{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Concentration de CO2 dans l'atmosphère depuis 1958"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"import pandas as pd\n",
"import xlrd\n",
"import math"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"on utilise les données disponibles sur le site Web de l'institut Scripps."
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"data_url = \"https://scrippsco2.ucsd.edu/assets/data/atmospheric/stations/in_situ_co2/monthly/monthly_in_situ_co2_mlo.csv\""
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"data_file = \"monthly_in_situ_co2_mlo.csv\"\n",
"\n",
"import os\n",
"import urllib.request\n",
"if not os.path.exists(data_file):\n",
" urllib.request.urlretrieve(data_url, data_file)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On voit dans le fichier csv récupéré que les lignes 1 à 57 (incluses) sont des commentaires. On peut donc ignorer ces lignes."
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Yr | \n",
" Mn | \n",
" Date | \n",
" Date.1 | \n",
" CO2 | \n",
" seasonally | \n",
" fit | \n",
" seasonally.1 | \n",
" CO2.1 | \n",
" seasonally.2 | \n",
" Sta | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" adjusted | \n",
" NaN | \n",
" adjusted fit | \n",
" filled | \n",
" adjusted filled | \n",
" NaN | \n",
"
\n",
" \n",
" 1 | \n",
" NaN | \n",
" NaN | \n",
" Excel | \n",
" NaN | \n",
" [ppm] | \n",
" [ppm] | \n",
" [ppm] | \n",
" [ppm] | \n",
" [ppm] | \n",
" [ppm] | \n",
" NaN | \n",
"
\n",
" \n",
" 2 | \n",
" 1958.0 | \n",
" 1.0 | \n",
" 21200 | \n",
" 1958.0411 | \n",
" -99.99 | \n",
" -99.99 | \n",
" -99.99 | \n",
" -99.99 | \n",
" -99.99 | \n",
" -99.99 | \n",
" MLO | \n",
"
\n",
" \n",
" 3 | \n",
" 1958.0 | \n",
" 2.0 | \n",
" 21231 | \n",
" 1958.1260 | \n",
" -99.99 | \n",
" -99.99 | \n",
" -99.99 | \n",
" -99.99 | \n",
" -99.99 | \n",
" -99.99 | \n",
" MLO | \n",
"
\n",
" \n",
" 4 | \n",
" 1958.0 | \n",
" 3.0 | \n",
" 21259 | \n",
" 1958.2027 | \n",
" 315.71 | \n",
" 314.44 | \n",
" 316.19 | \n",
" 314.91 | \n",
" 315.71 | \n",
" 314.44 | \n",
" MLO | \n",
"
\n",
" \n",
" 5 | \n",
" 1958.0 | \n",
" 4.0 | \n",
" 21290 | \n",
" 1958.2877 | \n",
" 317.45 | \n",
" 315.16 | \n",
" 317.30 | \n",
" 314.99 | \n",
" 317.45 | \n",
" 315.16 | \n",
" MLO | \n",
"
\n",
" \n",
" 6 | \n",
" 1958.0 | \n",
" 5.0 | \n",
" 21320 | \n",
" 1958.3699 | \n",
" 317.51 | \n",
" 314.69 | \n",
" 317.89 | \n",
" 315.06 | \n",
" 317.51 | \n",
" 314.69 | \n",
" MLO | \n",
"
\n",
" \n",
" 7 | \n",
" 1958.0 | \n",
" 6.0 | \n",
" 21351 | \n",
" 1958.4548 | \n",
" -99.99 | \n",
" -99.99 | \n",
" 317.27 | \n",
" 315.14 | \n",
" 317.27 | \n",
" 315.14 | \n",
" MLO | \n",
"
\n",
" \n",
" 8 | \n",
" 1958.0 | \n",
" 7.0 | \n",
" 21381 | \n",
" 1958.5370 | \n",
" 315.87 | \n",
" 315.20 | \n",
" 315.85 | \n",
" 315.22 | \n",
" 315.87 | \n",
" 315.20 | \n",
" MLO | \n",
"
\n",
" \n",
" 9 | \n",
" 1958.0 | \n",
" 8.0 | \n",
" 21412 | \n",
" 1958.6219 | \n",
" 314.93 | \n",
" 316.22 | \n",
" 313.97 | \n",
" 315.29 | \n",
" 314.93 | \n",
" 316.22 | \n",
" MLO | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Yr Mn Date Date.1 CO2 seasonally fit seasonally.1 \\\n",
"0 NaN NaN NaN NaN NaN adjusted NaN adjusted fit \n",
"1 NaN NaN Excel NaN [ppm] [ppm] [ppm] [ppm] \n",
"2 1958.0 1.0 21200 1958.0411 -99.99 -99.99 -99.99 -99.99 \n",
"3 1958.0 2.0 21231 1958.1260 -99.99 -99.99 -99.99 -99.99 \n",
"4 1958.0 3.0 21259 1958.2027 315.71 314.44 316.19 314.91 \n",
"5 1958.0 4.0 21290 1958.2877 317.45 315.16 317.30 314.99 \n",
"6 1958.0 5.0 21320 1958.3699 317.51 314.69 317.89 315.06 \n",
"7 1958.0 6.0 21351 1958.4548 -99.99 -99.99 317.27 315.14 \n",
"8 1958.0 7.0 21381 1958.5370 315.87 315.20 315.85 315.22 \n",
"9 1958.0 8.0 21412 1958.6219 314.93 316.22 313.97 315.29 \n",
"\n",
" CO2.1 seasonally.2 Sta \n",
"0 filled adjusted filled NaN \n",
"1 [ppm] [ppm] NaN \n",
"2 -99.99 -99.99 MLO \n",
"3 -99.99 -99.99 MLO \n",
"4 315.71 314.44 MLO \n",
"5 317.45 315.16 MLO \n",
"6 317.51 314.69 MLO \n",
"7 317.27 315.14 MLO \n",
"8 315.87 315.20 MLO \n",
"9 314.93 316.22 MLO "
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"raw_data = pd.read_csv(data_url, encoding = 'iso-8859-1', skiprows=57, skipinitialspace=True)\n",
"raw_data[:10]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On retire les deux premières lignes(0 et 1) car ce sont des informations à propos des formats et des unités de mesure."
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Yr | \n",
" Mn | \n",
" Date | \n",
" Date.1 | \n",
" CO2 | \n",
" seasonally | \n",
" fit | \n",
" seasonally.1 | \n",
" CO2.1 | \n",
" seasonally.2 | \n",
" Sta | \n",
"
\n",
" \n",
" \n",
" \n",
" 2 | \n",
" 1958.0 | \n",
" 1.0 | \n",
" 21200 | \n",
" 1958.0411 | \n",
" -99.99 | \n",
" -99.99 | \n",
" -99.99 | \n",
" -99.99 | \n",
" -99.99 | \n",
" -99.99 | \n",
" MLO | \n",
"
\n",
" \n",
" 3 | \n",
" 1958.0 | \n",
" 2.0 | \n",
" 21231 | \n",
" 1958.1260 | \n",
" -99.99 | \n",
" -99.99 | \n",
" -99.99 | \n",
" -99.99 | \n",
" -99.99 | \n",
" -99.99 | \n",
" MLO | \n",
"
\n",
" \n",
" 4 | \n",
" 1958.0 | \n",
" 3.0 | \n",
" 21259 | \n",
" 1958.2027 | \n",
" 315.71 | \n",
" 314.44 | \n",
" 316.19 | \n",
" 314.91 | \n",
" 315.71 | \n",
" 314.44 | \n",
" MLO | \n",
"
\n",
" \n",
" 5 | \n",
" 1958.0 | \n",
" 4.0 | \n",
" 21290 | \n",
" 1958.2877 | \n",
" 317.45 | \n",
" 315.16 | \n",
" 317.30 | \n",
" 314.99 | \n",
" 317.45 | \n",
" 315.16 | \n",
" MLO | \n",
"
\n",
" \n",
" 6 | \n",
" 1958.0 | \n",
" 5.0 | \n",
" 21320 | \n",
" 1958.3699 | \n",
" 317.51 | \n",
" 314.69 | \n",
" 317.89 | \n",
" 315.06 | \n",
" 317.51 | \n",
" 314.69 | \n",
" MLO | \n",
"
\n",
" \n",
" 7 | \n",
" 1958.0 | \n",
" 6.0 | \n",
" 21351 | \n",
" 1958.4548 | \n",
" -99.99 | \n",
" -99.99 | \n",
" 317.27 | \n",
" 315.14 | \n",
" 317.27 | \n",
" 315.14 | \n",
" MLO | \n",
"
\n",
" \n",
" 8 | \n",
" 1958.0 | \n",
" 7.0 | \n",
" 21381 | \n",
" 1958.5370 | \n",
" 315.87 | \n",
" 315.20 | \n",
" 315.85 | \n",
" 315.22 | \n",
" 315.87 | \n",
" 315.20 | \n",
" MLO | \n",
"
\n",
" \n",
" 9 | \n",
" 1958.0 | \n",
" 8.0 | \n",
" 21412 | \n",
" 1958.6219 | \n",
" 314.93 | \n",
" 316.22 | \n",
" 313.97 | \n",
" 315.29 | \n",
" 314.93 | \n",
" 316.22 | \n",
" MLO | \n",
"
\n",
" \n",
" 10 | \n",
" 1958.0 | \n",
" 9.0 | \n",
" 21443 | \n",
" 1958.7068 | \n",
" 313.21 | \n",
" 316.11 | \n",
" 312.43 | \n",
" 315.35 | \n",
" 313.21 | \n",
" 316.11 | \n",
" MLO | \n",
"
\n",
" \n",
" 11 | \n",
" 1958.0 | \n",
" 10.0 | \n",
" 21473 | \n",
" 1958.7890 | \n",
" -99.99 | \n",
" -99.99 | \n",
" 312.42 | \n",
" 315.41 | \n",
" 312.42 | \n",
" 315.41 | \n",
" MLO | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Yr Mn Date Date.1 CO2 seasonally fit seasonally.1 \\\n",
"2 1958.0 1.0 21200 1958.0411 -99.99 -99.99 -99.99 -99.99 \n",
"3 1958.0 2.0 21231 1958.1260 -99.99 -99.99 -99.99 -99.99 \n",
"4 1958.0 3.0 21259 1958.2027 315.71 314.44 316.19 314.91 \n",
"5 1958.0 4.0 21290 1958.2877 317.45 315.16 317.30 314.99 \n",
"6 1958.0 5.0 21320 1958.3699 317.51 314.69 317.89 315.06 \n",
"7 1958.0 6.0 21351 1958.4548 -99.99 -99.99 317.27 315.14 \n",
"8 1958.0 7.0 21381 1958.5370 315.87 315.20 315.85 315.22 \n",
"9 1958.0 8.0 21412 1958.6219 314.93 316.22 313.97 315.29 \n",
"10 1958.0 9.0 21443 1958.7068 313.21 316.11 312.43 315.35 \n",
"11 1958.0 10.0 21473 1958.7890 -99.99 -99.99 312.42 315.41 \n",
"\n",
" CO2.1 seasonally.2 Sta \n",
"2 -99.99 -99.99 MLO \n",
"3 -99.99 -99.99 MLO \n",
"4 315.71 314.44 MLO \n",
"5 317.45 315.16 MLO \n",
"6 317.51 314.69 MLO \n",
"7 317.27 315.14 MLO \n",
"8 315.87 315.20 MLO \n",
"9 314.93 316.22 MLO \n",
"10 313.21 316.11 MLO \n",
"11 312.42 315.41 MLO "
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"raw_data.drop(range(2), inplace=True)\n",
"raw_data[:10]"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": true
},
"source": [
"Les données manquantes sont notées : -99.99.\n",
"On aimerait avoir un maximum de données pour travailler, donc on va garder les colonnes **CO2.1** et **seasonally.2**."
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Date | \n",
" CO2.1 | \n",
" seasonally.2 | \n",
"
\n",
" \n",
" \n",
" \n",
" 2 | \n",
" 21200 | \n",
" -99.99 | \n",
" -99.99 | \n",
"
\n",
" \n",
" 3 | \n",
" 21231 | \n",
" -99.99 | \n",
" -99.99 | \n",
"
\n",
" \n",
" 4 | \n",
" 21259 | \n",
" 315.71 | \n",
" 314.44 | \n",
"
\n",
" \n",
" 5 | \n",
" 21290 | \n",
" 317.45 | \n",
" 315.16 | \n",
"
\n",
" \n",
" 6 | \n",
" 21320 | \n",
" 317.51 | \n",
" 314.69 | \n",
"
\n",
" \n",
" 7 | \n",
" 21351 | \n",
" 317.27 | \n",
" 315.14 | \n",
"
\n",
" \n",
" 8 | \n",
" 21381 | \n",
" 315.87 | \n",
" 315.20 | \n",
"
\n",
" \n",
" 9 | \n",
" 21412 | \n",
" 314.93 | \n",
" 316.22 | \n",
"
\n",
" \n",
" 10 | \n",
" 21443 | \n",
" 313.21 | \n",
" 316.11 | \n",
"
\n",
" \n",
" 11 | \n",
" 21473 | \n",
" 312.42 | \n",
" 315.41 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Date CO2.1 seasonally.2\n",
"2 21200 -99.99 -99.99\n",
"3 21231 -99.99 -99.99\n",
"4 21259 315.71 314.44\n",
"5 21290 317.45 315.16\n",
"6 21320 317.51 314.69\n",
"7 21351 317.27 315.14\n",
"8 21381 315.87 315.20\n",
"9 21412 314.93 316.22\n",
"10 21443 313.21 316.11\n",
"11 21473 312.42 315.41"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"raw_data = raw_data.drop([\"Yr\", \"Mn\", \"Date.1\", \"CO2\", \"seasonally\", \"fit\", \"seasonally.1\", \"Sta\"], axis=\"columns\")\n",
"raw_data[:10]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On convertit **Date** en entier et **CO2.1** et **seasonally.2** en nombres flottant"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Date | \n",
" CO2.1 | \n",
" seasonally.2 | \n",
"
\n",
" \n",
" \n",
" \n",
" 2 | \n",
" 21200 | \n",
" -99.99 | \n",
" -99.99 | \n",
"
\n",
" \n",
" 3 | \n",
" 21231 | \n",
" -99.99 | \n",
" -99.99 | \n",
"
\n",
" \n",
" 4 | \n",
" 21259 | \n",
" 315.71 | \n",
" 314.44 | \n",
"
\n",
" \n",
" 5 | \n",
" 21290 | \n",
" 317.45 | \n",
" 315.16 | \n",
"
\n",
" \n",
" 6 | \n",
" 21320 | \n",
" 317.51 | \n",
" 314.69 | \n",
"
\n",
" \n",
" 7 | \n",
" 21351 | \n",
" 317.27 | \n",
" 315.14 | \n",
"
\n",
" \n",
" 8 | \n",
" 21381 | \n",
" 315.87 | \n",
" 315.20 | \n",
"
\n",
" \n",
" 9 | \n",
" 21412 | \n",
" 314.93 | \n",
" 316.22 | \n",
"
\n",
" \n",
" 10 | \n",
" 21443 | \n",
" 313.21 | \n",
" 316.11 | \n",
"
\n",
" \n",
" 11 | \n",
" 21473 | \n",
" 312.42 | \n",
" 315.41 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Date CO2.1 seasonally.2\n",
"2 21200 -99.99 -99.99\n",
"3 21231 -99.99 -99.99\n",
"4 21259 315.71 314.44\n",
"5 21290 317.45 315.16\n",
"6 21320 317.51 314.69\n",
"7 21351 317.27 315.14\n",
"8 21381 315.87 315.20\n",
"9 21412 314.93 316.22\n",
"10 21443 313.21 316.11\n",
"11 21473 312.42 315.41"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"raw_data[\"Date\"] = raw_data[\"Date\"].astype(int)\n",
"raw_data[\"CO2.1\"] = raw_data[\"CO2.1\"].astype(float)\n",
"raw_data[\"seasonally.2\"] = raw_data[\"seasonally.2\"].astype(float)\n",
"\n",
"raw_data[:10]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On supprime ensuite les lignes contenant les données manquantes (notées -99.99)."
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Date | \n",
" CO2.1 | \n",
" seasonally.2 | \n",
"
\n",
" \n",
" \n",
" \n",
" 4 | \n",
" 21259 | \n",
" 315.71 | \n",
" 314.44 | \n",
"
\n",
" \n",
" 5 | \n",
" 21290 | \n",
" 317.45 | \n",
" 315.16 | \n",
"
\n",
" \n",
" 6 | \n",
" 21320 | \n",
" 317.51 | \n",
" 314.69 | \n",
"
\n",
" \n",
" 7 | \n",
" 21351 | \n",
" 317.27 | \n",
" 315.14 | \n",
"
\n",
" \n",
" 8 | \n",
" 21381 | \n",
" 315.87 | \n",
" 315.20 | \n",
"
\n",
" \n",
" 9 | \n",
" 21412 | \n",
" 314.93 | \n",
" 316.22 | \n",
"
\n",
" \n",
" 10 | \n",
" 21443 | \n",
" 313.21 | \n",
" 316.11 | \n",
"
\n",
" \n",
" 11 | \n",
" 21473 | \n",
" 312.42 | \n",
" 315.41 | \n",
"
\n",
" \n",
" 12 | \n",
" 21504 | \n",
" 313.33 | \n",
" 315.21 | \n",
"
\n",
" \n",
" 13 | \n",
" 21534 | \n",
" 314.67 | \n",
" 315.44 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Date CO2.1 seasonally.2\n",
"4 21259 315.71 314.44\n",
"5 21290 317.45 315.16\n",
"6 21320 317.51 314.69\n",
"7 21351 317.27 315.14\n",
"8 21381 315.87 315.20\n",
"9 21412 314.93 316.22\n",
"10 21443 313.21 316.11\n",
"11 21473 312.42 315.41\n",
"12 21504 313.33 315.21\n",
"13 21534 314.67 315.44"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"raw_data = raw_data.drop(raw_data.index[raw_data['CO2.1'] == -99.99])\n",
"\n",
"raw_data[:10]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On convertit ensuite les dates en objet Period pour une meilleure visibilité."
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Date | \n",
" CO2.1 | \n",
" seasonally.2 | \n",
"
\n",
" \n",
" \n",
" \n",
" 4 | \n",
" 1958-03 | \n",
" 315.71 | \n",
" 314.44 | \n",
"
\n",
" \n",
" 5 | \n",
" 1958-04 | \n",
" 317.45 | \n",
" 315.16 | \n",
"
\n",
" \n",
" 6 | \n",
" 1958-05 | \n",
" 317.51 | \n",
" 314.69 | \n",
"
\n",
" \n",
" 7 | \n",
" 1958-06 | \n",
" 317.27 | \n",
" 315.14 | \n",
"
\n",
" \n",
" 8 | \n",
" 1958-07 | \n",
" 315.87 | \n",
" 315.20 | \n",
"
\n",
" \n",
" 9 | \n",
" 1958-08 | \n",
" 314.93 | \n",
" 316.22 | \n",
"
\n",
" \n",
" 10 | \n",
" 1958-09 | \n",
" 313.21 | \n",
" 316.11 | \n",
"
\n",
" \n",
" 11 | \n",
" 1958-10 | \n",
" 312.42 | \n",
" 315.41 | \n",
"
\n",
" \n",
" 12 | \n",
" 1958-11 | \n",
" 313.33 | \n",
" 315.21 | \n",
"
\n",
" \n",
" 13 | \n",
" 1958-12 | \n",
" 314.67 | \n",
" 315.44 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Date CO2.1 seasonally.2\n",
"4 1958-03 315.71 314.44\n",
"5 1958-04 317.45 315.16\n",
"6 1958-05 317.51 314.69\n",
"7 1958-06 317.27 315.14\n",
"8 1958-07 315.87 315.20\n",
"9 1958-08 314.93 316.22\n",
"10 1958-09 313.21 316.11\n",
"11 1958-10 312.42 315.41\n",
"12 1958-11 313.33 315.21\n",
"13 1958-12 314.67 315.44"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dates = []\n",
"for i, date in enumerate(raw_data[\"Date\"]):\n",
" year, month, _, _, _, _ = xlrd.xldate.xldate_as_tuple(date, 0)\n",
" dates.append(pd.Period(year=year, month=month, freq=\"M\"))\n",
"\n",
"raw_data[\"Date\"] = dates\n",
"\n",
"raw_data[:10]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On définit la date comme index du tableau car on aimerait avoir un graphe avec la date en abscisse."
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" CO2.1 | \n",
" seasonally.2 | \n",
"
\n",
" \n",
" Date | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1958-03 | \n",
" 315.71 | \n",
" 314.44 | \n",
"
\n",
" \n",
" 1958-04 | \n",
" 317.45 | \n",
" 315.16 | \n",
"
\n",
" \n",
" 1958-05 | \n",
" 317.51 | \n",
" 314.69 | \n",
"
\n",
" \n",
" 1958-06 | \n",
" 317.27 | \n",
" 315.14 | \n",
"
\n",
" \n",
" 1958-07 | \n",
" 315.87 | \n",
" 315.20 | \n",
"
\n",
" \n",
" 1958-08 | \n",
" 314.93 | \n",
" 316.22 | \n",
"
\n",
" \n",
" 1958-09 | \n",
" 313.21 | \n",
" 316.11 | \n",
"
\n",
" \n",
" 1958-10 | \n",
" 312.42 | \n",
" 315.41 | \n",
"
\n",
" \n",
" 1958-11 | \n",
" 313.33 | \n",
" 315.21 | \n",
"
\n",
" \n",
" 1958-12 | \n",
" 314.67 | \n",
" 315.44 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" CO2.1 seasonally.2\n",
"Date \n",
"1958-03 315.71 314.44\n",
"1958-04 317.45 315.16\n",
"1958-05 317.51 314.69\n",
"1958-06 317.27 315.14\n",
"1958-07 315.87 315.20\n",
"1958-08 314.93 316.22\n",
"1958-09 313.21 316.11\n",
"1958-10 312.42 315.41\n",
"1958-11 313.33 315.21\n",
"1958-12 314.67 315.44"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sorted_data = raw_data.set_index('Date')\n",
"\n",
"sorted_data[:10]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On fait un graphe qui représente le taux de CO2 dans l'atmosphère"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEKCAYAAAAcgp5RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4XMXVwOHfrFa76r1LliXbcq+4UUwvppsaTEJvH8GhhmYgwRSHhBBKAoROnFCMSQiYjg3Yxg33JjdJtnrvXavdne+Pe7VawMQyWGWl8z6PHt29TWdl+Wg0d+aM0lojhBCi/7L0dgBCCCG6lyR6IYTo5yTRCyFEPyeJXggh+jlJ9EII0c9JohdCiH5OEr0QQvRzkuiFEKKfk0QvhBD9nLW3AwCIiYnRaWlpvR2GEEL4lI0bN1ZqrWMPdl6fSPRpaWls2LCht8MQQgifopTK68p50nUjhBD9nCR6IYTo5yTRCyFEPyeJXggh+jlJ9EII0c9JohdCiH5OEr0QQvRzkuiFEKKH1TY7WLS+ALe7Z5Zy7RMTpoQQYiB5flkOL63Yh81q4bxJyd3+9aRFL4QQPSy/qhmALQW1PfL1JNELIUQP21fZCEBhTUuPfL0uJ3qllJ9SarNS6iPz9Z+VUruVUtuUUv9VSkV4nTtXKZWtlNqjlJrZHYELIYSvKm9oA+D4ktdg6zvd/vUOpUV/K7DL6/USYKzWejywF5gLoJQaDcwGxgCnA88rpfwOT7hCCOF76prbcbrcALQ5XdQ2tzNe5TC7dSEUru/2r9+lRK+USgHOAl7p2Ke1/kJr7TRfrgVSzO1ZwEKtdZvWej+QDUw7fCELIYTvqGtp56g/fsk1C4wKvVlljSRTwSL7I7Rpf+qn/KbbY+hqi/5p4G7A/SPHrwE+NbeTgQKvY4XmPiGEGHBWZlXS7HCxYm8FAAvX5zPHfzE2XMx2PEChK6rbYzhooldKnQ2Ua603/sjx+wEn8GbHrgOc9oPBokqpG5RSG5RSGyoqKg4hZCGE8B27Suo92y27lvDolhn80u9L6tPPYIceQlFt9z+Q7UqL/hjgXKVULrAQOEkp9QaAUupK4GzgV1rrjmReCAzyuj4FKP7+TbXWL2mtp2itp8TGHnSBFCGE8AnPfpXFTW9uxOlyU1jTzLNfZwNwkmUTge9c5DnPFj8cgMKa5m6P6aCJXms9V2udorVOw3jI+pXW+jKl1OnAPcC5WmvvSBcDs5VSdqVUOpABrOuG2IUQok9xuTVPfLGXT7aXsrWwlm+2Z3On9R1GqTz+7v80TuXPGW2PkTP9EQJPvIMAfwtFPTDE8ufMjH0WsANLlFIAa7XWN2qtM5VSi4CdGF06c7TWrp8fqhBC9G1Z5Q2e7aLaViZsuI/R1m/4jfUDAJ63XcuulsHEnHAayu5PSmRQj4ylP6REr7VeBiwzt4f9j/PmA/N/TmBCCNHXFde28OSSvTw8awxBNivbCuo8x6J2/IPR9d94XhfqGJ6qO56IIH/CA/0BeP2qqYQH+Xd7nDIzVgghfqInl+zl3xsL+WR7KQDL91YQE2InxKaYsu85AFotgRAYya+sT9GOlcFRQZ7rB0UFERYgiV4IIfqs+pZ2APaUGiNrtu8r4oqUMjZZriDA1cjN7b/h5Wmfwx27iYuNAWBwdHCPxynVK4UQ4icqMPvX86qaqamp5tX2e8jILQIgVyfwuWsqpyTEgH8Ag6ODWZ9bw+DooP91y24hLXohhOiiJTvLKKkzkrvWmoJqY8Chf0Umkc+kk2EpwuUXyDuDfseJbU/gwJ8hMSEAnDshiVC7lalp3T9B6vukRS+EEF3Q2u7i+n9uID7Mzrf3nUJJXSuNbU78cDG34REActyJhN6ylrLNFeisvQCkxxpdNccNj2X7Q71T41Fa9EII0QX7K5sAKKs3Kk++9W0+Qy2lbA+eQwoVvBI7l0tszxIXFUFieIDnuhB777enJdELIUQX5FQ0erZdLjcZmx7hS9sdBLnq2ewexmMFoxmTFAZAUkQgAP5+B6oI0/N6/1eNEEL4gH0VTZ7t2swlzGr7EIDKcddz/voTATyJPiXSSPRXHpXWs0H+CEn0QgjRBR0t+ggaCPz8UYp0NFtmvMiMY46D9UsBSDOHTg6ODubz244jIy6k1+L1Jl03QghxAM0OJ5WNRn98XXM7X+0q56qwjSy2PUBQUwGPtF9OWNpEwoPsnms6WvIAIxJCsVj6RteNJHohhDiAW97ezJRHl9LY5mTNlu3c6nqdeY6/kGqp4BPbTD5zTyPVnOUa4G+k0kFRPT9Gviuk60YIIQ5g6a5yADbuzef0L070ZMuv9RE8WD8LP4vyPHRd/JsZ7Clt6LOJXlr0QogBr7yhlZvf3kxNkwPA02UDELbttc4Tz3icR0IfpIIIkiIC8PczUujw+FDOmZDUozEfCkn0QogB7x+rcvlwazH/WpsHwIbcGgAUbtLy/0u5iuHW9I9g+v+RapYwSO2jrfcDkUQvhBjwSutbAaNmDcCG3GpsVgunB2cT2VbI4+2XkBBnFCXrGFkzKFISvRBC+IyOmjXFtS04nS4Kd67i/PgK/u6aB8CHzqmMSQoHYFJqBADD+sjQya6Qh7FCiAGlusnBQx9mcvb4JE4dHQ9Aca3Roi+pa6Fk6V95oXkemAukPtF+MW3YGB7fWZxsSEwIGfGS6IUQok9alV3JB1uKWZVdxamj43G63JSZXTdT6pcyaO2zALSHpvBxwk08uz0NgMQwY4SNUopxKeG9EvtPJV03QogBpdprZI3T5WbprjJSdRHrg2/jCb9nqbdGM9qxAH3rdpqGne25LizQd9vFvhu5EEL8BB2JHqB+/wamv3cJX9mrwQVFOpo/+N9NXGQ4NquF9JjO1aCU6huzXH8KSfRCiAHFO9FHLDwXi9tYSKR66CyOybwE2uDEEUaCHxZr9MN3PID1VdJ1I4QYUNrrinnc+iIjVD4Wp5HkVw2/F9ep8z3npJurQsWFBfDWddN587rpvRLr4SKJXgjRrxVUN/NNVgUAbrcmJe8DfmFdzuf2ewE4p+1RWiddQ3RciueajlWhAI4eFkOQzbc7P3w7eiGEOIhjH/8agOz5Z1BU20JSey74dR7frtOZlBr5nUqTQ7z65vsDSfRCiH7L5dae7dyqZioLdnOB30qc/qH8xzGdT9onkxwRRFSw7TvXjU4M6+lQu5UkeiFEv1Xe0OrZzikqZeaHJwPQfOJDPLdyCPnVzUzxWt/1P78+mtZ2F5HfS/y+TvrohRD9RnlDK1e/vs6rpEFnolc73gNgh8og9MiriA01FgyJD+tM9JMHR3LMsJgejLhndDnRK6X8lFKblVIfma+jlFJLlFJZ5udIr3PnKqWylVJ7lFIzuyNwIYT4vgWrc/l6TwV//TILgKLaFs+x+JKvKCKO10a+jLL4eYqTxYXZD3iv/uRQWvS3Aru8Xt8LfKm1zgC+NF+jlBoNzAbGAKcDzyul/BBCiG6WU24s4N2R4PeU1nO3/zt8HPoYE5rXsMI5hlQzwXe06Mf7WDmDn6JLiV4plQKcBbzitXsWsMDcXgCc57V/oda6TWu9H8gGph2ecIUQotPO4nqKvVrtxXXGdkfZ4fKcrdzk9wFj2rcD8Il7OsnmqlC/PmEoj10wjnMnJPdw1D2vqy36p4G7AbfXvnitdQmA+TnO3J8MFHidV2ju+w6l1A1KqQ1KqQ0VFRWHHLgQQpz512845k9feV53JP2yulZqv/4rfy6/AYD84HHc4biRb9zjSDYX8A4P9OfSaan49ZEFvLvTQRO9UupsoFxrvbGL9zzQd03/YIfWL2mtp2itp8TGxnbx1kIIYWhtdwGgzezS1OakstHBiIAajneuImz5g7RpK2WTbmXx5Nd5z30coEiJ8J0FQw6XrgyvPAY4Vyl1JhAAhCml3gDKlFKJWusSpVQiUG6eXwgM8ro+BSg+nEELIURhTbNnu66lnfyqZm63vsut/BdsUGmN5+TmP7DurPOJ3VzkOTfBazjlQHHQFr3Weq7WOkVrnYbxkPUrrfVlwGLgSvO0K4EPzO3FwGyllF0plQ5kAOsOe+RCiAEtu7zRs51b0UjR509zq/W/nn1Xu+4nIjIau9WPwdGdM11t1oE3qvznTJj6I7BIKXUtkA9cDKC1zlRKLQJ2Ak5gjtba9bMjFUIIL9uL6jzb1jVPc3rB0wBUnPYcRy0OxYmV4wYZCT69n5U0OFSHlOi11suAZeZ2FXDyj5w3H5h/oGNCCPFTLN5azLsbClhw9TQ08N6mIq6Ky+Ky2hcZtquYfTqR9phRDJ5wLs7F3wCQFm30x8eF2rnsyFTOn5TyP75C/yUlEIQQPuGWtzcDsL+qCYtSHNP4OfPaXgQL1FoiOL/5IebNOIYRwWH4WRQut/Z02SilePS8cb0Zfq+SRC+E6PO8i5Ntya8loSWLJ/xfBGCHdTTnNN6HxsJQc6GQjvMHRw28ETYHMvCeSgghfE5VY5tnu6CoiDErbwbAlXY8Lyc+jDZTWUdf/LkTkgA4YnAkQhK9EKKPKqhuRpuD5DtmuoLm3MxbiGgt4AHbPfhdtZjgqAQA4sPshAb4A/DHC8ex5fen/qD88EAliV4I0edklTVw7ONf89KKfQDkVTUTTzVzQlYwpG0331qnUJp8KgCJZvXJlMjObpogm5WIIEnyHSTRCyF6XWld63e6Z9burwbgzW/zAdiUW8Un9vu4y/kiO0nn6rbfkhpldNNEhxjFySIlsf8oeRgrhOh1Rz72JaEBVrbPM6qar9hr1L+qbXbQXJbDg5tneIqr3NV2Pc1aMyjKqFlzbEYMp46O5+FZY3oldl8gLXohRK8qN/vfG1qduNyaZoeTFXsrsFoU57R/RsALncVvPz79GzJ1GgCp5oiaQVFBvHzFFBLDA3s8dl8hiV4I0asyi+s928W1LazYW0Gb0809E1qZ7/8aDmVntuMB9l2zg6SkzjJaqTJ0ssuk60YI0atyKjpr1hRWN9O+4hleDNjCkfVGn/tjgXewoXU0g5KTiXZ0VlPxfvgq/jdJ9EKIXrWrpMGznbD8To4qNwuTFcFfneexoGoUQ2KD8PezEB5o4ZRRcdS1tBNok4XrukoSvRCiR63Preb1Vft5+pJJ2KwWNuZVc0NqCYFFq0kv+C+VOpxv029iZko7Ty+dCOCZ8QrwypVTeyt0nyWJXgjRo259ezPFda2cM76ME0bEcUTNZ9zb9BIWfzclfsmc3PQID46ZinVqKnHrvqS0vpVhcSEHv7H4UZLohRA9RmtNXUs7YJQZTg9XPOb/KtUxU1jXGMvf646imQBPCz46xEZpfet3WvTi0MmoGyFEt2lzurjq9XVsyDUmQJXUtdJkPlAtqG7GuvoZ7Kqdhim38HHqnWzXQ4DOrppHzxvLaaPjOW54TO+8gX5CWvRCiG6zr6KJZXsqWLangtw/nsXuUmMoZbC/5o9ZZxGsm1ninsKMCaeQUp0LQFSwjUizRs2k1EheumJKb4Xfb0iLXgjRbYpqWr7zendpA4NVKU/HLCZYN1NvieDpyPsJDAwkOdKY8BQe6N8bofZr0qIXQhw2brfGpTX+fkYbssBcwNuKk5a6KmLXP8ly+5tQA284T+Zp+40cGR8BQIJZnGx0YljvBN+PSaIXQhwWre0uznzmG5IjA/nXtdMBWGcWJ7vV+h6BT11hLCwN7Bx3N79fPx63s53B5nJ/xw2P5YGzRnHptNTeCL9fk0QvhDgssssb2VfZxL7KJgqqm6lqcvDpjlJmB67nZv2+57xtM55FjTwX9/qVAJ7l/gL8/bju2CG9Ent/J4leCPGTNLS289Xucs6dkIRSiqLazv74rPIGKrZ8yru255iq9wLwUNBc3qgexVdHnEpYQGc/vCz31/0k0QshfpLb39nK0l1lDI0NYWxyOMVeid6d+QGX7L7LM9zjOvd9LK0eS5DNj+SIQCwW5Tk3zVz+T3QfGXUjhPhJNuXXAEZJAzC6bsLsFs6yb+WU7XdRT+ckp/rwUQBkxId6kvx1M9IZFBVIXKi9hyMfeKRFL4T4SZwuN9BZfTInJ4tt6mrP8dNaH2POcalcnlxK2JYkqChjuFcpgwfOHs39Z41CKYXoXtKiF0IcsobWdupbnQAUVTdRm7edhY2dSf5rplBKNLGpI2DCbGJCjAlQHSNsOkiS7xmS6IUQB9XQ2s59/93O17vLAWPiU4dzSp8l4vUZANQnHsON6Z9xdesdAAwxSxncekoGxw+P5fSxCT0cuYAuJHqlVIBSap1SaqtSKlMp9ZC5f6JSaq1SaotSaoNSaprXNXOVUtlKqT1KqZnd+QaEEN3vPxsLeevbfH777lYAPthUwE22j9kU+lsucHwIwO3uWwi45kMiQ42HqxbV2YJPDA9kwTXTGBYX2jtvYIDrSh99G3CS1rpRKeUPrFRKfQo8DDyktf5UKXUm8DhwglJqNDAbGAMkAUuVUsO11q4f+wJCiL6twCxlUN3koKmxgTnbLiDRUom73UK2O4k54c8SHBiAzd+PDDOZ+/tZsFtlcZC+4KAtem3oWOvL3/zQ5kfHXOVwoNjcngUs1Fq3aa33A9nANIQQPuMvX+zh+WXZntcldR1DJzXlS54mkUoaApL4duZHzHT8iT0VraTHGN00Rw6JBmC6+Vn0vi6NulFK+QEbgWHAc1rrb5VStwGfK6WewPiFcbR5ejKw1uvyQnOfEMIHlNa18revjCR/43FDsVgU+dXNJAY4+ET/hsitjSxxTUad+zYpUYG4+AaA9Bijm2Z0Uhif3nqsp0iZ6H1dehirtXZprScCKcA0pdRY4NfA7VrrQcDtwKvm6Qd6jK6/v0MpdYPZt7+hoqLip0UvhDjsSutbPdu5VU3kVTXRXLybNVxFpDL+uL+v/VrSYoJJjuhM5iMTOouRjUoM+87sV9G7DmnUjda6FlgGnA5cCbxnHnqXzu6ZQmCQ12UpdHbreN/rJa31FK31lNjY2EMMWwjRXcq8En1eVTOZ+4v5yn4nAOvcI5na+hxVKoLUqCBCvZL5uJTwHo9VdE1XRt3EKqUizO1A4BRgN0byPt487SQgy9xeDMxWStmVUulABrDucAcuhDg8imtbuPvfWz0lDLwTfXFNI1O/usTz+jH7bVQQSXJkIDarkT4uOzKVX58wlHizzLDoe7rSR58ILDD76S3AIq31R0qpWuAZpZQVaAVuANBaZyqlFgE7AScwR0bcCNF3vbE2j0UbCvGzWHjsgnHsLariX/Y/84LzLJJ3riS2OYftfmMYd+9XuF/aCA21pEV31qd59LxxvRi96IqDJnqt9TZg0gH2rwQm/8g184H5Pzs6IUS325Br1KwpNBcJady3jmPVZo713wwF8Lmezsqxf2Gcf4CnLo13ohd9n8yMFWKAy61qAqCsspLypc/wRNN9nmNrLJP5bdv1DE8wxsa3tht/nKdLxUmfIkXNhBjAGtuclDe0EaaaeKrpUeJW5lFBGGrGb/lj1Qz+s7kEjYVUswV/2uh4vsmq5Kzxib0cuTgU0qIXYgDRWjNvcSb/3lgIwEdbi/HDxZLQhxmp8vlX0gMc43qJyJNuJTEyFG2miFRzcZDLjhzM7kdOlwevPkZa9EIMIHvLGvnH6lwALpiUTOWWT9gTcB9Wh4tb2uewunwiGXEB+FnUd8bId2wrpQjwl7IGvkZa9EIMIN/ur/JsV2/5kN8U34MVF7VpZ/CR+ygqGx2MiDf645O8En3HUErhm+RfT4h+bP7HO5nxp688r7PKjJmtMy3riFl8OQDLjngG1/mv4DbTQceD146RNaMTwxC+TbpuhOjHXv5mP2CsAjUkJpgNeTUMC27hRdfTANzTfj2XHXE+UWGdo2g6WvSp0UG8d9PRntfCd0mLXoh+yuF0e7Z3ldSzKb+WgpJS/hb/MQC5JPGO60QGRQWilGKk2ZIfndTZgj8iNZJgu7QHfZ38CwrRjzS0tnvqz6zOqfTsL6puZtDKuewIeB+KYaseyv+13UawzY/wQOP8f14zjZrmdhlR0w9Ji16IfuL1VfsZN+8L3libB8DnmaWE2K0E+FtIznqDCeXv48Afhp3CvIB7KSWalMggz7qtcWEBjEiQbpr+SBK9ED4or6qJ859fxZqczlE0728uAuDLXWUA7MrZz0WD6rk/+EPOKHqG1dZp3Jz+CVz2H2xRRoHZFKkZPyBIohfCB63KrmJzfi13/8dYw7Xd5WaXuWB3QXUzjpV/4/2mK5hXeB2Xt77JHr8M5rTcSJq5zN+xGTEAuPUPlooQ/ZAkeiF8UJ5Zn6aguoWmNidZZY04nG7iw+ycWvcutqUPeM5dE3cJZzb9nhpXAEPMGjUXTTZa9McPl7UgBgJ5GCuED9hRVMfmglouP3IwAHvLGjzHdpbUsydnH4NUGfOid3Fi8ZtsCzuBOZUX8sndZ7JzWw3k7wVgSKyxrmtCeAA7H55JoMxyHRAk0QvhA255ezP7KpuYmBJBRnwIa/ZVcsXQZpbktODc/DaXbb2Py+xACWzWw5jTeD2hsWGERsSQHNXuuY931ckgm/z3HyjkX1oIH1De0AYYJQwsjSW8ziMcVbSThwOArd8999726yh2KM4caiT15Iggz7HoYFtPhSz6EOmjF6KPq2ly0NjmBMCV/RUZ/z6Fo/x2fuecc9se4ctL9tIyt4o9OhWAITFGN01qtJHoJ6VGeIZSioFFWvRC9EH1re2EmROfthXVAXCaZT3/l/cUAFfrebw6ezh3fZhLTo2TbXoow+JCCPSaxTo0zmjRhwf6s+7+k4kMktb8QCUteiH6mOV7Kxg/7wvPGPltBbUE0sqfAv8FwJ1Rf6Mp8Ugso86iJHIyW/QwbH4WUiKNlntMiLHcX0Zc5+SnuNAA/P3kv/tAJS16IfqYResLAFiTU8lRQ6PJys3nn8F/JdJVyUWOB9leHsul04x6NLHmGq6Do4PwsxjdMk9dMoHcqmbGJEnVSWGQX/FC9LIFq3NZurPM87qm2QFATmUTzrZmTs9/giNc29kw6l42uEfQ5nR7Co/Fmq1379E0x2bEcvmRg6U/XnhIoheiFzW0tvPg4kyu++cGnC6j2mRRbQsAu4rrqf9sPmeq1ewdcQONE6/1XNdRI76jFZ8YLoXIxI+TrhshetHyvRWe7fzqZmJD7RSbib6qqoyg9rdZ4jqCuBn3kmzrnNyUEW+MqJkwKAKAi6cM6sGoha+RFr0QPWhlViVz39uO223UmPl6d2eizypv5IvMMk7Q61kdOY+t9hsIaKviJefZpEUHe5b287Mo7FYj6Z8xNoHt805jbHJ4z78Z4TOkRS9ED7rs1W8BOGd8IkcPi2F7US3T0qKoyduG3858Ju17kwtt26Gl85rsgLGEBxlDLV++YgoTUjqTulLKU39eiB8jiV6IHtLu6lzxaWNeDZNSI5lW+T6/TCphtP1TyDSONVlCUUkTeXj/CJa5JpCWGuK57tTR8T0dtugHJNEL0UNK61o92zkVjeRv+5pH/V8Ds/dmif0UXm+YxtmzLuWcCYksnPcFAEdHBx/odkJ02UH76JVSAUqpdUqprUqpTKXUQ17HblZK7TH3P+61f65SKts8NrO7gheiLyuobubox77k233GxKfCmo7+GE188VJGfHQhAM0jL+Lu2Oe5vu4aVrvHMiIhhBC7lY7RkWkxkujFz9OVFn0bcJLWulEp5Q+sVEp9CgQCs4DxWus2pVQcgFJqNDAbGAMkAUuVUsO11q7ueQtC9E3/WJ1LcV0rr6/KZfqQaDYX1HCBZQVP2l6AeuOcP6lrufuSv+B4ZwsUFAMwODoYpRQda4JIohc/10Fb9NrQaL70Nz808Gvgj1rrNvO8cvOcWcBCrXWb1no/kA1MO+yRC9HH7CiqI7u8s0787lIjm+dVNwPQsHOpkeRNTwbdxo6US1BKeRbkDrFbf1BhcqSs4yp+pi4Nr1RK+SmltgDlwBKt9bfAcOBYpdS3SqnlSqmp5unJQIHX5YXmvu/f8wal1Aal1IaKiorvHxaiT2txuNhaUOt5rbXm7L+t5JQnV3he7yoxkv6+ikYcez7nnvJ7AFg28kHSWt/ir9XTPMMiOxJ9QniAZ0brpdNSiQ62kRHX+TBWiJ+iS4lea+3SWk8EUoBpSqmxGN0+kcCRwF3AImX8hB5o3vUPFqbUWr+ktZ6itZ4SGyvLmYm+y+F089tFWz0tdIAHF+9g1nOrPMm+oLpzPGRVYxvlDW1UNzkYmRBKqisf9e7V5LtjWXnye9SM+IXn3I4Zrh2LdE8ZHOk59tgF49jwwClSykD8bIc06kZrXauUWgacjtFSf09rrYF1Sik3EGPu956mlwIUH55wheh5K7Mr+M+mQoprW3j7hiMB+HRHKWDMbJ0wKIJtRZ2t+6LaFoprWznVsoG7LFtIsa2iRQdyieP3fDhpBoHmeq9gFCMDOHlUPK9eOYVjM77b6JEkLw6Hroy6iVVKRZjbgcApwG7gfeAkc/9wwAZUAouB2Uopu1IqHcgA1nVP+EJ0v015RhJ3uo1x8OX1rTS0GguBlNYbQyYziztb+yV1rdi/vJ+XbU8yvPordutBzHLMpzUogZgQu2dBEIBkr9muJ4+Kx2aVyeri8OtKiz4RWKCU8sP4xbBIa/2RUsoGvKaU2gE4gCvN1n2mUmoRsBNwAnNkxI3wZTkVxliEjuX8thbWeY6V1XUm+vgwO2X1bTSUZHN+zXsAtN60hQuf3IHGwqREY/RMpNfD1ihZ2k/0gIMmeq31NmDSAfY7gMt+5Jr5wPyfHZ0QveCpJXtxuNzcc/pIoDPRl9S1orVma0EtfhbF/yXsYVOdwuly01q4jYX2f5AesB1WQpO2s3DcK1wbl05kcDbVTQ7SvCY+rb73JHKrmqRrRvQImRkrhBetNc98mQXAXaeNQAO5Vc0M9qsk3xlFTXM7OwvKWRj0BFOrNxoXPQKLwFOfxo3iasfdXDh4ImAsyP39RJ8UEegpUiZEd5NELwY0t1tTWt/qSbp5Vc2eY/sqm7D5WbhYf8F8/9d4Wl1AfabixsI/MLWjMI0Xx/mv8OtVISzPd+DEyp1mX3xHv3taTFAPvCMhfkgSvRjQ7n1vG4s2FPL5bccxIiFh/1ClAAAgAElEQVSUr/eUe47lVDRid9Rxl/UdAG6zvgefvEei9mfryFvZlX4Vz7y/kqMSXOxuj+eTCWcSumszznxjkFnHqk/XHzuED7cWc9LIuJ5/g0Ig9ejFALfEXMLvw61Gcv5qdznxYcbyfLX7N3HCB9OIUE1UHDefd53HsSLwJKa3PYv/8XcSFxFMCdG8VxrHoAQjiSeEG38ZBNv8iAkxHrSeNymZV6+aKuWERa+RFr0YMLTWvLYql5NGxpEeE4zbrWlyGAPCdpXU43S5ycvNZs4IB1E5/+XsDcsBKPZLJnbG9dyzJB13jTEUclhcCNprHuCIeKNMQVKEMcM1PNBfHrSKPkNa9GLAyCyu55GPdnLxC6sBqGhsw+E0xsbvLm0gb9dGPrLcyRXZt3G2NpL8JW2/47MTPsLfZic21GjpD44Kwma1kBDWuU5rx2LdceY5MeZnIfoCadGLAWNVdiUAlY0OtNYs31tBEpXcEruZE+o/IOHf1aCgPTSFL/yO5+bSM3Bj4SaztZ4QFkBZfRtDYo2HrN5j4KenR3s+z5qYxF0zR/TwuxPix0miFwNGVnmjZ7u0tokRn1zM6oBd0AAo2BJyHHPrzuOj269h3YeZuEvzAEg3h0V2tOiHmUXGlFKcOCKWwdHBnklQkcE2npn9g2knQvQqSfSi31q4Lp+i2hZ+e5rRuu4oU3CSZRORL9xCorvSc+601udoJZa0+GD8LIpErzHuHf3uMSFGoveuJvn61VKBW/R9kuhFv3Xve9sBuOKoNGqbHewqqeeZETuYlfcEze2h/Kl9NqeeMxtr8gTKn1sDrU5P7ffE8M7+d6uf8SjrNycNY8KgCM4an9jzb0aIn0ESveiXapsdnu0dxXU4qovYY78Se147K91juNNyP6UuuHLUUVi8BseMSDAeqnZMoEr3Wt0pJTKIS6el9swbEOIwklE3ol/YU9rAhX9fTWWjUXgs12uGa35VM0G73sWu2nEnHcHD9rspbYbQACvxYXaiQzpHyIwyW/QTB0Vwx6nDeev66T37RoToBpLoRb/w58/3sDGvhv9sLAQgz6z5PkblcuFXJ3Bs/nNkWkZgueFrQiKNmu/D40NRSuHn1aQfaS4E4u9n4ZaTM0gMl3o0wvdJ143wSa+u3M+RQ6IYk2QsxVfVZLTkd5c2eD6nW8r52HYfOKEVG1/GXWmsWB8RyKb8WobHdz5U/eulk7AoKRss+idp0Qufk1XWwCMf7eTyVzvXs+lYyi/XbMlvzinm7YA/AvCu/zmMc7xOa9rJQOfomVFm6x3g3AlJnD0+qUfiF6KnSYte9HntLjftLjdBNuPHdekuo/BYdZMx8am13e3pm7+y4glcj13KwjZjcZCFw57g/h3xuFBkmC34q49JIzbUzi+mDDrAVxOi/5EWvejzrluwgROfWIbbbdSW2ZhX7TlW19LO5oIaoqnj8eiPOU9/hZ+Z5OvHXU370FNx4QdARpzxoHVwdDBzThxGgL9fD78TIXqHJHrRp7U4XCzfW0FZfRvbiowEvqeswVPjvbCmhVW7Cvi77Rl+0fQmVTqU94MuZKJ+i5DznyLVa7GPIbHBB/waQvR30nUj+hyttafyY1Ft5zDJXSX1jEwIJa52K5cOUuwpKGPsy79kLIAFyqbdx/QVY6ENJqVGYLEohniNg+/o+hFioJGffNGnZBbXce6zq1h4w5FMTYuioKbFcyynvJHssgbe8X8Ya5kbzAEyW9xDUGnHMOz4ObDCqDo5zCw8NigqiOtmpBNkk24aMXBJohd9yuItxbjcmpdX7GNqWhRZZcZwyVFB9QQWrSR151+xKjctqSfw+/wJrLFOp7ARFp92DMHBIdj8LDhcbk/hMYAHzh7dW29HiD5BEr3oVfWt7QRY/Tx97tlmhcnyBmMUzdqsEpYH3cNgdwGUGNfsVEMZ9as32fHCZgpLjEJl3on9QK+FGMjkYazoNQ6nm/HzvuCuf2/17CuqbUHhZmLFB7TlfMNv8m83krzpz+oq/jHmdZQ9hEGRxqzV5IhAT//7BUckA50jbIQQkuhFL1qZXQHAB1uKPfuKals42bKZebyI/V9nc4TaS+GwS3niyFUMb13Acy2neQqPpUQGATDUq/X+yHljee+mo0mNDurBdyJE3yaJXvSYvy/LYdazKz3j4VdnV3mOVTc5qGhoI6i1nD8HvO7Z/xfnL4i8+Fliw0JwYCyu3TFMMj3GSOaRQZ2Lbvv7WTgiNbLb34sQvkT66EWPcLk1f/psNwCbC2qZPDiSDXk1nuN7yxqoanTwO/83CFUtXOaYS56Owy8qnd/ajSqTHYbGGC34CyensCm/lsuOHNyzb0YIH3PQFr1SKkAptU4ptVUplamUeuh7x+9USmmlVIzXvrlKqWyl1B6l1MzuCFz0bW635rMdJbS2uwDIqehcxm9PaQMOp5vs4krOHxNBAlXkltfhv+YpzvZbi3vshax0j6NAx5Ns9sPHeS3E3bEvyGblqUsmMnmwtOCF+F+60qJvA07SWjcqpfyBlUqpT7XWa5VSg4BTgfyOk5VSo4HZYBQKBJYqpYZrrV3dEL/oo5btLefGNzZx0eQUnrh4AtsL6zzHimqb2V1SxwuWPzEjJxMCwP2ZHxaMHxHbcXcQvDmLJoeLZHMBkHivRO9dVlgIcXAHTfRaaw10NMf8zQ9tvn4KuBv4wOuSWcBCrXUbsF8plQ1MA9YcrqBF3/f5jjLA6JIB2F5UR5DNj/BAfyqq6wj6dD7j/TIBKCeKyoA0PmwYTvJxl3FZ9FD8LNkADDEnPiWGBXD1MWmcNzG5F96NEL6tS330Sik/YCMwDHhOa/2tUupcoEhrvbVjuropGVjr9brQ3CcGCK01X+42En1Zfauxb98yvvD/O7U6Evu+Noa17+FNdTa//N2/uPa51Ww369gsGj4GAKf5wHZMkjHCxmJRPHjOmJ5+K0L0C11K9Ga3y0SlVATwX6XUeOB+4LQDnH6gv6v1D05S6gbgBoDUVFmH09f9/oMdBNut3HP6SGqb26lsdBAWYKWxvhbHpre5vWY+IRYHCe5SLNrJq/bLWZN0Jb+yWIgPC/Ak+o7FQG4+KYN1+6uYmhbVm29LiH7hkEbdaK1rlVLLMLpn0oGO1nwKsEkpNQ2jBe9d6DsFKP7erdBavwS8BDBlypQf/CIQvqOgupl/rskD4NoZ6RTXtnCqZQO3BK5iHN/CYrAp2DjxUb60ncxry3fjaLNz4yRjUlNiuNH/HhtqJyLIKGDz6xOG8usThvbOGxKin+nKqJtYsyWPUioQOAXYrLWO01qnaa3TMJL7EVrrUmAxMFspZVdKpQMZwLofub3wQa3tLnaX1nter93XOR4+r6qZ3Nz9vGx7knEt35LjTuTd+Nv5peM+wo+8iqTIYFqx49adZQoSzESfEinrswrRHbrSok8EFpj99BZgkdb6ox87WWudqZRaBOwEnMAcGXHTv8x5cxNf7i7n9aumcuLIOE+3Swx1VBXs5dylRo9ee8QQziz9PRQFYLUqhsSGUFDbWY1yqPmgdag5AWq4lC0Qolt0ZdTNNmDSQc5J+97r+cD8nxWZ6JPanC6+3G0s5bd2fxUnjoxja2EdJyc7ebXq17C081z1f8txPrISl9PNhPQoLBblGS4JnaULThudwN8uncS0dOmPF6I7SAkE8T+V1LUw7sHP+SKzFOisLglGffjGNidDSj/j1aorPPufdl7Aa6dswRoYRkyI0ec+PjkcgCSvRB9iN9oZFovinAlJ3xkrL4Q4fKQEgvifPtleSkObk0c+3slpYxLYWWz0zV8QlcuvCh7H78lCnvKrBGBRyOXcXXkGAAvM1ro2H7OPSzESfYjdyl8vnUSGlBEWosdIohf/0w6z/73F4QZgT1Eld9n+zZzm94wTnMYn9/XLWbsSqCwCOvvdrzw6jQ+3FnNcRqznnudOSOqZ4IUQgCR68T0LVucSFWzjHDMZd8xs1Y3l1O5ezgObz/V0+F3QNo/B8ZEUW5J4J3kicWFG0bIAfwtJ4UYXzZwThzHnxGE9/0aEEB6S6AcwrTVtTjcB/sZ6qlllDTy42ChLcNqYeKwWC9nljUyIaOGD1l/DQuM6t7KyY+Lv2LQmg02lcPHkeABPhcmoIBsWqUcjRJ8hD2MHsEUbChj5u8/Iq2oCYHN+redYVlkjRTUtJLsKecU9z7P/Rsdt7L42C+ekKz37RiUaZQoSzIep6Wa3jRCib5BEP0C43Zp/rc2jwlyLFeDF5fsA+HCrMXF5S6FXoi9vYGtuCf+0/ZFwXc+VjnuYZn2XJUxnSHy4p2sGYGSiMf79+BGx3HHqcOaeMaon3pIQoosk0fdTu0vrPQ9SAZbuKuN37+/gz58b/ehut/YUHMuvbgbg231VHJsRQ6qlktbslUz67EJSVCWc/hjL3RMob2wnLTqIAH8/YkM7FwIZZS7tF2SzcsvJGYw1h1IKIfoG6aPvp05/+hsAMh+aSbDdyspsYwhkQbUxM7WotoUmhzFhOb+6mfKGVo6t/g+/b3gDi80NRlc9BfYMBk24iJSlqyisaWFEgtF697Mo7jxtOLtLG4gMtvXwuxNCHApJ9P1Qi6Oz4sTWwlqOHhpDpjn+fXtRHS63ZkWWsTD3LZGrOb/kfQJeDmSefxYA+61D2OeXzqeNwxh87PXcbLUzNDaEwpoWMrzKFPzmpIwefFdCiJ9Kum76oY7aM3Yc5OXm0Oxwsr2wjpgQO2mOveTm5bJp514eCfkPd7Q8S7ouxOFo40nXL3DcW8rTQ17h2rpr+bfreDLMssHHDTfGwafHyINWIXyNtOj7idpmh6fE76Z8Y9Hth6z/YPY3y9jX8juGuIOZH7eNycVvwYIH+It5XU3YKC6uuBpXyAgCY/y4IyCQhMggz307Kkxec0waGXEhHDMsBiGEb5FE3w888fkenv06m7VzTyYhPIDN+TWcGFnOxS0rABiy4RE+s+NZFWBHzOk4y/fiHDELx/Q5ZL+yDiqb+MWUFIDvFB4bHG204JVSnla9EMK3SNeND2psc6J151otz35trK+6Ia8arTW780p4gNdosYRwfcBfPOe5L13EBc5Huan5Rs5zPIr/cbcxKKqzK2ZMkll4zGvopL+f/IgI4evkf7GPaW13MfbBz5n73nbPvtAA4w+zLXk1VOxcwTvtNzO0ZRvL025hWUMSj1nn8FbUTVhGzKQybCz51c3YrBZGJYZ5VneCzvVZjxgcCcAU87MQwrdJou/DXG7NA+9vZ9H6As++PaVG7ZmF6wvQWtPa7qKh1agslrD3DeLePZcEVUPeKS9RO+IXtLs0LzYeg/2YOUDnsn1jk8KwWS1Y/SwEmiUQOma4RgXb+PrOE3jh8sk99l6FEN1H+uj7EKfLzaqcKo7LiEEpRVZ5A2+szQfyOSYjhuSIQM+DVoCKhjZWZFUSRiOTAkr4Vf0rVAWkcEPzHN456mIG5XQu8XfW+EQA4swyBZNSO1vrK+85kezyRoLtnT8OMrpGiP5DWvR9yPPLcrjytXUs22uMcd9W2DmzdXthHVpr3jFb9xmqkJKdq7Eun8+2gBtYwINoFDdYH0UlTcTqZ/F0xYQFWD2FyyanRgAwI6Nz9Ex0iJ3pQ6J75D0KIXqetOj7kHX7qwFYnV3JiSPi2OZVe6aiMJvtlmoKSst5YlwlF2XdA5/BBK/rH3VexsYqG1cMNxJ8dIid9246mmBb5z/zVcek84upgwiyyT+9EAOF/G/vRfWt7YTYrJ6Svh3L9H29p4L7z4KdBZXMTdhAYF02l69dDGthi90P/yxj5mumbTwvN87g4fgV1Jz6NG/901jLdbTZ1w5wROoPH6hKkhdiYJH/8T3E4XTjcLk966Q2tTk54c/LGJkQylvXH0llYxul9a0MtdXwSt3tOL6+ll9WrOIiy3IA9vqPpETFcbzDGBv/G8t9fFQ/FoAHr3uIeJsf8BnQ+VBVCCFAEn2PuXbBelZmV7LvD2eilGLprjKqmxyszqmi2eE0a9FoXg98mtS2Mlj+By4yn6AUBWRwWet9VDv8uWvarfxf6Bpyt0+H5iYSwgJ+UFSso/CYEEKAPIztFs0OJ2+vy6fZYQx7dLrcfJNVidZQWGNUj9zu9aB1b1kj2dtWs9t+FaltWZToKL6NPJvft19J4c0FfDD9bcpbrTjdmrSMsXDy74iPMEbFeCf1Z2ZPZME10zwPXoUQAqRF3y2e/Sqb55flkFvVxNwzRnnqvYOx2PagqCA25dcQGQAnOlag1u3g2h1/AAXlY6/jpA1HE1gfBgHwUFQog6ObPNdPHGSMmumYJNWx6AfArInJPfQOhRC+RFr03WB9rjF6ZmuBMWqm4yErGLXfS0uL2J5fydODvuFJ2wtM2P4HADYPm4P1jMdoIYDqJgfjU8JRSjE4urPIWLw5Dr6jXMEJw+N65D0JIXyXtOgPYk9pA8PjQ1DKGBnT5nRR1eggyavwV22zg/BAf5RSaK3ZW2Yk9pyKJrTWrF+5hBBbNE63ZtDuV4hb9hIr7SHEFreymREssp3PnoYA5s64kqhgG8E2P5ocLsanGK334fGhnDcxydOaB7jy6DRmjkkg1euXgBBCHIgk+v9hTU4Vl768lvnnj+VX0wcDcP0/N7JibwUr7zmRlMggNubVcNELqzltdDwvXj6FvKpm6lrayQiHsPpt7P9iL/eXzOV+C8bfTyVQp8KotsYTP/Fonso+lhVlRis9zawUaTF/qYw3l+SzWS08PXvSd2KzWS2S5IUQXXLQrhulVIBSap1SaqtSKlMp9ZC5/89Kqd1KqW1Kqf8qpSK8rpmrlMpWSu1RSs3szjdwOLW73LjcnVUhOyYwfb3bmKna2u5ihTlr9ZssY2m+jXnVaA2fZ5aRW9nEyuxKzrKsZUnbL/mP/SGGrJnruV+dXzSLLacwre15Fk/9J5zzNLaoVACCbX7EhBijZx493xg2eYQUFRNCHAZd6aNvA07SWk8AJgKnK6WOBJYAY7XW44G9wFwApdRoYDYwBjgdeF4p1eeGgTQ7nOwta/C8drk15/xtJbcs3OzZt6fMWH6vqqkNgF0l9Z5jeVXGA9aOJfqmqV1E/uNYZn51Js/Z/grAUpfRCp/V/kecd+Xy8rRPuaX5GtrcFkaao2USzZLAQ+M6u4dmTUxm/2NnEiVrsQohDoODJnpt6Hia6G9+aK31F1prp7l/LZBibs8CFmqt27TW+4FsYNphjvuQbcyrxulye17f9e9tnPbUCuqa2wH4dl8Vu0sb+HhbCRUNRmLPrTSSeceQyNVmkbAouxtVvIGGhjo+3VHK9WNgkf0RwhtziHUUUukXR+mNmVzXfhejWl+jOXo01uBIUqM6u1o61l7t6Osf+b2x7x1JXwghfq4ujbpRSvkppbYA5cASrfW33zvlGuBTczsZKPA6Vmju+/49b1BKbVBKbaioqDj0yA/BntIGLvz7Gh54f4dn39e7jXIBa/YZXTDeVSE359fgdLnJrWoigSqqGlpoaXNSvO59fhvzLSstN3BPwRxC/5LKXuts7s/5pefaKh3Gx2P+QmxcMn4WRQsBDIk1+t69+9Q79p05LoEzxiYwe1pq930DhBADWpcSvdbapbWeiNFqn6aUGttxTCl1P+AE3uzYdaBbHOCeL2mtp2itp8TGdu8SdRvzjCT+8bYSANxe/fAdC2lvKaglMTyAS/2+ZMJnF7BjbzaTnFtYG3Aza+y/ofWlU5nf8gg3Nz5DkG7+4RcBxvMOk9teIGHENPwsirhQOwDpMca6qx0PWwHPpKbB0cH8/bLJB6xJI4QQh8MhjbrRWtcqpZZh9L3vUEpdCZwNnKw717YrBAZ5XZaCZ7XSnlHd5ECBpzTAzhIjmTvdGrdbs6esgWaHURgsp6gcXaEoy9vDvKj1zGz7BzRA/DtTedPsIm/T/kRWZ5LlTsZ+xqNsqA3mjuVOJscpEqng2bMTuPPLOurzXITYrRxvrq3a8R0ZYtZ2TwgP4C8XT2BcSniPfS+EEOKgiV4pFQu0m0k+EDgF+JNS6nTgHuB4rb/TxF0MvKWUehJIAjKAdYc/9APTWnPJi2vIrmhk+7yZhNit7KswZpa2tLsorW9l3f5qbLRzV/Qqrs9/CZ6DDwGMXhzcKCzmHyFVs97guHcsRAZaaXC6yJw6k6DdFcBGNpZrrpsxFYaPJjJrJ+TtJy0myNNaH5MURml9KylRnWPuL5ycghBC9KSudN0kAl8rpbYB6zH66D8CngVCgSVKqS1KqRcAtNaZwCJgJ0Y5xTlaa1e3RA88szSLi/6+mrL6VgB2lzaQVd6I1rCvohGtNVnljdwW+Ckf2+ZSnZ/J+qwSlgbey/VNL3nu49KK9mEzuTv2eab7/5u01rd4+4xtREw4G6tFUdPiZFhcCHar33fWWT16mLFgx+TBUQAU17Z6jj35i4ncffoIpqVFddfbF0KIgzpoi15rvQ2YdID9w/7HNfOB+T8vtK5ZsCaX6iYH76wv4JaTM9hg9sfbaMe2+klyEscQ3ljLbfZ/Gb/W3juZZ72un9j6IimxUdj8Lbx32Snod7dSUVAIwLiUCPwsisSIAAqqWzzlf70T/VQziZ80Mo74MDu3nzLccyw8yJ+bTvjRb5MQQvQIn54Z2+Z0UdPsIIA2huz6O3ry7bywLIcQux9XOt9n5M5FsBOW2sFtC+WShtt5KPxDWpobCRt/NoUZl1P79m5qK9q5dkY6AKOTwmCjcf+MeOMhapC/8W3qWNAjOsTO0NhgxiaHExrgDxgzVb+975Qe/g4IIcTB+XSiL6ltRWs43bKesytfxfH61zzSFMbksFrCm3IBKFMx1PonMPz0G9nx31jOrB2JUrD9nJk4q5uB3QAcPdTogumoLwNgtxp97VPSItlT1sBYsySBn0Xx5W9P6LH3KYQQP4dPJ/omh5O7IpYzp/VFAGx1+zjJDzCr+v7S/jdW10Uz75TRjDgincSvlrGvson06GBC7FaSIzsfkk5NN7pgxpsjYrxXaXp41ljOm5TMFClJIITwQT6d6MfE2hhjJvn3XUejbMGsZwyPnDOSe7YnsjrTyPgnj4oHjOGN+yqbPEk8LMCf+DA745IjCDO7YPz9LCy94ziig+2er+NnUZ6+eCGE8DU+negpMjrTW+MncUfeTbjbLZwyKg41cSpD6nIg0+iWGWSWHuhYr3VYXIjnFt/cfRL+ft+d4zUsTpbiE0L0H7698EjaDLhjF1z9KW7zrWTEG0n6QC3w8ycZlRiOHBLt2WezWqSujBCiX/PtFj1AWBIBXi9HmIn+iNQIEsMDOGNsoufYGeMS2fL7U4kIkqqQQoiBw/cTvSk80J+6lnYmmw9MlVKsvvekH7TWJckLIQaafpPo37p+Ol/tKifFaySNdMkIIUQ/SvRjksI9C2YLIYTo5NsPY4UQQhyUJHohhOjnJNELIUQ/J4leCCH6OUn0QgjRz0miF0KIfk4SvRBC9HOS6IUQop9TWuvejgGlVAWQd5hulwrkH6Z7HUg4UNdN9+7O2H01bvDd2H01bvDd2Ada3IO11rEHO6lPJPrDSSlV0ZU3/jPu/5LW+oZuune3xe6rcZv398nYfTVu8/4+GbvEfWD9seumtpvv/2E33rs7Y/fVuMF3Y/fVuMF3Y5e4D6A/Jvru+rMNAK11d/6DdFvsvho3+G7svho3+G7sEveB9cdE/1JvB/Az+Grsvho3+G7svho3+G7svhp3/+ujF0II8V39sUUvhBDCi08keqXUa0qpcqXUDq99E5RSa5RS25VSHyqlwsz9aUqpFqXUFvPjBa9rLlFKbVNKZSqlHu9LcZvHxpvHMs3jAb0R96HGrpT6ldf3e4tSyq2UmtgbsR9i3P5KqQXm/l1Kqble1/T177lNKfW6uX+rUuqE3opdKTVIKfW1+T3MVErdau6PUkotUUplmZ8jva6Zq5TKVkrtUUrN7I3YDzVupVS0eX6jUurZ792rx39eDonWus9/AMcBRwA7vPatB443t68BHjG307zP8zo/GmMMbKz5egFwch+K2wpsAyZ4xevXG3Efauzfu24csM9Hvue/BBaa20FArvnz0+e/58Ac4HVzOw7YiNFw643veSJwhLkdCuwFRgOPA/ea++8F/mRujwa2AnYgHcjpjZ/1nxB3MDADuBF41us+vfLzcigfPtGi11qvAKq/t3sEsMLcXgJceJDbDAH2aq0rzNdLu3DNz3KIcZ8GbNNabzWvrdJau3ojbvPr/9Tv+aXA2+Z2X/+eayBYKWUFAgEHUN8bccMhxz4a+NK8rhxj6N8Ueud7XqK13mRuNwC7gGRgFkbSw/x8nrk9C+MXbJvWej+QDUzr6dgPNW6tdZPWeiXQ+r1b9crPy6HwiUT/I3YA55rbFwODvI6l/3979xoiVRnHcfz7K0UyS4o0jCgTFCuopKheFElh0I2IksQKoUCwC5Vd3hT4phcRERUWBRVBdKMMKogWkpBQLNQ01LSLRUmLFgllF3PXfy/+z7jTsDOtS82cmf19YNiZZ+YZfnv27J9znnPOcyR9KmmVpAtL21fA7DK0M47849X3aZdmuWcBIalP0gZJ95f2quSG1su85nqGCn1VsjfL/SbwG9BPbpE9GhE/U53c0Dz7JuBqSeMknQKcXd7raHZJ04E5wMfA8RHRD1lUyT0PyGL6fV23naWtY9lHmLuZKq0vw+rmQn8zcJuk9eRu11+lvR84KSLmAEuBVyQdHRF7gCXA68BH5G76QNtTN889jtwtvKH8vEbSJRXKDc2zAyDpPOD3iNgMUKHszXKfCwwCJ5BDCPdImlGh3NA8+wtkgVwHPA6sAQY6mV3SJGAFcFdE/NLqo8O0RaeyH0LuYVVsfRlW194cPCK2kcMdSJoFXFHa9wH7yvP1kr4mt5bXRV6U8G7ps5j8J69EbvKfdlVE/FTee48cr11ZhdzQMnvNAoa25mt9Op69Re6FwPsRsewKgY4AAAMBSURBVB/YLWk1Ofyxowq5oeV6PgDcXfucpDXAl+W9tmeXNJ4sli9HxFuleZekaRHRL2kasLu07+SfW7wnAj90Ivsh5m6qKutLM127RS9pavl5GPAg8Ex5PUXS4eX5DGAmsKOhzzHArcBzVckN9AFnSJpYdv8uArZWJXdDjsbstbb5wGtN+lRxmX8HXKx0JHA+sK0quRtyNK7nE0tmJM0jt+Y7sr5IEvA88HlEPFb31jvAovJ8EfB2XfsCSRPKsNNM4JN2Zx9F7lbfVYn1palOHw0eyYPcSuwH9pNbA7cAd5JHyb8AHmbo4q9rgS3kGOYG4KqG79laHguqlLt8/saSfTPwSKdyjzL7XGBtk++p5DIHJgFvlGW+FbivW5Y5eXbQdvIA4gfkLIadWuYXkAe2PwM2lsfl5NkoK8k9jZXAsXV9HiDPttkOXNaJ7KPM/S15wHxv+Rud1qn15VAevjLWzKzHde3QjZmZjYwLvZlZj3OhNzPrcS70ZmY9zoXezKzHudDbmCRpUDnT5hbl7I9Ly7nqrfpMl7SwXRnN/isu9DZW/RERZ0XE6cA88vzpZf/SZzp5Na1ZV/F59DYmSdobEZPqXs8gpwQ+DjgZeImclhbg9ohYI2ktcCrwDTmr4ZPkRUxzySl3n4qIZ9v2S5iNkAu9jUmNhb607QFmA78CByLiT0kzgVcj4hzlzT3ujYgry+cXA1Mj4iFJE4DVwPzIqXfNKqNrJzUz+x/UZlUcDyxX3iVrkJwUbziXkvMTXVdeTybnbXGht0pxoTfj4NDNIDlT4TJgF3AmeRyr8UYTB7sBd0REX1tCmo2SD8bamCdpCjkr5PLIsczJQH9EHABuIm9zBzmkc1Rd1z5gSZnqFkmzajNKmlWJt+htrDpC0kZymGaAPPham6r2aWCFpPnAh+RdqCBnORyQtAl4EXiCPBNnQ5ny9keGbpdnVhk+GGtm1uM8dGNm1uNc6M3MepwLvZlZj3OhNzPrcS70ZmY9zoXezKzHudCbmfU4F3ozsx73Ny/GBDzeUDYYAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"sorted_data[\"CO2.1\"].plot()\n",
"sorted_data[\"seasonally.2\"].plot()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On peut ainsi observer deux phénomènes :\n",
" 1. La quantité de CO2 dans l'atmosphère augmente avec le temps\n",
" 2. Il y a des oscillations récurrentes\n",
"Pour étudier ces oscillations, on fait (première courbe) - (deuxième courbe)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEKCAYAAAAGvn7fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvX2sdtlVH7b2ee59x1UTKaoYqVUIGirSVAkiSTtFqZIqLXUlKEg0HyQkVdWQCjeqqFI1aesKKA0kRAmUKKQQMwGCIIRAwlfiD+wB2RiDDR4b24xt/IE/sPHHjG1sz9jM3Ps8Z/eP86y9f2ut317n3Hnve4c7fbY0eueee/Y+e6+992+t9Vtr71tqrXIqp3Iqp3Iqz50yPdsdOJVTOZVTOZXrLSdgP5VTOZVTeY6VE7Cfyqmcyqk8x8oJ2E/lVE7lVJ5j5QTsp3Iqp3Iqz7FyAvZTOZVTOZXnWDkB+6mcyqmcynOsnID9VE7lVE7lOVZOwH4qp3Iqp/IcK2fPxkc/53M+pz7wwAPPxqdP5VRO5VRubXnDG97wsVrr/WvvPSvA/sADD8gjjzzybHz6VE7lVE7l1pZSyvu3vHeiYk7lVE7lVJ5j5QTsp3Iqp3Iqz7FyAvZTOZVTOZXnWDkB+6mcyqmcynOsnID9VE7lVE7lOVZOwH4qp3Iqp/IcKydgP5VTOZVTeY6VE7CfyqmcyqlcYznMVR779FPm2Zs+8El59Lc+dWN9OAH7qZzKqZwKKZeHWX75PR83z171jsfkpb/24fbzU5cH+cJverl59m0vf4d88bf+nDz+xNPt2X/zXb8oX/GPXnPvO30sJ2A/lVM5lVtbPnuxl8eesNbxw2/7qLz/459pP//WJ39Hvvqh18qnPnvZnv3Y6z8gf/elb28/11rlgRe+RP7OS97Wnn3by98hf/Gh18mvfbBb2n/ln75e/qcffmP7+fEnnpYnn97Lt0JbD7/tIyIi8snPXlzDCJ9ZOQH7qZzKqdzTsj/McpireXaxn83Pn/jMhfzqb/62efbPXvd+eR1YzO9+7El54IUvkbd/+NPt2Z/7x6+VL/47P2fqfe0PPiLP/46fbz9/1yvfLa97zyfk37zlQ+3Z//7jb5HvefV72s+Xh6V/3/ua97Zn+p2Pf6Zb3r7U47CmUvqz47/w6MbLCdhP5VROZVP5+JNPyyc+Y63Q9zz+pAHtD3/qd+RfveGD5p0v+PqXyZd/5y+0n9/10SfkP/iGl8lL3tLpi6960S/Jn/nuXzL1vuGnHpWvfuh17eefeXR5/1+/uQM0gjwWBWqRxRoXseDry35eFA17oyT15mPb5pW6Xu9elxOwn8qpPIdLrVU+8/TePHvvxz5jALHWKn/3ZW+Xdz/2ZHv202/6LXnghS+RJ57q9MV//Ld/Vv6jb3m4/fy+j31GvuT/+Xn5joff0Z79t9/7y/I3/+Wb5Un3zV//yBPt/3/tGERUykJE5Dce/4yslW4dZ+/U8OyI2Wm9y70CdH9pbgphXK8BO3n2bJYTsJ/KqdyCUmuVt37IZlW8+QOflFe89SPm2Ve96JdMIO9HX/8B+SPf9HJ578c6cP4X3/4q+bJ/2C3oD3/qKfmen3+PfM0P/Ep79l2vfLeIiHzok5a/xvKRY+bHr7z3E/3Zp55q/R2PZfmXWbTznNQ7/luoXb0UT/mIDKxqVy6Jxd76ueF7hVAxrC83VU7Afiqnck1lf5jl02Dhiog8+fRent4fzM9/48febAJ5/9dPPyp/8Otfauo98MKXyLe8uAfyfuRXPiBf/p2vkVe/8/H27Cu/6xflBT/0hvbzYa7y+vf9tgnuvfwI/O95vFvjvigAzUB7zw18h9UoQCuIZqDWATqWy3kmT/33xn1CCqb3Sb83rnh5mEPbW753kdTbk77cVDkB+6mciiu/c3EI3O3L3/oRk/r28Seflgf/9sMmN/mv/+ib5Iv+71eYel/4TS+XP/+PX9t+/sHXvk9+/I0flH/8878Bz95PAen7IJCn1jpme/ii4IRFW834ZQZglVAMse34TgO1BNi7BR1bzxRCVk/7yxRD62cyGAVhpqQyGbR6pJ/7REnd63LXwF5KeV4p5VdKKW8upby1lPK3rqNjp3IqVy0/8+hHTHDv009dyoshE0JkybT4F7/ym+3njz/5tDzwwpeYgN///CO/Kl/2D39BPnvReeL/8YfeIH8RAnmveffH5GNPXpjMCgwGYvk1AP8tPDErPdNiXJFZj3NmHh/LgVAVmzI7WEbI8VlKQySWsCo4Vj8bir5+uSfATvrpS5Md+V42lG7pRxlkyu1el+uw2J8WkS+ptf5REfljIvKlpZQ/cQ3tnsr/D8pjTzxlgnYiIo/+1qcMpfGG939C/sNvfJkB7W/8qUflBT/Y/wrXx598Wv7aP3uD/DWgJv7mj71Zvu6f/6qhIb7hpx6VF/7Er7Wf33e0gH/4l/sfplHLnFnRWjr/Gktqdc7r1iPjmesWnvgIahZot1idsZ40gB7XY+Cv1irzHnq9cZ9UdrR+IgO1jhmYtqyYBO0YFSMNoMdjuWiyi7+71Rx7XYrunPPjf89+WPhU7mn54G9/1vz8vo99Rl7564+ZZ9/4U4/Kw2/7aPv5Ne/6mDzwwpfI2z7UaY4/8a0/Z3KOa63yFf/oNfJXvr8H8r77lb8hT13O8ob39zznH3rd++UV0PbTR1D7zU/0fun/P02sOC0zszr1dylPPM6YyIBgCzVC6YQNVucloQWyQKUWBacdoSFSgGYUzvHflGNPxqJK5iKhlRhXrpSIz48XyTl2Bf1OqVwtXsDq+TafjXItHHspZVdKeZOIPCYiD9daf/k62j2VZ15qrW2TaHn3Y08YQN4fZvnWl77dWMLf/5r3mpQ2EZEv/85fMCfyXv3Ox+VP/b1XGurhP//2V8nX/MDrTb0fet375WvBqtZA3uvf17Mo/J5RcHrjb36yj+X47wZWwADtFjBsFjQ+axxpZnkf+0TBaQNPTH7XeGIaAFy3vDnHvp6y1753RYDuud8RDFV2NP0woWK0Xk6pJPWIDLRPLA1Rx0eDoMd/M8+NWfo6PpXPs2G5Xwuw11oPtdY/JiKfKyJfXEr5Qv9OKeUFpZRHSimPPP7447GRU6Flf5hDwOz17/uEPALg+NTlQb76odeao8//4OF3yhd8/cvkqcuekfH873i1/Km/98r288++/aPy0KvfI9/8b97ann3zi98WDqG89UOfln/yC+81P4uIvOWDn5SrlC1BLGqpbaAhDlnwK8vsOP7LeOItljdrWoE9BzWiEDaAWp4RwqgY++9V62Uy6AHH2E/9HQPFbB1k9bL5VCOGUjH6DvmdPtPvMhorA+ZMmWbK5l6Xa82KqbV+UkReJSJfSn73UK31wVrrg/fff/91fvZZL/vDbFLaRBbwRYC82M+Bqnj4bR+Vf/nIB9rPT+8P8sALXyI/+voe3Pv7L3+H/Olve5V86JO/05591YteK3/+RT3T4m0f/rS87j2fkG/46Ufbsx983cIZI7D7cqGbiCzcPF0tIZj1HYIkGS+tRUGNWU5XpS8ySy30yXxv3ZXuyoYB9Aa+N7H0udV57Geaskcs78aVJ+C0jzzxFhmwwKGWLoPxWNhK0PezDJ8sm4ZRMRlAe/C1npvtE65p712x4Okhmc97Xa4jK+b+UsrvO/7/vyUizxeRX7/bdp+N8sRTl/KBT1ju+MVv+ZC866P91Nxvfvyz8vzv+Hlz8dBf+J7Xyh/6hp9pP9da5ate9Fr5y/+kZ1F8+yveIV/zA683hzm+9gcfkf/tX72l/fzJY27zt7/ine3Za971MRGRYEVj6WCBz+y/eb24UTZxqwnIMFDLrFUtF8R63JLZ0axOWNFb8omZN9A39NUUgpbMUsvphIxfHmvFDjIRoLdw5T0jBGQ+a5/GMmD91NKCoHuyDuYxPeSpESzZWm6WN1t3yVgC+BKDYk8ydVoWDpF59xBmU/8my3VY7P+eiLyylPIWEXm9LBz7i6+h3c3lU79zabTp4088Lb/07o+Zd77vNe+VV76jW8zvfuwJeeCFL5E3wsVDf/a7f0n+s7//SlPv6/75r8p/9Q9e3X7+/l98r7z7sScNv4x8sEhfAHiM+j3HI9PZjW/sCHO3UobVqCXcNnTiSmdHpnNQG9fzIMPrJcDOrMct/LIeCU/4Xlb0dzz4FS219k6S2aFjp6CW0gljGiJzkgJPjGNx77BySSiV1qc5sXYP43WgbTKAphkorl62flhQO/d2jmMgv+seAplPZ+njvHjPgtJRt5mKqbW+pdb6x2utX1Rr/cJa6zdfR8dG5X/9sTfJt728OwTv+ugT8kf/1ivkx4DS+Avf81r5y99r47ff8uK3ydf80x7ce9U7Fp4fAfpdj41P52nZEsTKeOIM1A4JyGTWMbWEN1mrMuyTD7xurpdYalc6yZdKmNU7hLZVLodEuW3bmOOxMBlkVucmjj0Dp4xOSJQio9u08Fxsq9xYnxh9oeXQLOhYj3llvh5dP8d/OVeuynQs84xjZzLw9XA+PdizPdvege9mVy1cZ7l1J09/4o2/Jd/1yn5q750fXcBYgVpE2r0YWbralgt+Mp54SiqyRamHQPJc2mg5bVkHmaWfZ2hI+J6WHlTKuM5YTxfz04fI7WdWrrf0mQwyq/NiH9vuNMQ6qFnqR8c+Bmh2qKe3mVidLUtlzC9Tnri9k4GT9onwvQRgfc44pxO2WN5jw4DthUsyV+13CR2l30uVG10j1nPDfe2BncYZCO8fFUKv59cPKpubOrR064Ddl2yj5DTE8m/G9z7TtDMGatu+NwaZqx61vhoVkwXyriaDRkMkd3akVu5xE+wmMpYrAvQWjv2CKVNtM7ECWUaIljyQp9+4Gp3Qx8L64mgB+J2XHa4jr0gy5cZkcMHoi9b2WCHod9mSzg4otbVF1nTWz+65WYBf6jkqJlk/RnYHKx8ugxhEv6nUx1sP7KnVueXkIKk3J4uyW6vrCoHdvbFL6mWWWgbQjOv0i5J7H2OvRTfRlemEZINtCX4xcNqSesctfWtxsU2V9XMLyDAZXDqgxaJr60DWZkr9uHd4vXEAkI3FK29OR0Vw8jRNlqXCZKBrio0lk51a+kx2GfWjxYMx9iGjHrVtphTZGFRBsvjEyWLfWNK0sw0HRTJLP0udSnnifQQn/V42rY17NJkdcTGG/rKsBkdtZFkqKVd+5aPdmdUZLSY/hqfZsfgk9S5SOIQjTSxhZun73zHlxu4W0ZJZq4fmSTGLPVEIycGfyPdivXHbGb/cFAk50ZnREFrauiNzpgDNwJSBaKuXgOmlC4Ji6Zz3UcET2ekzlKuuiUtiGLQbMVtKbf+eysO/I8KV0r0otx7YU1ogsdSyTIvseHIWNEtBZta2E6tzHwE6c8G1XLDc72ZxjUGtZYRkR7sTL4Ie7U5T9uw79ntbrEemEBREo/fhb9m7aoZGRqn0P8zA6o1Bprv14/mgaYRuHeCa9lbuRFw3fxAH28q8pMzSv0hAqgcOGXgnXPkhgqEW9XbY+mEg2n53fHRJlIaOa271e70G0KRPrZ/ku7qfGP2Ved7XWW49sKd5wRsAOqNw+L0TiSJx9Xg+8XgzpMeaiaXm63ErdwzQ7DCQH0vG9z5T2VHAcyCK4OSVG3OJmVL0WQ1X5omTOEMDBDKdmewySzbniS1AY59iumMv3vLGPnnrmK1MZhx1aisBaAU8QuGkXkvrU+yLDvlA2t6iEFi9IAME6NCnzNKXUO/QYgmx3r0uzyFgT1zpxOpMqRiW2ZHMi7cMWT4xszbiAZMs7WxstTIrd0s+cXZQhIHTwYEMli0pgjQA6DIPmJK6JH3yIGqn01qp2Kd5Hsu8t53wvQ2gE++DKdNDJrsx1dA4ZLUCYSF6yxBr66guCQ1xGcAJrU773QOxVnXo2VgYv6z1eKbOWFmEQLDJbtF6odo22R0f4Ve7YRAB2isu7K/KjlrsN5TTfquAnU12m6SE781OsWXcPLsV0FuBWLzFTgN5SeCHp+y5thnf275HshoSWoBlQ7SxzJbzxtIt5/HvsiPhFAhSb2fctldAWR6yUQje0r+icmsBQOp9HNtOwIkrtzHoe4udWo/N6uz1VB4HAjKNYiD1pgScGqhlYyEg6i3mzEjZZHknQGvqOY6dWeztGVT3WTQ4zL1TlNgX3/Xsd/eq3Cpgpzxx41YTnjgJRmUpe9zSzxaz4yyh8QwkvAKiObFJQHdTHnJSjy22jIbQtmhgLFFAPoUON1gWqAwHPghPzPje4t6hCoGAWutTwtvOCQiz8fnvZgHktB55p9NCsb/NemwABt9zVi6mYKq32cEQxues6sxYMd9TgyBVbmOL3e8h0yeiSLT01N/4TgN9YiA2OVb3M3xbh5Arov7sBOykMOvx4nj5Vnasmae0jSWcgWEWyIspe9F6ZFH/fgQ9Wp0+bRHBScfAsnCyelqebhkzV7O8LxLQzwKOaiF2i7a/kx1d19JoDGN5W2sMiwc1K3NbjwN0dO89NUFll4zlkCi3LCPk4NYdzewgVufs5MPrxXF6i50GDhMZMBD11jGban3dgqj9nv4G284u+vKeDL7iz4kUUo+dJWl9IRx7be/IsN69LrcK2BlYZEfQ02yIZBOll/0nAUBv6WdHu3mWAQNoa+GhDHzQLPVakkM21PLWfiZUDN/QY2v+4GRHLS5KCxTzXcv3OqvTbBylIdbrbQVoz+XyQHD8npau3CLwZVZnV0DRYvdWrgnWOUXCDIpDAy4wGvRfb9EKAGQC0LMDcazH6ItWj4BhA/K2NhjQ6r9jpcjumvFjQaOq9zO27bOG2O88+I/6dy/KrQJ2aj1uyOygCmEfrcb2uwQMPd+LxaeB8ZzqpR56Hz0HNwK0LoMtecisKECzAyYZLZBZsp4SqZvBSUEmKgYfoGIbILO8+ybq76tizXjpNFMnsVY3pewxmddx/Ywn9lY5UwjsBLKnCjg46TsSftdAjVidLOga3mH1vAWdvGO/p+/HepnF7i1+1rY+MjTohnoe/PF3TCkmDum1llsF7NxiH0sqs7w3pZ0lPPGlAymRyIOjrtEFw9rOUgRbf4llECLzZIOxFEEPEjzrIwFox5HiYmUcsP9u7zf5HrECPRhmfC/ll4mH4JXEVr7XZ4TQrKENNASbz8D3QulgZttb6umzUC1Y1cYSbuBNQF82gBpRCKFPBNT8dxmlwuQSgJa0nVExWZ84N8/7m/WJfo8ooHtdbhWwZxZ7xnlnFnu+oWMfOn0Rv+t5Wyzt0AJzpb3VCSSppyHYPRfs8Ilvm6adJVbOVQKAPKWNbRSrSDg1Yq0d7EOTPVr6QSGMZWeANlEk/rss2Ja51BwMxbaVbHoqc/ddXGIeDEtSb4sFjf3NwJCBWjYWb1WzPmXeg58rZulzesfLLgHoxKtDPPByMbJz9WYiu3tdbhWws+Bplk+cWuXOcrL14ob29SioOWvOWI/+Hfidz05gk885UtsWKr4W/MryiZMgaHZHiAdo60Uk/LKnE3ATJSATQC3jM+F7DkMHLnhUJP2d478JGLL6mYXn680MLJ6p1dn4BGjT0x4b+mTrjRUJoyFC26hMB/WyPrG2OMURwbd918mABl0ZQCdKsbrvUWu+zUts816XWwXsXLBjgE5ToDIXPLG8dWLU4ucAvfzLpnBPlI3/nrmvYrJtMxqCpd6VZq3GTestWBoEJRa79wy8JWXHMgYnVi9sOpMqyv/FcTGFoJ4PUyQR1EJ32zt7U8/2M28b+uJAjNMJ+mzcF8Yl+wNj2y123ic6vsRiz5Qi/d48HgunYmw9DrQS6kUFRGTg+PqMUqkb+oTf40HeE7CHwmmPBKAd0LK2WADQW9BYOg0xplSoBaRWLvldv2da3+3fmxxAMxoiO9hCrWPndjIQzqwiv0G2cp0ezGjbBJw2BbGozN1YGEAnMmCuu6cYtlAVrJ8sG4fV0xIs/UR29Yr1+npg9ZKxeE9qhRrx1FZvW6Ce/T7+f16P9cF+N6vHFHweBPVyhXobAtb3utwqYM9c/uwUm7Wcqqs3DpDlB0UimHZLWPvL6sXvMRfR/27ThibWShpocu+wtCzaTw+0h/F3sfgTi2wT6lyxtLMssJYqMCdDbIsphNCnxJJlVEVmjet7WygO3k87NlYPhxKDp+x3bP3w75vxJcqtku8N18/quuPzuBYEHSmgLXvB9JMGrL3M4xph6+5ksZOC9IWnCviJzvWUsiyDIbOAqTXX3tG0RVbP/ozfZlRMrBfbpMeaj/9m4OuzU6y1EvvpqYItwIfF873WJY7z4MfJ+2S/i9WzIF1Wr78zrhd41BVwauCQgAxTTiPFvplO8FZn4rUwQ4T1c1uf4v4YWbmZfM2zbP1kXoNXpswAcm0zGdDYzhbZkfHd63LXwF5K+QOllFeWUt5eSnlrKeWvX0fHWGE8sbcCsbB7LjxvmgZGGMgkG9q72XhoapuVEtv0C5ZvzOPPlNNlber72QKMzzyFwzIftliUuQxiQNbLznDerk/M9c/maovVSumExGvhc+Xr2XfHz2w92qfE+/Brg3st8XeR9rhqn2w7vN4YaLM4CgfauKaCAiL575nFHvYQ9cr8N1bWzw1Z7GfX0MZeRP5GrfWNpZTfKyJvKKU8XGt92zW0bT+UbAKvlfH/zeIK1s3yM7Wgkxxln4K3tGUXh7krxlmGWcCIc50RLPwfEOB0QlxwowwUaiWRZ54GWzvaXesiCx9DyJTUVssp25iBwkm9D7se8H1GJ+z9+mF9Sq3VBPzdGM4kzkfmfVjPK/sefwfHntIXTiGsGQZ9z67Xo5TjhrFsUQhZoPuq3k5qWBAldWvy2GutH661vvH4/0+IyNtF5PffbbussCBW4G3Nol7+PZgAlavnFIOpR+Zgi3vG/g5ioH6MJWzrpVQMWXjZRUSV1BttWkqNsHzpFKAZEHhZr29ourEJ1xmtzt5fL2tKcTjlxhR8SidsGAv2yytTejiH9NOPIacTtq2fkReB7zG5jOaKxQsyQys/bDWWwRbFie9toc22UCqZl0T3GV0/ciPlWjn2UsoDIvLHReSXr7NdLXuy6bYdwJDwzP+L2QnZQZGMH2R8ve/7FiuFbzCySEL0PXw2BbXQJ7ZwE+uYWjJXcHc5QMdNlMU1PPhyELbtsD5s8Qa21mNgOBpfJif+PW1bhvUo150oKRZEb4qPjs/1iVKIUQb+2RbAZP1kF29tmWMesLbvmvfc+snfiW3T+bwhZL82YC+l/B4R+XER+V9qrZ8mv39BKeWRUsojjz/++DP6Bl0kByv81QCOsxKoJTwr2MeJ9LnxWQDHeA/zeJH4BZgF1PbJwk03b1rv+C1DK+mzvlJHViMPBMPYN4DhYTAv9n37DfYsUwgMMLNTuLkL7r6fAJGp55UbXQcyrJdnqdg62D5XpjoWu27WjaMr9InOowXmLFhsvpfsWUoBhjWVyDxRSnQPDYyqtT7dKou9lHIuC6j/cK31J9g7tdaHaq0P1lofvP/++5/RdxgHuCWViYFhbkHH7/lJzi74YQFdb1nuTZaKrceO0zMA8RuDH4GP9UZpjnRRwkIcxQKoNbfB6mTz4vuE72UA4uVUazX/P6znxpLlKrPxbeFfqQwSGiJT+jlVNQaVLW239ZSAKr7vDZEMjDePheyd4V5PPBPbftYn3k+7fmx7rA/+MNzSZqx3azj2siQcf5+IvL3W+h1336VxoUDgQY0EM3NObbzpUzcyyW3lFqn7HvsdsVZjDCECdMY9ZpkH4UAV2bxsE0SvRcI7Nq5h28yCmVtuYmTju6qi3tYn+44d8zrQcgrQ/czy2InV6etbb9L2jX5ng+Wd9mmDoqbeTiX9dEDN14+Eet5Loopkg1Lc4lnM7udhP1OlMV5T97pch8X+J0XkvxORLymlvOn43399De2GQkHGLy4CmIZO8EBAUgXZEf0RXbKF4mDPsgMtmbLIXH5KjTSgxO/5tsW0M35mv7OFFsjGkNICuLGazCXU85Y2BznSpwDMrG0yvpELzupV0s8NCn5TLGBVCdt6VwLopN9LW7b+lkNMpu9+rpJ30rGsrjs7nswD8wHrrR5RSP2lewj7dDPIftfpjrXW1wj/C3PXXvZsMbtJtkHQ47sgS78oO9DnR7v9+9sOfMT+VvK9CGrr48S2QmYHtUxjZlDoE/N2NiiuNZc4cp2sn3x8pZR0Y448MBbEyqzxlH/dArTMeryq7NzaZPUyMPR9RzohvcPc74krAm1qQdPxjdveRJtRS3gdfBk1wuehiqwFQcP6ie9knum9Lrfq5ClNdzz4ye7v+xOd+J5PLaQLd8NEUi4QNqFfqFmQb+82r9mYZAH2+0bcRmObl1nxV91gG05P0n4ON6b0d5iV60Bpy+EV2g55tuWoPt+s9j2WFppSgIlhQOeq2v6xthnYL1Yn6RMDWrfusjMPWG+LQrg6DRrHEhRBloXD1o9fr6tzdTfKJm/7hnD9dgF7lu7IrdU4kdHSkvDOFkutgfEqp2/7lX4vLECyuBKw2MohdiCwVy4wpZEGKkm9rA9ecWVei+37+obe4t7TA24bZHdVy3sLXz+0FOFfNp6MdvHGyZqSCm1uVBqjdcD6zT2EbD5ZW4N+bpgrFgRdCw6PZFeTfqoRt/Wg2r0utwrYGffnrbEDyTbZslEMFcMAa8MmaBPJTqOmp+34N67Ov0p450BccK/wmJwyF9zHNagLThWsbZN7Se2RHOZlY2b88rDtRL7Ld/xY7DyJ4Frpz0ZKeM29H+Y9bwSC3IBh9Tg4bsljX1MaHmi3yIn1c2vAOtaz3zB9cGuKeS2ZshFZqMPsBkg7Zvvsd0vw9DquFLixgkHQCDJjMESr2gMkO7RwpcW10QX31/xusWjXXFT/Xv79MdAxz2bTMWq64OP3vPXW56B/r4/PWvFsY/L70cfvbEqTzJRpYuFlFu0mTjZRuOx7uTcp5tka0Pp5YVZ97ye0FQLIG/sULHwJ9TJq1BsNrG2/P1a9ycF+RPz1a8y05Z7R/UnGcq/L7QJ2ItjogpMgIbUM7WLZJ8FFVi+z9P2BKMuVj/u0ZfPiwhi60isbJfL9TAb2XdZ37iEQGYyszrVNV7lLnAbInJzUNkuBAAAgAElEQVTx/6nVuaFPW6xcoxCyes6goECLfQ9zNR6LeTaLHKZcdhzsvczHQJvFm7K7V/IYTaYksv0Rv7dY7PEdprgQb72ln3kW/hmnlWJb97rcLmAnwONzsbfmVG/5oxg0AOfeZwvHp0laq9O2Z/rpF/6KRRJAhrzDgl8hoDvH7+XpnFmfJPbBtX8Vq3NtXihFNQ/4ZadwzViS+WTrIFitGy21YLmvWI+1LvPVQd/2ezS+Q60yrcaN7Hf12VpuvZdLZlBwD9N/n41FYj2nhDNlo22txz54Pcanb1FAlIcnsrvX5ZYBO/4/B1jOlfd6I44zc3/x2dV5xUr7lFEFupnXLOjq+smtzvVnaY6zATX7uy0ekelXVo8q2KuPRdugyi3ZdFy+443pDQnu3gs8s+9lQOv7uRWcPNB5K3Rpmz1z3yNznvUhU2SZ9Z+tuwwgc0Vix7eWOcP6HoKgmQxcW1kevX//XpZbBuzIv9rJ9ZaUyHjBYz39FYJop1nG9bJUSk/FrP0JL2Z11rq+UUJf6GJbl8EWpYH19C58bq1y4LFBUNY260OV7EoDMxa3gakMEm8n91AIgKTgxMbn69nn+LuQobECTiPlhiXNY3cG0zoV4/pLwTj2I3grdP0k42vfG7ft550rQInPEks/s7z9WtxqGNzrcsuAHf+fg5MB6AZEY+3LaA82ISMPYS2Aczcbk2ZoEFDzufzMUqR/nCKMJb7D73NxfSIL1wc42WbaEkOgVmfi7eh7Ge2C/cxODvI/fGLrZWNJr8AgczUay3qGBnsWeeO1sWi9DIztWHyf8n5u8ZIyisMrQ6bgfd+zpAHTB9cW23uZodfqrcjuxLGTkmvxOLHMKgq8dLLgmcvm73HfEnBk6Y9ri+RQK/Ui2A2MHnCZcmOLObtfhVn/fnzMyh3FLNYt4WOf3PgwP4Hy6WSOIzhpvSyrSszPSztMdn792L6ZehuszrUc7rkOwLhGufgxozLlSpitfW51Zt4jW3ds74U89qRte0meV9TxndHe8+2I2D+jyb4319r+oL15h8Xq3FqkbSee1L0qtwvYCRWTW6tsQixA9gW/TsWwINYaLXCoVQrbvGShekWyforNbbD2L6m3wXJiSjHPilnvk37HyIlYwowHR3ljP7dYeDwlcgwE3N1OQM2feN5gqVGrc9XbeaagNhgL+54DIyrf5DZSHR87rHdJvOW923tsLH7+2HwyJWyAdV7PdmP1auUHD5mS8M9YP32fbqLcMmCH/w+W+vKcWatb/igB/0tBFni2ZHFgm0tbHuQkvMNdRE7hsEM2HpjXgkNDgF4Z3+juDR7MFPNsCxj78XmLnVqPxIr3c8W4ZG9V18pS/ZZ/2RXLMU2yt82DtRbk9FfMwvPrxQOvCAcsT7dxyzQaR5cH3881y5T1YWDRJn1n7bC7lLaMZWR5b1EabHyrMpiJIqleQRDwl5sptwzYx8L2vJ/INmucu+n23aUtq427QtiW++1/XuNklyDWWk6+HOvN5ufswi/2LL8aAGWn31NQSwDaKRKqbOb4LLVWtd6KtVrn0YVmORjWygEMga+tH5cuywDTA88aGI/Afq1P+r2LvbU6PWCLiFwy698BK//eOGVY37tkFjvxIrwhkln1IsyokliPjK8GZcPGwuaKewP+HZG4XqjXQvpwr8vtulKA0CwelLjr1esNU7WYxeUXJQUn7F+sd5j5RllPDePeAOeA7fjW+uQ3DwPHHji0faDH8tkG8+B0iPWsixqfjWR3SZ6FDWY8N+1THJ/vJ+dI7bNaOwer71wQd9sG7etAQUQZeA/B0wSh7QHIcOsxysW3tYWDFsnnmH0P5Wb6Tb53eZjbH4P3Sspb9VOxAK31UNnc2U1GdlN7R47fq3K+K62eGgFnUzFK487Z5OQyu3rH751NxqPVejcVPL1lwD62YJkVyINKYur5QCC+f+naWrNoR7mtTNMz3tR7CMxKutzH8QUwXAUCuzHYRm1u+t7K/IL06WINCOYtQaXYzyC7gfsbn1W52FtZsnf89w7e4mIAXRcZq1wz+XpZsXWwalUPrEBq/aeWfv9eB8wulwnAUL83lS6Dy3mW3fElzJg6a896n853xciuA1+X09lU+vcRDEFJ3dl1ENW27+ymYOnfObOgbeodsG393ixnu0lKsV6n1quoEKDe/jDLfe2d2E9UwthP2ye5kXK7gB0A02eJdJBji9kCH25Mzj1KeOZdzUMdf+8iuKhr7mDs59Ad3BCZZ0Dr28bFm1vCLqi05qJS8PXWo4R6B9h0th4D/5zHXGSXg/goaLY2V0hVGEvx+L1SrJIygAn1/HwulmGXZwNRkN35DqxHAhb+mcrJgNM8G+BbnllLtIHo2RicNB6B9dA6xjU1BlqV0/K9+3aTWVO9bRnUY99z9VDZwFjOpyJTKVYua9+bq5wHi93LLiqbSzOWm0H2WwXsf/VPfr58y1f+ERGJ1iIFMAIyQ0vYgX+sx8Gf1du7Z2vKZsTlrvWp1XNWNbv0LFiBzJrbR7lc+D6Rd2hbG6xObRstJw+GOt5SrJzUUkS5MKvzzm4yVmezMHGzgivNrMfLwyz3waa/JIBpXX4GFjWv50D0vhXA3B9mOduVoCRYvfvOJhMbQABrz4zViWOR1jYFcXh2MApB23b1BkpDn6HBdN+K7PbzQruc77jsUAkjNbLIbjoqZmnfo/00yoYoU6cQqMU+nyz2tPz79/8e+U8+/98RkWhx4QLUMnK310B1BLSUciAWbBYp5+lqWxQQ6WcDbW4do/V4ubfco35/N5UQRDPPvPUIFqb3krzbiouZu6gL0O7AclpAdNfqWRdc4B1vrW4DUQQLvVPGfI9Zj96iNUDbvy+ygCh+jwHmfWe7aHWerVudhnI40iDG6gzWY+9TN0SsDJa2ZrnTZIBW9c6OxQBmn5c+x2itRtlVtISPSgN5d1QIh7nKOVAjjbve2bGcT5OUUkCeg3Xn+nQ2lWM9WK8ql5nPy36e5fzM8um1gnKbB9QPtH3i2AdlOqKTRsrbQmjWa7QePdfJQZxb42fGJe4Wpi40zUTw2n8CHlProTt4cVizHj1gHt+hoGatMLU67ztz1iMs+IsBEMVnM1hAfcH7d0QWMBwtZtM2BC7Pd9MRnOJYau1cuRnLIQaxFsBChYAgA7I7P74zW0DRtkYb01iPrd6u9bPJ5XzXg5IBMJmyWTyNs2mguGZrHaOHEmU3AKedBSdUNpqlgmsKFcJYUfc+dRko7eHqDRSu9mFVuc1j48F7LT7AyZTw/lChnvR6hjKKysYqahgLyFPnB2mzA+7rGzLZrwXYSynfX0p5rJTy6HW0lxUFdtTGHjBFIvDgpBlrzlEcuHmsS9ytueed7QL476ax1dmtuR3fvECpsMWFoDa2OmF8e/yeysW5qHThDhbzYGMiYIqInA/ohCW75dinc6tIznbF0Czo8uPp2ztnO6CVogVkqAKgse5z7r3loPumF1nSJC9MPR2ftbxRuen4Lo1nwdcPozg0kDc5OuoOWXc4n3uUXfO4xnNFrXqm3JwiQaPjvjMOfK2fhMbyNAS+49s6H9IeA95/rrJTrwVoFksP6ffA+5hnOZuOShE8066ooZ8wn9aLENN2kzmsVzufHQ9uolyXxf4DIvKl19RWWhqPajbvrrl1DXzPd3yDzbVZ2fc5AOvPAKDP+6RdsI1ynGz8o8tLPQA1Y61Cn8B6FFlARZ8d3PjQUtN30I1toA3ZCRacfNsWnIzVObBWbT3cKMsmROvxYsRLE+vRbjCcq5GHYK1z9Qg47eG+R6y5NleoTM93xgqk83IelQQq4QunvLklDIG85slYy5ABpgGnkXdFvBZLWRHlBooE+eVQb7b1hsFTA2rVKKkm8yM1shsCdJ/Pc7S8Z/VaLDWK3kBfd0jXLBb0VIpU6V7LHYi1MPrLU4BddlCPKMXL+ZYGT2utrxaRT1xHW2tlR6gRahU5S7QDdF+UCP6WI13qmY3pwBCpmLPdsiiR+2OBH9zQHvhEln49DxblhQEnGMsAaEWWjXIBgFXJpvdehLZ1ceCWIfU+zoEW2JNAnqNU6LzsF6tzN40UAvTp3HoILBOhA+3YI0EZoHXu2zLgtOdBSe9dlSJy5lL9xpZwtxTPAjjNxsK7JECr4KSya8ptzWIfURXgJdH0wzCfRHbGw4xz5dfB8uzIeTvPDSkV72GiDDpXDv3ckfl0tKSmO/qALpvjUQwj1uO05P5QQ5rkvS63l2Of+eJCC7ZbwoMIu+OEd0qpzGwigYo5h+BXszrF0Dr3gVs3cokZpcJcVMuVc3qIglqwnAgYMgvkzPLgI6u+bd4ZAnkKavOYjuqW8GJ1GirGu8QDK1BdYgxYoXK7JBt6GABkGxpkgJb+AkTOSzoq4XNnQft4CM5nz9RZADqA0wB85wE4YXAx1HNBXpU58/iGsYDZc9ARoFXmhmOfkZID2TlqtMtOZWA5fR3ffWYsyzqYpgElN9h7mlU1HY0xPFTU52ogc5BdlIE7oAT741Za7FtKKeUFpZRHSimPPP7448+4nelosdfaA5fGTYZgG91gSMWcT8b9Pd+xDI1oPRqw2GsgxlExaAGRbAgb6MINBuCEvL9a+nsbkLsAENdnhtM3AA0UTuBIKwTyQAZuozA6SscyFXH95LSHT73TDdZcYkZfBGXardVARw2UW7D0CQ3BvKvs0Et/Nrd10F3wcY6zsdgnC06Xh9kAn+WXdT4tOEXu2sd2rKWv/WTgZA0fIbITqhQ1y2kK8SauOFtbGsycuMc3By8ClVvPDFKP4HxFue0PlsLxHphX+l3BVzPHPniKbMD5rsBYZpMUcRPlxoC91vpQrfXBWuuD999//zNuRzn2Q41Wp27M6ZjbynhpQ8WcWSpGuXLrukNgBKkYV2+aHBVzzsDJguHCkVoKSeuZTJLznVlc91HAVL7etoXH/tFy8t5OrRjIs9Yjd7d3cSx4yAYtNee6W+ux9A3mrLlDBSXsvCukLzRYPLS4iOxQBqNA3ki50XrqtRhwWk/B7Bka3TDYz3b9WEoOwQLBqQftlvn0XovKANcdU/B2/QyBNtBRCHxi1o8BTCo7XHddBqMslVq7xdxTPsGqJxa09yJa0JX2yQe6Ya5gvbJA8Bb66ybKraVijGV6bqPSWQqdrWcB+s7RrbNBugEVo0pjrp2KqTE3ulYfrO1tn59NLZtm74DWWlyj1LsI0J5q4hw75+Yv95XIYKzcZtxgu249tnpESQWX+DhXJl4A9ZA/71SX5VYjrcTjBRf70ViAMpotdy0yBrVWb7bph/aQzYhWkrZ+znfT0VOUTsk1qslSOB2gq7FWvfeB6zXKPMpuTOGAciOZQeh17oGOGlEj/nv1aIice67c0V/RqkZjbAC0sxgevMJ8nhMZnA8UiTFEwPjbO2WqsmPpq6hwb6JcC7CXUn5ERF4rIn+olPLBUsr/cB3tsoLpjgiYIh2cPO8WQG1vN0o91jtzVMx+7uCEWTgmXW3f3UFMe7O8YrQeF16xL64LZskQPjsqqQhqurjODYDYINbYcvJ0lLUefcCo1g5Oqtx8lsoM3Ko9YLJQKtNkN8qQl24bs1M/NJA3yKaxGRPEWp2VTpjcSVcfZ+DKlOaVDyiV1of9fAQZ57WcE6B1Ch4P58R1Z+vhJXk4V2EdHOeqOK93nCaJKYJ2L+j6GVm0fXzWA2OBYEr9zNagiNRIEp+Y4vqhQdeQ7tiTBJB2URngPTScypMbKddybW+t9S9dRztbCk93RO0/Nw4RrfHnkbRFH+DEjamL6z7DZ3fr8VDdRlG+lwAt4zr79wYW9FxdTnW0oHExezrq3C2uy301bYd0xxnrDcBpFqMU2/iO4LQ/uEDXwDr2AcC+waIVeEFBrbvgLDNIgaA45RZ5YjZXloPW7xnZERfcHnphLjhmOdmTtWfTJLXONiCHh4Eg/hLjEzGovawDl0gA1mpPLeRXA+iJTqQXh3e3uHTHDmpQj50dcPw5AnQMBPd65yiXRmfOAcTxnS6Dvn6ed96D/SwQPLorZgcBci/zuS5/LQ1jH30ddKbhJsqto2J4uqPd0IyKMRa0mxDNoriji5IAn6Fi3MEfBCefpxvpi764zs+mtsE6zWMBWttCbhVz5FnaYssWwPxw9D7QugkbOqYtItXVvY8ITl52I14arblzpBPIMXUbBNX5XBSC0hfM++jHzR21NnC3sZ/nMJ8qc5YdZcEXZF77H+9m/H3o5y4DGQv2zduZO42lVJDIem69N2BYhg+e6OxUzNoBpeXZ+TGzjJ0E5ZlIx3gB8P70ENNAmeL6id6kzRZCmsd4LcQLVcPgDIKg6mVPzkvSdaDXTC80IVjsx++JyO06eXqTpUC6o0/1W4JtNWzMyC93rrw92y/Cb5w3cW1x8zRKZX+kE47W44XfYLO3GqT1ySySgRu5axtF6/ELoiIt4PLDXS72fnYKQTfmWee869G7GeXkYx/69/IUOksrWZDpGU1RkWCapAbWSvB2LFgw3t96A1EJm2DmHMHJBA4dPYMpn6FPM7Moe+BwnFPtlCIoG1XCLJiJh63Od5MJzGLOOM3Jn8Ejgu8hRYXXVmC9nfN2UCmid+XXufL+uM8YdejX8NmRjkKD7c7OHn5SGWAas8ZoDgPZNa/FyKDLzlNdIiJV7Jru3k7t1I/cTLl1wK4We62dl35esNg9z2dT/TyfrdYxBqM8yNQ6yE5wHgLnvMHyhsV1TsHJnnBUTg/Hwi45MpbabDnLpZ/VWGXtDpZzC1iYruazDDKqCa3Vy73vkw2MIvfYrBuMT2BGyD6CWpsrVSRuPtFy8jLQA1F497o5hDb3DB+8rdMEDh34HkAGpfirENArjLEApJVs4DKCE6bZGjCkVmftOfIiAWTKMcDpLW8zFl8PFKWvp3vofFrqzbWG9NUqUXa1du+jHN/xeeUYpzJ8NtBfIoPcelVuZ1MDVT0tPk3LB/33mqLeRUpFvSRdF7EeOWx10DhKj13d63LrgB3THX0WhclOAHCaK1j1jIqZa3OlVfszy4ml+jUqZhpTMZwnnltWDD+mbrnOHvyCQOWM4ATf26tFy5WbAQKSZbC0DZkIJiAXqR8EGeSuGzihFbbbxVTRQWaH3jHDDo6dTd0q8mMRWZS35sijDM6mDlgBZKQH+47LLK4f47VgrKPTAgLex4i31blqaYtTPMy21LOWt8JCS02dbNvtLhNBK9vRCRoLEBvYx37qfDZvx9EXNN3R1fNUhcpp6ecRoKVTOE12PgNGrAza+OYZaA+2ZzFLxeaV76YiRbhhUI9rGC8AlPC97rWc73y9SYp02R3mCvEXuZFyC4F9fPJUqZgzA04kc8ZRMYejlXlnN8lu4pSDPzBkg0PdbR1G/Y/g1K4igMVchQQzawd/HbNIz8JRq5MvyhksmXjcHAHE8/XNjZR4aEpdTfM9cZt+tgfAtIzuLWm02aDtnprW3diFUok0hOWXEdR0ruwdIaOrATD41eREwInmYuv6cTn5ZnwGnI5gKEoBRqBFw6DWbhm29UPXgQYzmdUJniko3FbPZY2o7M4aGEaliNRIz7iJ8j04pY8KQWVHYy0Djh3z33vbsF8a1WVjbmdEuZ2DIsG9ILB+jEHhlE33lnucSrNndkewvyGK/fYCu4gNLor04Ew/lRitKxmAIVIx9hpWu1GWtvDZbCYbr5nFttVNb+7goXsIhlIJQUkfxJqbNW6AJ6FGRtkfIhZ49NrgznlzsDDjm/tYFDBZbvQFaWt4kg/euWiBNcuVn02TiPj4RL9UjWWp+GyhmO6om34CkOGAEucYgY/RApXKpQe6vVdIDIPSaYieIlg48M2dtjPrBxQeBlj1nnFUppghpjTEsoZr9BCc18I8FJpmO/ezJ152+teKpNqDRm3dKdXk0x1dlsr5VJoHphiBVxiE+Na8GDo7v/fA25kH8+kPTTWlMZUmu5sotxDYl39Z5koH6AncLA9q9nKtpR5ypC6vfIfZLSywtWS3lGKtDXtPCj/Ag8DDFqUGgnUsSz218FyKoE87w8XlXVujuDoYLheaxQMf9iI0ltlhFdAoN3oH4KT9yg6YIC1guPIBt4rgZLNULDgNgUd6jEb5UG+ViXRr1fK9C/WjynuUI2++N3ewKEel6K+IaO790WtpMp+7J2Mtb2/RdqpCZdc8IGYdzzGgi+AUcsYRRAH80Wvx4I+ya/M5lSg7YrF7Cif1EGZNUSzNIMQ1Jb5eSAiwqZtKqahBMeL0zZo+voPr7ibKLQT2DgyUl97jguepcJEHF2c5jQMxu6m4P74xGytlBHzecrrABTDHRWICwdPSRz2V2DwEgXQ1lyZ5B5RNyNQhVooCCFpAzcp2Vr1/NlKKTXEKWoFy/N7RGt8ROsEFh9H7EOlei2ag8OwWvbeEgZNTUiTOUMQCkbEwR5kdxFJjf5zCn3BE2oODTE8H7PJ08QKWoTGDN3m0FO3ZARYMB++jUVaLnBpoz1wJdwVf2pzbscT0ymYYZN4HWvFOnt3IQXrIUoe6r408gWbZewXU5NSpUqRUmkFBAtZdCZc2B0vb9u78e11uHbAXN0Ei/kg48sTsatYEfM8KbGhWrwMf1sMc3EjF2BQ6tDo1uFclXuYl1QJmrTY45PnsEcggFzj6YyNmLDsAGbXYQSF4SkVB05zII+DUKJWpK2aTQkeC2mg5CVhOyJGOlfBiPXrryhwJJwBiLtcSoR4YO0rewckFPF1GiAaC9dmlWxs0pxqCkmaOAXhiMLzneet42yVZU/Y9COiWXkdETHyirymwoGef6cXWGAN760UwhXuYlzug8BwLUioYp8K/YYteC37P3FFEKSN+bQXene8VtRo+qKgPuu5gTd1EuYXA3hcAAxkPTowXb8Eo50rjHy5gR/yNppe+6c7P4kYx1vFsLVoRa90g8FgQ9Yef7CJBKxAvOTPZLYbisB5KHF8FGTCrvgZw0vTGDpgx8OzTwPB7Jlg7iJkogMkRnNRr6ZvOBiq7l9TpGp3PHohlOfliQE09QLYO7DPr7Rgvyf35PAUUbUvBSZUbternbtG29YpptjNLX/XWeeep0ToeghPxek1GCAPoI72ohkhMURzk8rs4VePTzxDE+5yrDIzBRLxeDAS3etLz7UfxENxDxe89Q7OMEyVUdmqM7aDeTZRbB+wicsyTBVAjVoq/uc1exqQUR19wBmRqtB6Rh8eN2SmV8UEjpHkwUk6tG7eh75ix9E3oOX1vjZ8D0KoCPDNWNeExDz7bJFJdKF+Vp/K93r33LrhXija/l9fzSgrfGSt4MWCI4IRzzLNbXNZI4NMjqIl4K5dTaxeHHvhGeXbXfXTopbbgm6kHQNvXgT3xjCCzb8Buv+/72b1QG3w38Ynh96LXgodz9ETnbvLeFTtsZf9U3Q6UIu5H5crj9c2YaogKoStTO5ZivocpihhXaVlVhG6z+f6wZyd7nuBel1sJ7AG0gV82QDvzy7W85a0AcueMBKMQZPYW1DzwLCATLeimSAiAtWyaNhbm3lvuWpUSA7WuNAos3L4Am1XdrKIOTj5jwm8w7QPyvToPqEgifWFPBLd6s1V4oz98gQd4Gt9r6ARiqR2su42gFoK84PJf7O366V6SBScfCFZQ814Ez/OW9j2ruGLud7MCjez6YZmQ3bJzANbAuMvufOqHc7J++riRDdZGmePhQOsN4PxVGy9QjwRpj4NTpgKKTIDKA0qlSszlb2MBpbifl3MJmI3F41vVePD6zg6U6aFhBCj9luEjpu0l06rn0t/rcmuBfbFkjvc5TOsWHgsO+YAKuoORv4dJc5aT+cMFwWrAtoWAk7WcfAodbiYM8vhAkz1VOhvrqge/0Ko+XjvgwMkALXU1exaQlSeAE81qmFu+tsjSb7SmLDh5LyICWKMYJKYIIqgtAO1ALVEII77XX5HL1g/GGTrwoRVoKZUOICTNlsR2tJ6moZ63PgzOT0Agz8rOAq2v1zLL3Nq0OdxMkVQDfLpe+1UEQNcAQLdsGpgD26eFYzdnMxTsQXHxu3isl91khzSLC54aSkXnQMeym4LBZA4oYeDZeXx41cK9LrcS2HXhXByBSOONHmh1g4u4Y+oAFvqsgdqUKwS09A8H1Ox5wOj8bBIJm4Lw2QPPoh49BpEOaspv23rLgruzi306NxZeVzb2e517HF69MPVAXq0IasWAGuYhI2cpIqZPLfBMuPmeH76UHmTuG+WCgBPyxEi7nJ91aoJSOJilItbbQUvUKPgZXXd+NUC3VpFOOCrYsw58/KBRV1IogyyTpLU99VO0l6weDdpXuXNcB0hDGG9n7rdnquwwHx1l7nl3VIoa9FxLpbyc+82K9nvIZzugFTsvRnYQzPRxBpEYsEZKxa9zf8/OjsQLdk1JnCz2YcEFcA4gY+iLyYIFnqxDF3V5phuMcfOwwfbdKhNxNI9ueqVidn6D9XpPHw4i4l1bFsizKZg2daqYxew5dmaVeYvSZPjMGgCcWnoly3/3yk03K1NS3Es6brB9H4sU7hI3RQLfQ1DrFiVLk3RpocD3dpDxlEoFvtdRP5j3PM9m01dDY/Xgph1Lp1TwIjsLatEwaGC4A+W2x3UgdL36zBkRkafB0leQ4Tcp+vvKEfhAuYHSWKgJoEagTzaZwSqphe6ye5Z5r9q2fnB/mKVW9CLimYOWfjh1mOvxJkxtZorEYkSmFM9xrg4z3ddt3cnNlFsK7NIOfOCRe6UhDJdMsk2Qclie9VzzkIsNf2hjPzvLCTZYW7gkK2bvwPDpSx/IYx6CtYSD5S3OWsY0sGZR8sAhc1F7dgu4kcHbsafvRCyl4l13ny2gaZoiHWRMsI0eU+/eB8rc0BcEnDRm4ik5n5Z5RgwDXAe4MS2NFQ2DThlxTwrvHVfZibgUTGIFIpUnYq1OHw8xh4HmnlVl6imdINZzwvXaL1nzHqaIBouNcjPfs16EP5HLDlvZa0Gu6F8AACAASURBVBU4QONBI1S4Xnb2Rs3ZGhTI33tvR2UwR24e6VNVisyo2oPMF4Oirzulfm6i3FJg7y44D8gRKsZlJ+AGuzwcAyrESrGBQ7tRLDgpXRKzBfr3lnoXHmhn7Ke9hfKsRf0xkAdgv48gc3GwfO/FwfaTKRu1Mu/sYCzU1bTfuzCc5QaLfWJKcfQ9tdhjvXYAa46Uis67CX7NXgY1KHhB6xjA3/YzUiqWd3d/XHrnrDlKjYCyCcpN5yrKwKTCssCzXik9lPnS76ngrak2loSeokkt9JRK84SJtQrZQnhoSovJUpHIXSvHbrzlfd8LauQEOkowEGxlrhk2LMtJFR7d6y1dVprS6EoKvXO37kAGN1FuJbDjwrkDINOBgPPL+o5ew1raIlGXCgN5kZvXjRIs9jP8nvUQ+v013dJXi/2MboI+lv2h9vGBF6HfszSItH4i1WQpDvs9lldu084iQGtuvZdd2+TE+2gBZJTBXumoOFf+gJJSHFgPT1SGgz8wFq9szs96xkL0dvA8g01z8y44yqBdE0zGEi+tWk7DmvUzYZ+85d2pEe4pWqVo0nrn2dAQlhaQ9jdBz9wewgyUiha7iyUZSqXV65SDV4pGSYHHN9euNKpZr55jJ1w5WschCAr5/l65kcu8vOV9Tva6oX6cBybSvVdvjCHY30S5lcCuaUMenMJfD6o9sOYPLRlq5AgWLODo7+Fm9frfLo25tMq7swCOpX6qU1LqgsfMGfxblxfNSkJw6mDoeb4GBLP93qHa6wrmAGoxpc3IYBfrodcypFSANuP3Wyul4q1V64L7NFQ8+GN4YpgrPMDT+mmynCyF0y1YG1gzbYvb0JhhA1TFIjtrCeP1tOGCMeDYDUCLneOQIriLsjs33zt6Hy3OrUpRARPy0Z3MfZbK5Ww9RfSSbHxi5PGN997BKXgc7yjDx9BtXna7GGdQo0oPc+3M98BDKEjXxAyxFuQFz20Ha+Mmyu0EdrDCWIDjDgkq9awGG1wUQUolcpY2m4ZTMSYPmZ1UnC2f/fSltVaVs7R3qRxjAWe230u9Yu5/9ymYGAhGa85snr1VioHiCKBmuflWz2ywo5wINdKUsDCQsdZqzMKZQuDwDigbnlvvDpi0DI2ew62UikbkfCaSsfRbXKNTBwGc4IoIVIod7G2wPyi3OWa3ZPSXz8KZikv9deuO0WbN+zD54S4ffcZ10EEcvQgL9jyPHbOcdEL9uQSksQwlNmsqZbSgO9AyY0wB2itTsNiDx2cpFdNPVIqzxZE+V9Hr1Tm+VVRMKeVLSynvKKW8u5TywutoMytIe5xTCyjmcCPNoodQAkCfdbBgudj4Z/BEyIY+1gsb7OAtfb8xO4UU76GJdMKZUVLOHWyLMlpA/u+LnhFwYneR44nKUXZLfgeLzXUXEXnaAGZpFh49+INK+BBl127rGwI04YlrPPijQMBzuPuhMG+tXhwO7R0FaLTiFQiaUhStN8M7VpmGA0PAZxvZ6bwMvA+cKyu77kUYg6IdBopZRz6PHevpxWCmnvf4xB6aiusnfq8pxcCxWy9ioWK87NBg8lSMDfajnJhHwmNJdk3XCla8v4IYjLGbKHcN7KWUnYh8l4h8mYj8YRH5S6WUP3y37a5803KkfrJho1y0jWmvIWX8WXZ4BcFQMRTTx7p148ECsy9sP20qYzyq74EnnuTrIJ5yliSA4w+9mA0mEdTQwmNWIEtz81kx7JDNbirmrwD5LBWkVHw9BBAK0JOlDuwcxywVm/ngrMdQD8EJwN/JwGeJMGrEHHqBWIDKIHimKLvjHB+C7GwgmMtuqbcL9fidL+bUpbOgqeVNgv3+aoCLVOZdKbbvqcd3YOvuOMdnfSy9n0cZHOxYzFpZXoF+TuF7SqksdM1ClaJBYf7Qhngq5nZx7F8sIu+utb6n1nohIv9CRL7yGtodFp3ItcW15NZyV283IWDajWI5UpdyRYDAHjN22r8F1kb1itlgxuKabVsh+AUyYODkuXkEuoPbYKlLjLfVBZl3t9krRbxfZbTB/KZHBdjquQymLoNiFEJTioJztbS1dxuTzRVu+j7eYz1wr3VDKxDs2zsx1Y+Boe8TApiXnUifq5bDPeN8igFMlZ2QufJKCvO8Jy9z0087x2osnDmDQuWE47UyOJ4yBYDeU5n3toxXht87RMA8HA9N+XVwxmS+I0qj1Vv6b64iMJ7bkfefxcgJ50rX5sHvIbmZch3A/vtF5APw8wePz0wppbyglPJIKeWRxx9//K4+2EDbTVoDTHCXjvPRN+a8/JFdCpi4KGufSJFlUbZ6k4R6U/ueBVqtZ0DUWCTHxVx74LLVqwPwhQ0WAXN5ZwLAVCthcpvHAPQM7xwPisztGcjcjU9BbSp9886wmHUsw3pO2UxOdoe5yq5gFoUCdKfkDrXKVFCZHmVeAEAcyNRjn7Tftu3ScriP4lzaQqVY4qnEXekctMrcWNWunpH5se25VilFOh01R5mP5tivOy+7blB0r3euVabjz0u9CvXsXO0KgraYuWptl255HyrKvMtgmth8wh6auzyl9D6Zk6Cw7hRo5ypmHVQdH5N5sTLHPun+mEBJmPUqXea6N7zs4prqMr+Jch3AXsiz0P1a60O11gdrrQ/ef//9d/VBtIqWiXUWVyEWF0xkryemnk72sgDj9bR7t+BtPQeYx7ZNPe3nPm7MZcHb++Z9wOhp44KPLHZCnzjX1gL08j17NWtXUsuzCTadOGXjLWhVUta1bf10Mse58oqMu/xxrubZKjc6PqMQFkvN1/MAjQr+mNix9HNWZadjiZvXKgRpfyRlIjK3gGnBf1GUfY2xflaJIK6KeYJ5OMx2vVoQP9abjwCJHonKfFIaQo0OaQWt8zafc9wfc+VKcSoSZN7mry4UJ86V9QZgTZuxMBkQL9vLHOs5mXfZSQDxJjtQCNrPAnN8E+U6gP2DIvIH4OfPFZEPXUO7w6ICmmcb4PCurdlgMJFqeffFFekLBTC7wZxrGygcWCTHvirwTFAPLZKplP43Fo3VWaU6C8RzwNSCPoAlQzeYpWKY1eldYlU46u4ai+TgAFMVJ2wKY60Kkzlw0OgSH60wpoCMcqsSNn2TnVP6E8o88yKkKw2cK7VE1apf6nEAU9ktikQiqDVwkm7ReuuxUQVd6TMrV61OXK8N6CY3xwDQ/XtkbU5WLk0GQqx6lO/kLG9cr06ZorLRIGhcr+idx+81ZTNb76MKyMAZBjoPFWTXZR7roVy0n0F24Bl7pdjaukUW++tF5A+WUj6/lHJHRL5aRP71NbQ7LAZAYKNYF7UDkUh3rzH7InNtFcBEJKRcRUuttGwI7xJX6RZsq8esBu9ug5Wtm+CSBNsO6n20tqtr21s33Uqx9bgXISJNUVnqh7m2XXHqBlDZBcpotpugWZjO6tw3S81+z3OrFqCJ7DbFJ3S8xziOWJ54crJrm9e8E+mE+L1jPeLxoewWGTAFhGAI8gWFy+k2VPrgtWgl8cpGZefGNwMYqgdG17Qcv6dxsYUaNRTObBV1PRpVXp77lh8ev6eKk3ktjTI69hMt6CnIDmQe1qvuj44Hs5O5AXGn9G/6ErCzu22g1rovpXydiLxcRHYi8v211rfedc+S0gCk8uBXTzuDRQLWqnc1vRZfLOh+zLq5/E5DezpBA5We61QLttVzWQ2HuYbgqaVrlmeRUmFBHh8E7RsM+d5ez1pA1tuBDX1UirPbmNFribKbiez2Timi0jAc6dyBKNaz3kDwWpiFZ+gSx99DjAb7rW1hPebx9T55hVCa92H6RPlllF0HEDRg9h5owcMM/DJRJAjQnSLjXosIWNXOMLAeWDX1jOUNslvAUMZ9qmD5FmlgeJj7dcrYpxBrcV6LUkY01iJiZI5K0XtAbD694jyg7Jx3NUG9myh3DewiIrXWl4rIS6+jrS3FavFoQU9G+MdIOVhcerF/2GCQ36uW9/I9COAYoLVB1+baghY3FqxoPWJBV7d53aYXsSlX/YCSXYBmgzWwICmCiexav+sSQCrFgr3NMoibXut52Q1d9yCDLrvDcWMGICigFGeuAHXz4vh89gXKjinqntXQZZ5b3jYIitxqVwhivjeSneGOyVypXDqIdzlR8AW5iPkett1loMUERmEdUJkXu4d6vTyTbQI5LYoM/wwmcux2rqbWpx4zWWQnPTPIWNUk1tJk15ViDDzHtTGU3dQBnMVtbqLcypOnuAmYi2o2Zu2uZrcaZLiYl7alUQBYT6kfjReHQJ4g7w+LZOBZoBup9fymN1kUJl8asiEAMC8NHypELuB9FNIneGc/c+WG9cL91lXzoCcju5Be6V1pteact+MVgqGMJlwHMgBoZ3EVkHn1GQxIQ9iUz6l06ifIjinOI4hrXaTNWGxHOf2Dk7mp5y1oB7QI4uiZeo+kUz/RS/IeGMqlKw4WBLWAiZa3WedOeVNLuNb2bfUUI8dOPDfY603Bzt5TdLKbI4gfwDPtMo9ZMUF2dO8hhXO7smJuvCjF4HN3jVU2dTD2rm10pSNgjlxiZq0aLjC498dAHutnsUDALNqU01cLejfuk3+G1iPf0JECEPEADYE8VEACvKbWE26pWT7SgmHf9NqnqeVeHRxo0xQz8D48aNv4yzjwzIEHMlBwPveEdgHZ2e+B90GsXD1jgTL36bLeI9FMpInJrkSA7kBbG+et9rnn783aKH2dB68F6jWLljyLYGi/19MI+/rp3vkUvV4wRNRzMzIfKm/nLRsQt/MiEo2/RZEMZMeMuNbWzSD7tVAxN11aAGfWgIp163wGjOV7K3DeYuqpW75s3tlp/3gn9J5YaoFLZhuM8NKBD4W2tfi7wZkF7SmH+MxmdjRwagt+MlkNQSkGLynSX/PcU+HUUgvfMweGCpVd92y6osDgqYg42bl3isgsTi5o5TqL9tIBn5krBDX3PQTRrtyQFuBnHGLQ3svOypzRF81z854NyI4ZFOZ7RaLCnYrUY3yKg2HfL76eANCiPK3s+Dpo6wf2nt7LgieXfQomykBEGs+fKW/1WoZBUFh33mBaMq86ZWTeKSJ14JGcLPakWCs3Cj+eMoVFUnvgsKXCDSLzwwCgXrtKADNcH9ACcr2eBRDuRSD/Ovm2MoA21rlrq3jrkSkEm0/cwEmKUZSqbgytNEX6aypyzAt2QVAHFpbXZEpDvxezIfxdKjYI6urBxVJzWD9EKYIVZoyFwpRiOVIHlhZQq7oHQbWfuey6zC11aE6CTp5SWd6xAc/inmH6qre8SdDexW06GEqoZ/ugICqd03eUkQ+C+r03ovJ8DAr3wlLPG1pkrtRrGRhs01S6p+gCo5mnaDzT4/duYx77jRd0BxnwobvtAyqLWzfbzetcaQVxv0hyCscGVHQiQx6rxKyY5kWUCGAW7OfwPZ8NsXfWnD5Ty2JEX9jDK5zvNVTTFMHQbMKdVYo+5TMGsbor7QFl7O0ADVHiZqI53MXKXGkPrOd5cAQZ6rUc4qZXblfbQ+AJ8YKyIB9ywirzXg9iCOYkaAnrzr/T15RV+shnj2ItrK0sVdQrb1x3khgiU+n0qQ0gd4rK/Gk8XK8TylyszJsVr4rEe9nLf7pfw/ppMnDUjyD+2HVHD6GBzG+i3E5gn9a58hbgqD6IdQyMGCCIC9db+vPc6wVX2gHmGYBapsUxgOMDh54CEFkUUCk+gDNTHtXncJ8R3pYeCZ/c5lXrESy1tWwIWw8ooyEQ2PTVEAQdAUGxXkS06iVysk0hdNqjH2JCZdq/Z72P5T8GauwQU6sHtJn26XCwfRKprl5p9+RjDjc7CTrK1BmvKfBaJlTw1nOL/bTBdy0GMEHmXgZp+qpEGqspt5bHHuupUrSJEtL3LPM+nFJE2sWf0LXPXPIGfQfmGPaHju8myu0E9tJBm23oDhY9o2B5DumO5GKpZnXOnpu3B4ZGFpDep43fuwibl1ve4W86OgpAZPFIVEkVGN/OvaP1EHwnx9v6y5HiRWg2iNWUabXZEKzewdQr4a6RpU8DrwXGZ2MYJdRrWQ3BguaWNz5j62dv6K++yY0VqH+xqSAYdooDPSltIwRB1YtwVmCbTwAnn82DYzEB5MB5x0CwD+7NVQh/T2TnAMtY7FOsh4qyyQAySRQcvQzwRKePi106jp0FJQ+z9ZKo5e0VnqEApfVb5VTI2vD0kMI48xQ7pdppq5sotxLYY7YAB2gRjab7DWa1MQsu6uYVWd7197ssbUdawFA4UoSlj7F8+7lagL501+GKLKCNC15qT2kL1lWxQBfSwCrPf++WRc9Z7/XiDZf+aHebl7ahPY96lMHezlW/uEu6zIlSZBk+gbt2PKpIjGs0rwXlNEhX8+myMW8eg6c9fVWDoKX4wLO4dQAWbUXlBuCEQVDvfYiXnY9hxPEpQPvTvowrHwXfR8F+BEOkMxkd5Tn9kI0l3ICxyhToU6IUUZGwQLffC12ZynhtoDKddLw2CSPWKyeLPSvGyoUN7RegiHUHFQh8Xvnorhi+wcbfwwWo3/MUwPI9eDaBBVRsv0WiFXZ+NB97iqA9bNX4UPzTbSYn339Px8KAAL2PYkC71TOHtGx+r9a7JJawz/2uoR6PF8SrdZnFHsGpt3XMmACgLUQG2tbFPmYGDfPmcf1Uq0wX8PVeRPQU0WI3MkDgcfJkWTjW+xDzPQyCeos9S5dVgGRBUJpJMhODwlN5QVH7PdSTIOzhQPQsLNUlsigEmn4YvKvoJaUJCLDXffC9K1xOAZayrIGbKLcU2DGtDni3gbXh3bp+4lDfgUmb7FH9pZ6nT9xElgjQ+j2fZof1TCxgxBM7ULNBychZRhf1WM9tlOHhCrehmVI07qcPmpGNybhrnyusLjjSF1QpkguptJ+Zgr88dABb5ioe6mGZJPugFPMrDHwsQtcPKuGw6Y/gVMXnYhfZs/kEGcgRLMyhnuIDnokC8hk3hCfGIGi0vJN6h9lQa+x2x3hbZ7VjmZY5qFUE/8Sd94RrdbKbfHxLeD1H4RQ/n8ex+BgC7tn2DgsgH5aT76Uo1XSy2IfFWOzksiKTymiAPaZE6jsifYN5vhcBehj4IRY7fo9ROBNulEArcSXVOXZ7YMhbpt6CZYG8te8ZUBM55u563pYEXetABliPWJ16+lbrMaWId754F5wpXMyiMBZ0rcF6tHeKQ72J19N3fMaEPjNB0Jncs8POAFSkcMogt97KAIOgWg8t6D4Wa5yYAPIAMP06UDCM3kfuLavXEimVuIfMWAQMgx0CbbTYUXYq8zaf0CdcG+3ivlJoPS/zFgs4zlUxc04UifPA5pvB9dsJ7Db4FSPlHkCoBe0WID7TBX9GwAlPedK/uFPFLGa7mWy9/pdzYhoYc4kv9hagK8iAW0D9exac1tPOlu9VNxamFNFrgTTUFZmzA0NI/SzxCcKVEyU8PITink0AmPo9ehWsU5ToRcwqu6GC7/VUdlJ4EJSnr3qemAVBXXaLxCwcf+2AGR/Kzq8DB5haz1Ny3qC4NCCq/YyJC3N1HibWW6q5PeT/9KCrd/Qem1Js68cmIGg/VS4KyJECLLRepHDQ++hywnnR7+Gavqm/eXpLT56KW1wWoM3flXR5yP7oswhP9fNBswujNKKV2ykV67pfJOCE+fZSI7+91LMnBzVtcbjB0LqB7+38Bpvt5sUTcgggqBQNYLqAEf5JNE9j0WAmHtwq/OI1K1/tU1TCVbzbPKCjQAZ4g1+go0C57Q+2T8YFp0qYfW8QBB2k3k1GBhbA4ve6t4MAsukEsvQAcqOjKL9MYjSOm0fe354BOE7KYL32NWW9Bv09Gkc0jlL6+jGUCqxXdogRA88aBD0KzwZY2/6wz9DL9nvIJyW0rKpJpB7kRsotBfZl0nx+r/5xYMMZHjhYjA/+AHcNE7J2d0tXNn0RIc83lQK0QOT9axUbNIN7UjxPrO/woCu38HDBswAyiyHozZFLvRFAW0u0Vl+Pg8xaqh+CISqSSzhspSCzyC4CpqcT/P0jjWNvJ4m7YYDxELRWO10CdN8cwdDO8diL6PXEnFxuMhikr+qzouvO01+MwmlGTQTo3rb2qYOvP8+gdInl5uPeY8p0eC+LV4poHO1xz9o5no7nEJCSYzLohoHNYOqBYGn1suApcvMjas1SefFqkpsot5SK8YEnb+VaYeNGYUf1L521oRsFreNRcFF/304lhu+RoKtPwZwtrziV0tMBiwVfz7HH+3I4J2sUwhxPzZncXZH2DDnLS2cl2XoKmNVssFIiP4n1ejaEt7jcRqFjsX9Hs532dce/tZ5P3QzBL1SKovVsnAHPHLB6Kk9PR/lAqQj3PmwQ1OViT052sO48XeKvw9XvdaVoT2b69ePpEvQihFjs7F6fAyhTw+mXCND+jAPSX90LnTg3L4P1w9IPjUKIWThRmXYlXAqe3lbZRW/Aeh+9TyInjj0tFmgJDQETeXGwi9L/IQqR6NbpM7TwLsgCtIeW+DF8rkjmYMn4QBP+xZbmkTiQ6fXgwIfjbUViEIvma7P896PS0H6MUiKxHkt3HAGt/h4t4Qa+U6FgYTd939BGmQIny+kE+MMXBNTGSrF7V+N6Qr9HYzsuHoKnaLXYNEL/TGkIK7tS4uVTS70YRA9/25Pmo3sPsyuuDrSR4qTXPjtvx/9Rc22L7SH7NxSssbDQSkI9PptRZNcwBkFFXJpksWmL+m2996YZFPBOkwHcC+UDyDdRbiWw26h/tFb9XQ2WK8d3OviLiDl4czlwic92RCFMsDEh8FOKD56OwKIfGFrqYfbOBNYNSd2sfmNaL6LVQwva8L3dKtOxmA19/H+UgXFt/SEtsZylcW2dFYjfY5lIvW28zGscCG7fI7QAC+SFGM0h1vNnABgl5/8otc4xGgYc+EiMBscyWYpDHH2hyiXNY/d9KkR2JVq03hPu/L1VQN7j2y0uQXvWg5l6I6L3iLhninN8sY9K0cepqpddsbn8XWlYrwxTMPW5idEcEdLThALUD1WKcDcN7r2bCp7eSmBfwAItdrsxPXfMuE725+Q8xYCW4WijlHJ0zybNtLDfU+vR5s3PZvNSqxPGR2mIqd93kv0RD31mvAGjFI99opsH084st8u+1917S0ex8wV4YMi76fo9c/VsO7bNAsE2cLhuraJCmIJSDBY7bGjOp0cX/BJ524G3488cLFanp1SINxBoiH4CWeViU+9KqxeCoLOtN7rIClMwUZlOTnZGcbkYDZsXqvBAAS1yWsZybqgY60E3LwK9nZWL0LhSFKoQMAiqyq0HT+N8Fviep6NuotxSYMcsg6kFv/xdMSLROvbpciIuyAKb1fDLhGO3nLfNNgn1BhYJS/VDxeVdfluP/YEODqLWmiNKkYGv4zrZGYBR7AGVor89E+ellO7t2GtX/dkBmM9dB/FYz/O90mTHKBxzzYEBX60HPPE0sOoZReUUCaOj8Fi8B0xfj1M4EAw3AUBUbl0GJgiKKYKwzof56EGZ2rW5Xs/n5B9lZ2QgvZ6RAaO6rJHRYzvS2hvNi4hTpqAU0cseB0G5Mj3Mtk9e5iq7myh3BeyllK8qpby1lDKXUh68rk6tlcUSjqlM/o9Zi8T7Vejx9kGetQmeMksYgK9ZgWB5F5EBGFoQ9wdMcDGfgVW9d9+zC0nSsbCMCeN9GH6wy3N8YOhYj+bNWwuPHdy4JNkCVin6FEwYi74Dd5GjXPyFXyo7z3W2rBhQgL7eARS89QZEvHs/zF8uJfxZw9FcGaUY5Gvnsx2OcdZqwXXuDAMEInYT5+gchD1BqgpIWhlloFiLnczL6EAUzDFSMTif+CzGt/pclSJEmR4TJWavFMcZRcby1r+VCsqUnmeY+zsit+cPbTwqIn9WRF59DX3ZXMyJPPLHFKYpWoZLvb4g2MGUQMUYK5AHHDFfO95QOEhXOyD4x+uFCyguH2FnQSV2RDu4g2g5kSDznihFpKPQ+9CrF0Ssy98DYuPDMgbAWo4zv3SMBb+8fGego/R7qBQbyBx4cNGmqyH49u9Z4ONehMpAv2e8MuG0wEjB4uVh7I4iZgXGTKRtQdDZyROVqSBP7EAtXqvA59h6A6gU+1hULpz2KGb94Hy2etLbMgqeALRPpcSsKq3HjT8IapeeWcZiV96T8cr0Jspd5bHXWt8u0i2Xmyreesw2JtIlcdL6O6VYN9mnxzXAdAd/JrNR3LHmSeSpy2h1XhxmubNTbyDyg9PkudzeT3qKFqxq/8dzF7k43j85vGKi/I7GYhkamJap5XI/y27F29m7sUgVZxW5fqrSILnR3nW/IErxcp7lvrNdlF2JMvDeDtv03isM/XTKjcUn1mgz7KcH/wnAX9cP+57ma4s44JuA/gJ50j+G7uIMjIcfHae/72xq/eT0Ill3YSyc5tFxGOoHlSkzxpynuFAx/LSvP6Bk1qtEpcgD6zHYfxPlxjj2UsoLSimPlFIeefzxx++qLQQLc2hhED3HxTw6oOQnbVQvnGZ01uNidSKoxc17MBuzRJdYeCDYb2hz74V44Jno4jIZE84i8bLDMwDLxoS4hvQ+qVK03GofH/0DFm7zeqU4OtjEMoMwo8gc3596VoNXCKMAWX82qsfAOLZ1uZ+HSrErau5xTWQ+A7VWxjLwnD6Cb6dP2N1GuDasUmQZW9hvfr+KPRjHDiNRr+zgYjsmXsC+B/UGXhmu11EQtH0PZIDrYHLrNVOK0r5ns2J+13DspZSfLaU8Sv77yqt8qNb6UK31wVrrg/fff/8z77EcrTJCu1zO3LqhC7fYxYUT258J1GN86GwoAH1GN6azUvzVAHOVpJ99MdNAsAFfYq26vHnu7XDFxSicsQXU5cks75hpYcEpuLYAmCI4L10BNnAyFiVaXACYuHkN5RAPRKFcDHc9E4UwoIyYd+V5/6gUZ9on/xexsE8YL2gyQIUw8HZErEIowq+WOBxwXnhsh4GhP3maXY9g6D1Pnx6UK4+py90x2wAAIABJREFUhT4mxKhDHxPq/P3gGgd3OlXExoQafWrWouX0+V64uTz2VSqm1vr8m+jIVUoBy4ml+o3SHU3E271zDtSIiFq5U6vHbtm7PFT5t2Ehiagl2vuJ4KvKWo/F6/ciQPssnD72CTYKbl6tRy2ZJMugbULi7dhsGtz0NgUTF26TOQOZYq3j+867fD3f6xXJfNwSMaOoH+3u8mT8+SyWu+7rx8vFgxMqby5fThUMvQgCMgZ4VrwrT7v4i6y0331Oanv2vHNy19BQefc1PaLI2EliphSNF1FK/+MULnWzjW+oqLucVC5i6kmT54gCDIFg4y0Xc1+ORjsPLNXYKQQTa4F1/ryzvg5+11jsvxuLLkoRazUYS6KlQK6fYvN53iKaTSNQj2d2MIvd8MsERG0+erQeA2gDsKOFgJvC1zszd1f7dECi3BjYD4AWvR2f8qnf02yaAhZQcO/bZuLy5PnoNhMBgbbJHLN3BGSOAAb3CgWZl5FyK8776H3SttpYNnhJlr/fUk/fsQpBPT6kDu3aUIVgYy14lbC25e+h6TLoMvcUoFH6AL6RXuTz2esxhcDXAduzUZHEsSAF2FM+7R4ytzuqt3OkHJfxju42GqQMo8V+Gzj2UsqfKaV8UET+UxF5SSnl5dfTrbygBYtcuf68vNOf+QUgcpxsGP3ObbClrQ7QOiHo2lazKZZ/l0XS+0nBaUZvwL6j32MRfREAsMlbZZ6i8kqq95P+AQt3YEifIWiz2zPX4hM2/53z/miJGkXCsgzC5Vq9T/o97l3NdPMy0Dacvsm08EAkrW3/vRB4ZoDpgKE9G3oRfV580B7TMqdS3J9IBJnDvMxeKU7cYjf1BNYKU/rGiq983aHCJUHQS9dPXeelYDZNpAB9PfYH4Q9uPvWAG4I2zcJxFGB1niJ6ZZE+lfa925IV85Mi8pPX1JfNxQC0maQItCISFoCItdjxnTJoG98zPztr1X7PtjVNFerFsbB+4qIU4eMbKTNsB8EflZRVSMfc6GPf5mrHwhaup0FExhkh4c+mBWuVpxae7fqteIZHnex1ylqPBjhDrMWD0yBfenDQCHniLhebxmevR0BQ6zLQ7ChGbaEyRTC8nC2AaV45cuXGS6pHwHRB0E73SavHr28exCeOv59cP9FYsFQF83ZYBooFUS1e2WAiAatnA8G9T3cgO6qKmCCoWT+lyAHXAe6F2udcn10SLztexyA3Um4lFWNA24Gap0ZErDWnBekE1s7yjH9vzRtAbr71AYBAhIM4VUoOoNn4cLOO+snqBSXFFBKrBwu3/SwjpRif+XrIk2JbqoAm2PTmHdOWvts3DwK0PTAE77RNV2y9Y7tIcSzKhng7c781Eakm5Hvxb9Ea4NN3RNuaudU5eSvQzksWPG0A7dMWHU/tnxkvCdYri+3wevY0rPmboMfn9DTqMf1Y62nxNGj0dtwpYUIP+XMC/NI6ohDmAZ9u5MK9HWNUnf403rhwoFv+HVnLod5uBNACzybyzIEMs7IBZLDemiI5g0Vpv8eAlikJ92zle1NoW0IZtc3H0p9RRTIVC+IAmK0PVJ5cSW1RJNy7wnnXd8XVi+9sUfD6yNN0FRQJejtedv6ZjSWBkoIDPPrMZtOQeMFsrfrIlfNMEn/yFA+q9bZyL6mU0UE1+zdB/VhwTZbicvLdfMZ8e3ZiNXo7m4Kgrt7ey2CgEEKwf5YbKbcU2CPQNQ2fgozd9MwKZBs6WA1SVupNvB4Fghy0MTgswoEWj/1j+5mcbFvjtnc7Us+DWoljGVnxzNPgnoVXJExOtk+hnlckzNthY55KUK7+nU3rZ4OSYl4L7ZP/HmmbKjdviEz9ue9DKdK9JLh4zX7PKil9Zj0gAF94h9E8SPfp1wyIur3WATPSNZ4Hp9lRJGA9Au0sR957LVNBytEqIDRgTrc7JgU3nQcCas2NNn1icS3POEBvtQIjGMIY3GIWGYD2hn5OxfZBLSCrEOy7IgInVotpewtor9FR0xTHF7wkIgNGR6EFhPVW568U23aiFEM9B+LLv/COV9SFtDNQCNgpP3dLveVfszYcQOMpZf89PxY+n7EPXsZr65wp2DBXG/o0Mmi2joXuq2AYLP+PHpGuDutdcS/JJkXEzCCRcarxBF7hDVHstxPYs02XURW4SEbB07V6YXElVmC0ViOgcIpBhvVGFib2gQdTCa3k2uJ0FNu8HmQk1ttidQ4Urm8LUzf1+6N+mvZ3FnxHnhu2qf+/HkexYx4ZDyIRoJk3yZRbpJWurkiGCmF1fCXIBMdr++BBlAG0l29sx3hJZP0sBgsZi1FuEvo5lfX4Vrb/w3jhGZML0kpLn3rbpzz2pJiN4QCSbRRvmer/UwAzLriEelusVRrAnUYADeMaAIHdvBLruQ3Wf14fC763NQg6tpwIEIA8R4DpFWdsi29CWemDtzoRAEIfBj+Pnnm5ZErKW+Nr1uoItLnSiHOVelcpOGXgK7RP7BmfT/ssS4DAPsW2t43Fe3xbFYKfd76msQ8S+h6UKcznKSsmKQwgixMw0/4o7LPd+uLCXHN8r1DLwr4T+ukm+4wski38MgMLr0hykOl9GMrOyYm1tWYtX40rXwd7M14SU+DgxAEze3YVOsrUI2uMKu/BfK6tn92A4rDPhDxbj2t4y7Q/2wa+uI7KcHzjOSb6NjGq7NiWdth82vdY0B7LULmt4Mgm+gv6eSsOKD1bhVrHx39ZamPqgjsw5BkTfnHFxb2FKljjQ9lGCbRHsriuaj2OvJ1McWpba4HS0TPcUpgHvVaPeSjXQpu57+WK2raN37tKQJdbtLnMPTc/5O9JvcwIWNrSMdj2ryrzTLnhvPt1vjXw7McypV6obSv7/qjveObAjoXtddsvJrsip+BpWqjG1J/ZRkksyhIWF7bN0x0n0g7nyu2zZ7pR1iyg8UaBfg82ivmXur/2XW2ft5M/25QRMgDfZ2blbgg4blDwWzyL1KpHOqrwPiHyjA+c5SA+lIHEd7alisaxYPFrg8tJwvc8hZKtaTHAmitXbMMDOesTBd8MoNN60K+BMTaV0x+zTksGdDz4lgEkb0cEeUW7KFetwAHQGfAfpCiujYXSJUOQgXpbwGmjJeMtpyy46EGFXeNg3iEgczbYKAx8GxwUDWJh2/13o75P7J0GXON6qQUdUvaYYiFjSdbPZi+p3IVCWFk/wetN28a2fH1Sb4NhkBsUXgaxbT4+2xaX70pboZ4+P10ClpbMdc8tWgnPruqCj6iRLbzi5noTH9twfK6trdcOhMNd1GKPKZ/enWfZPKzeNnDSdyWpZ8fNxpJlBrFzCKlyY9ajVwhUkYlpW/u1tjaHWSorwEeBzscZMgUPfV+sY6aAYj/TvTcA2qWe71Nsm7XVx5asH6+EKYhjn+I3fBYX9Ww2eFcop/mGoqe3FNjHWjvX/mNw4ouEgxprZ53/HFnLY8Daspns9/zY4gLkC1Xc92KfUit3q7czbaCjyHUMXimekaC2n3fetv5uPJatXtKQNltJ2QvZJsmdQV7mltsl9ZgHNDQo4rMuO+LtNKODrCnp9Vi/R8+ixb6yXgfeDo6398nLnMmX7cfkexv2rLZv+gTyPVExScks0VEWh6/nFxW38IQ8u3pmhwYb1ygcD2qjNM1Yz44vA6JtNFY+vsDpp23bfq6/s/xrwKlc3cq9qhXoFcKWIDr2M+fm7VjWDjaN1tTabaSj8RUm36uuAwKio4yitRTMeFpcVtvWZ9OanAaGHTVy4HvcsBtQOFhvoFxG++yUFZMUvpj1d9tAZkRDcKC13+PtwDuDBb+2SEIgL7U6c0UyeoeC6CaFEJ9p5zOqi1Ma4/GN3F27USW8413wzScsvWGQrANqxU9jMNxiGVJAaePDMXN+Wcj3ttECcSxRucH3U4XAfx4+8/tjMOehn9NG2iW0FWmmcZ/ss7UMmDCfcVrMXj9x7EnJrPHR4SBfzy8c7jKS7zmLKz/J1+uIcG7Xurb2e1vud7HPrAy8QlqeYR+s4mKpoluUBPsevdCsrIOMjzPkcxeBTmU8ssDiMzF9yHjbTC6c32bgNAK1KIP0tGYCoqm1mho+hf48+p63xv26HfZpoNxWaawysqDJOkhksIVW0v5cde+NKB3992SxJ4UucHe50ZpLPLoVcu2OEN9WfmjBTTbLCIGKZ84yZIeYRifrsN5VXFRTbyPIjICAAq3r52rbA5BgY8mAbgvtYsfsQQ3aTixY/z0EmdEhrdV+EpDxHPt2K3d0jUMcS5ZIwK14+yyPT5B5cGOxho/2Cb43MKr4+Ox6xb23hVbSZ1vPnnSLnY23j+VksSclA5nMYs/cSAYgZy54egaNRg9h3PbdUiNsAVrr2PYzPeJPFcIYoEdWINbLrEDs+/IXlFifJNbbYtFKUm+DMtc+4fi2ym7XzMtEITCg8yDKxjIAGW75j+tlc8esXL8Xtqa0xvkfv2Pamsb9zGI72+bKtpWtlfH4bD39VRarSz0UOVnsaeEWkN9gY+GzZ9mJvAa0aDknCmELyGyyZJLFzTZYAAsKaji+kexYP+GZs6a2B/JyBWH6Hn4eA4Nta71tNpZnTn/Z+hk9hPXC+Ngcm3t2+LpnVu5VueuR5Y2glo4vWwf4oUE/qWFADJjgWSZzJU5xZZiBbWm1UiRJeIgyT9uGtXJTf2jjrv403rNVzMJx167mHGKv5634zCrTetFiryvB03GfuGfBPYRVK9CD2kagDRuabN7Myr0KJzuV3m4py1WpuaUm5t81GmukpLDklqiTwYZj41wGsZ9ZcI/SX2QePEBuCoImqZTZs617aAs3771P089kLKlCLyKH0VhYSquT3RblnSlzJvNIHZKxlFtyCVgp5dtKKb9eSnlLKeUnSym/77o6ln+3//9VAofZ0XVeT0zbO7M4bTtb6CFuJRGwSOIFPCffAm0aXEza4hZtBmq2nWxeEGhTheDnc8cPOo36GUCNWvXxmQ+6MjDmZxW8DOIay+I9qcLtn1toAdoOqefWK7az6bBemt7J1pT+LOZnO774LDOq6BwX38/xO369ZiCO/+/3ED/YRMbnDhV6j0H/vS13xTwsIl9Ya/0iEXmniPyfd9+l9XJVrtxbBGh5p25rsZM2pfV6/7ZYMnk2zbjtLHjaLW/bR9s262fSpwS0t5z29e+IkKBZtuk3yJf2aQP4s2d5wHP8vfxO+v7Mt+/XGBtfKUoLkHYMXbNlL4jpt/2eHxu0/QzXeeZZ9O9JeCcNfrvxCrHq/XpdN6psPQ/02s7oWTMMEjmVUm6HxV5rfUWtdX/88XUi8rl336X1koEhW/BhMxmA5u0s9eyBIaoQUlDTn2O/twR5OYBJqOcXqs+uGbY1kl3yjn3Gx7v0k4MFtrUpVfQKJyxZn/jGZP30fRq3zcbM6SE59jOOXcr4nU3egAMUNpbWJ5pGCGMZAKYFQ/s7075vh4L4GHy37CH2XrYX/Pdo2wL1vOyo5Y817LOrrNebsNqvM3j6V0XkZdfY3rCwjXkVt45lt+SBNf0Z64mtlygSBrTUZfRg+IyBVlbfwWftoFFmQbc+IlfuN9h483LZ9TZH4+PBt3W50Nz65FRyP9ikfVyReQDRbI6T8aUWrV3T+F5+1YPtI0pwC3WYjReL72cWXNxyBoABrVVm9t/Uqm/zuLRh25ZQz8dkeMrpuF6gv5L5vAk2ZjV4Wkr5WRH5d8mvvr7W+tPHd75eRPYi8sNJOy8QkReIiHze533eM+qsFk5pLD9TS9j/bU9T37bD88otWJi2mFvnNnTDzwT48FngyhN3G8eTgUWep6/1JNabbF8sV67v8BO6rE/mWWaJOoWwSg8NwYK1vQ5qq2DobufMlRtTCPZ9CjIOoPW9Q60pqGnF3GsZP9ue8mnnYQvtwsbMYmBe6StAL//v/41tR0qOjIXuK9enZO7s97SfbF7sv3OtMpkVdv1lFdhrrc/Pfl9K+e9F5CtE5L+siY9Ra31IRB4SEXnwwQfvSmcR42EjWMQFFGmI3uY4T/dqVjXL0MgzO8T1iYHauN7oj3Av9WIfrmIBsd9dxZLB722JM7B5ybwyDzJ8PvGZBXIKtIlFmSpT1s8tADLIuNG+H0b9HFjsa+vApeSnhgEzKGI8ZNu6y+YqzCc04J9x2enYxmPJ/g5q+x5Zd9sO643HexM8+12lO5ZSvlRE/g8R+dO11s9eT5fWC05kf3b8l2wUT4Uw6zGjRrSkVie8F7nyyHhtyRbYGgCM9WT4zjY6YX3hsmdbaCX8XZYq2hRJ1u8kBXJL8M08uwLQmvEU+7stysZ8L7E6vaXX69UBgNj6HMTH687PFavHFEI0DFjbcf6isTBedzRxIfUQvHxj22wskdKFsbD96OYo8+D12U3kst8tx/7/isjvFZGHSylvKqW86Br6tFqIARwCnBOZNOYWqvy35Gtbbn75N7fK9J3Y3y0HaPqtd2MwZvW29AmfRa68vzP6e6pYrsIlHwfkvp/UI8BHA44BDBM5Teuyy4CWtc/qBdkxq3OLDHDdbehTV4r2W9iH9BqHdI2Nn40OB/nvXekMQGg7Kn0K2u5nbH9LYD0/3EXGJ7Y+N9iWn39XcOxZqbV+wXV15CqFRqevMGk4MX4BZBYJflcnhy3K8BeNtlrsG8Aic1u3gcy67LJ8abNR3EVdaRoq2QzbaCX2TuT0h9cjrB1suorME4WQHYHvVif0140vs2gzLymlBTJw6l0ZzjG+kysEbceObdiWlwvrZ7DqJfyOGSJ+Dft6c62AA6SfG7wBXs+PdzwvN3FfzK28UgAXlxZvVRtQc7cWFlIvpXAm27ZIvzA/D57aBYgl25heIaxZDWPOkm2UddkxZcO5ciu7LRsF299CezBFxP+CEqfbMs9m6bttazMvXXi9zDremvIZwWmb7KLFPlYaKTVyRY9P3Byvfc9TYixoHyzhZ2p5o7dT/DtE5u1nCe+k994EJRXHos9uwmK/lcBODPZN2j/7Hb1m1i04rKdx4k1cOelwBjwZNXKdR8K1pAqh0R76c5TdFrA4Ix/ONoF+8IxoRTqPbd4c0EK9DLTj3fJkXqA1ryC3KJI0RkPWT1bPgyPrAz88p+OM9dL0VSsm2j6fl2x/8H6bfhIZpHM8aBvHR5VUMMbIvCSGof9edp7hZLEPCrPiPIBk1hxW96CdKQQEGY1s79xisX04vpMCO3tW6M/LMwn1Rqc86YamsnNgAa+E6wqI7LZYwobGam1nYBh/F9+BZwNLbY2GCCDKwJA8a21mlloCMtlYRtQadj4HaP8zA9ox+GY0Fr+Ww/bTKimJzwYGCLPYeQZUMr7QJqnXnsG6a9+zY9v6hzYyGfjx3cTh01sK7OzZGNQ8yGB1VZ75pVy2vkjXupmLSjfmsaRXGISFC/UIPdPr+3qF1AvVUjAM+cQkMMbqBWrEeDvH+nR8XAZYtgQc89OwZEOHjZlv6P47HS+ReQLQYU0a2dl1mlv6Y1Bj/WWe0+iaA3xzU6AyAWgT1yr234yX1id0n6TegJUTtp9hRHo1QGbFO4zIDMQ6yz0vtxLY6cEEdwkPO2jUF9QYoLdE70WiQthyCAXLlgBn6tZRgLaLmS1KVnGLtUHT3VIFxOuLRBorCzRlJx4p+LoTpGtc+VUUQiZzHpQU00+22a96BqC3HdvMaIjQX9IXr0gotQZtja9jGM8njiusV3JgyF9MZsZH1kFG4bT9uEV2TE4JRvhgLVc2y88nKmZQssWZu4Pxdz4IyqxOxpXXYLHDInHBWmYl5Ry7hN/5cV7VYmcZC6Ees2ifYZ88+OLGbDJPraK42bVsObjFrbIxyPQNHcfJ5Nnqt3dIvUTBpwphAJgioBSvALRYNsV2UroGZWf/3WLRYvEnSK8qu4zGaut1ir/L+pkq+OR7Ye8lFM6JihmUTguw341BJqNU8vx3Cb+LPHH/XeaC97bjwvELfKtC8PXZAvRceV4vbnpWL6Z8jhUCpnx6KobztrbfWFIXPHy/v8QC5Fr8YTKuEJJ6mVKUWD+zDEe8vwgoRXLvjQ90Z9lYfL2KaZMDX2zLewgZf4+lg6HtN2ubKRTmuaUeXwP7cT+L7xNVNmyOXZ+Si9dOFvugsIWnZcsfsDD1FGSaBTSeSKYQNh00Ih29Sl45lpwW8N/HPtl3sH50UeF77lnm7WTWDYJMpkx9umomgy1BLGrNEZMggEyyoTPZmd8F2QE4uX5b2Yl5Rs9PJECbGhRsDO57Wygr24di+plZwlji9wBoE+Mogm8cH/VanOyyfmb0V/a9bO9pxROwD4rK7Opc+bEetNUs712ctCybZlMA8PhvlrLHAXp9cXELKAMgKxfm0WTxAh9UEgHlliqEuDGj7HCu/AaL46TAM7Q6I/inMt/guRVWjwAJezb6bhZsMzSWj08woE0yoHjcxoEh6xMZ/GiuttJY8XvjflL6I/EU28/wu26ISOhT8BCoUszq2fXD1khr8pTHzosP9oiIzMdIc2axM1BrCoFsQh8YQUsvTdlzwJptsIwaYQoh5XvLuO3gtYTafIN5xWXWe7CAmAxiX/SujKtkqZh+blEIzNJPAC9VCO4ZsyzZhvZgYQyD479b/roWAydKlwxABkuejWUVSTYvWDwYGlAjz3o9Jzti5eqTrL8U9KlBsZ7J1jJn0j0LzwZ7PaPkbuISsFsN7Ln1GAG6PcMNtindMW4iv0gKWSQZV76Jitlg5WCJ9+UwGei7OJbl35SXJqDWQIZ+z8qTWexX5VZjn8Kv8kySRHbaCxqfCH9XN1TbdLDJfNfHGShw2XdENsY13M9YrnJgyM6LhHpa0jiDGwuKwIN2BtBC6nFKzvbTYkRSL5G575MNjNrvpZllx2e34RKwZ6VQcDr+uyWnmlrsm8CQbLAMaFs72zZYq0fAUAsDntZmcFFZPQbQY0rFL0r8bI8zSKiX8dKNitlgPW49earFW49Yctlt71N26IXLXMLv4nqN9YprW+Rq5ye4pyimbWw/O6iWU4d+LGQPUYpiXC/EdvCDW8CX7CG/zk1fBldLYNlCOfIYhv3dyWIfFOreB+6xvx+DoAL17Dtb62X8spZ0kRCQCPU2utK93rhtPz4L0GK+R/lXssOaDMgfnG4pn6LVIjjxuIatl/PE4VdNBllGEa9Xhu9kIOPvMtl6CtIH31PO24CTjOu5dZoHTxF8eb2sT6xNtkZ8WiZTmKmVS/ri2+YKgcjOJ0qQvqRG1aZ6cZz9DMnyz3wDyH4rgf3/a+/Ko/QojvuvVntp75W0u6wOtFp0IUASaAU2EUJI5jSHCYc4YuxgHjZgTCA+4JEY5+EDyGU7kOfgg5A8H4lNXhw7B0Y8XxhsEBhhDoE4xCmxOtFKQqur88dMz0z31JTm0x7fQf3e27czPVPd9fX0VFVXVfdwL5hkBY5JTaXTD036bBonDKVNwHw+JV95oQqB24rVwhZJlj6nFH1fueOGEOhyKUXmpfX9xKwLp0pQbqKvPP1C+zyxz8pf4CZsPcv1vewrR1hnDCn47rc3hntWnOUtPWPvHqnv5IyQ9LVo3AmzFq7v/PeRUyR+GwBSfcDlqvv73gDyjqzpOApSyLPZHRfDksbrSKFMBXu6g6UUOsnKTQVPE/ekp6ZpoSb5yg/2BROtBoHOVzY8ndtGQCe5o9yBygmnXFkGTt95sx02rzysRxBA3Gsi+dgPdg1Ayo3FzD6kdMCoX5g+lzJJIhdOVZpOchn51mMS3MImi+hZSUqRpfP7Lj1+uL7zF6/JrsP4WioDjtuKQHiH4neA4zObjhPQ/nPIEzPRdMcM+NkqwIECeQKdEDyN6AnZ13JY3pyizmN1FuqK8S0Srk5OIEhKSsrlT9ed3R5nsfuplGydzG/xt1N26cK6uWvCs7JF+RahJH5LaqaYbM+9n53tCIqETzE9MJ00fqR9b/JlhGT3OTtb9p6/OzNx75GEIZeRlieuwcWScgWQc49zy59LJ83c1MeeAS63Nb13S3xN2qFQyn+3iAVIYYKWe6EjOuZjET6dnOqXppMs9tjVFJwn70j3Qbo9ztL3feXJ3+krymR7qZWnQh+w2/2K2yNkPw85Zc9VJK4Astfce4FkQC59LW3px0j3AUeX/n3p7aKTwtD/L/VBuu54hpBPqFn4MwROqHHjJ6q7Kt0/YqqoEBPyn78beIZTJi1Ck4LvSV58WcTy5D0r4dPQw4ayFOy8ayR74YavvSXrUbLmuGtiQI4ZsBGdYM2LLhyBzg/I8XRpSZsOyMXXxHTHVDAqpktNwRmeuAVREb30ggl1+kLGoeO0TI66cwloznr0rU5HOB34WXHGhh+fSCK1uZYonLL7XOq7PM+KU4rsWpACBC27GFGyjr3zoD3JgHH5LTThId87SyH/qVuGHWUq2N3/gGytpndeYxQCY3X69JwwzeMrl4J1vEvFjRfkbc8fuG572cJpvzfbyR9AzrYefXBXCnGNJJErACh+jjC77zih5isg1jAQLDVEfc4IaMtTVZLOIcuIawh9bpUbO+6yxzIJdIXtKiooRUe5uTxxbizu3RFz+T0hKmUUsZkrHt9JSMJbMij8d67kLXYiupWInqLgQ9Y/I6KJw8WYhLhj01qcG5Q+HSfUZJeKoI1zCBmOJWlTrv3egHfqFIVTyBPbnqfcBEtGCg4lmy2k7/Kmq1lIqyfl1Yxh3YLVybo4vLq59ji/rZT2mnJHMUJN/Bwhs3lYxFMkuKRrB9fnsitGEmrp5yKtIE3llXMGRUSXalZUCNwMKk9cI5crJs2KOEvyeRoFg33IFvtfG2PmGmPmA/gpgM8PA08HRHtDLQBg047BqKyuegwA/oFYSD5Lzjfv08mCPZuOCw5KK/mkIKjkMvLzyh1ecrgTxOwExmKTXpSoXULmtTxKkUMeRVLoytM8rhFO0IqLrQR3lJhN4yvhgg0Kl2/nWgHbN/PtpeliesEwYFYZixuaeWXuuPPWAAhZMawQrkrUqO/UAAAU40lEQVTTpXzl7Hh1f1MSnOLyf4u9VPJZMcaYbYnTRoyOMsK0CY1h+3HZpLaxAIDtu/Zm0nW21AMA3t4WK4SG2moA8cOuYYSiHSz7GOeY5HezkKav7FQT2a6YXFNUYXAhelHSlhPHk6+cWDcW86LE/EoKc2jKVOjy3MEvC7vXkGxxIaRP9l123emNyRLt+fGJRHvSClALfyGXw28Oi73QhXESL2If+ArI6YPsxAXORRXT2bqRas+31AuNU9myPKtauWt5Uo3L4mPWRPQlInodwKUYJYt9bG1gnS+Y2h6VTW4PBPv6bbsy6Q6b0JS6Z1JIt2df8GZzD8be89Y770ZlTXXVzv0tY6tTdPZhcwrBumK49nwrMAnJYo9fsPS19NLndHvc3ue+X1lKMSWmXS5oZsGtPLWQFILsKw/vyWF5O3SeW4ClY4QwclmP3G/JdkNYxEWSwsy2HgtdfSsJNYlPmOx7/GdUxYyf6EPZjFK0RW58wsvlr8rb5/YenrdkmTRr4cerUKfHU0lY7ES0goieZv7OAQBjzM3GmCkAvgvgk0I9VxLRSiJauWHDhiEzvuqWU/DdK46Lzj9+4mE4e95EXHzsoVHZ8r4pqK2Of2JrQw0A4MrFvVHZrK5mAMA77+7JbOuwjkAhvLppZ1R2SGtg/duHZF1BSXS3BgphXUIhWNiB0NFcl7rWWBfUtW1XmqdcQk0MHAbnrlvA3pMii/llXTiuUBNTPiVfsCDUOItUWtjkW4FOewfr/hJ85VJeud9n7mzHLeN44tJ6I55y0BWax55HqLHjzhO0Ep3rUsmu2xeGEl2y1bQ1nv07eeWW3XfSOAczo03x5PE/kkibmR6MMR/IWdf3APw3gFsy6rkbwN0A0NfXN+Sf1jq2JnX+9YuPdspuP38ubj9/rlO29rYPOuc3nj4bE5rqcOoRh0Rl9111vCOMO5vrMG9yK65aMj0qW9jTjhf7t7PWuIW19N/YEtfVOrbGUSLW8k9icntDis7CDvjxTbWpa22h4tq9N/21XDu4GsLZzs7B2GUVBU8F34YUPBV3W0S2lSxmFHl7sLC8CHmL/I6a2QubpDTCtHWcVIp5fOWMUsy4x2mXUSQxTwK/krUqKIS47uw62dhO5MZi2hNjOwdeMCT1HWcYRLMOSSlK444xfCykoH3km8/RByUh2CUQ0QxjzJrw9GwAq4fO0uiisa4a131ghlMWuHhiNw8R4cefXOTc84Wzj8AJMzowb0pbVPYPFx/tWNkzuwJL/yPH90Rlf3nmHHz6h6vQ1pAWzBY944MYguTTnxjOBpKw7qg3t+5MXbOD0iqNHbv3Rdda6gOFIMUJ6muCEbtrT6w0/Kl7ocIpj5ARLXZOyJhsl4pssR/YFcP5yuU9X9x2kxf99ErJb8sqxRx+4kKVqV83Rye5sfIoGd4Vk6479fu42Q4zDvxZjuTmEwPIkoCWFJ94LTgfDVfMkAQ7gNuIaBaA/QBeBfCJobNUHqirHoMzjup2ys6a52Z7NtRWp2YI5y+YjPMXTHbKHr15mTOo39c7Dp8/cw7OmR/X97FF0/Dth16Jgrt2AM2d3Brdc+TE1qjdLHQ0pV0/U8c34NG1m9E/kB2fOHRcoBDe3JJwR7XUY+vOPdHAratOvw1N9QEv2wfTQW070LmAdbRnNfPySQub8sQnCg48p+ITgnByrMdsqzMVPC1UKeZQprzgErRoVDdTJijhg3VjiUpR+GpVFJ8Q/HXiTFFQivmyqpj2rEJgLX2Xp5IX7MaY84aLkfcyOpvrnXMiwuWLpjllN59xOD59yiwnZrD61tMcl8Oywzvxrcv6sHhmR1T2n9f8EX71QhzTqKoiTBk3FqclXE/LDu/EDx9/gxX6FlNCwb4tkXU0uX0sVq8fwOYduyO+fcQKwXVt9Q8MRi+9dSElYWMWO1iFENDZWYRzLWSBe3WkPGQpj11e3p69sCmLN5dOmLVIsQsxCJp9jdv+wSJPfIJ7xn6cIYm0wksqRS8ImnRjeXR8XAOZv4V7VlHdOQLP0j5Ekt9e7oPgfDRSB4dqsStGCVVVFGUDWdTXuOdEhA/M6XLK5k9pw/yEuwgAfv3Zpc75aUd2Y8UNJ+Kwjsao7IHrF+OlDTucts49epIzS1m+8FCseK4/Sj8FAjfWE69tic6njguuJQV0d2s9+gcGozLuBesNeXk5wQNRYOXZF+WQlvoUXVcY1F7PBqwDuub69LC3L6RsraYVgzRDiNplrHJpFWRMFx5wwkmkk2YBrlsgiTyzFv5nCq4YL3+ds9i59ROphXEOn9kKwaeXXFXiwjhx5pau02/XKfMUyWisPFXBrgAATO9scs5ndDVjRpgxZPH3y+c75yfP6cILXzzdmUX8+8ff79zT2lCDz5w6C0tnd0Zlnzl1Nj78nd+hd0LcZhW5e2hYt9JRCVdT39R2PLZ2S5znz0hhKfBsX1Z7TxITQ4Wwafvu1LUqb2axZWccR7GzBs5Si+iZF1pyQ/h0XM15cvlFuoNM+ZSzsSRhmBaK4ocvvNmVuHYg1eoB4gxCv+bJVRfjEzliNKOxV4wKdsWQUOv51bmBfc1J053zRTMm4JWvuLGHJ285xfmyTEdzHR6+camTDvrNy/qw4rn+KI0UCKz29sY4EL2wJwh6n5yYuRzbMw6Prt0cuSH8mQ4gKwQLO/t4d08ceJ7UPhar3niHjSEkfwsAbNoRK43GujHYPrg3cqVx6bK1oeKyayySEFfRhqJP3sYhzafv93faE6xVf/bB8un5mR06KZjJrFi14yRP6mah8QnJmhcXuEnB93LLilEohgs2MyeJiW1u5k9bQ20q8PzITUsdAdbdOhYvf/kMx0d6z58uxJr+7Y7w/NpF8zEhEVM4a95EfP3BNbigL65/yawO/OL5OD5h10EkX16rENa/kx14njo+HWeYOr4Rb28bjJQEJxDsWokNA/FK6drqKuzeuz+633fPAbFC2JVQQBaFbK6VRJ5dRfMsbGLjEzlcRw6dzxO7RgLZdYqzpPCgQIUgueT82UfJB08VimJD3j8/QGNddSrOcM78Sc75Ia31+MNfneqU3f3hPgx4i8S+d8VxkcAFgKuXHIY3t76LC/umRGUTmuqwcXssjDtDi/3ISbFbaensTjz6ymY2I8iiuzW9BcbE1nqs3bQzsso5hdgVxh64LCcrnCYw6yBqwxkNO0OIYhBMBpOwwM13e7CLtCSndQjHpSIsUIoJBDeW6H/PdlXJ2ypYv7/UnlrsCkXRUVtdhfFeptDx0yc4520NtbjrkmOcshU3LMbGhK+eiLDihsXoaIoVwscX92JhzzhnW4zrls3AKxvjYLGdsSTdUQumjsPaTTuxd1+2dOhi9kSqr6nCrj37IyHjL/BLtvfW1myF0NWSzpxqCeti9EEktG0KbtKNJaUIRvRMSqP0OcuYzv2fRK6trwU6Nj4hzHb81E0NnioUZYi2htrUArTpnW4gmogcoQ4A15880zmvrxmDey8/FnO6W6KyL517JE6a3eFY/19dPh87dsc+/p7Q9TP7kLjNM+dOxI8ef0NM9bNupde3pBe4WeHrp+YCceD5bWGfJjv72JyIM3Q012H1+gEx/c/GQwYTCqGmugrYvS/6LdysJ0+WkuRSYX3zUkaR0K4fHNbgqULxHseJiTUJQCDozpzrLoT70NGuW6mzpR4PXL84WnsAAF/546NwxQnTnBnIvZcfi5rE/rSLZ07A4d0t+NTSeCX2Ze+fin955NXoPmmTPC6jyKKLS01tsZlIg6lrFlPG2dXUsdLobK7D1p17ItePH8AHgHYmg8kiVghMTCByR6Wlb56P4+TJijGjkMmugl2hqED4qao1Y6ow+5AWp8xXGs31Nfjf605wyr5w1hH43GmzndTSn167yNnj6MK+KVi9fgBXn3RYVHbfVcfjoTUbo3MrfO02G0C8VmE358MJYRe4JWMWXS31eOHt7c5iOR929pHc86mtocZRCO3Mth52kd7GgbSyidc6pIW3nTXsZczx9O6OmWwPG1SwKxSKTFRVERq9jeqSbiAgmEV8+dyjnLIFU9tTrqZHblrq1HXFol7UjqnC8oVx4PmO8+bi96/HC9waaqvxwaO6ne01Fkxtx6/XbGQ3erOw32fYMRi7cLpbx2Lrzj3YGe6TxAVtbWCc2/7bWurdrenZhw2QbxAUQmdzHT56fA8mtaXphxsq2BUKxaig29u4rra6Clec0OuUXbhwCi5MCHoAuOtSNzh97dIZmDe5DYsSgeyHPncSBhIWfFtDDW44eaaznuFzp83CR+95LJoFcLAKIbnWoaO5DhsGBiNrnNuLyX7Ep59RCNYVM2VcA75w9hGZbQ8nVLArFIqywpgqwkmJlcxAejUxEeFTy9xdW5fM6kxtyrfq86c4eeW9HU342wvm4cRZsZvqm5f14Ru/eAldieykcY21zpYW9rsOnYmyhtox2Ll7HxtsHWnQaKTe+Ojr6zMrV64c9XYVCoViOLB/vwGRm130u5c3Yf6hbdFCuBf7t+Nnz67H1UumZ1VTMIjocWNM34HuU4tdoVAoCgTnnz+ud7xzPr2zCdM7h0+oF4IiTBIUCoVCMZJQwa5QKBQVBhXsCoVCUWFQwa5QKBQVBhXsCoVCUWFQwa5QKBQVBhXsCoVCUWFQwa5QKBQVhqKsPCWiDQBeHabqDgXw2jDV5aMVwDsjVDdQvrwr3zzKlfdy5RsoX94Plu+pxpiOA91UFME+nCCiDXl+6EHWfbcx5sqRqDusvyx5V74z6y9L3suV77D+suR9pGVLJbhito5g3T8ZwbqB8uVd+eZRrryXK99A+fI+orKlEgT7iLlKjDEjLdjLlXflm0G58l6ufAPly/tIy5ZKEOx3F5uBIaBceVe+Rx/lynu58g2UMe9l72NXKBQKhYtKsNgVCoVCkUDJCXYi+g4R9RPR04myeUT0CBH9gYh+QkQtYXkPEb1LRE+Gf99I0CwnoqeI6BkiuqPUeA+vzQ2vPRNery8G7wX2+aWJ/n6SiPYT0fxi8H0QvNcQ0b1h+XNEdFOCppT7vJaI7gnLVxHRkiLyPYWIfh723zNEdF1YPo6IHiCiNeH/9gTNTUT0IhE9T0SnlgvvRDQ+vH87Ed3p1TXqY70gGGNK6g/AYgDHAHg6UfYYgBPD48sB3Boe9yTvS9w/HkH+aUd4fi+AZSXGezWApwDMS/A8phi8F8K3R3cUgJfLqM8vAfCD8LgBwNpwDJV0nwO4BsA94XEngMcRGGXF4LsbwDHhcTOAFwDMAXAHgBvD8hsB3B4ezwGwCkAdgGkAXiriOC+U90YAiwB8AsCdiXqKMtYL+Ss5i90Y8ysAm73iWQB+FR4/AOC8A1TTC+AFY8yG8HxFDpoho0DeTwHwlDFmVUi7yRizD0XgfQh9fjGA74fH5dDnBkAjEVUDGAtgN4BtKP0+nwPgwZCuH0EaXh+Kw/c6Y8wT4fEAgOcATAJwDgIBh/D/h8LjcxAo00FjzCsAXgRwbDnwbozZYYx5CID/heqijPVCUHKCPQNPAzg7PL4AQPIz5tOI6PdE9EsiOiEsexHA7NBVU43gQbmfPh89ZPE+E4AhovuJ6Aki+mxYXiq8S31usRyxYC8VvoFs3n8EYAeAdQgsrr8xxmxG6fCexfcqAOcQUTURTQOwILxWVL6JqAfA0QB+B6DLGLMOCAQogpkFEAjO1xNkb4Rl5cB7FkplvGSiXAT75QCuIaLHEUyhdofl6wAcaow5GsANAL5HRC3GmC0ArgLwbwB+jWDKvXfUuQ6QxXs1gmnepeH/c4loWQnxnsU3AICIjgOw0xjzNACUEN9ANu/HAtgHYCICt8CfE1FvCfGexfd3EAjElQC+CuBhAHuLyTcRNQG4D8CfGWO2SbcyZaZMeGdRQuMlE2XxMWtjzGoErgsQ0UwAHwzLBwEMhsePE9FLCCzhlSZYAPCTkOZKBC/0qCOLdwQv6i+NMRvDa/+DwOf6YCnwLvBtcRFia93SFJ3vkI8s3i8B8H/GmD0A+onoNwhcGi+XAu/CON8L4Hp7HxE9DGBNeG3U+SaiGgSC8bvGmP8Ii98mom5jzDoi6gbQH5a/AdeanQzgrTLhPROlMF4klIXFTkSd4f8qAH8B4BvheQcRjQmPewHMAPCyR9MO4GoA3xp9zrN5B3A/gLlE1BBO504E8KxHUzTeBb5t2QUAfpBBU6p9/hqApRSgEcD7AKz2aEquz8Mx0hgen4zAWi/KWCEiAvBtAM8ZY/4ucem/AHwkPP4IgB8nyi8iorrQjTQDwKNlwrtUV9HHi4hiR2/9PwRW4DoAexBo+48BuA5BBPsFALchXlh1HoBnEPggnwBwllfPs+HfRaXGe3j/n4T8Pw3gjmLxfhB8LwHw24x6SrbPATQB+GHY588C+Ew59DmCzJ3nEQT7ViDY4a9YfC9CEIR+CsCT4d8ZCDJFHkQwk3gQwLgEzc0IsmGeB3B6mfG+FkGQe3v4nOYUa6wX8qcrTxUKhaLCUBauGIVCoVDkhwp2hUKhqDCoYFcoFIoKgwp2hUKhqDCoYFcoFIoKgwp2RcWDiPZRsBPlMxTsjnhDmCsu0fQQ0SWjxaNCMZxQwa54L+BdY8x8Y8wRAE5GkLt8ywFoehCsVFUoyg6ax66oeBDRdmNMU+K8F8EWuRMATAXwrwi2aAWATxpjHiai3wI4HMArCHb8+zqCRUNLEGxBe5cx5p9G7UcoFAVABbui4uEL9rBsC4DZAAYA7DfG7CKiGQC+b4zpo+BjFp82xpwZ3n8lgE5jzBeJqA7AbwBcYIKtaBWKkkJZbAKmUIwA7K6DNQDupOArUPsQbCLH4RQEe/ucH563Itj3RAW7ouSggl3xnkPoitmHYBe/WwC8DWAegpiT/1GFiAzAtcaY+0eFSYViCNDgqeI9BSLqQLBr4p0m8EO2AlhnjNkP4MMIPtsGBC6a5gTp/QCuCrd9BRHNtDsuKhSlBrXYFe8FjCWiJxG4XfYiCJbabVv/EcB9RHQBgJ8j+MISEOwAuJeIVgH4ZwBfQ5Ap80S4/esGxJ9/UyhKCho8VSgUigqDumIUCoWiwqCCXaFQKCoMKtgVCoWiwqCCXaFQKCoMKtgVCoWiwqCCXaFQKCoMKtgVCoWiwqCCXaFQKCoM/w9xcrNxXrClbAAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"(sorted_data[\"CO2.1\"] - sorted_data[\"seasonally.2\"]).plot()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"En zoomant, on voit que ces oscillations se répètent tous les ans.\n",
"Le pic le plus haut arrive vers le mois de mai et la falaise la plus basse arrive vers le mois de septembre."
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEVCAYAAAD0Ps6RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl8W1eZN/DfI8mybMmS4liKLS+xLTubk9ht0j1L06alUKB0gIFhBgYKzZQpw/AyyzvzDjPAwPCZd5hhWF+gbGVnmBbolC5pnKZ2k3TLHie25SWL7diWvK+ytZz3D0mumybxorvr+X4+/jS2pauTntzn3nvOc55DQggwxhgzDpPaDWCMMSYtDuyMMWYwHNgZY8xgOLAzxpjBcGBnjDGD4cDOGGMGw4GdMcYMhgM7Y4wZDAd2xhgzGIsaH1pQUCDKy8vV+GjGGNOto0ePDgghPAu9Lu3ATkQ2AI0AspPHe0wI8dlrvae8vBxHjhxJ96MZYyyjENGFxbxOijv2GQB3CCEmiCgLwEEiekYI8bIEx2aMMbZEaQd2kagiNpH8Niv5xZXFGGNMJZJMnhKRmYhOAAgC2CeEeOUKr9lDREeI6EgoFJLiYxljjF2BJIFdCBETQtQBKAFwIxFtvMJrHhFCbBVCbPV4Fhz7Z4wxtkySpjsKIUYAvADgHimPyxhjbPHSDuxE5CEid/LPOQB2A2hJ97iMMcaWR4qsmCIAPyYiMxIXil8LIX4vwXEZY0xSkVgcQgBWi7HXZkqRFXMKwHUStEUVXUNT6BmZxs2VK9VuClPQr490oWtoCn9191q1m8IUIoTAA4++hqnZGB576BYQkdpNko2xL1sLiMUF/uynR/GhH7yK4HhY7eYwhXQNTeEff9eEbzzfjkD/uNrNYQp54sQlvNg2gKMXhvHa+WG1myOrjA7sv3rtIs72jmE2FsdPX1rUgi5mAF/4/VmYiJCTZcYjjZ1qN4cpYHQ6gi8+1YxNxS64c7Pww4Pn1G6SrDI2sI9MzeLf97bi5sp83LVhFX768gVMzUbVbhaT2QutQTx3th+fuKMKf7i1BE+c6EHfKD+tGd1XnmvF0OQMvnT/JnzgxjI8d7YPXUNTajdLNhkb2L+yL4DR6Qg+984aPLi9EiNTETx+tFvtZjEZzURj+PyTZ1FRYMfHtlfgY9srEYsL/Oiwse/eMl1Tzyh++vIFfPDm1dhU4sIHb1kNExF+fPi82k2TTUYG9ubeMfws2dHrCp24oXwFakvd+MHBc4jFuRqCUX3/xXM4NzCJz72zBtkWM0rzc/HWTUX4xcsXMR6OqN08JoN4XOAffteEfHs2Pp2cKC9y5eBtm4rwX691YWLGmE/pGRfYhRD43P+cgSsnC//rrjUAACLCg9srcH5wCvXN/Sq3kMmhZ2Qa33y+HW+pWYWda15f+fxnOyoxPhPFr17tUrF1TC6/eq0LJ7tG8Jl718OVkzX38we2VWB8JorHjhiz3zMusD91uhevnBvCX79lLdy51rmf31NTiGJ3Dr7Hk2mG9C9PnUVcCHzm3g1v+PnmEjdurszHDw+dQyQWV6l1TA6DEzP4v8+24ObKfNxX53vD7+pK3bi+zI0fHT6PuAGf0jMqsE/NRvGlp5qxociJ999Q9obfWcwmPLCtAkcuDOP4RWOnQmWag20DePp0Hx7eVYXS/Nw3/X7Pjkr0jobx+1OXVGgdk8u/PtOCyZkovnDfxivmrD+wrQIXBqfwfEtQhdbJK6MC+3de6MCl0TA+f18NzKY3d/T7bihFns2C77/Ik2lGMRuN45/+pwmrV+Ziz47KK77m9jVeVHsd+G5DJxJVqJnevXZ+CP99tBsf216J6lV5V3zNPTWF8Lls+OEh453vGRPYu4am8J3GTtxX58MN5flXfI0j24IP3FSGZ5p6DZ0KlUl+eOgcOkOT+Ow7NsCWZb7ia0wmwoM7KtHSN44X2wYUbiGTWiQWx2d+2wSfy4ZP3ll11ddZzCZ86NZyHO4YRHPvmIItlF/GBPYvPnUWFhPh79+6/pqv+/Ct5TAR4QcGX8CQCXpHp/H1/W3Yvd6LO9atuuZr76vzwZuXzQuWDODHh8+jtX8cn31nDXKt166a8v4bSpGTZcaPDHbXnhGB/cW2EPae6cfDu6pQ6LJd87VFrhy8o9aHXx/pwugUp8Dp2ZeebkE0LvBPb69Z8LXZFjM+clsFDrYPoKlnVIHWMTn0jk7jP/cFcMc6L+7ecO2LOQC4c61495Zi/O7EJQxOzCjQQmUYPrBHYnF8/smzWL0yFx/dVrGo93xsewWmZmP4xasXZW4dk8vhjgE8efISPr7Tj7KVb54wvZIP3FQGu9WM773Id+169cXfNyMaF/jcO2oWXeTrw7dWYDYaxy9eMc75bvjA/pOXLqA9OIF/vPfqY6yXq/G5cFvVSjx6+Bxmo5wCpzeRWByffeIMSvNz8PHb/Yt+nysnC390Yxl+f6oX3cM8x6I3DYEQnjrdi0/sqlr0xRwAqrwO3L7Wg5+8fMEw57uhA/vAxAy+ui+AnWs8uHO9d0nv/dj2SvSPzeDJk5wCpzc/PnwebcEJ/NPbaxZ9MU95YFsFCMAPD56XpW1MHuFIDJ99ogkVBXbs2Xnl7KdreeC2CoTGZ/DUaWOc74YO7F9+thXTkRj+6R0bllx7+fY1HlR7Hfjei5wCpyfBsTC+Wt+GXWs92L3EizkA+NyJOZZfvXaR51h05JHGTpwfnMLnk+Uilmp7dQGqvA784OA5Q5zvhg3sJ7tG8OujXXhgWwX8HseS358oM5BIgTvUPihDC5kcvvR0M2ajcXx2CWOsl3tweyWmZmP42StcylkP+kbD+NaBdty7uQg75pWLWAoiwgO3VaCpZwxHLuh/gaIhA7sQAp978gxW2rPxF3dcPY91Ifdd50OBI5sn03SiPTiB3524hD07KlFeYF/2cTb4nNheXYBHD5/HTDQmYQuZHJ5t6sVMNI5PJ2s/Ldf91xUbpla7IQP7qe5RHL84gk/trkaeLWvhN1xFtsWMP71lNRoCIbT28U47WrfvbKKA2x/fXLbAKxe2Z0clQuMz+N3xnrSPxeRV3xyE32Nf1pP5fDlWMz5wYxn2ntF/rXZDBvb65n6YCLh3U1Hax/qTm1fDlmXC9/muXfP2N/djY7ETRa6ctI+1raoAG4qceKSx05BFooxiLBzBy52D2L2InPXFSNVq/8lL5yU5nloMGdj3ne3H1vJ8rLBbF37xAlbYrXjvllI8ceIS74uqYUOTszh2cRh3LrDCdLGICHt2VKIjNGnIIlFG0dAaQjQucNd6afo9Vav9Vzqv1W64wN49PIWWvnHJOhoAPrqtApF4HD85zJNpWnWgJYi4AHZL2O/3bi6Cz2XjMgMaVt/cj3y7FdeVrZDsmA9sq8B4OKrrHdUMF9j3NyfurqR6NAOA8gI77lq/Cj97hfdF1ar65n6scmZjY7FTsmNmJUs5v3p+CCe7RiQ7LpNGJBbHgZYg7ljnvWK11uWaq9V+6Jxuh+EMF9jrm/vh99hRkUZWxJU8uCOxL+pTp3olPS5L30w0hsZACHeuX7XsFMerec+WEgDAwXau+qg1r50fwlg4KulTWspHbkvsqPZypz5TnQ0V2KWeSJlv6+oVcOVk4RhvwqE5r3QOYXI2tqwFSQtx51pRUWDHCb5j15z6s0FYLSZsry6Q/Ni3r/WACDiq05z2tAM7EZUS0QEiaiaiM0T0l1I0bDkaAyFEYtJNpMxHRKgtdeP4RT7BtWZ/cz9sWSbc6pf+BAeA2hIXTnVzv2uJEAL7mvtwm38l7NnXLs27HHm2LPg9DpzUab9LccceBfBXQoj1AG4G8DARbVjgPbKoPyv9RMp8dSUuBPrHeZxdQ4QQqG8OYluVZ8l1YRarttSN/rEZ9I1yVpRWtAUn0DU0LcvTeUptiRsnukZ1WWIg7cAuhOgVQhxL/nkcQDOA4nSPu1SRWBzPyzCRMl9dmRtxAZzu5nrdWtHSN46ekWlZhmFSakvdAMDDMRqSWowmVXrrldSVujAwMYNLOrygSzrGTkTlAK4D8MoVfreHiI4Q0ZFQKCTlxwIAjpwflm0iJaW2JHGC6/XxzIj2NydO8DtkDOwbipywmIj7XUP2N/djU7FrwY1z0rE5eb6f0uEFXbLATkQOAI8D+JQQ4k0bCAohHhFCbBVCbPV4lleo51rqm/tlm0hJWenIRml+Dt+5aUh9cxC1pW548+Q7wW1ZZqwryuNxdo0Ijc/geNeIrDdxALCuKA9WswkndNjvkgR2IspCIqj/XAjxGymOuRSJcdZ+3CrTRMp8tSVunOzioRgtCI6HcbJ7BLvXyXe3nlJb4saprlHd5jUbyYGWIIQAdm+Qt9+zLWas9zl1uYZBiqwYAvADAM1CiK+k36Slaw9O4MLglOxXcCCxeKFnZJrLC2hA6gS/U4F+ry11Y3wmis6BSdk/i13bvuZ++Fw2bCiSbjHa1dSVuHC6exQxnV3Qpbhjvw3ABwHcQUQnkl9vk+C4i7YvOc661F2SlqMuOZHGd+3qq28OwueyYX1RnuyfNTe/osO7NyMJR2J4sS2E3RukX4x2JZtL3JicjaEzNCH7Z0lJiqyYg0IIEkJsFkLUJb+elqJxi1V/NjGRIkVVv4VsLHbBbCI+wVUWjsRwsG1AsRO8yutArtXM4+wqO9Q+gHAkrsjTOaDfjCjdrzxVaiIlxZZlxrrCPN11tNG81DGI6UhMkWEYADCbCJuKXTjBqa6qqm/uhyPbgpsq8xX5vMoCO/KyLbrLiNJ9YFdqImW+ulI3TnaP8ESaiuqb+2G3mnGzQic4kOj35ktjhtnJXm/i8cRitJ1rPMva13Q5TCbCphIXTunsgq77wK7kREpKbakb42GeSFOLEAL7m4PYXq3cCQ4kxltnY3G09L0pm5cp4FTPKELjM4rexAGJ8725dwzhiH62SdR1YFd6IiXl9QlUfT2eGcWZS2PoGwsrMlk+X22pCwD3u1rqz/bDbCLsWqtwv5e4EYkJNPfq54Ku68Cu9ERKit/jgCPbwuPsKqlv7gcRcIcC+evzFbtzUOCw4gRnRKmivrkfW1evgDs3/Z3RlkKPF3RdB3alJ1JSUhNpeptQMYr9zUFcX7YCKx3Zin4uESUWqHG/K65rKLkzmoxFv66m0GmDNy9bV+Psug3sakykzFdXpr9xNyPoGw3jdM+o4sMwKZtL3OgITWA8HFHl8zNV/dxaFeUDe6pkt55KC+g2sKs1kZKSGnc7q6NxNyPY35I4wZUefkupLXVBCOB0j37u3oxgf3MQVV6H5DujLVZdqRudoUmMTuvjgq7bwK7WRErKdWXJhQu88Yai9jcHUZqfg2qvQ5XPf30FKgd2pcztjKbSxRwANpckxtn1UrJbv4FdpYmUlFVOGwqdNh5vVdD0bAyH2gewW4a9TRdrhd2KsvxcXU2k6V1DawjRuMBdKj2dA8DmYn2V7NZlYFdzImW+ulI3Z8Yo6GD7AGaiymdBXa621M2lBRRU39yPlXYr6krl2RltMVy5WagssOvmgq7LwK7mRMp8taVuXBicwvDkrKrtyBT1Z/uRl23BDeXKZkFdrrbEhUujYQTHuMKn3CKxOA7IvDPaYm0u0U8mnG4Du5oTKSmphUp6mi3Xq3hcYH9LEDvWemC1qPvPdm6Bmk7GW/XstfNDiZ3RVH46B/S1963uAvvodASvdA6p/jgOAJtKXCDS18IFvTrVM4qBiRlZ9zZdrBofV/hUSv3ZoOw7oy1Wbal+xtl1F9gbAupPpKQ4si2o9jr4BFfA/mZ1s6Dmy7GasWZVni5OcD0TQmBfcx+2VRUg1yrvzmiLMbf3rQ7Od90F9vqz6k+kzJeaQBWCKz3Kad/ZfmxRMQvqcnWlLpzkfpdVW3ACXUPTmng6B17f+1YPF3RdBfZILI4DrdqYSEmpLXVjeCqCrqFptZtiWN3DiSwoLQzDpNSWuDEWjuL84JTaTTGsfWeV2xltsWpL3DjVrf29b3UV2F87N4RxjUykpKQm0o53DavcEuN6viUIQP0sqPk2JxcqcdqjPOJxgd8c60ZdqRurnDa1mzMnVbL73KC2S3brKrDva+7XzERKytpVebBlmXglokyEEPjvI93we+zwe9RZbXola1Y5YMsy8ToGmTx3tg8doUl8dFuF2k15A73sfaurwP62TUX4x3vXa2IiJcViNiW2TOM7dlkcaA3idM8o/myHX+2mvEGq37V+guuREALffqEDq1fm4m2bitRuzhuk9r7Ver/rKrDfUJ6PD95SrnYz3qS2xI2mS2OIxHjLNCkJIfC1/e0odufg/uuL1W7Om9SWuHGG+11yhzsGcbI7cTHXylxayuslu7X9hK6rwK5VdWVuzEbjaOkdV7sphtLYNoCTXSN4eFcVssza+6e6udSNmWgcrX3c71L69gsd8OZl491btHcxBxLzamc1vvet9s4WHUqNu/EKVOkIIfC1+gB8Lhves6VE7eZcUV2Jfhas6MWp7hEcbB/AR7dVqLLPwmLoYe9bDuwSKFmRg5V2K5fwldDhjkEcuziCj++qUr2EwNWU5udgRW6W5sdb9eTbL3TAabPgAzeVqd2Uq9LDVnnaPGN0hohQV8pbpknpa/vbUOi04Q+3avNuHXh9Zx3OiJJGe3ACz57pw4duKUeeLUvt5lxVau9bLY+zSxLYieiHRBQkoiYpjqdHtaWJLdPGeMu0tL3UMYhXzw3hoZ2Vmn0cT9lc4kZbcByTM1G1m6J7jzR2INtiwkduK1e7KddERNhc4s6IO/ZHAdwj0bF0qa7UndgyTcNXcb34+v42ePKy8f4btfs4nlJX6kJcAE28VV5aeken8dvjPXjf1lLFNylfjtoSN9pDE5jQ6AVdksAuhGgEMCTFsfRqbgJVw1dxPXj13BBe6hzEQzv9sGVp+24deH0FKg/Dpef7L55DXAAP7qhUuymLMrf3rUZv5BQbYyeiPUR0hIiOhEIhpT5WMakdVjiwp+cbz7ehwGHFB3Rwtw4ABY5sFLtzND3eqnXDk7P45asXcV+tDyUrctVuzqJo/YKuWGAXQjwihNgqhNjq8XiU+lhF1XKlx7QcvTCMF9sGsGdHJXKs2r9bT6kr1fZ4q9b9+KXzmJqN4aHbtbW6+FryNb73LWfFSKiu1I3Q+Ax6dbDDihZ9fX8b8u1W/MnNq9VuypLUlrrQPTyNgYkZtZuiO5MzUTx6+Dx2r1+FNavy1G7OktRq+ILOgV1CczusaLSztexE1wgaAiE8uL1SU7WAFqOWKz0u2y9fvYiRqQj+fJd+7tZT5va+HdfejZxU6Y6/BPASgLVE1E1EH5XiuHqzvigPVjNX/FuOb+xvgzs3Cx+8RV936wCwsdgFE4Hz2ZdoNhrH9188h5sq8nF9mTY2zlmK1I3cKQ32u1RZMX8khCgSQmQJIUqEED+Q4rh6k20xY73PyYF9iZp6RrG/JYiPbauAI1tfd+sAYM+2oNqrj511tOR3x3vQNxbGn++qUrspy1Ljcyb2vtVgv/NQjMTqSlw43TOKmMZ3WNGSr+9vg9NmwYduLVe7KctWy1vlLUksLvCdxg5sKHJih4b2V1iKXKsFa1blafJGjgO7xOrK3JiajaEtyBX/FuPspTE8d7YfD2yrgFPDy8gXwlskLs1zZ/rQGZrEx2/3g0hbpXmXorbEhVPdo5q7oHNgl9jcQiUuCLYo33i+DXnZFnzkNm3tlLNUtRrPa9YSIQS+3aDNjTSWqrbUjdHpCC5obO9bDuwSqyiww2mz8Am+CK1943imqQ8fua0crhz93q0DwNrCPFgtJs6IWoRD7YM4pdGNNJZKqxd0DuwSS1X8O8537Av6xvNtsFvNeEBj+1ouR5bZhI0+p+ZOcC36dkO7pjfSWIrU3rday4jiwC6DGp8LHaEJRHnLtKsK9I/jqdO9+NCt5XDnWtVujiQ2+Jxo6RvX3Hirlhy9MIxD7YOa3khjKSxmEzb6XJpbw8CBXQZVXgciMYGLQ9oad9OSf9/bCofVgj3b9VH0aTGqPA6Mh6MI8QrUKxJC4Mt7W1Dg0N/q4mtZU5iHtuCEpi7oHNhl4PfYASQ2DmBvdvziMJ47248Hd1Rihd0Yd+sA4Pc6AHC/X83B9gG83DmEh3dVwa7D9QpX4/c4MDodweDkrNpNmcOBXQZzJ3iIT/Ar+fLeVqy0Ww0xtj5fVbLfOziwv0nibr0Vxe4cTW97txxa7HcO7DJw2rKwypmNjuCk2k3RnEPtAzjcMYiHd1XpcpXptRQ6bbBbzegIcb9f7tmmPpzqHsVf7q42xNj6fKkndC31Owd2mfg9Dr5jv4wQAv+2txU+lw1/fLOx7tqAREaU3+vgoZjLxOIC//5cK/weO/7gOv1nwlzO58qBLcuEDg2d7xzYZVLldaBTYxMqatt7ph8nu0bwqd1rDHfXllLlcWjqBNeC3xzrRkdoEn9991pYzMYLOSYTobJAW/1uvP/LGuH3ODA+E0VwnDMkgMRd23+k7tquN95dW4rf60DvaFize2EqbSYaw1fr27C5xIV7Nhaq3RzZ+L0c2DOCFidU1PTb4z1oC07grwx615bi9yT6vVNDJ7mafvnKRfSMTONv3rJW1zVhFuL32NE9PI1wJKZ2UwBwYJdN6gTncfbEXdt/7gtgU7ELbzXwXRsAVHk51TVlciaKbx5ox82V+dhWpc8KjotV5XVACKBTIxOoHNhlssqZDUe2hU9wAL96tQs9I9P4a4PftQHA6pV2WEzE/Q7gR4fOYWBiFn97zzrD93vqRk4rwzEc2GWSypDQSkerZWo2im88346bKvJ1W3d7KbLMJpStzM34fh+ZmsV3Gzuxe/0qXe6OtFQVBXYQcWDPCH6PPePv3H506DwGJmYy4q4tpcrDKY/faejExEwUf/OWtWo3RRG2LDNKVuRoJpedA7uMqrwO9I/NYDwcUbspqhiZmsV3Gjqwe70XW1Yb/64tpcrrwIXBKUQytAhccCyMRw+fw7vqirG2ME/t5ijG73FoJlmCA7uMXh9308ZVXGnfbUzctf3V3Zlx15bi9zgQjQvNbb6glK8/34ZoTOBTu6vVboqi/B4HOgcmENfAtpgc2GWUySmPwbEwfnToHN5Z68P6IqfazVHUXL9rZLxVSRcGJ/GrV7vw/htLsXqlXe3mKKrK60A4EkfPiPrbI3Jgl1FZfm4iQyIDT/BvPN+OaEzg03etUbspiqvM4OqeX61vg8VM+OQdmXW3DmgrM4YDu4yyzCaUF2TeBOrFwSn88tWLeN8NmXfXBgB5tiwUOm0Z96TW0jeG353owYdvrYDXaVO7OYrTUjEwDuwyy8TaIf9ZH4DZRPiLDLxrS/F77RnX7/++NwBHtgUP7TTO5ilLkW+3wp2bpYl+58AuM7/XjguDU5iNZkaGRGvfePKurRyFrsy7a0tJXNAnM6YI3LGLw6hv7sef7ag0zFaHS0VEmsmMkSSwE9E9RNRKRO1E9HdSHNMoqrwOxOICF4fUfzxTwrcOtMNhteChnX61m6Iqv9eBiZko+scyowjcN59vR4HDio/cZqzNU5bK79HGk1ragZ2IzAC+BeCtADYA+CMi2pDucY1irmaMBq7ichudjuDZM324//piQ215txxVGdTvwbEwXmgN4n03lBpqy7vlqPI6MDAxi5EpdbfJk+KO/UYA7UKITiHELIBfAbhPguMaQiblsv/+1CXMRuN4z5YStZuiukxKefzt8R7EBfDu67nftXK+SxHYiwF0zfu+O/mzNyCiPUR0hIiOhEIhCT5WH+zZFhS5bBlx5/bY0W6sWeXApmKX2k1RnScvG3kZUAROCIHHjnZjy+oVqEwGtUymlZRHKQL7lQqAvGnGSAjxiBBiqxBiq8fjkeBj9aMqA7ZL6whN4PjFEbxnS0nG1IS5lkzZJu90zyjaghN8t55UsiIHVrP62+RJEdi7AZTO+74EwCUJjmsY/mTKo5EzJB4/2g0TAe+qM+7uSEvlz4BU18eOdiPbYsK9m4vUboomWMwmlBfkqr6RvRSB/TUA1URUQURWAO8H8D8SHNcw/F4HpmZj6B0Nq90UWcTiAr851oOdazwZuTDlaqq8DgTHZzBm0CJwM9EYnjhxCW+pKYQrJ0vt5miGFi7oaQd2IUQUwCcA7AXQDODXQogz6R7XSKo0Mu4ml0PtA+gbC+M9W0oXfnEGmVuJaNDhmP3NQYxOR3iy/DJVXgcuDk1hJqreNnmS5LELIZ4WQqwRQviFEP8ixTGNxG/w7dIeP9YNV04W7lzvVbspmpLKjDFqvz92tBuFThtuM/i2d0vl9yTXrqhY3ZNXnirA48iG02Yx5B37WDiCZ5v68M5aH2xZZrWboyll+bnIMpPqqW9yCI6H0RAI4f7ri2E28WT5fFrIjOHArgAjZ0g8daoXM9E43s2P429iMZtQvtKYReCeOH4JsbjgbJgrqNRAMTAO7ApJ1Q4xmseOdqPK60BtCeeuX0mV14FOgz2ppXLXrytzzw03sddpYe0KB3aFVHkdCI3PYHTaOBkS5wYmcfTCMOeuX4Pf48CFIWMVgWvqGUNr/zhPml6D2pkxHNgVYsSaManc9fuv49z1q0kVgTs/aJyntceOdsFqMeHtm31qN0Wz/B47OoLqrV3hwK4Qo9UOicUFHj/WjR1rPFjFuetXNTeRZpAL+kw0hidOXsLdG1Zx7vo1VHkdmJyNqVbdkwO7QuaWGhvkBH+pYxC9o2GePFuA0bbJO9ASxMgU564vRO3MGA7sCrGYTago0EatZik8fqwbeTYL7tqwSu2maJo92wKfy2aYfn/saDdWObOxvTqz6j0tlV/lJ3QO7AoySjGw8XAEzzT1cu76Ivm9DkNsaB4an8GB1hDedR3nri/Em5cNh4rVPTmwK8jvsau+1FgKT5/uRTjCddcXq8rrQEdwEvG4vovAPXGiB7G4wHt4+G1BiW3y1HtC58CuIL/XgbgAzg+ot9RYCo8d7YbfY0ddqVvtpuiC3+PAdCSG3jH9FoFL5a7XlrpRvSpP7eboQmL/U3WyoTiwK8gIKY/nBybx2vlhvGdLKeeuL5IRasacuTSGlj7OXV8Kv9eBvrEwJmaiin82B3YFqT1TLoUWZN6FAAAXRElEQVTfHOPc9aUyQsrjY0e7YTWb8E7OXV+0VL+rsfKYA7uCcqxmFLtzdHvnFo8LPH6sB9uqPSh0ce76YhU4rHDlZOl2AnU2GscTJ3pw14ZVcOVy7vpiVXlTNWM4sBtelVf9IvzL9XLnIHpGpvlxfInmJtJ0ekF/viWIYc5dX7KyfDvMJlLlRo4Du8JSgV2PGRKPHU3krt/NuetLpucL+uPHuuHJy8b2aq67vhRWiwmr89XZJo8Du8L8HgfCkTgujU6r3ZQlmZiJ4pmmPryDc9eXxe9xYGBiFiNTs2o3ZUkGJmZwoCWIP7iuGBYzh4ulqlSpGBj3lML0miHx9OleTEdiXEJgmfRaK+iJE5cQjQuut79MVV4Hzg9OIhpTtronB3aF+XVaO+Sxo92oLLDj+jLOXV8OvV7QHzvajc0lLqzh3PVl8XvsiMQEuoaVfULnwK6wlY5srMjN0tWmGz0j03j13BDezXXXl61kRS6sFpOu+j3QP47m3jF+SkvDXM0YhS/oHNhVkFiRpp87t4bWEADgLTU8abpcZhOhskBf2+S90BoEANzN/b5s/oLkk5rCQ3Ac2FWgtwyJhkAQxe6cuQUXbHnU3lVnqRoDA1izyoEiV47aTdEtV24WChzZfMeeCaq8DgxOzmJ4UvsZEpFYHIfbB7FjjYeHYdLk9zrQNTSFcET7ReCmZ2N49fwQdnB53rSpUQyMA7sK9FRa4PjFEYzPRLFzDecwp8vvsSeKwOlgm7yXzw1iNhrHjjUc2NOVeEKfVHSbvLQCOxG9l4jOEFGciLZK1Sij01OGRGMgBLOJcGsVB/Z06a3fsy0m3FiRr3ZTdM/vcWB0OoJBBZ/Q071jbwLwBwAaJWhLxvC5c5BtMeniBG8IhHB9mRtOG9cISVdlgQNE+gnsN1Wu5MVoElAjMyatwC6EaBZCtErVmExhNpFqK9KWYmBiBqd7RrGTH8clkSoCp/WUx56RaXSEJrGDSwhIYm7tioLnu2Jj7ES0h4iOENGRUCik1Mdqlt9j13y1v4NtAwCAnWu8KrfEOPSwPWJjIHF+8gVdGj5XDmxZJkVrxiwY2ImonoiarvB131I+SAjxiBBiqxBiq8fD/2CqvA50D09rOkOiIRDCSrsVNT6n2k0xDL/HgU6NF4FrDIRQ5LLNzQmw9JhMhMoCZZ/QLQu9QAixW4mGZJoqrwNCAJ2hSWzQYOCMxwUaAyFsry6AiTculkyV14GZaBw9I9Mozc9VuzlvEo3FcbB9AG/bWMTprRKq8jpw7OKwYp/H6Y4q0XrK49neMQxOzmLnWn66ktLc9oga7feT3SMYD0c5zVFifo8DPSPTmJ5V5gk93XTH+4moG8AtAJ4ior3SNMv4Kgrsms6QaEiOs27nBSqSqlKpdshiNQQGYCJgG6e3SsrvtUMI4NyAMuPs6WbF/FYIUSKEyBZCrBJCvEWqhhmdLcuM0hW5mr1za2gNYWOxEwWObLWbYij5ditW5GZp9oLeGAihttTNW+BJTOknNR6KUVGVV5vFwMbCERy7OMxZETLRaq2gkalZnOoe4TICMkg9oSt1vnNgV5HfY0fnwCRiGsuQONw+iGhc8AkuE62mPB5sH0BcgMfXZWDLMqNkRY5iF3QO7Cqq8jowG42jR+Ei/AtpbAvBkW3B9atXqN0UQ/J7HBieimBIY0XgGgMhOG0W1Ja41G6KIVV5HIotTuPArqK52iGhcZVb8johBBpaQ7itaiWyeI9LWfg1WDNGCIHGwAC2VRfw3qYyUXINA/egiqo8ie3GWvq0E9g7QpPoGZnmx3EZVScDe2u/dvq9LTiBvrEwD7/JyD9vDYPcOLCryJWbhZIVOThzaUztpsxJLSfnE1w+xe4cuHKycPbSqNpNmTPX73xBl42SmTEc2FVW43PirIYCe0MghEqPXZOrIo2CiFDjc2rqgt4QCKHK64DPzbslyWV9UR6++8EtqC2Rf0N4Duwq2+hz4dzAJMbDEbWbgnAkhpc7BznNUQE1Pida+sYRicXVbgrCkRhePce7Jcktz5aFt9QUIt9ulf2zOLCrrKY4USemuVf98dZXzw1hJhrnwK6AGp8Ls9G4JiZQX0n2+w7eJcswOLCrbKMvkVp2RgPjrQ2BEKwWE26qWKl2UwwvVTFTC8MxjdzvhsOBXWVepw0Fjmw09ah/gjcEQripIh85Vt41R26VHgdsWSZNXNAbud8NhwO7BiQm0tQ9wXtGptEenOBhGIWYTYR1hepPoF4amUZbcILH1w2GA7sGbCx2oj04oeqmG7xrjvJqfE40XxpTddONF9s4zdGIOLBrQI3PhWhcIKDigpWG1hB8vGuOomp8LozPRNE1PKVaGxoDAyh02rBmFfe7kXBg1wC1J9IisTgOtQ9g51oP75qjILX7PRYXONg+gO3VBdzvBsOBXQPK8nORZ7OoNs5+omsE4zNRHmdV2NrCPJhNpFq/n+weweh0hIdhDIgDuwYQETYUOVXLjGkMhGA2EW7lXXMUZcsyo9rrUO2OvTEQAvFuSYbEgV0jNha70NI3hqgKKxEbAiFcX+aGK4d3zVHaBhVLCzQGQthc4sYKBVZCMmVxYNeIGp8T4UgcnQrtiZgyODGD0z2jPAyjkhqfC6HxGQTHwop+7uhUBCe6RrCzmu/WjYgDu0bUqLQC9WD7AIQAdq7lwK4GtSZQD3XwbklGxoFdI/weO7ItJpxReJy9oTWEfLt1rrQBU9aGucCu7AW9MRBCns2CulL5Kw0y5XFg1wiL2YR1RU40KXiCx+MCjW0hbK8ugMnE6W5qcNqyUJafq+gde2K3pBBu8/NuSUbFvaohG5MTaUIosxLxbO8YBiZmebWpypSuzd4RmsCl0TAPwxgYB3YNqfG5MB6OomtImc2tG5JlBLbzxKmqanxOXByawphCNfkbAgMAwGV6DYwDu4bUKDze2hAIYUORE568bEU+j11ZauJcqZ20GpO7ZJWs4F2yjCqtwE5EXyaiFiI6RUS/JSKeiUnD6ysR5T/Bx8MRHLswjNs5G0Z1qc1WlOj3cCSGV84NcnqrwaV7x74PwEYhxGYAAQB/n36TMldqJaISE6iHOwYRjQseZ9UAb54NnrxsRZ7UXjs/hHCEd8kyurQCuxDiOSFENPntywBK0m9SZlNqJWJjIARHtgXXl62Q/bPYwpTa1LwxEILVbMJNlfmyfxZTj5Rj7A8AeOZqvySiPUR0hIiOhEIhCT/WWDYqsBJRCIGGQAi3+lfCauFpFi2o8TnRpkBN/sbAAG6oWIFcq0XWz2HqWvCsJqJ6Imq6wtd9817zDwCiAH5+teMIIR4RQmwVQmz1ePgx8GqUWInYOTCJ7uFpHobRkBqfCzGZa/L3jYbR2j/O4+sZYMHLthBi97V+T0R/CuDtAO4USiVgG9j8lYi71nll+QzeLUl75l/QN5fIk4PQyLslZYy0nseI6B4A/xvATiGEetvAGEieLQvlK3NlLeHbEAihssCO0nxOd9OK0hW5yMu2oKlHvgnUxkAI3rxsrCvMk+0zmDakO8D6TQB5APYR0Qki+o4Ebcp4NT4XzvTKc4KHIzG83DnId20aYzIR1ss4cf76bkm8S1YmSOuOXQhRJVVD2Otqip146nQvRqcicOVKWyN9Lt2N89c1p8bnxC9fvYhYXMAsce2e0z2jGJmK8GrTDMEpERo0V8JXhrv2htYQrBYTbq5YKfmxWXpqfK5ETf7QhOTHTu2WxOUjMgMHdg1KTaTJkdfcEAjhpop85FjNkh+bpUfOjKjGQAibil3I592SMgIHdg0qcGSj0GmTfCLt0sg02oITnO6mUVVeB6wWk+QrUMfCERzvGuF+zyAc2DVKjlKuc2mOPL6uSVlmE9YV5kne74fbBxDj8hEZhQO7RtUUu9ARmsD0rHQrERvbQihy2VDtdUh2TCatGhlq8jcEBuDItuC6Mq7Rlyk4sGtUjc+JuACa+6S5e4vG4nixbQA7ON1N0zb4XBidjqBnRJqa/Kndkm71r0QW75aUMbinNUrqibQTXSMYD0d5GEbjpO73zoFJ9Ixw+YhMw4Fdo4rdOXDnZuGMRBOojYEQTATc5uc8Zi1bX+iEiaQL7Fw+IjNxYNcoIpJ0ArUhEMJ1ZSskX/DEpJVjNaPS48BZiTJjGgMhVHD5iIzDgV3DNvpcaO0bRyQWT+s4Q5OzONUzyndtOlHjc0pSK2gmGsPLnUPYUc1PaZmGA7uGbfA5MRuLo60/vZWIL7aFIARX9dOLGp8TfWNhDE7MpHWcI+eHMR2Jcb9nIA7sGjZXWiDNx/KGQAgrcrOwqdglRbOYzF7v9/Tu2hsDIWSZCTdXcvmITMOBXcMqCuzItZrTOsHjcYHGQKKqn9SFpZg8pMqMaQiEsHV1PuzZvFtSpuHArmFmE2F9kTOtO/bmvjEMTMzw47iOuHOtKHbnpNXvwbEwWvrGud8zFAd2jUttchyPL28lYkMy3Y0n0PQl3c2tG9sGAIDL9GYoDuwat9HnwuRsDOcHJ5f1/obWENYXOeF12iRuGZNTjc+Fc4OTmJyJLuv9jYEQChzZWF/olLhlTA84sGvchjTGWydmojh6YZjTHHWoxueEEEBz79L7PZ7cLWlHdQFMPK+SkTiwa9yaVXnIMtOyAvvh9gFE44IDuw7VFC//gt50aRRDk7M8vp7BOLBrnNViwppVecuaSGtsC8FuNWPL6hUytIzJqdBpQ77durx+T86rbON5lYzFgV0HllPKVQiBF1pDuMVfAKuFu1lv0ikp0RgYwMZiJwoc2TK0jOkBn/E6sLHYhaHJWfSOhhf9nnMDk+gensZOzorQrQ0+JwL945iNLr6kxHg4gmMXh3m3pAzHgV0HlrNg5fWqfl5Z2sTkV+NzIRITCPSPL/o9hzsGEeXdkjIeB3YdWFfoBNHSSgs0JKv6la3kqn56tZxNzRsDiXmV68t4XiWTcWDXAXu2BZUF9kVX/AtHYnipc5AXJelcxUo77Fbzoi/oQgg0tvG8CuPArhubS9zY39KP+755EP+5L4CTXSNXXY165PwwwpE475akc6ZkSYl9Z/vxi1cuYmCBao/nB6fQNcTzKgxIqzoQEX0BwH0A4gCCAD4shLgkRcPYG/3dW9ehssCOA61BfP35NnxtfxtW2q3YudaDXWu92FHtmdtEoyEQhNVs4qp+BvDwHVX43P+cwf/57Wl85nensbU8H/fUFOKejYXwuXPe8NrUvAqPrzNKZzd0InIKIcaSf/4kgA1CiIcWet/WrVvFkSNHlv25mW5ochYvtoVwoCWIhkAIw1MRmE2ELWUrcPs6D/77SDd8bht+/rGb1W4qk4AQAi1943imqQ97m/rQmpxMrS1x4Z6NRbhnYyEqCuz46KOvoT00gYa/2aVyi5lciOioEGLrgq9LJ7Bf9oF/D6BMCPHxhV7LgV06sbjAia4RvNAaxIHW4Nw4/D+8bT0e3FGpcuuYHDpDE3j2TB+eberDqe7E+Pu6wjycH5zEe7eU4gvv2qhyC5lcFAvsRPQvAD4EYBTALiFE6Cqv2wNgDwCUlZVtuXDhQlqfy64sOBbGsYsjuH2tB7Yss9rNYTLrGZnG3qZEkD96cRg/++hNuMXPQ3BGJVlgJ6J6AIVX+NU/CCGemPe6vwdgE0J8dqEP5Tt2xqQXjwsu+mVwiw3sC06eCiF2L/IzfwHgKQALBnbGmPQ4qLOUtNIdiah63rfvBNCSXnMYY4ylK93NEP+ViNYike54AcCCGTGMMcbklVZgF0K8W6qGMMYYkwavPGWMMYPhwM4YYwbDgZ0xxgyGAztjjBmMZCUFlvShRCEksmjmcyGxenUhi30dH1O9Y5YBuCjxMfXyd8/kY3K/y3/M1UKIhau8CSE08QXgESlfx8dU9ZghnbSTj8n9bohjXv6lpaGYJyV+HR9TvWOOyHBMvfzdM/mY3O/qHfMNVBmKYcZGREfEIupZMGPhftcOLd2xM+N4RO0GMFVwv2sE37EzxpjB8B07Y4wZDAd2iRDRxAK/f4GIePzRYLjfM48e+pwDO1u2hf6BM2Piftc+DuwSIqLbiej3877/JhF9WMUmMQVwv2cerfc5B3aWFiJyENF+IjpGRKeJ6L7kz8uJqJmIvkdEZ4joOSLKUbu9TBrc79rGgZ2lKwzgfiHE9QB2AfgPIkrt0VYN4FtCiBokFq9w/X7j4H7XsHR3UGJvFMUbL5Y2tRqiIALwJSLagcROWsUAViV/d04IcSL556MAypVvniK43zOv3zXd53zHLq0LADYQUTYRuQDcqXaDFPDHADwAtggh6gD04/V/5DPzXheDcW8kuN8zr9813edG/B+uOCKyAJgRQnQR0a8BnALQBuC4ui1ThAtAUAgRIaJdAFar3SClcL9nXr/rpc85sEujBkAHAAgh/hbA317+AiHE7Qq3SVapf+AAfg7gSSI6AuAEgBZVG6Ys7vfM63dd9DmXFEgTET0E4JMAPiWEeE7t9iiFiGoBfE8IcaPabVED93vm9bue+pwDO1syPf0DZ9LhftcPDuyMMWYwnBXDGGMGw4GdLYiIfkhEQSJqmvezWiJ6Kbnq8EkiciZ/Xk5E00R0Ivn1nXnveR8RnUquSPw3Nf4ubPGW0u/J321O/u5M8ve25M+3JL9vJ6Kvz1vIxGTCgZ0txqMA7rnsZ98H8HdCiE0Afgvgb+b9rkMIUZf8eggAiGglgC8DuDO5InEVEWkq95e9yaNYZL8ns2V+BuChZP/eDiCSfM+3AexBYkVq9RWOySTGgZ0tSAjRCGDosh+vBdCY/PM+LLxsvBJAQAgRSn5fv4j3MBUtsd/vBnBKCHEy+d5BIUSMiIoAOIUQL4nEhN5PALxL/tZnNg7sbLmaALwz+ef3Aiid97sKIjpORA1EtD35s3YA65JDNRYkTu7572H6cLV+XwNAENHeZGGwVH53MYDuee/vTv6MyYgDO1uuBwA8TERHAeQBmE3+vBdAmRDiOgCfBvALInIKIYYBfBzAfwF4EcB5JOptMH25Wr9bAGxDotTANgD3J4farjSezql4MuOVp2xZhBAtSDx+g4jWALg3+fMZJGuFCCGOElEHEndzR4QQTwJ4MvmePUjUEWE6crV+R+JOvEEIMZD83dMArkdi3L1k3iFKAFxSrMEZiu/Y2bIQkTf5XxOAzwD4TvJ7DxGZk3+uRGKyrPOy96wA8OdITMQxHblavwPYC2AzEeUmh9p2AjgrhOgFME5ENyezYT4E4AkVmp5R+I6dLYiIfolElkMBEXUD+CwABxE9nHzJbwD8KPnnHQD+mYiiSNyRPySESE3AfS25JB0A/lkIEVDkL8CWZSn9LoQYJqKvAHgNiaGWp4UQTyVf93EkMmxyADyT/GIy4pWnjDFmMDwUwxhjBsOBnTHGDIYDO2OMGQwHdsYYMxgO7IwxZjAc2JnhEVEsWWnyDBGdJKJPJ/Owr/WeciL6gFJtZExKHNhZJphOVpqsAXAXgLchkZN9LeUAOLAzXeI8dmZ4RDQhhHDM+74SiYU0BQBWA/gpAHvy158QQhwmopcBrAdwDsCPAXwdwL8isWAnG8C3hBDfVewvwdgScGBnhnd5YE/+bBjAOgDjAOJCiDARVQP4pRBiKxHdDuCvhRBvT75+DwCvEOKLRJQN4BCA9wohzin6l2FsEbikAMtUqaqDWQC+SUR1SJRAWHOV19+NRC2U9yS/dyFRB4cDO9McDuws4ySHYmIAgkiMtfcDqEVizil8tbcB+AshxF5FGslYGnjylGUUIvIgUZHwm8kdfVwAeoUQcQAfBGBOvnQciXrjKXsBfJyIspLHWUNEdjCmQXzHzjJBDhGdQGLYJYrEZOlXkr/7fwAeJ6L3AjgAYDL581MAokR0EonKhF9DIlPmWLL8bAi8xRvTKJ48ZYwxg+GhGMYYMxgO7IwxZjAc2BljzGA4sDPGmMFwYGeMMYPhwM4YYwbDgZ0xxgzm/wPdFbs9ki3B1wAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"(sorted_data[\"CO2.1\"] - sorted_data[\"seasonally.2\"])[:30].plot()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"La courbe qui correspond à CO2.1 semble être une courbe exponentielle.\n",
"On peut trouver une courbe approximative en testant avec quelques valeurs."
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEKCAYAAAAcgp5RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xd4FWX6xvHvk0bovUPoKFVKwIaCgIpi+4msWLCAvbtWVlfXuop17bJYsCAC6oooIFURBQygSO8lECB0AqS/vz9mgICUICRzzsn9ua5zZeadkieHw53JOzPvmHMOERGJXFFBFyAiIgVLQS8iEuEU9CIiEU5BLyIS4RT0IiIRTkEvIhLhFPQiIhFOQS8iEuEU9CIiES4m6AIAKlWq5OrWrRt0GSIiYWXGjBkbnXOVj7ReSAR93bp1SUpKCroMEZGwYmYr87Oeum5ERCKcgl5EJMIp6EVEIpyCXkQkwinoRUQinIJeRCTCKehFRCKcgl5EJCAf/bKCn5dsLPDvo6AXEQnAhAXreXzEXIb8urrAv5eCXkSkkC1ev4O7PvuNptXL8HyPlgX+/RT0IiKFaMvOTPoOSiI+Npr/XpNI8bjoAv+eCnoRkUKSlZPLbZ/OZN22dAZc05Ya5YoXyvcNiUHNRESKgie/mccvyzbxUs+TaJNQvtC+r47oRUQKwSdTV/Lx1JXcdGZ9erStVajfW0EvIlLAfl66kX+NmMtZJ1TmoW4nFvr3V9CLiBSglZt2ctunM6lbqSSvXdGa6CjbtzAnu1BqyHfQm1m0mc0ys5H+/AtmtsDMZpvZV2ZWLs+6/cxsiZktNLNzC6JwEZFQtyM9ixsGJeEcDLwmkdLxsfuv8GkPGPVQgddxNEf0dwPz88yPBZo751oCi4B+AGbWFOgFNAO6AW+ZWcFfPyQiEkKyc3K5ffAslm/cyVtXtaFupZL7r/Dz67BsEpStXeC15CvozawW0B0YuKfNOfe9c27P3x1TgT1nFy4GhjjnMpxzy4ElQPvjV7KISGhzzvHYiLn8uCiVpy9pzukNK+2/woop8P2jULkJtOtb4PXk94j+VeBBIPcQy/sAo/zpmkDee3qT/TYRkSJh4OTlDJ62ils6NqBX+4T9F6Zvg69ugVLV4KaJEFvw19IfMejN7AJgg3NuxiGWPwJkA5/uaTrIau4g291kZklmlpSamnoUJYuIhK4xc9fx7Kj5nN+iGg+ee8K+Bbm58N0D8FwCbFsFDToXSshD/o7oTwcuMrMVwBCgs5l9AmBm1wIXAFc55/aEeTKQt9OpFrD2wJ065wY45xKdc4mVK1c+hh9BRCQ0zE7eyt1DZnFSrXK8/LdWROW9wmbySzB9wL75+p0Kra4j3hnrnOvHvhOtnYD7nXNXm1k34CGgo3NuV55NRgCDzexloAbQCJh+vAsXEQkla7bupu+gJCqVKsZ/r0kkPjYa1syE/90KTS+BH56DSo3h1l8gbT2UqVFotR3LEAhvAMWAsWYGMNU5d4tzbq6ZDQXm4XXp3O6cyzn2UkVEQtOO9Cz6fPAr6Zk5DL7hZCqXLgbOwf9ug9QFXsgDnPc8RMdA2cI9bXlUQe+cmwRM8qcbHma9Z4BnjqUwEZFwsOcyyqWpaXx4fXsaVS3tLfj8akjNc0V6t+e9fvkAaFAzEZG/yDnH4/5llM9d2oIOjfzLKNfPgwUjIa40tL0W4svCKbcEVqeCXkTkL3pr0lI+nbaKmzvW9y6jXDIefh0IC7/zVuj9JdQO/jYiBb2IyF8wfEYyL4xZyMWtavDQuSfC7GHw5Q37Vuj4ENRqF1yBeSjoRUSO0o+LUnn4i9mc1qAiL1x2ElHT3oYx/byFHR/2umsK8aqaI1HQi4gchTlrtnHrJzNoWKUU7/RuS9z2lTDuX97CC16BxD6B1ncwCnoRkXxavXkX133wK+VKxPHRlSdQZsbbMPaf3sLbpkKVJsEWeAgKehGRfNi8M5Nr359OVk4un1/fkiqfnAXbk72F570QsiEPCnoRkSPanZnDDYN+JXnrbj694WQarPjYD3mD3l9Bg7OCLvGwFPQiIoeRnZPLnZ/NYtbqrbx1ZRvauTkw9jFo2BWu/iLo8vJFQS8icgh7xpUfN389T1zYhPN+uw2WToBiZeGCV4MuL98U9CIih/DS94sYPG0VL7VMpsfYK/ct6PoYlCv4J0MdLwp6EZGDGDh5GW9MXMLfW6TTY9GD+xbcMAFqtgmusL9AQS8icoDhM5J5+tv5nNe8GncUf9dr7HCvd418uYTDbxyCjubh4CIiEe/7uet46IvZdGhYiVcvqUfUvBFewHf9V1iGPOiIXkRkr1+WbuKOz2bRvGZZ3r26NcVG3ADZu6HNNUGXdkwU9CIiwB/J27jxoyRalstkcPm3iXv3dtiyHIpXgOqtgi7vmCjoRaTIW5qaxrUfTKdKfC6Dy7xJ3KJp+xZe9y2YHXrjMKCgF5EiLWXbbq55bzot3CLei32dmLUp0PUJiI6FFj2hVJWgSzxmCnoRKbI27Ejn7ne/44rdo7nDhkIacOIF0OGeoEs7rhT0IlIkbdmZyeg37mVoxmAwAINL/wstewZd2nGnoBeRosU5tm9eR+9PFzMyY/C+9v97NyJDHhT0IlLEpM8bTZlhvXjbVfGO5Ls8Bh3+HvYnXA9HN0yJSJGRnpXDN6NHAlDbNniNba6L6JAHBb2IFBEZ2Tnc8tF0eu74ZF9j/U5QsmJQJRUadd2ISMTLysnlrs9mcc7y573Uq9nWO/FapmbQpRUKBb2IRLScXMd9Q39n9bxpXFlsotd41XAoUSHYwgpRvrtuzCzazGaZ2Uh/voKZjTWzxf7X8nnW7WdmS8xsoZmdWxCFi4gcSU6u44FhvzPi97U822Ce13jLT0Uq5OHo+ujvBubnmX8YGO+cawSM9+cxs6ZAL6AZ0A14y8yij0+5IiL5syfkJ8+ayyNnVaNV5iyo1xGqtQi6tEKXr6A3s1pAd2BgnuaLgUH+9CDgkjztQ5xzGc655cASoP3xKVdE5Mhych0PDP+db2ctZ3Kph7jxl86wYS7UOzPo0gKR3yP6V4EHgdw8bVWdcykA/tc9A0LUBFbnWS/ZbxMRKXB7Qn7KzD/4ucKTxGfv2LcwsU9whQXoiCdjzewCYINzboaZdcrHPg92Qao7yH5vAm4CSEgIz8H8RSS05OQ6Hhw+m29nLmdKhVepuGuZ9yDvW36EcnUi/nr5Q8nPVTenAxeZ2flAPFDGzD4B1ptZdedciplVB/y7D0gG8j41txaw9sCdOucGAAMAEhMT//SLQETkaOTkOv7z8XB6Le3PS/GLYBdw0evQoDOUrRV0eYE6YteNc66fc66Wc64u3knWCc65q4ERwLX+atcCX/vTI4BeZlbMzOoBjYDpx71yERFfTq7jkWG/0nnps7SLWuQ1dnzYezJUEQ95OLbr6J8DhppZX2AV0BPAOTfXzIYC84Bs4HbnXM4xVyoichA5uY7+g7/juSVXeoeuLf7m3RB18s1BlxYyzLnge00SExNdUlJS0GWISJjJzs7hnY8+4o5VecaPv20qVGkSXFGFyMxmOOcSj7Se7owVkbCUmZVNyounckeG31Vz1RdQoR5UbBBsYSFIQS8iYSc9bQvZL7egTq5/6eR130LdDsEWFcI0eqWIhJVdGVmMf+d+Su0J+T7fK+SPQEEvImEjLSObz954jO5pw1lTrSvcOxcSTg66rJCnrhsRCQvbdmXx4MCveXfHW2TFlKRm308hNj7ossKCgl5EQt6mtAymvN6HdzNGkhsVS+z13yjkj4K6bkQkpG3YupNvX7uLizK8RwBGdX7Uu05e8k1H9CISstYumc2Szx7gmpypXsPln8KJ3YMtKgwp6EUkJC1cvY4TPjmDGkB62QbEn3EHNLkg6LLCkoJeRELL5mUsWjiXcWNGcAKwudUtVLjk+aCrCmsKehEJHYvHwac9aAzUJYbsMrWp0P2JoKsKewp6EQlebg7s3Ej2kN7EAOkUI7ZUBaKvH6mra44DBb2IBGtbMnzSA1IXEOWM+yq/zeM39CQ+1iBaEXU86F0UkeDk5uI+uoTMrWvJcvF8W/E6nrn5cuJjo4OuLKIo6EUkMLmrfyVq02Iey7qRnBa9+HfPNsRG6/ae401BLyKByB71D2Kmvcl2V5wqbS/m3kvaEhVVNJ/pWtAU9CJS6NIWTKLUtDcBGHXa59x37hkBVxTZFPQiUni2rCRz8FUUT53LSleVJecM4vLTTw26qoinoBeRgrfgW5j+X1g2kThgOTXY3GMoXVq2CLqyIkFBLyIFa9sa+N9tkL4VgCRrTqmbR9G2WpmACys6FPQiUjB2boSFo+DHFyB9K5/nnsW8Uqdy8413UqN8iaCrK1IU9CJy/KWlwssnQm42AIOzz2Jkrft4+9pTKFs8NuDiih4FvYgcX2kb4J0Oe0MeYFHDPrx/1Wm6ESogCnoROT4yd8HQ3rBkHACvV3iExeu2cWfV2TzWuztR0Qr5oCjoReT4+KQHrPp57+xr65vx7KUtaZRYO8CiBBT0InKs5n8Dn1+9d/aGqCdZkJvAR31O4dQGFQMsTPZQ0IvIX7P6V1g6ASY9C0Byre50X9GTcmXLMei6djSoXCrgAmWPIwa9mcUDPwLF/PWHO+ceN7NWwDtAPJAN3Oacm+5v0w/oC+QAdznnxhRQ/SJS2JyD7+6HXwd6szHF+bD1MJ6YvJ12dcvzbu9EKpSMC7hIySs/R/QZQGfnXJqZxQI/mdko4EngCefcKDM7H+gPdDKzpkAvoBlQAxhnZo2dczkF9DOISGFaNHpvyGef/TSvLanKa5O383+ta/JcjxYUi9FJ11BzxKB3zjkgzZ+N9V/Of+25ta0ssNafvhgY4pzLAJab2RKgPfDLcaxbRAqbczDmHzD1LahQnw1Xj+PWzxcyY+UW7unaiLu7NMJMo0+Gonz10ZtZNDADaAi86ZybZmb3AGPM7EUgCjjNX70mMDXP5sl+24H7vAm4CSAhIeEv/wAiUggydsDwPrD4ewCWdHiZ3u/+xpZdmbx5ZRu6t6wecIFyOPka4d85l+OcawXUAtqbWXPgVuBe51xt4F7gPX/1g/1KdwfZ5wDnXKJzLrFy5cp/rXoRKXjOwduneyFvUSS1e5nuX6ZjwPBbTlPIh4GjepSLc24rMAnoBlwLfOkvGobXPQPeEXzeC2drsa9bR0TCzch7YetKAD5v8jqXTa5Gy1plGXFnB5rXLBtwcZIfRwx6M6tsZuX86eJAV2ABXnh39FfrDCz2p0cAvcysmJnVAxoB04934SJSQJyDKa/BlpWwaAzM+ACAR2u+z0Mzy3NF+9p8esMpVCpVLOBCJb/y00dfHRjk99NHAUOdcyPNbCvwHzOLAdLx+9udc3PNbCgwD++yy9t1xY1IGNkwH8b+03vFliCrXH0uz3mK35dH8eTFTel9Sh2ddA0z+bnqZjbQ+iDtPwFtD7HNM8Azx1ydiBSudX/AV7funU2PLUuvrXeyIiqOj/u04bSGlQIsTv4q3RkrIl53zYg7YNYn3mzTS/iy2CX8e2o6FarUYMQ17UioqDHkw5WCXqSocw6GXQfz/geJfUk77QHuG5nMmJkb6N6yDv17tKRkMUVFONO/nkhRlr4dxj/hhfzpd7Ok5X3c9MEsVm7axaPdm9C3Qz31x0cABb1IUZUyG949w5uudAKjK/Tmvjd/oXhcNJ/0PVkjT0YQBb1IUZScBAO7AJB7QndeL34brwxbROuEcrx1VRuqly0ecIFyPCnoRYqa7Iy9Ib/7pOvok3oFv/y+id6n1OHRC5poULIIpKAXKWomv7x3suv87mzctYWXep5Ej7a1AixKCpKCXqSo+HUg/NAf0tYD0DPrCaJKxPDFrSdrKIMIp6AXKQqWjIPvHgCXy5boily3626qN+3AwMtaUrZ4bNDVSQFT0ItEKucgJwuWjIWvbmVXucZcuusRVqbBgxe04LrT6urSySJCQS8SiZZOhI8v2Tu7K64S3dbfRm7ZUnx2Sxta1S4XYHFS2BT0IpFm/kj4/Kq9s8uKNeGSbfdyctMGvHjZSZQtoa6aokZBLxIJcnMBB4vHwpc3QtUWrGh2G09P2cGvOypxV/fWusu1CFPQi4SrzF0QWxxWTYUhV8LuzQC4cgl81PBlnhq9kaplqvHBLa1pk1A+4GIlSAp6kXCTuRMmPO09pPsgnom5g4HjUzmveTX+fWkLypWIK+QCJdQo6EXCyfq5MPRa2LR4//beXzEuvSkvDp/AyvUVeO7Splzerra6agRQ0IuEj1XT4P1zvOnuL3lH9rElyIwuwdN/VOajqTNoWr0231zRmoZVSgVbq4QUBb1IOMjJgm/u8qavHAqNzwVg4bod3PXZLBauX0XfDvV4sNsJGqtG/kRBLxLqsnbDd/dD6gLoNRgan4tzjk+mruTpb+dTOj6GD69vR6cTqgRdqYQoBb1IKMvNhXFPeI/4O+V2OOF8Undk0O/L2Yybv4GOjSvzYs+TqFy6WNCVSghT0IuEsp9fg2lvQ+uroduzjJ6zjn989QdpGdn884KmXH9aXaKidMJVDk9BLxKqsjO8ESfrdGD7Oa/wxNDf+WJmMs1rluGVv7WiUdXSQVcoYUJBLxJqVkyBGR/AH8MAmN/mcW74z0+s257OXZ0bckfnRsTFRAVcpIQTBb1IKNixHnZthCmvwewh+y3qPiqeOpWiGH7LqbTWHa7yFyjoRYI0fySsm+099Sk3a29zVslqDMs6g0E72nL1qfV4+LwTKRGn/67y1+iTIxKUdXP2G2WSBp3JbnE5b25sy+sTFlOxVBwvXH8SZzauHFyNEhGO2NFnZvFmNt3MfjezuWb2RJ5ld5rZQr+9f572fma2xF92bkEVLxK2Vk+Hd073puueAdePZm6XD7nwh5q8Mm4R57eozph7zlTIy3GRnyP6DKCzcy7NzGKBn8xsFFAcuBho6ZzLMLMqAGbWFOgFNANqAOPMrLFzLqdgfgSRMLJ4LHx9+97ntnLWo2Sefh9vTFjMW5OmUK5EHO/2bsu5zaoFW6dElCMGvXPOAWn+bKz/csCtwHPOuQx/vQ3+OhcDQ/z25Wa2BGgP/HKcaxcJL2tmwKeX7Zvv8hiz6/Xlgdd/YuH6HVzauiaPXdhUo03KcZeva7TMLNrMfgM2AGOdc9OAxsAZZjbNzH4ws3b+6jWB1Xk2T/bbRIqulT/DwK7edOd/kv7IZvrv7M7/vfUzW3dn8t61ibx8eSuFvBSIfJ2M9btdWplZOeArM2vub1seOAVoBww1s/rAwW7Tcwc2mNlNwE0ACQkJf616kXCwebn3YJASleDiN5kV344HXv+JJRvS+FtiLR7p3pSyxfV4Pyk4R3XVjXNuq5lNArrhHal/6XftTDezXKCS3147z2a1gLUH2dcAYABAYmLin34RiIS9pRPhj+Gw4BsAdl39LS/PyOb9KT9TtUy8BiKTQnPEoDezykCWH/LFga7A83j99p2BSWbWGIgDNgIjgMFm9jLeydhGwPQCql8kNI1/Cia/6E1XacbUxFe4b1Aya7bu5sqTE+h33omUjtdRvBSO/BzRVwcGmVk0Xp/+UOfcSDOLA943szlAJnCtf3Q/18yGAvOAbOB2XXEjRcr2FJjyKgCbe0/gianZfP3lRhpWKcWwW06lXd0KARcoRY152RysxMREl5SUFHQZIkdn6USo2Qbiy0LqIhj1ICybCICLief7kz/kgSlRpGflckfnhtzcsb4eCiLHlZnNcM4lHmk93Rkrkh871kGpqmDmjSo5vA8sGHnI1Z8u/Rjvjc/l5HrlePbSFjSorEf7SXAU9CJHMvMjGHEndH4UEk6FH1/ce+SeV9aFb/Lhurq8/vNGbGsJ+vdoQs/EWnpAtwROQS9yOOnbYOzj3vSEp72vFg2d+kGHv8PWVbAzlak7q/KPUatYlrqNi06qwz8vaKqnPknIUNCLHMr6ufD2ad70ef0hOQlcjjddshIA62Jr8dSU7Xw7ez51KpbQJZMSkhT0InltT/Eewv3HMPjtU6+tfF1oez2cfPPe1bJycvlwygpeHbeI7FzHvV0bc3PH+sTH6mSrhB4Fvcge6+fB+90gY9u+tmtHQp3TIWrfaCFTl23isa/nsGh9Gp1PrMK/LmxGQsUSARQskj8KeinatqyE2UMh6X3Y4d/AXTYBWvaEsx6BqH1H6Bt2pPPv7xbw1aw11CxXnP9ek8jZTasGVLhI/inopWjKzfGO3pPz3LTd9GLo/E+o1Gi/VbNzcvl46kpe/n4RGdm53Nm5Ibd1akjxOHXTSHhQ0EvRM3+kd7nk7s372u5bCKX/PAb85MWpPPnNPBZvSOPMxpV54qJm1KtUshCLFTl2CnopWpI+gJH3eCNJnv0U1O8E1Vp4N0LlsXzjTp75dh7j5m+gTsUSDOjdlrObVtU18RKWFPRSNGxbA6809aYbdIYrhkDMn69z356exRsTlvDBlOXERUfx8Hkncv3pdTV0gYQ1Bb0UDb8N9r4mnAaXffCnkM/JdQxLWs2L3y9k085Meratxf3nnkCV0vEBFCtyfCnoJbIlz4CPLoLMNC/k+4z60yrTl2/miW/mMnftdhLrlOeD69rTolbZAIoVKRgKeolcqQthYGdvungF6PjgfotXbtpJ/9EL+faPFKqXjee1K1pzYcvq6oeXiKOgl8iUuRM+vtSb7nAvdHl87wnXzTszeW38Yj6dtpKYqCju6dqIm89soMslJWIp6CWyDLlq/+GDrx8FtU8BM9KzcvhgygremriEnZnZXN6uNvd2bUyVMuqHl8imoJfIsHU1/PLG/iF/xv1Q5zRycx1fzUjmpe8XsnZbOl1OrMLD551Io6qlg6tXpBAp6CW8Oec9FGToNbDuD6jcBFpfBafcDlFRTF6cyrPfLWB+ynZa1CzLS39rxakNKgZdtUihUtBL+Fk8Drathux0GP3wvvbz+u8dYXLu2m08P3ohPy5KpVb54vynVysubFmDqCidaJWiR0Ev4cU5+LTH/m2NzoE6p0FiX5alpvHy2EWMnJ1C2eKxPNq9Cb1PraMbnqRIU9BL6MvJ8i6VXDcbvvMvkWxzDTS7FOp2gOhY1mzdzWtfzWP4zGSKxURxx1kNufHM+pQtHhts7SIhQEEvoS1zJ7zaEnZt3NfWuBuc/xLExLExLYM3J87l06mrALjm1Drc1qmhHuMnkoeCXkJPTjZMfskbLnjCU17Il03wHghyXn84qRfbdmcxcMJC3vtpOelZOfRsW5u7ujaiZrniQVcvEnIU9BJ6/hgGk57dN3/WI96lklFR7MrMZtCkpbzzw1K27c7igpbVuffsxjSoXCq4ekVCnIJeQkvqQhiVZ6iCC16BxD7syszmk6nLefeHZWzamUnnE6tw3zmNaVZDY9KIHImCXkJHbi58eSNExcBtU6FMTXZFleDjH5Yy4Ecv4M9oVIl7ujaibZ0KQVcrEjaOGPRmFg/8CBTz1x/unHs8z/L7gReAys65jX5bP6AvkAPc5ZwbUwC1S7jbuQmydsL2tVChPoz7F6T8Du1vZmfZRnw8dSUDflzGZgW8yDHJzxF9BtDZOZdmZrHAT2Y2yjk31cxqA2cDq/asbGZNgV5AM6AGMM7MGjvncgqgfglX2ZnwXlfYvOxPiz6MuYzX+k9k885Mzmxcmbu7NKJtnfIBFCkSGY4Y9M45B6T5s7H+y/nzrwAPAl/n2eRiYIhzLgNYbmZLgPbAL8eraAlTuTkQFe0dyQ+/zgv5MrWgQj0yKzRmUnpDnppfndUTUunYuDJ3d21EmwQFvMixylcfvZlFAzOAhsCbzrlpZnYRsMY59/sB43fXBKbmmU/226Qo+30IjLgLSlby5nekwHkvsKX5dXzw8woG/byCbbuz6HRCZV7r0ojWCniR4yZfQe93u7Qys3LAV2bWEngEOOcgqx9sMBH3p5XMbgJuAkhISMh3wRJGnIP1c2Du/2DKf6B4eYgrBZk72drtDV5Pbc1nz09gV2YO5zStym1nNaRV7XJBVy0ScY7qqhvn3FYzm4TXPVMP2HM0XwuYaWbt8Y7ga+fZrBaw9iD7GgAMAEhMTPzTLwIJc1P+Az++CBnb97Vd9DrLK57Buz8s5YsRyeS6FVzcqga3dmygIYNFClB+rrqpDGT5IV8c6Ao875yrkmedFUCic26jmY0ABpvZy3gnYxsB0wukeglNa2fB2Me86YZdoctjLNoRy3+S0hn1xyRio6O4on0CN55Rn9oVSgRbq0gRkJ8j+urAIL+fPgoY6pwbeaiVnXNzzWwoMA/IBm7XFTdFxLo/YMf6vaNLuuY9+LVNf94avYxJC5MpXSyGmzs2oM/p9TQWjUghMu+immAlJia6pKSkoMuQY7HuD3inw97ZreVb0Cf6GWYmp1GxZBx9OtTj6lPqaDRJkePIzGY45xKPtJ7ujJVj4xx8dz/8OhCA7KhiPBV9O4NSEqlXyfHUJc25rE0tPXhbJEAKevlrZn4E45+Enal7mx7mTobsOpV2dcvz7iX16dqkKtF6opNI4BT0cnR2bYYhV8Gqn/c2bXUl6ZbZn7bNm/LVGfV0DbxIiFHQS/6kzIbFY2DC03ub2qe/ye648lyWWIdhHXQFjUioUtDLkSXPgIGd986Oy2nN4GJ/4/pup3Jl+wTKltAJVpFQpqCXw1oz/Wsqjr6VeGB+bm3+W6kfZ3U8i3ebVyM2Oiro8kQkHxT08ic5uY4JCzbw/Q+TeWF9Xxa62gxr/CGXdDqZl2vqQR8i4UZBL3tt25XFF9MWs+KXL6i2axFPx4wCoPplL/Boi4MNayQi4UBBL8xZlszQpGROmfMv+kT5o0nv+WR0+gdlmncLrDYROXYK+iJqZ0Y2I2etpNLEB+iSMZ7mAFGQXr4R8SecDfU7QenqUL1lsIWKyDFT0EeyLSth7UxocpH3wA/nWDfudaaszuCblTHcnDuUU6PnAZDZ8iriWl9BfL0zAi5aRI43BX0k+/p2WDGZnKb/x+zoZtSb8wbV3FZ6AD0MiAbX5V/YaXcSF62Pgkik0v/uSLXgW1gxmYyoEhSb9xWt+QqAtGJV4ewnKbV5DrS8HKvWIuBCRaSgKegjzPb0LH7+YSyPbJcZAAAOW0lEQVRtpt3N5tzaXJP1KNNjbwbAPbicUlHREK9LJEWKEgV9BMjNdUxbvpmvpy+kxvz3uStqGFutDItOfolRHbvBzhaQuQsrUSHoUkUkAAr6MJaybTdfzPAujVy1eRcvFnuPy6LGkx1fgbI3jueiivW9FUs1C7ZQEQmUgj7MZGTnMG7eBoYmrWby4lRyHVxTaz3XVZlG/RXjod0NxJz3AkRpeAIR8Sjow4BzjqSVW/hy5hq+nb2WXenp3FVyPA/U2kgjW02xDbNhI1ChPnR7XiEvIvtR0Iew5Rt38tXMZL6btYz228dSLjqDOxKack65tdSdMwhSD9jgkndAl0mKyAGUCiFm885Mvpu1nP/9lsL6Nct4JGYwN8YupHTsdm+FZP9Vsy206AmJfWH6AGh9FRTXAz9E5M8U9CEgPSuHCQs28OXMNeQu+p73Y5/nzKhalKhYkkppCyEXOPspKFcbprzm3e160RtQtam3g9PuCLR+EQltCvqAZOXkMmXJRkbOTmHM3HXsSM+mS8kV/DfuJXCQkJsMO6O9o/aKDeG0O8EMGp8H62bvC3kRkSNQ0BeinFzHtOWbGDk7hVF/pLBlVxali8VwTrNq3OM+pvb8/3ornv8ilKsDlRpBhXr77yQ2Hmq3L/ziRSRsKegLWG6uY9bqLXzzewrf/pFC6o4MSsRF07VJVS5rFMXpi54jesNS2LjQ2+DGiVCzTbBFi0hEUdAXAOccc9du55vf1zJydgprtu4mLiaKzidU4aIWlemaNZG4quXglzdh0XdgUd6lkdd8DeUSgi5fRCKMgv44cc4xO3kbo+asY/ScFFZs2kVMlNGlYRk+qDmCWu0uoETUJpj8D1g9dd+Gp98NnR8DlwsxccH9ACISsY4Y9GYWD/wIFPPXH+6ce9zMXgAuBDKBpcD1zrmt/jb9gL5ADnCXc25MAdUfqJxcR9KKzYyeu44xc9axdls6MVHGqQ0q8ljzTZyePZViKybBpsWw9IN9G575gHcpZJUmUK+jN1a8iEgByc8RfQbQ2TmXZmaxwE9mNgoYC/RzzmWb2fNAP+AhM2sK9AKaATWAcWbW2DmXU0A/Q6HKysnll6WbGD13Hd/PXc/GtAziYqI4s1Fl7jvnBLo0LE25MXfCtK/337DuGVCtBZxwPujhHiJSiI4Y9M45B6T5s7H+yznnvs+z2lTgMn/6YmCIcy4DWG5mS4D2wC/HrepClp6Vw+TFGxk9Zx3j5q9n2+4sSsRFc9aJVTiveTU6NapIqWF/g28m7duoVDW4dAD8OhAuek03M4lIYPLVR29m0cAMoCHwpnNu2gGr9AE+96dr4gX/Hsl+W1jZlJbBxIWpjJu3nh8Xp7IrM4cy8TF0bVqVXtXW0nb5W0S3ugGqloU/PoJlk/Zt3OxS6Ol31dTvGEj9IiJ75Cvo/W6XVmZWDvjKzJo75+YAmNkjQDbwqb+6HWwXBzaY2U3ATQAJCcFfaeKcY2nqTsbNX8+MOfMZn2zEukzuKjmOVo07cFKLk2i/sD/R21bDvCRvo+U/7L+T817wvra6onCLFxE5jKO66sY5t9XMJgHdgDlmdi1wAdDF7+IB7wi+dp7NagFrD7KvAcAAgMTExD/9IigM2Tm5JK3cwvj56xk3fwNrNm5lUfy1AIxp9hiJcSupOO8TWPIJLPE3smio1hLaXgvzRuwL++aXwck3BfFjiIgclu3L50OsYFYZyPJDvjjwPfA83lH8y0BH51xqnvWbAYPx+uVrAOOBRoc7GZuYmOiSkpKO9WfJl+3pWUxetJFx89czaX4K3bPGUC1qG3GVG3D9tjeIzdm9/wbVT4ImF8H2NVDndGhx2Z93mrkLYorp6hkRKVRmNsM5l3ik9fJzRF8dGOT300cBQ51zI/2TrMWAsWYGMNU5d4tzbq6ZDQXm4f0yuD3IK26cc8xP2cFP81awdMFvfLG2Etm5jrbFU5gU82/KstFbcbO/QcOuXh/7vK+98D7/RShd9fDfJK5Egf4MIiLH4ohH9IXheB/Rb0/PYsrijUxamMoPi1JZv30X/4t7jJOiljG1em+q1m1KvV/6eStXPhGqNIXoOG/gsCpNdGQuImHheB7RhzznHAvW7WDSwlQmLtzAzJVbqObW81Oxe1gfW4stTbty4rJlAJyS8jGk+Bue/yK0vzG4wkVECkFYB/2KjTt5e9JSViycxUuZTzI/qxclK7Xi/vYV6LPwGdgNVbOSqbrsQ6jRGvqO9bpksnZDo3OO3CUjIhIBwjroHTBmTjJPVZhFrc0beS3uDdgO/OavUPcM6NQPtq6COqdCdOzBT6aKiESwsA76epVKMqv037HNKX9eePo90PVf3sM6OL2QKxMRCR1hHfRsXYXt8EP+mhEQX2bfiVU72H1bIiJFT3gHfeYu79F6J9+soQZERA4hvIO+yolw5ZCgqxARCWlRQRcgIiIFS0EvIhLhFPQiIhFOQS8iEuEU9CIiEU5BLyIS4RT0IiIRTkEvIhLhQmI8ejNLBVYep90lAKuO074OpiywrYD2XZC1h2vdEL61h2vdEL61F7W66zjnKh9ppZAI+uPJzFLz84Mfw/4HOOcK5OGwBVl7uNbt7z8saw/Xuv39h2XtqvvgIrHrZmsB7/+bAtx3QdYernVD+NYernVD+Nauug8iEoO+oP5sA8A5V5D/IAVWe7jWDeFbe7jWDeFbu+o+uEgM+gFBF3AMwrX2cK0bwrf2cK0bwrf2cK078vroRURkf5F4RC8iInmERdCb2ftmtsHM5uRpO8nMfjGzP8zsGzMr47fXNbPdZvab/3onzzaXm9lsM5trZv1DqW5/WUt/2Vx/eXwQdR9t7WZ2VZ73+zczyzWzVkHUfpR1x5rZIL99vpn1y7NNqL/ncWb2gd/+u5l1Cqp2M6ttZhP993Cumd3tt1cws7Fmttj/Wj7PNv3MbImZLTSzc4Oo/WjrNrOK/vppZvbGAfsq9M/LUXHOhfwLOBNoA8zJ0/Yr0NGf7gM85U/XzbtenvUr4l0DW9mfHwR0CaG6Y4DZwEl56o0Oou6jrf2A7VoAy8LkPb8SGOJPlwBW+J+fkH/PgduBD/zpKsAMvAO3IN7z6kAbf7o0sAhoCvQHHvbbHwae96ebAr8DxYB6wNIgPut/oe6SQAfgFuCNPPsJ5PNyNK+wOKJ3zv0IbD6g+QTgR396LNDjCLupDyxyzqX68+Pysc0xOcq6zwFmO+d+97fd5JzLCaJu//v/1ff8CuAzfzrU33MHlDSzGKA4kAlsD6JuOOramwLj/e024F36l0gw73mKc26mP70DmA/UBC7GCz38r5f40xfj/YLNcM4tB5YA7Qu79qOt2zm30zn3E5B+wK4C+bwcjbAI+kOYA1zkT/cEaudZVs/MZpnZD2Z2ht+2BDjR79qJwfvHy7tNYTlU3Y0BZ2ZjzGymmT3ot4dK3XD493yPy9kX9KFS+6HqHg7sBFLwjshedM5tJnTqhkPX/jtwsZnFmFk9oK2/LNDazawu0BqYBlR1zqWAF6p4f3mAF6ar82yW7LcFVns+6z6UUPq8HFQ4B30f4HYzm4H3Z1em354CJDjnWgN/BwabWRnn3BbgVuBzYDLen+nZhV71oeuOwfuz8Cr/6/+ZWZcQqhsOXTsAZnYysMs5NwcghGo/VN3tgRygBl4Xwn1mVj+E6oZD1/4+XkAmAa8CPwPZQdZuZqWAL4B7nHPbD7fqQdpcULUfRd0HFWKfl4MK24eDO+cW4HV3YGaNge5+ewaQ4U/PMLOleEfLSc67KeEbf5ub8P6Th0TdeP9pf3DObfSXfYfXXzs+FOqGw9a+Ry/2Hc3v2Sbw2g9T95XAaOdcFrDBzKbgdX8sC4W64bCf82zg3j3rmdnPwGJ/WaHXbmaxeGH5qXPuS795vZlVd86lmFl1YIPfnsz+R7y1gLVB1H6UdR9SqHxeDiVsj+jNrIr/NQp4FHjHn69sZtH+dH2gEbDsgG3KA7cBA0OlbmAM0NLMSvh//nUE5oVK3QfUcWDte9p6AkMOsU0ovuergM7mKQmcAiwIlboPqOPAz3kJv2bM7Gy8o/lAPi9mZsB7wHzn3Mt5Fo0ArvWnrwW+ztPey8yK+d1OjYDphV37X6j7cPsKic/LIQV9Njg/L7yjxBQgC+9ooC9wN95Z8kXAc+y7+asHMBevD3MmcOEB+5nnv3qFUt3++lf7tc8B+gdV91+svRMw9RD7Ccn3HCgFDPPf83nAA+HynuNdHbQQ7wTiOLxRDIN6zzvgndieDfzmv87HuxplPN5fGuOBCnm2eQTvapuFwHlB1P4X616Bd8I8zf83ahrU5+VoXrozVkQkwoVt142IiOSPgl5EJMIp6EVEIpyCXkQkwinoRUQinIJeiiQzyzFvpM255o3++Hf/WvXDbVPXzK4srBpFjhcFvRRVu51zrZxzzYCz8a6ffvwI29TFu5tWJKzoOnopkswszTlXKs98fbwhgSsBdYCP8YalBbjDOfezmU0FmgDL8UY1fA3vJqZOeEPuvumce7fQfgiRfFLQS5F0YND7bVuAE4EdQK5zLt3MGgGfOecSzXu4x/3OuQv89W8CqjjnnjazYsAUoKfzht4VCRlhO6iZSAHYM6piLPCGeU/JysEbFO9gzsEbn+gyf74s3rgtCnoJKQp6EfZ23eTgjVT4OLAeOAnvPNaBD5rYuxlwp3NuTKEUKfIX6WSsFHlmVhlvVMg3nNeXWRZIcc7lAr3xHnMHXpdO6TybjgFu9Ye6xcwa7xlRUiSU6IheiqriZvYbXjdNNt7J1z1D1b4FfGFmPYGJeE+hAm+Uw2wz+x34EPgP3pU4M/0hb1PZ97g8kZChk7EiIhFOXTciIhFOQS8iEuEU9CIiEU5BLyIS4RT0IiIRTkEvIhLhFPQiIhFOQS8iEuH+H1WSI9LVEKl4AAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"a = 32\n",
"lmbda = 0.0019\n",
"b = 284\n",
"sorted_data[\"approximation\"] = [a * math.e**(lmbda*x) + b for x in range(len(sorted_data))]\n",
"\n",
"sorted_data[\"approximation\"].plot()\n",
"sorted_data[\"seasonally.2\"].plot()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On essaye maintenant de prédire l conentration de CO2 dans l'atmosphère dans le futur."
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"le dernier mois présent dans les données : 2023-09\n"
]
},
{
"data": {
"text/plain": [
""
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEVCAYAAADuAi4fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl8lNXZ//HPxQ5hhwCyhAiyyKoYQOuGtShFBBXsoohbizxP+9OnFoGI4EJRKG59qlWxrW0V26qAirhhFetSbEElCWEHUQISFiFsgSzX748Z+owUzIRMcs9Mvu/XKy8n95y5c40nfDncc+5zzN0REZHkVSPoAkREpHIp6EVEkpyCXkQkySnoRUSSnIJeRCTJKehFRJKcgl5EJMkp6EVEkpyCXkQkydUKugCAli1benp6etBliIgklGXLlu1w99Sy2sVF0Kenp7N06dKgyxARSShmtimadlFfujGzmmb2iZm9Ev5+mpllmdmnZvammbUNH083s4Ph45+a2eMn9hZERCQWynON/hZgZcT3s9y9j7ufBrwCTI14br27nxb+GheLQkVE5MREFfRm1h64BPjtkWPuXhDRJAXQMpgiInEo2hH9w8AEoDTyoJlNN7MvgKv5+oj+5PBlnnfN7NxjndDMxprZUjNbun379hOpXUREolBm0JvZMCDf3Zcd/Zy7T3b3DsAc4Kfhw1uBNHc/HbgVeNbMGh/jtbPdPcPdM1JTy/zQWERETlA0I/qzgeFm9hnwF+DbZvbMUW2eBUYCuPshd98ZfrwMWA90jVnFIiJSLmUGvbtnunt7d08HfgC87e6jzaxLRLPhwCoAM0s1s5rhx52ALsCGmFcuIpLgdu0/TP7ewkr/ORWZRz/DzLoRum6/CTgyu+Y84B4zKwZKgHHuvqtiZYqIJJfXsrdyx4s59OvYjCfHZFTqzypX0Lv7YmBx+PHI47SZC8ytaGEiIslo1/7DTH0ph1eyttKrXWN+flHlX9mOiztjRUSqgyOj+ILCIsZf1JWbzu9M7ZqVv+SYgl5EpJIdPYqfc+VAurf5j8mIlUZBLyJSiV7PCY3i9xys2lF8JAW9iEgl2LX/MHe+vIIFy7fQq11jnvlR1Y7iIynoRURiLB5G8ZEU9CIiMRJPo/hICnoRkRiInFHz88FdGTco2FF8JAW9iEgF7Nx3iDtfXhHYjJpoKOhFRE7Qq9lbmRLAvPjyUtCLiJTTzn2HmPrSChZmb6V3uyY8e+WZdGvTKOiyjktBLyJSDguztjLlpRz2FhZx28XdGHtep7gcxUdS0IuIRGHHvkPcGTGKvz/OR/GRFPQiImU4MorfV1jMbRd346bzOlErzkfxkRT0IiLHsWPfIaa+lMOr2V/Sp30TZo3qmzCj+EgKehGRo7g7r2RtZepLOew/VMKEId0Ye25ijeIjKehFRCJs33uIKS/m8PqKL+nboSn3j+pDl9aJN4qPFHXQh7cHXArkufswM5sGjCC0w1Q+cJ27b4lonwbkAne5+/2xLVtEJLbcnZeXb+HOl1dw4HAJk77bnR+dc3LCjuIjlWdEfwuwEjhyy9csd58CYGY3A1P5v+0EAR4CXotFkSIilSl/byF3zM/hzdxtnNahKfdf2YdTWiX2KD5SVEFvZu2BS4DpwK0A7l4Q0SQF8Ij2lxHaEHx/zCoVEYmxo0fxtw/tzo3ndKJmDQu6tJiKdkT/MDAB+NpfcWY2HRgD7AEuCB9LASYCg4HxxzuhmY0FxgKkpaWVt24RkQrJLyjk9vk5vLVyG/3SmvLLUX05pVXDoMuqFGVefDKzYUC+uy87+jl3n+zuHYA5wE/Dh+8GHnL3fd90Xnef7e4Z7p6Rmpp6AqWLiJSfuzPv481858F3eW/tdiYPPZXnx30raUMeohvRnw0MN7OhQD2gsZk94+6jI9o8CywE7gQGAqPM7JdAU6DUzArd/ZEY1y4iUi5f7ink9vnZvL0qn4yOzfjlqD50Sk3egD+izKB390wgE8DMBgHj3X20mXVx97XhZsOBVeH25x55rZndBexTyItIkNydF5Zt5p5XcikqKWXKsB5c9630pLsWfzwVmUc/w8y6EZpeuYmvz7gREYkLW3Yf5Pb52SxevZ0B6c355ag+pLdMCbqsKlWuoHf3xcDi8OORUbS/60SKEhGpKHfnuaVf8ItXVlJc6tx1aQ/GnJVOjWoyio+kO2NFJOnk7T7IpLlZvLd2BwNPDo3iO7aoXqP4SAp6EUka7s6z//yc+15dRak700b05OqBHavlKD6Sgl5EksIXuw4waV4WH6zbybc6t2DmyD50aN4g6LLigoJeRBJaaakz56NN3PfaKgyYfnkvrhqQhln1HsVHUtCLSMLatHM/E+dmsWTDLs7t0pL7ruhN+2YaxR9NQS8iCae01PnTPz5j5uurqVXDmDmyN9/L6KBR/HEo6EUkoWzcsZ+JL2Txz892MahbKvde3pu2TesHXVZcU9CLSEIoKXWe+mAj97+5mto1azBrVB9GndFeo/goKOhFJO6ty9/HhBeW8/Hnu7mweyvuvaI3rRvXC7qshKGgF5G4VVxSym/f38iDi9ZQv3ZNHvp+Xy47rZ1G8eWkoBeRuLRm215ue345yzfv4eKerZl2WS9aNdIo/kQo6EUkrhSVlPLEu+v537+to2G9Wvz6h6czrM9JGsVXgIJeROLGyq0F3PbCcnLyCrikz0ncM7wnLRrWDbqshKegF5HAHS4u5dF31vHoO+to2qA2j13dj+/2PinospKGgl5EApWTt4fxzy9n1Zd7GXFaW+66tCfNUuoEXVZSiTrozawmsBTIc/dhZjYNGEFo45F84Dp332JmA4DZR14G3OXu82Nct4gkuEPFJfz6b+t47N31tEipw5NjMhjco3XQZSWl8ozobwFWAo3D389y9ykAZnYzMJXQLlM5QIa7F5vZScByM1vg7sUxrFtEEtinX+zmtueXszZ/HyP7tWfqsB40aVA76LKSVlRBb2btgUuA6cCtAO5eENEkBfDw8QMRx+sdOS4iUlhUwkOL1vDkexto3bgeT13fnwu6tQq6rKQX7Yj+YWAC0CjyoJlNB8YAe4ALIo4PBH4PdASuOdZo3szGAmMB0tLSTqR2EUkgyzbt4rbns9iwYz8/HNCBzKGn0rieRvFVoUZZDcxsGJDv7suOfs7dJ7t7B2AO8NOI4x+5e0+gP5BpZv9xl4O7z3b3DHfPSE1NrdCbEJH4deBwMfcsyGXU4//gUHEpz9w4kPuu6KOQr0LRjOjPBoab2VBCl2Iam9kz7j46os2zwELgzsgXuvtKM9sP9CL0Qa6IVCNLNuxk4twsNu08wJizOjJxSHdS6mqyX1Ur8/+4u2cCmQBmNggY7+6jzayLu68NNxsOrAq3ORn4IvxhbEegG/BZJdQuInFq36FiZr62iqeXbKJjiwb8ZeyZnNmpRdBlVVsV+at1hpl1IzS9chOhGTcA5wCTzKwo/Nx/u/uOipUpIonivbXbmTQ3my17DnLjOScz/qJu1K9TM+iyqrVyBb27LwYWhx+PPE6bp4GnK1qYiCSWgsIi7l24kr/86ws6pabwwrizOKNj86DLEnRnrIjEwNurtnH7vBzy9xYy7vzO/M93ulCvtkbx8UJBLyInbPeBw9yzIJd5n+TRrXUjnrjmDPp2aBp0WXIUBb2InJDXc77kjhdz2H3gMDdf2IWfXNCZurU0io9HCnoRKZed+w4x9eUVLMzaSs+2jfnjDf3p2bZJ0GXJN1DQi0hU3J0FWVu56+UV7CssZvxFXbnp/M7UrlnmfZcSMAW9iJQpv6CQyS/msCh3G33bN2HWlX3p2rpR2S+UuKCgF5HjcnfmfpzHPQtWcKi4lNuHdueGs0+mlkbxCUVBLyLHlLf7ILfPy+bdNdvpn96MmSP70Cm1YdBlyQlQ0IvI15SWOn/+1+fc9+oqSt25e3hPrjmzIzVqaHPuRKWgF5F/+3znASbOzeIfG3byrc4tmDmyDx2aNwi6LKkgBb2IUFrq/OHDz5j1xmpq1jDuu6I3P+jfATON4pOBgl6kmlu/fR8TX8hi6aavuKBbKtMv703bpvWDLktiSEEvUk0Vl5Ty5HsbeeitNdSvXZMHv9eXy09vp1F8ElLQi1RDq74s4Lbns8jO28OQnm2457KetGr0HxvBSZJQ0ItUI4eLS/nN4nU8+s46GterzW+u7sfQ3icFXZZUMgW9SDWRvXkPt72wnFVf7uWy09oy9dKeNE+pE3RZUgWiDnozq0lo39c8dx9mZtOAEYR2kcoHrnP3LWY2GJgB1AEOA7e5+9uxL11EolFYVMKv/raW2X/fQMuGdfjtmAy+06N10GVJFSrPiP4WYCXQOPz9LHefAmBmNwNTCW0nuAO4NBz6vYA3gHaxK1lEorVs0y5ueyGLDdv38/2MDtx+yak0qV876LKkikUV9GbWHrgEmA7cCuDuBRFNUgAPH/8k4vgKoJ6Z1XX3QzGpWETKdOBwMbPeWM0fPvyMtk3q8/SNAzi3S2rQZUlAoh3RPwxMAL62XJ2ZTQfGAHuAC47xupHAJ8cKeTMbC4wFSEtLK0fJIvJNPly3g4nzsvhi10HGnNWRiUO6k1JXH8dVZ2UuQWdmw4B8d1929HPuPtndOwBzgJ8e9bqewEzgpmOd191nu3uGu2ekpmqkIVJRBYVFZM7L5qrffkStGjX469gzuWdEL4W8RDWiPxsYbmZDgXpAYzN7xt1HR7R5FlgI3An/vtQzHxjj7utjXLOIHCVyc+6bzuvEzwZ31ebc8m9lBr27ZwKZAGY2CBjv7qPNrIu7rw03Gw6sCrdpSij0M939g0qpWkQA+Gr/Ye55JZf5n+TRtXVDnrjmbG3OLf+hIv+mm2Fm3QhNr9xEaMYNhC7hnAJMMbMp4WMXuXt+BX6WiBzl1eytTH0ph90HirQ5t3wjc/egayAjI8OXLl0adBkiCSF/byF3vrSC13K+pHe7JvxyVB9OPalx2S+UpGNmy9w9o6x2+pRGJEG4O/M+zmPawlwOHC5h4pDu/PhcbesnZVPQiySALbsPcvv8bBav3s4ZHZvxy1F96Kxt/SRKCnqROFZa6jz7z8+Z8doqSkqduy7twZiz0rWtn5SLgl4kTn22Yz8T52bx0cZdnH1KC2ZcoW395MQo6EXiTEmp8/v3N/LAotXUrlmDmSN7870MbesnJ05BLxJH1mzby4QXsvj0i91859RW/OKy3rRpog1BpGIU9CJxoKiklMcWr+fXb6+lUb3a/OoHpzG8b1uN4iUmFPQiAYvcEOTSvm2569IetGhYN+iyJIko6EUCUlhUwsNvreXJ9zbQIqUOT1xzBhf3bBN0WZKEFPQiAfjXZ7uY+EIWG3ZoQxCpfAp6kSq071Axs15fxZ+WbKJd0/o8c+NAzunSMuiyJMkp6EWqyN/XbCdzXjZb9hzk2rPSue3iblorXqqEfstEKtmeA0VMW5jLC8s20yk1hedvOouM9OZBlyXViIJepBK9nvMlU17KYdf+w/zkgs78v2930YYgUuUU9CKVYPveQ9z18goWZm+lx0mNeeq6/vRq1yTosqSaijrozawmsBTIc/dhZjYNGEFo45F84Dp332JmLYAXgP7AH9z9p8c9qUiScXfmf5LHPa/kcuBQCbdd3I2x53WitpYSlgCVZ0R/C7ASOLLDwSx3nwJgZjcDUwntMlUITAF6hb9EqoW83QeZHLGU8MyRfTillZYSluBFFfThzb4vAaYDtwK4e0FEkxTAw8f3A++b2SmxLVUkPpWWOnP++TkzXl2JA3dd2oNrzkqnppYSljgR7Yj+YWAC0CjyoJlNB8YAe4ALyvODzWwsMBYgLS2tPC8ViRsbw0sJ/3PjLs45pSX3XdFbSwlL3CnzwqGZDQPy3X3Z0c+5+2R37wDMIbQpeNTcfba7Z7h7RmpqanleKhK44pJSHn93PUMe/jsrtxbwy5F9ePrGAQp5iUvRjOjPBoab2VCgHtDYzJ5x99ERbZ4FFgJ3VkKNInFl5dYCJryQRXbeHi7q0Zppl/WidWMtJSzxq8ygd/dMIBPAzAYB4919tJl1cfe14WbDgVWVVqVIHDhUXMIjb6/jscXradqgNo9e1Y+hvdtoKWGJexWZRz/DzLoRml65idCMGwDM7DNCs3PqmNllwEXunluRQkWCtGzTV0ycm8W6/H1ccXo7pgzrQbOUOkGXJRKVcgW9uy8GFocfj/yGdukVKUokXhw4XMysN1bzhw8/46TG9Xjq+v5c0K1V0GWJlIvujBU5jvfX7mDSvCw2f3WQMWd1ZMKQ7jTUImSSgPRbK3KUPQeKmP5qLs8t3Uynlik8d9NZDDhZi5BJ4lLQi0SIXITsvwZ15pYLtQiZJD4FvQhahEySm4JeqjV3Z+7HeUx7JZeDh7UImSQnBb1UW5u/OsDt83P4+5rtZHRsxgwtQiZJSkEv1U5pqfP0kk3MfH0VBtwzoiejB3akhhYhkySloJdqZV3+PibNzWLppq84r2sq917ei/bNtD6NJDcFvVQLRSWlzP77Bn711loa1K3JA1f25Yp+7bR8gVQLCnpJetmb9zBhbhYrtxZwSZ+TuOvSnqQ2qht0WSJVRkEvSauwqISH31rLk+9toEVKHZ645gwu7tkm6LJEqpyCXpLSkg07yZyXzcYd+/l+Rgduv+RUmtSvHXRZIoFQ0EtSKSgsYsZrq3j2o89Ja96AOT8ayNmntAy6LJFAKeglabyVu407Xswhf28hPz73ZG4d3I36dbR8gYiCXhLejn2HuHtBLguWb6F7m0Y8cc0Z9O3QNOiyROKGgl4Slrvz4qd53LMgl32Hirl1cFfGnd+ZOrW0fIFIpKiD3sxqAkuBPHcfZmbTgBGEdpjKB65z9y3htpnAjUAJcLO7vxHzyqVay9t9kMnzs1m8ejv90poyc2QfurRuFHRZInGpPCP6W4CVhLYIBJjl7lMAzOxmYCowzsx6AD8AegJtgbfMrKu7l8SubKmuSkudZz7axMzXVuHAnZf2YMxZ6dTU8gUixxVV0JtZe+ASYDpwK4C7F0Q0SQE8/HgE8Bd3PwRsNLN1wADgH7EqWqqnyOULzu3Sknsv702H5lq+QKQs0Y7oHwYmAF/7t7GZTQfGAHuAC8KH2wFLIpptDh/7GjMbC4wFSEtLK1fRUr0UlZTy+OL1/PrtdVq+QOQElPmplZkNA/LdfdnRz7n7ZHfvAMwBfnrkJcc4jf/HAffZ7p7h7hmpqanlLFuqi6zNu7n01+/zwKI1XNSzNYt+dj4jz2ivkBcph2hG9GcDw81sKFAPaGxmz7j76Ig2zwILgTsJjeA7RDzXHtgSo3qlmjh4uIQHF63md+9vJLVRXZ4ck8HgHq2DLkskIZUZ9O6eCWQCmNkgYLy7jzazLu6+NtxsOLAq/Phl4Fkze5DQh7FdgH/GunBJXh+u28Gkedl8vusAVw1MY9J3u9O4npYvEDlRFZlHP8PMuhGaXrkJGAfg7ivM7DkgFygGfqIZNxKNPQeLuHfhSv669AvSWzTgL2PP5MxOLYIuSyThmft/XD6vchkZGb506dKgy5AAvZ6zlSkvrWDX/sP86NyT+dl3ulKvtpYvEPkmZrbM3TPKaqc7YyVQ+QWFTH1pBa+v+JIeJzXmqev606tdk6DLEkkqCnoJhLvz3NIvmL5wJYXFpUwY0o0fn9uJ2jW1fIFIrCnopcpt2rmfzHnZfLh+JwNObs6MK3rTKbVh0GWJJC0FvVSZ4pJSfv/BRh5ctIbaNWow/fJe/LB/GjW0fIFIpVLQS5XI3VLApHlZZG3ew3dObc0vLutFmyb1gi5LpFpQ0EulKiwq4ddvr+WJdzfQtEFtHrnqdC7pfZLubBWpQgp6qTT/3LiLSfOy2LB9PyP7teeOS06lWUqdoMsSqXYU9BJze8P7ts756HPaN6vPn24YwHldtZ6RSFAU9BJTkfu23njOyfz8oq40qKNfM5Eg6U+gxMT2vYe4a8EKFmZtpVvrRjx+zRmcpn1bReKCgl4qxN2Z+3Ee017J5eDhEn4+uCs3ad9WkbiioJcT9sWuA9w+P5v31u4go2MzZozszSmttG+rSLxR0Eu5lZQ6T32wkQfeXEMNg2kjenL1wI668UkkTinopVxWbi1g0twslm/ew7e7t+IXl/WibdP6QZclIt9AQS9RKSwq4ZG31/H4u+tpUr82v/7h6QzroxufRBJB1EFvZjWBpUCeuw8zs1nApcBhYD1wvbvvNrM6wBNABqFNSW5x98Uxr1yqzEcbdpI5L5sNO3Tjk0giKs/UiFuAlRHfLwJ6uXsfYA3h7QaBHwO4e29gMPCAmWkKRgIqKCxi8vxsvj97CYdLSnn6xgE88L2+CnmRBBPViN7M2gOXANOBWwHc/c2IJkuAUeHHPYC/hdvkm9luQqN77RubQBblbmNK+ManH51zMrfqxieRhBXtn9yHgQnA8ebO3QD8Nfx4OTDCzP4CdADOCP/3a0FvZmOBsQBpaWnlq1oqTf7eQu5+OZeF2Vvp3qYRT1xzBn1145NIQisz6M1sGJDv7svMbNAxnp9MaBPwOeFDvwdOJXQ9fxPwYfj5r3H32cBsCO0Ze4L1S4y4O88v28z0hSs5WFTCbRd3Y+x52vFJJBlEM6I/GxhuZkOBekBjM3vG3Ueb2bXAMOBCD+8y7u7FwM+OvNjMPgTWxr50iZWv7fiU3pz7Rvams3Z8EkkaZQa9u2cS/qA1PKIfHw75IcBE4Hx3P3CkvZk1AMzd95vZYKDY3XMrpXqpkOKSUn73/kYeeks7Pokks4p8uvYIUBdYFJ5LvcTdxwGtgDfMrBTIA66pcJUSczl5e5g4N4sVWwoY3KM100ZoxyeRZFWuoA/Ph18cfnzKcdp8BnSrYF1SSQ4eLuHhv63ht+9tpHlKHR67uh9DerXRjU8iSUzz5aqRD9ftIHN+Npt2HuAH/TuQ+d1TadKgdtBliUglU9BXA3sOFDH91VyeW7qZ9BYNePbHA/lW55ZBlyUiVURBn8TcnVezv+TOl1fw1YHD/NegztxyYRfq1a4ZdGkiUoUU9Elq656DTHlxBW+t3Ebvdk34w/X96dWuSdBliUgAFPRJprTUmfPRJma+vpri0lImDz2V689Op5ZufBKpthT0SWTttr1MmpfNsk1fcW6Xlky/rDdpLRoEXZaIBExBnwQOFZfw2OL1PPrOOlLq1uKBK/tyRb92mjIpIoCCPuEt27SLSXOzWZu/jxGntWXKsB60bFg36LJEJI4o6BPU3sIiZr2xmqeXbKJtk/o8dX1/LujWKuiyRCQOKegT0Fu525jyUg5fFhRy3bfSGX9RN1LqqitF5NiUDgkkf28hdy/IZWHWVrq1bsRvru7H6WnNgi5LROKcgj4BuDvPL93MLxbmUlhcyviLujL2vM7UqaUpkyJSNgV9nNu4Yz+3z8vmHxt2MuDk5tx3hdaKF5HyUdDHqaKSUp58bwO/emstdWrV4L4revP9jA5aK15Eyk1BH4eWf7GbSfOyWbm1gO/2asPdw3vSqrHWiheRExN10JtZTUL7wOa5+zAzmwVcChwG1gPXu/tuM6sN/BboFz7/n9z9vtiXnnz2HyrmwUVreOqDjaQ2qssT15zBxT3bBF2WiCS48ozobwFWAo3D3y8CMt292MxmEtpucCJwJVDX3XuHtxXMNbM/hzckkeNYvDqfyfNzyNt9kKsHpjHxu91pXE9rxYtIxUUV9GbWHrgEmA7cCuDub0Y0WQKMCj92IMXMagH1CY34C2JVcLLZue8Q97ySy0ufbqFzagrPjzuL/unNgy5LRJJItCP6h4EJQKPjPH8D8Nfw4xeAEcBWoAHwM3ffVZEik5G7M/fjPH6xMJf9h4q55cIu/PcFnalbS2vFi0hslRn0ZjYMyHf3ZWY26BjPTwaKgTnhQwOAEqAt0Ax4z8zecvcNR71uLDAWIC0trSLvIeFs2rmfyfNzeH/dDs7o2Iz7ruhN19bH+ztURKRiohnRnw0MN7OhQD2gsZk94+6jzexaYBhwobt7uP1VwOvuXgTkm9kHQAbwtaB399nAbICMjAynGiguKeW372/k4bfWUKtGDaaN6MnVAztqyqSIVKoyg97dMwl90Ep4RD8+HPJDCH34er67H4h4yefAt83sGUKXbs4kdOmnWsvJ28PEuVms2FLA4B6tuWdET05qUj/oskSkGqjIPPpHgLrAovC650vcfRzwKPAUkAMY8JS7Z1W00ER14HAxDy1aw+/e30iLhnV57Op+DOnVRmvFi0iVKVfQu/tiYHH48SnHabOP0BTLau/dNduZPD+bzV8d5IcD0pj03e40qa8pkyJStXRnbCXYue8Q017J5cVPt9ApNYW/jj2TgZ1aBF2WiFRTCvoYOnrK5M0XduEnmjIpIgFT0MeIpkyKSLxS0FdQUUkpv4ucMnlZL64ekKYpkyISNxT0FZC1eTcT54ZWmbyoR2vuGdGLNk20yqSIxBcF/QmIXGWyZcO6PD66H0N6nRR0WSIix6SgL6d3VudzR3iVydFnpjFhiFaZFJH4pqCP0va9oVUmFyzfwimtGvLCuLPI0CqTIpIAFPRlcHeeX7aZ6QtXcvBwCT/7TlfGDeqkKZMikjAU9N8gcmPu/umhKZOntNKUSRFJLAr6YygqKWX23zfwq7+tpW6tGtx7eW9+0F8bc4tIYlLQH+WTz78ic142q77cy9DebbjrUm3MLSKJTUEftu9QMfe/sZo//uMzWjeqx5NjMhjco3XQZYmIVJiCHliUu42pL+XwZUEh156Vzs8v6kojTZkUkSRRrYM+v6CQO19ewWs5X9K9TSN+c3U/Tk9rFnRZIiIxVS2DvrTU+fO/PmfGa6s4VFzKbRd3Y+x5nahds0bQpYmIxFzUQW9mNYGlQJ67DzOzWcClwGFgPXC9u+82s6uB2yJe2gfo5+6fxrDuE7Z2214y52WzdNNXfKtzC6Zf3puTW6YEXZaISKUpz4j+FmAl0Dj8/SIg092LzWwmoX1lJ7r7HGAOgJn1Bl6Kh5AvLCrhN4vX89jidaTUrcX9V/ZlZL922tJPRJJeVEFvZu2BS4DpwK0A7v5mRJMlwKhjvPSHwJ8rWGOFfbRhJ5nzs9mwfT9bq+ErAAAIUUlEQVSXndaWO4b1oGXDukGXJSJSJaId0T8MTACOd1voDcBfj3H8+8CIY73AzMYCYwHS0tKiLKN89hwo4r7XVvKXf31Bh+b1+eMNAzi/a2ql/CwRkXhVZtCb2TAg392XmdmgYzw/GSgmfLkm4vhA4IC75xzrvO4+G5gNkJGR4eUv/fjcnVeytnL3gly+OnCYm87vxP9c2JX6dbQ+jYhUP9GM6M8GhpvZUKAe0NjMnnH30WZ2LTAMuNDdjw7rHxDAZZvNXx1gyos5vLN6O33aN+GPN/SnZ9smVV2GiEjcKDPo3T2T0AethEf048MhPwSYCJzv7gciX2NmNYArgfNiXvFxFJeU8ocPP+OBN9dgBlOH9eDab6VTU+vTiEg1V5F59I8AdYFF4ZkrS9x9XPi584DN7r6hgvVFJSdvD5PmZZGTV8C3u7di2mW9aNe0flX8aBGRuFeuoHf3xcDi8ONTymh3ZgXqisqBw8U8tGgNv3t/I81T6vLoVf0Y2ruNpkyKiERI6Dtjc7cU8Lv3N/L9/mlMGtKdJg20Po2IyNESOugz0pvzzvhBdGyhO1tFRI4n4Rd3UciLiHyzhA96ERH5Zgp6EZEkp6AXEUlyCnoRkSSnoBcRSXIKehGRJKegFxFJcvafi04GUITZdmDTUYebAHuiPEW0bSvjnGnA5zE+Z6K890T42ZV1zmj7Peg6dc7YnjPe+r2ju5e9yYa7x+UXMDvWbSvpnNsTpM7Azpls76c8/R4Hdeqc1bDfj/6K50s3CyqhbWWcc3clnDNR3nsi/OzKOme0/R50nTpnbM+ZKP3+NXFx6SaRmdlSd88Iug6pWur36ilR+z2eR/SJYnbQBUgg1O/VU0L2u0b0IiJJTiN6EZEkp6CXqJjZvjKeX2xmCXftUr6Z+j05KOijVNYvvCQn9Xv1lGz9rqCXqJnZIDN7JeL7R8zsugBLkiqgfk98CvpyMLOGZvY3M/vYzLLNbET4eLqZrTSzJ81shZm9aWb1g65XYkP9Xj0lU78r6MunELjc3fsBFwAPmJmFn+sCPOruPQndVDEyoBol9tTv1VPS9HtCbw4eAAPuNbPzgFKgHdA6/NxGd/80/HgZkF715VW6Yr4+OKgXVCFVTP2ufk/ofteIvnyuBlKBM9z9NGAb//dLfyiiXQnJ+ZfoJqCHmdU1sybAhUEXVEXU7+r3hO73uC4uDjUB8t29yMwuADoGXVBVMLNawCF3/8LMngOygLXAJ8FWVmXU7+r3hO53BX0UjvzCA3OABWa2FPgUWBVoYVWnJ7AewN0nABOObuDug6q4pkqnfle/kyT9riUQomBmfYEn3X1A0LVUNTMbB9wM/I+7vxl0PVVJ/a5+D7qWWFHQl6E6/8JXZ+r36ilZ+11BLyKS5DTrRkQkySnoj2JmHczsnfCdbyvM7Jbw8eZmtsjM1ob/2yx8fLCZLQvfObfMzL59jHO+bGY5Vf1eJHqx7PfwQl+rzezT8FeroN6XfLMY93sdM5ttZmvMbJWZxc1NVLp0cxQzOwk4yd0/NrNGhG6GuAy4Dtjl7jPMbBLQzN0nmtnpwDZ332JmvYA33L1dxPmuAEYBfdy9V5W/IYlKLPvdzBYD4919aSBvRqIW436/G6jp7neYWQ2gubvvCOSNHe1EN5utLl/AS8BgYDWhXwiAk4DVx2hrwE6gbvj7hsD7QA8gJ+j3oq8q6/fFQEbQ70FfVd7vXwApQb+HY33p0s03MLN04HTgI6C1u28FCP/3WP8cHwl84u5H7pqbBjwAHKj0YiVmYtDvAE+FL9tMiVgfReJYRfrdzJqGj00LL4L2vJm1PsZrAqGgPw4zawjMJTTNqiCK9j2BmcBN4e9PA05x9/mVWqjEVEX7Pexqd+8NnBv+uqYyapXYiUG/1wLaAx94aBG0fwD3V1K55aagPwYzq02o0+e4+7zw4W3h63lHruvlR7RvD8wHxrj7+vDhs4AzzOwzQpdvuoav3UqcilG/4+554f/uBZ4FkubGm2QUo37fSehf7kcGds8D/aqg/Kgo6I8S/mf274CV7v5gxFMvA9eGH19L6Foe4X+yLQQy3f2DI43d/TF3b+vu6cA5wBpPwtvFk0Ws+t3MaplZy/Dj2sAwQDOu4lQM/7w7sAAYFD50IZBbqcWXg2bdHMXMzgHeA7IJLU0KcDuh63bPAWnA58CV7r7LzO4AMgkt9nTERe4eOQJIB15xzbqJW7Hqd2A/8HegNlATeAu41d1LquJ9SPnE8s+7mXUEngaaAtuB693986p5J99MQS8ikuR06UZEJMkp6EVEkpyCXkQkySnoRUSSnIJeRCTJKeilWjKzkvASBSvMbLmZ3RpeiOqbXpNuZldVVY0isaKgl+rqoLuf5u49CS1iNRS4s4zXpAMKekk4mkcv1ZKZ7XP3hhHfdwL+BbQEjtz4khJ++qfu/qGZLQFOBTYCfwT+F5hB6G7IusCj7v5Elb0JkSgp6KVaOjrow8e+AroDe4FSdy80sy7An909w8wGEVpnfli4/Viglbv/wszqAh8QuoNyY5W+GZEy1Aq6AJE4cmQ54drAI+EVSEuArsdpfxHQx8xGhb9vAnQhNOIXiRsKehH+femmhNAqhXcC24C+hD7HKjzey4D/5+5vVEmRIidIH8ZKtWdmqcDjwCPhVQibAFvdvZTQWvI1w033Ao0iXvoG8F/hVSoxs65mloJInNGIXqqr+mb2KaHLNMWEPnw9skztb4C5ZnYl8A6hFSkBsoBiM1sO/AH4FaGZOB+Hl7vdTmi/UZG4og9jRUSSnC7diIgkOQW9iEiSU9CLiCQ5Bb2ISJJT0IuIJDkFvYhIklPQi4gkuf8PjgYJ3oWhBDkAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"nb_months = 30\n",
"\n",
"last_date_in_data = raw_data[\"Date\"][raw_data[\"Date\"].keys()[-1]]\n",
"print(\"le dernier mois présent dans les données :\", last_date_in_data)\n",
"\n",
"dates = []\n",
"for i in range(1, nb_months+1):\n",
" year = last_date_in_data.year+i//12\n",
" month = last_date_in_data.month+i%12\n",
" dates.append(pd.Period(year=year, month=month, freq=\"M\"))\n",
"\n",
"a = 32\n",
"lmbda = 0.0019\n",
"b = 284\n",
"approximations = [a * math.e**(lmbda*x) + b for x in range(len(sorted_data), len(sorted_data)+nb_months)]\n",
"\n",
"data = {'Date': dates, 'approximation': approximations}\n",
"\n",
"df = pd.DataFrame(data)\n",
"df = df.set_index('Date')\n",
"\n",
"df['approximation'].plot()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On peut estimer que :\n",
"- la concentration de CO2 dans l'atmosphère au début 2025 est d'environ 431ppm\n",
"- elle augmente jusqu'à 434ppm à la fin 2025."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}