC+YtAO0m+mQvrkuRb4XeCfgUMkPVfSskj96TskvSQiriR93eVHgUuBiyLi36bnFUXLlHQS8BrgQ8BxpL59SGfbTO8d/Bj4OvDKiLie9Ik7UsxzCrgOODYidgBvJHUF3QW8LyIeLBuobU/j1U3LNoPbrprGtRu47brJ9kRouzI/jfdLJL0QOBz4akT8hLQ1fmtEnC7pBcA5klrAOPCfJO0XEQ9J+i7we6RzNC8E/gD4pKTdwCRwezGLvwIujIhdJTIpIkLSsaTdnK8DWyKdHvnrwG0RcaWk20lXr74C2Ar8jqRVEXGPpH8FHpT0dODPgdMkHUz61ah7SbtORMQEMFGh3VqkvZoHgI8DdwPP7Hc2t121bE+EdnPb5dd28ym1xa5kmaQ3SbqR1LF/IDBdeH8ObC+2vm8g7VocBzzE46fwADxK2gU5hLRVfhOpf/1q4J6IuAPSVnnFov5S4DOko8ovBz5SjPIYcKuk5RFxe5HvuaQX607S+aTTy7GE1D6XFBlPBdYCm6PiOa6SVkr6bDHN24FzI+JuSXuRPsn7mW1J0Xa/SdoVbEzbFevdgKTzaVjbFfMMScM0c53bR9KKhrbdAQ1vuwFJ+0q6gIa13YI66a8BVgAvLm4fWAT75CzjnUW6DHZ1cf9kUn/6YaSvALi6eHxfUjfMqrbnHgPs3UmeGfPcD3gbj2/5LwP+CHhHMfxJwPeK6Z9C6u8aKoadVCzLquL2JLCS1L//5fY8wF5dZLuIdMXYAKlr6cy2caaPQ7wT+B+Lla3tdT2DtLKtJx3gaUrbTWe7tFivDmpY2+0PbCH9khjAe5rQbjPyfRn46+L+x4C39bvtSO+JN5Pe/5c0re3a8l0J/H3xWGPWu07/Ftxil3Q2cBuwRdJgRNxP6he6s+gbf40ev0DoW6QDoNMXGl1LOoj6UERcAPxU0udIB0VvAX7RhxQRN0bEIwvlmZHtEOByYBj4HOkAxWtJewl7iun+lHTg9d2kvq+Defw0ymtI59I/EhGXA58mXc16HumI9aNt+Up9qs7I9nfA24tstwJHSNpYbEX9vtIFV1eQ9mB6nq3It4L05jqBdP3AK0jHPY4lbSn1s+3as20mnS3wWtI1DL/R77YrLCdde/EsSatI6/ySYpp9abdZ8u1NWteeSuriOFrSR/rVdpKWkY6xnQx8PCJ+txh0TNs0+9Z2M/J9LCKmt7gngaP62XaldfAJNkzavfhb4D3FY8eSitYdRfALgU3FsHOAD7c9/3rgmOL2PqRTgI6t41OJtPK+qO3+6aQtkzcD3257/KnAncXtd5Au231S8fwvAU9vG3dVj7K9iXSk+9eBvy/+Xg/8L9K5/IuWrW16B7bd/s+kN9Op/W67WbL9MemUsWc2qO3eTOprfT/wVtKBtOv73W6z5HsfaY9nVRPajrQHduqMx04BrmtC282R7+lFhr6vdx0vRwcLOn1qzinAeHF7GWlramVx/zDS1vqxpF3Ai0lbWv9E+qTapyfhUx+X4Be/3foCHu/uuZd0zuj0uF+jKLSk3aevFuP8ySJlOwb4xvSK2zbeMtLB5ROK++f0OtuMnAeQjm/sBD5c3L8XGOxX282S7a5ivisouvn61XZtr+dbSN1srwW+UDx2T7/bbY58Y8Vj7acL92W9I3VR3ApsKub/gaJ+3Acc3IB1rj3fVaQv5jq03+td6eUoscBPJl0o9Jzi/tIZw88HTp5egUhdD2fSo6I+x8p8AY+fL/854KPF7V8j7XE8ve2FOZq2rwRepGzvaH+suH1I0XbPXexsbRn+kHS+7WZSv/Y3izec+tl2M7KdRzqt7NlNaDvSV0YvIfWhXk3aMr4JeH+/17lZ8v0z6QyzFzSk7b5C2gN7Gmkr+CzShmFT1rn2fF8gXfp/eBPartO/6aLTEUmfAn4WERuK+3uRzrt8B/Ac4JQo2U9eF0mHkvq03hURtyp9odhokWs18J2o56qybrK9PSJuKx47htQtta7I9of9yNZO6TqEM0lvsiNJK+uh9LHt2rIdTXqz/TnpLKuT6FPbSRogdXPsQ2qn3yBdeHI2aUv5cPrYbrPkO5x0fOK3SMe8XkZqv76sdypOey5uP4/0Pr2WdEl939e5GfmOJl3pfi7pm2b7tt6VUfY89s3AucVBhiNJK/HxpBfl7H4V9cIxFOfASzqD1P9/NqkL6QeRTr/sd7YfFdluJ60ce0hb8Tf2MVu7e0kHAd8XEX8n6TTg5obku5/UT3wT6XVdRv/abg/p7IlHSVvqPyet/5PAexvQbnPle1jSa0gFv2/r3XTRLNxPOu70/oi4sAFtNzPfA6SN123Af6W/613Hym6xv450oPRh0jeOXRkRt/QoWymSriUdXNtOOof0QxHxvb6GKszIdhewoUHttpK0BfcG0vffbwbOi4hH533iIpgl26cjYlN/U/2y4sKT6b7su/qdZ6Yi38nAZyOdddLvPPuQfnPhjaQ96r8EPhXpa7r7bpZ8myPiz/qbqpyOC7uk55LO57yYdLCotq/K7VaxB/FB0pbw5yNdtdYITc4GIGkpqfvlYVK+Jr2ujc0G6aIu4LEos3W0iJqcT9KZpNNqP9e01xWan28hpbbYzcys+Zr603hmZlaRC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDP/H+KofDj+oV4qAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "yearly_incidence.hist(xrot=20)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 4 }