From d2fe10fb57e89ce2d009b17b92550ff949d48574 Mon Sep 17 00:00:00 2001 From: 4eabd7b2a36de6272dc6b0eb6646565f <4eabd7b2a36de6272dc6b0eb6646565f@app-learninglab.inria.fr> Date: Wed, 8 Nov 2023 21:39:06 +0000 Subject: [PATCH] =?UTF-8?q?-=20Retrait=20d'une=20derni=C3=A8re=20instance?= =?UTF-8?q?=20du=20caract=C3=A8re=20=E2=80=99.?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- module2/exo1/toy_notebook_fr.ipynb | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/module2/exo1/toy_notebook_fr.ipynb b/module2/exo1/toy_notebook_fr.ipynb index 74988ac..d08d657 100644 --- a/module2/exo1/toy_notebook_fr.ipynb +++ b/module2/exo1/toy_notebook_fr.ipynb @@ -71,9 +71,7 @@ "metadata": {}, "source": [ "## Avec un argument \"fréquentiel\" de surface\n", - "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction\n", - "sinus se base sur le fait que si $X\\sim U(0,1)$ et $Y\\sim U(0,1)$ alors $P[X^2+Y^2\\leq 1] = \\pi/4$ (voir\n", - "[méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :" + "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\\sim U(0,1)$ et $Y\\sim U(0,1)$ alors $P[X^2+Y^2\\leq 1] = \\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :" ] }, { @@ -97,6 +95,7 @@ "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", + "\n", "np.random.seed(seed=42)\n", "N = 1000\n", "x = np.random.uniform(size=N, low=0, high=1)\n", @@ -104,6 +103,7 @@ "\n", "accept = (x*x+y*y) <= 1\n", "reject = np.logical_not(accept)\n", + "\n", "fig, ax = plt.subplots(1)\n", "ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n", "ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n", @@ -114,7 +114,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Il est alors aisé d’obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :" + "Il est alors aisé d'obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :" ] }, { -- 2.18.1