Un premier essai avec Jupyter

parent 7b5acf23
{
"cells": [],
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Titre du document"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"4"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"2+2"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"10\n"
]
}
],
"source": [
"x=10\n",
"print(x)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"20\n"
]
}
],
"source": [
"x = x +10\n",
"print(x)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Petit exemple de complétion"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"mu, sigma = 100, 15"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"x = np.random.normal(loc=mu, scale=sigma, size=10000)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD8CAYAAACRkhiPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAEfZJREFUeJzt3X+s3fV93/HnayajJC0KlAt1bGfXjdytgFZSrjy2SBNbuuGWKqaTMjlqi6UhuUJETadOi91Ka/uHJaa1zYo0mNyGYrYM12qTYQVoQ9mmKBKJe0lJwBAPr3hwYw/fLutKNonVznt/nA/i1Bzfn/Y9nPt5PqSj8z3v7+d7vp+3AL98Pt/vOaSqkCT16a+MewKSpPExBCSpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLHDAFJ6tiiIZDku5IcTfK1JMeS/EqrX53kySQvteerho7Zl+REkuNJbhuq35zkubbvviS5NG1JkpYii31juP1B/Z6q+naSdwFfAj4B/CPgW1V1b5K9wFVV9ckk1wOPANuB9wF/CPxAVZ1LcrQd+2XgceC+qnpiofNfc801NT09vaomJak3zzzzzJ9W1dRi4y5bbEANUuLb7eW72qOAncCtrX4Q+C/AJ1v9UFW9Abyc5ASwPclJ4MqqehogycPAHcCCITA9Pc3s7Oxi05QkDUny35cybknXBJJsSPIscAZ4sqq+AlxXVacB2vO1bfgm4NWhw+dabVPbPr8uSRqTJYVAVZ2rqpuAzQz+Vn/jAsNHrfPXAvW3v0GyJ8lsktn5+fmlTFGStALLujuoqv6MwbLPDuC1JBsB2vOZNmwO2DJ02GbgVKtvHlEfdZ4DVTVTVTNTU4suaUmSVmgpdwdNJXlv274C+BHgG8ARYHcbtht4tG0fAXYluTzJVmAbcLQtGb2e5JZ2sfnOoWMkSWOw6IVhYCNwMMkGBqFxuKo+n+Rp4HCSu4BXgI8CVNWxJIeBF4CzwD1Vda69193AQ8AVDC4IL3hRWJJ0aS16i+i4zczMlHcHSdLyJHmmqmYWG+c3hiWpY4aAJHXMEJCkji3lwrCkEab3Pja2c5+89/axnVvri58EJKljhoAkdcwQkKSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLHDAFJ6pghIEkdMwQkqWOGgCR1zBCQpI4ZApLUMUNAkjpmCEhSxwwBSerYoiGQZEuS/5zkxSTHknyi1X85yTeTPNsePzZ0zL4kJ5IcT3LbUP3mJM+1ffclyaVpS5K0FJctYcxZ4Oer6qtJvgd4JsmTbd+nqupXhwcnuR7YBdwAvA/4wyQ/UFXngAeAPcCXgceBHcATF6cVSdJyLfpJoKpOV9VX2/brwIvApgUO2Qkcqqo3qupl4ASwPclG4MqqerqqCngYuGPVHUiSVmxZ1wSSTAMfBL7SSh9P8vUkDya5qtU2Aa8OHTbXapva9vl1SdKYLDkEknw38HvAz1XVnzNY2vkAcBNwGvi1N4eOOLwWqI86154ks0lm5+fnlzpFSdIyLSkEkryLQQB8pqo+C1BVr1XVuar6DvCbwPY2fA7YMnT4ZuBUq28eUX+bqjpQVTNVNTM1NbWcfiRJy7CUu4MCfBp4sap+fai+cWjYTwDPt+0jwK4klyfZCmwDjlbVaeD1JLe097wTePQi9SFJWoGl3B30IeCngeeSPNtqvwB8LMlNDJZ0TgI/A1BVx5IcBl5gcGfRPe3OIIC7gYeAKxjcFeSdQZI0RouGQFV9idHr+Y8vcMx+YP+I+ixw43ImKEm6dPzGsCR1bCnLQdI72vTex8Y9BWli+UlAkjpmCEhSxwwBSeqYISBJHTMEJKljhoAkdcwQkKSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLHDAFJ6pghIEkdMwQkqWOGgCR1zBCQpI4ZApLUMUNAkjp22WIDkmwBHga+D/gOcKCqfiPJ1cDvANPASeAfV9X/asfsA+4CzgE/W1V/0Oo3Aw8BVwCPA5+oqrq4LUnr3/Tex8Zy3pP33j6W8+rSWcongbPAz1fVDwK3APckuR7YCzxVVduAp9pr2r5dwA3ADuD+JBvaez0A7AG2tceOi9iLJGmZFg2BqjpdVV9t268DLwKbgJ3AwTbsIHBH294JHKqqN6rqZeAEsD3JRuDKqnq6/e3/4aFjJEljsKxrAkmmgQ8CXwGuq6rTMAgK4No2bBPw6tBhc622qW2fXx91nj1JZpPMzs/PL2eKkqRlWHIIJPlu4PeAn6uqP19o6IhaLVB/e7HqQFXNVNXM1NTUUqcoSVqmJYVAkncxCIDPVNVnW/m1tsRDez7T6nPAlqHDNwOnWn3ziLokaUwWDYEkAT4NvFhVvz606wiwu23vBh4dqu9KcnmSrQwuAB9tS0avJ7mlveedQ8dIksZg0VtEgQ8BPw08l+TZVvsF4F7gcJK7gFeAjwJU1bEkh4EXGNxZdE9VnWvH3c1bt4g+0R6SpDFZNASq6kuMXs8H+PAFjtkP7B9RnwVuXM4EJUmXjt8YlqSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLHDAFJ6pghIEkdMwQkqWOGgCR1zBCQpI4ZApLUMUNAkjpmCEhSxwwBSeqYISBJHTMEJKljhoAkdcwQkKSOGQKS1DFDQJI6tmgIJHkwyZkkzw/VfjnJN5M82x4/NrRvX5ITSY4nuW2ofnOS59q++5Lk4rcjSVqOpXwSeAjYMaL+qaq6qT0eB0hyPbALuKEdc3+SDW38A8AeYFt7jHpPSdIaWjQEquqLwLeW+H47gUNV9UZVvQycALYn2QhcWVVPV1UBDwN3rHTSkqSLYzXXBD6e5OttueiqVtsEvDo0Zq7VNrXt8+sjJdmTZDbJ7Pz8/CqmKElayEpD4AHgA8BNwGng11p91Dp/LVAfqaoOVNVMVc1MTU2tcIqSpMWsKASq6rWqOldV3wF+E9jeds0BW4aGbgZOtfrmEXVJ0hitKATaGv+bfgJ4886hI8CuJJcn2crgAvDRqjoNvJ7klnZX0J3Ao6uYtyTpIrhssQFJHgFuBa5JMgf8EnBrkpsYLOmcBH4GoKqOJTkMvACcBe6pqnPtre5mcKfRFcAT7SFJGqNFQ6CqPjai/OkFxu8H9o+ozwI3Lmt2kqRLym8MS1LHDAFJ6pghIEkdMwQkqWOGgCR1zBCQpI4ZApLUMUNAkjpmCEhSxwwBSeqYISBJHTMEJKljhoAkdcwQkKSOLfpT0tJSTO99bNxTkLQCfhKQpI4ZApLUMUNAkjpmCEhSxwwBSeqYISBJHTMEJKljhoAkdcwQkKSOGQKS1DFDQJI6tmgIJHkwyZkkzw/Vrk7yZJKX2vNVQ/v2JTmR5HiS24bqNyd5ru27L0kufjuSpOVYyieBh4Ad59X2Ak9V1TbgqfaaJNcDu4Ab2jH3J9nQjnkA2ANsa4/z31OStMYWDYGq+iLwrfPKO4GDbfsgcMdQ/VBVvVFVLwMngO1JNgJXVtXTVVXAw0PHSJLGZKXXBK6rqtMA7fnaVt8EvDo0bq7VNrXt8+uSpDG62BeGR63z1wL10W+S7Ekym2R2fn7+ok1OkvSXrTQEXmtLPLTnM60+B2wZGrcZONXqm0fUR6qqA1U1U1UzU1NTK5yiJGkxKw2BI8Dutr0beHSovivJ5Um2MrgAfLQtGb2e5JZ2V9CdQ8dIksZk0f+9ZJJHgFuBa5LMAb8E3AscTnIX8ArwUYCqOpbkMPACcBa4p6rOtbe6m8GdRlcAT7SHJGmMFg2BqvrYBXZ9+ALj9wP7R9RngRuXNTtJ0iXlN4YlqWOGgCR1zBCQpI4ZApLUMUNAkjpmCEhSxwwBSeqYISBJHTMEJKlji35jWJLeNL33sbGc9+S9t4/lvD3wk4AkdcwQkKSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLHDAFJ6pghIEkdMwQkqWOGgCR1bFUhkORkkueSPJtkttWuTvJkkpfa81VD4/clOZHkeJLbVjt5SdLqXIxPAn+vqm6qqpn2ei/wVFVtA55qr0lyPbALuAHYAdyfZMNFOL8kaYUuxXLQTuBg2z4I3DFUP1RVb1TVy8AJYPslOL8kaYlWGwIFfCHJM0n2tNp1VXUaoD1f2+qbgFeHjp1rNUnSmFy2yuM/VFWnklwLPJnkGwuMzYhajRw4CJQ9AO9///tXOUVJ0oWs6pNAVZ1qz2eAzzFY3nktyUaA9nymDZ8Dtgwdvhk4dYH3PVBVM1U1MzU1tZopSpIWsOIQSPKeJN/z5jbwD4HngSPA7jZsN/Bo2z4C7EpyeZKtwDbg6ErPL0lavdUsB10HfC7Jm+/zH6rq95P8EXA4yV3AK8BHAarqWJLDwAvAWeCeqjq3qtlLklZlxSFQVX8C/NCI+v8EPnyBY/YD+1d6TknSxeU3hiWpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLHVvuzEXqHmd772LinIGmC+ElAkjpmCEhSxwwBSeqYISBJHTMEJKljhoAkdcwQkKSOGQKS1DFDQJI6ZghIUscMAUnqmL8dJOkdb5y/iXXy3tvHdu614CcBSeqYISBJHTMEJKljhoAkdcwQkKSOGQKS1DFDQJI65vcELgH/P7+SJsWafxJIsiPJ8SQnkuxd6/NLkt6ypiGQZAPwb4AfBa4HPpbk+rWcgyTpLWu9HLQdOFFVfwKQ5BCwE3hhjechSUsyruXdtfq5irUOgU3Aq0Ov54C/dalO5tq8JC1srUMgI2r1tkHJHmBPe/ntJMeXeZ5rgD9d5jGTYL32Beu3t/XaF9jbJZV/ueq3+GtLGbTWITAHbBl6vRk4df6gqjoAHFjpSZLMVtXMSo9/p1qvfcH67W299gX2tl6s9d1BfwRsS7I1yV8FdgFH1ngOkqRmTT8JVNXZJB8H/gDYADxYVcfWcg6SpLes+ZfFqupx4PFLfJoVLyW9w63XvmD99rZe+wJ7WxdS9bbrspKkTvjbQZLUsXURAkk2JPnjJJ9vr69O8mSSl9rzVeOe40okeW+S303yjSQvJvnb66G3JP80ybEkzyd5JMl3TWpfSR5McibJ80O1C/aSZF/7yZTjSW4bz6yX5gK9/av27+PXk3wuyXuH9k1Eb6P6Gtr3z5JUkmuGahPR10qtixAAPgG8OPR6L/BUVW0DnmqvJ9FvAL9fVX8D+CEGPU50b0k2AT8LzFTVjQxuENjF5Pb1ELDjvNrIXtpPpOwCbmjH3N9+SuWd6iHe3tuTwI1V9TeB/wrsg4nr7SHe3hdJtgD/AHhlqDZJfa3IxIdAks3A7cBvDZV3Agfb9kHgjrWe12oluRL4u8CnAarq/1XVn7EOemNwQ8IVSS4D3s3guyIT2VdVfRH41nnlC/WyEzhUVW9U1cvACQY/pfKONKq3qvpCVZ1tL7/M4Ls+MEG9XeCfGcCngH/OX/4C68T0tVITHwLAv2bwD+47Q7Xrquo0QHu+dhwTW6XvB+aB325LXb+V5D1MeG9V9U3gVxn8bes08L+r6gtMeF/nuVAvo342ZdMaz+1i+ifAE217ontL8hHgm1X1tfN2TXRfSzHRIZDkx4EzVfXMuOdyCVwG/DDwQFV9EPg/TM4SyQW19fGdwFbgfcB7kvzUeGe1Zpb0symTIMkvAmeBz7xZGjFsInpL8m7gF4F/MWr3iNpE9LVUEx0CwIeAjyQ5CRwC/n6Sfw+8lmQjQHs+M74prtgcMFdVX2mvf5dBKEx6bz8CvFxV81X1F8Bngb/D5Pc17EK9LOlnU97pkuwGfhz4yXrrHvNJ7u0DDP5S8rX2Z8lm4KtJvo/J7mtJJjoEqmpfVW2uqmkGF2/+U1X9FIOfotjdhu0GHh3TFFesqv4H8GqSv95KH2bwk9uT3tsrwC1J3p0kDPp6kcnva9iFejkC7EpyeZKtwDbg6Bjmt2JJdgCfBD5SVf93aNfE9lZVz1XVtVU13f4smQN+uP03OLF9LVlVrYsHcCvw+bb9vQzuynipPV897vmtsKebgFng68B/BK5aD70BvwJ8A3ge+HfA5ZPaF/AIg2sbf8HgD4+7FuqFwbLDfwOOAz867vmvoLcTDNbIn22PfztpvY3q67z9J4FrJq2vlT78xrAkdWyil4MkSatjCEhSxwwBSeqYISBJHTMEJKljhoAkdcwQkKSOGQKS1LH/DzQa+e8HS3TJAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"plt.hist(x)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Utilisation d'autres langages"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"%load_ext rpy2.ipython"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAMAAABKCk6nAAAC9FBMVEUAAAABAQECAgIDAwMEBAQFBQUGBgYHBwcJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUWFhYXFxcYGBgZGRkbGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7///+WLN6DAAAXMElEQVR4nO2deWAUVbaH4Y0zvPGJqDg4oujgE0d4M+NbTDqk01kIYUsMssqmLLKp7CAYQBYViCKo7AIjghJkkV2RLYAgSAIigRAEJOyEJSGGrH3/eVUdGDrdTXVX1721nP59f9wOVbdOHfPZldruPdUYIE01oxMAYoFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HE0SD4chowAV+VihK8tONsYDy248IEfxL8toAb3bULLs7OzCnzXgzBpkCz4HOta9R58uE/drvquQKCTYFmwbEjrkvtxT6Jnisg2BRoFvxAueuj5CHPFRBsCjQLfibd9bGpkecKCDYFmgWvfyjmtWH9oh/e5LkCgk2B9rPo60snjJy4vMBrOQSbAg6XSZXkeS6AYF24clF5vWbBRxx1O5yVPmt4roBgHchrmdQu5oRSD82CbSkZk+rnQLAxdNrB2NF4pR6aBd9XwdiGBufdBP/wnovEvgEmCYInSm4Sryv00Cy4wU6pWdzo5B3Bpze5SE4KKEWgBZfghCKFHpoFr6i5TG7rVvdcMaCd322BVgbPZmxtB6Ue2s+ic8/I7ZX5nsshWAeKh9vtvZWO0Pwuky54LoBgU8BNsNdZNASbAs2CL98Cgs2JZsHVf1eJV08INgWaBQ8ZW/mJb7A50Sy4LDHT9QnB5kTcwwYINgXcBHsBwaYAgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiSOurA4EmwJxZXUg2BSIK6sDwaZAXFkdCDYF4srqQLApEFdWB4JNgbiyOhBsCnCZRBxcJhEHl0nEEXCZ9FWsi8ejtWUGuIDLJOLgMok4uEwiDsrqEAdldYiDsjrEQVkd4qCsDnFQVoc4KKtDHLxVSRwIJg4EEweCiQPBxIFga3My9b2fFTtAsKXZEr1qQ8vFSj0g2NJEX2OsJMyp0AOCLU3UZwnx09tcVOgBwZbmqf6Fxe/+Gd9gsjSM376nfYNShR4QbGmiDr01fHdrr+cAbkCwpWkp6ctrrNQDgi3NMduocbY9Sj0g2NqUpG8uVOwAwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMjKw+L35Q7PZvCKbFQXvG5U9bub3DA8G0ePmo1PTLuLMAgsVwuKU9cp4B+21SIjVTV91ZAMFCuGE7yUq7r/LfkTfD1ktNi1N3FkCwEDZNkJrz7fXf8XX72wtbT3FbAMFCWJMqNVdfMGDPZRsWZLv/G4KFkBd5g7Hxc41Og0GwKL4Lf8k+TGnEgV5AsCjOlBidgQtM6U8cTOlPHEzpTxxUPvPBbxVGZ8APTOnvxaHYZrYh5UZnwQtM6e9JiS2XsdRUo9PghYAp/X+a7SKmhcbUDGL/IKkpjTM6DV7wuQ6uyHW7TspOc9G8lYa0DCRzIINgN4456nQ6/p9/qJ3uucKqh+jSiBOMTZxmdBq80CzYMfXQuLrL2Mb/9VxhVcHsSLO4iBQy59GaBT/FmPOBys+qWFawdJ5ldAIc0Sz42VNs/z2n2KWnPVdYWDAlNAteWqvhI4ue7FhvkucKCDYF2s+iz2zPZwenfuu1HIJNAR4XCqL8xA2jU3ABwWLYEPZy3OtmOBWHYCFcshcxNnmm0WkwCBbE6vel5lqS0WkwCBbEd+Ol5mxHo9NgECyIQls2u9llndFpMAgWxbHkaPvnRichA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAsKVxLmjaZKpS4TMItjbvD/qtZMobSj0g2NLY5ZdGolG7kCxRcoPahXRplcPY5UilHhCsF1fXbbrJPWiObeTbth+UekCwTmyNmDzOdox72JIdm39T7ADBOhGWz9gvBoyohWB9qJy3Mkr/HUOwPpRES02ZXf8dQ7BODHinMK/nHP33C8E6UT6r2QvLVW5ztE1UwhaN+4Vg83JFOuvOa5rhv6MSEGxevpwhNfsGawsCweZl9hKpyemhLQgEm5cjiRWMpXyhLQgEG0b+kjnKv3w2L3JgwiCNewlM8GlXq3jP0wsIVuZY2CeLm/9Tuc+NDKUHRQERmOBnXXurpSoyBCuTnMNYWXix/47aCETwgjrVa0j8m7rp/SBYGddty/6HRO8moG+wM+myxHV1kSFYmSb5txuhBHaILtrJCidPUTdtDAQr823TA6feGih8N4EJ7jiEdY3tqs4YBPthf79uX4gvvBOY4Ccqbta86qyvKjIEm4LABNd3rnUwZ13ffVBWx8wEJrhT3KPLWYrPKdxRVsfcBCa4ZNlOxqZd8tUDZXXMDcrqeLNt7PTLRufAjUAE179cvxJfPeiV1Rn96tYvns8xOgteBCJ4X9m+Snz1IFdW50KC1BwxwyR1XBBQVmfpcy7qxGhMzSDSU+TWgPcfxRDQIfoWT9y1W56P25hW/Qafk19ePm7R5L0JRHBm5oTOG/euSfrAV4+MLuxwwz/8/n+8Xtq3qmA2eODeNeGHjc6CF4Edov8h31IrfcZXj/9awBwflJdPtXuusKxgtn7oe2eNzoEbgQl+7LzUnHnEV497y1g9563SOlWwrmBSBCZ4Yq1WXRNrjfbVIyrV2X0LY3P/23MFBJuCAM+is2ZOnHHAZ49fGz/m+Pe/13va68k1BJsCDi/dnVi5YMV+7/oTEGwK8FalGMoX9hl7TrlL1vD+a8QnAsFiaJt6ZEPYCaUe22N2HhowSngiECyE/X2kZl8/pS5N5QesMQVKXXgAwUJY9rHU3Gyq1MV1M/S1n0RnAsFCONJBajYNVeqS9CtjFTb+87J4AMGBcPaM2i0G9173kU1xWMLhsH+uSp6tMmzFCbVDHSDYP7lxHV6K/VXlRjumLCpS7pE3Z6ra19732boltlWeVccTCPZP0gHGfm5pdBYS5WGXGFupbjgaBPulLFZu44WPIvLP4b5yq+5RNQT7xemQ25hyo/Ng7FRXqSmPVrUNBPun7wLGPu9ldBYyTXaw8pEfqdoEgv1TNCwqaoi6U5tASO/aeo7Kw8KFbo7ID9QNd4Fgo1iTdDzvvd7CdwPBRhFXKDXNroneDQQbhZkGgAcFBCvTNouxkrAS0buBYD7kpl9QucXJ8Elz4pYJScYdCObCkMSUpuNVblO0eonqW9zqgWAerB4iNd13Gp2GLyCYB0P3Ss037xidhi8gmAfvrpeaxbOMTsMXEMyDk5Gn2NEItadZugDBXDjQOqrjUZXbLEuIHe/nkTEHINgoPnuloHxhB+G7gWCjiJHvcbwgfK4ICDYK163KvsKHqUKwUXSVLq0Kn/cxwRhfIJhlfZWpx26urPm2yinVRfugcRFeM5twB4IHd/yoZ2fvsXO82dw4dYIt231J+d7vhI9rgGC2TR5f8u7nwvcj1y48YcCrmSEvePI6qTnUX/RuzrkuiFC7UH8WyTcY1wq/jVwiv5qJ2oUGkG/bWrrPJn7SlUETCi51nyt8N16EvGB2fmBsH8WBvHwon92i9Urxu/ECgokDwcSBYOJAMHEgWBA/frxc+CuxgQDBYnjr5bTJjYUPWwgADoJRdcWb7DZSs36E0WkwDoJRdcUXrll2ihKMToNxEIyqK77Y95rUZIgfO+gfVF0RgjNpxultNq9J0g1As2B6VVcCINUWlVSlLsuaSEf0FvcFpTM7Dz+lb1K+0SyYXNWVAJg3rIIdbex2FXSgeSG7FvOLcRndHQFVV35Jc9Hc668yGZrJ8zkMcasyNHar1KyYZlA6inC6DnafF3ffey4imgedlNlpIn95R+66s8D189opRuWjhGbBR1zUPnLEcwXhQ/QU6bt62eb2Ct2OTuWsNFH4xKLBoFlwtTrPStzz7LOeKwgLLu/vaBO5133JrLD2zy8xKh1FNAve+vfRNxmr472CsGDpqtCzEmvFefHFvINC+9/g4jENN4WcYOvA4yQrO7pTbe+lEGwK+JxFL0zyXgbBpgCPC31QKGTi0SJDng9DsBcHo1s0HsRd8enmCbGddRiq4gkEe1IivyT94WTeYZseZGz1q7yj+geCPflxMLs9CThHrr0gtxi6YgIODJCakiaco+a77sxDsAkobZzDnOPUzbodAK12Mfb5G7yj+oeY4DV9hqq9I3wluUGzKk9us1tE297mfl/qQnuHvZ/4SXW8oCV49Os/74n/TtUm+Q/0+GZwzarP5sWUZzCm6AMpwUXy37j8OFXbDJAHZQ9oJSQfM0BKcLarcoa6M5kEeZLYVV4vHJGBlODSsDLGcluo2masTWo6dBKTkAkgJZjNb7ViYbi6s6yKx58fE1v7hsodXTnm8Re18Ij6MpMXj4uf+4WYYJY1fa7a6o0VE1uOUHmXuLRLyx7h29yXTIrsHTFTXZAbycmvROxXt00QEBOsD+PnM1ZgK7yz4Lue0v8o7X5UFaT/OunaySb8OwzBQRBXKjUp6XcWjNgtNesnqQriOhfsle2vm1YgOAhayH+yB2bcWTBevvZO+1hVEIf85e0ofPYXCA6CJb1L2P4otxGVWXF57Jz9tKogU9+qYFuacc7MGwgOhrl2R6dc9wXbmjia7b1bb984UyMdPYXPJgzB1IFg4kAwcSCYONQFl2fs8XgIm7P9ijGpGANxwWftr71p2+22oKzDS2Mc8w3LR3+IC26XydgVm9uCqbMYq0gwxdh7fSAu2HU/sLPbHYhk+fg880uD0jEA6oLl+4HN3B4G9pTrk72t7q0eS0Nc8LRBJc753dwW7G52me2OVP/s1rLQElw0PqZplXHYznmxjnFVTqO3trD3Pue+4ES3qA5V3hHIHxHdfK37gvKP4+KmCy9wJAhagjvNLy/srW7e/Cu2AyynsduU787mK51X265265IytqR0ohmmJQwGUoKvy29IlkWr2mbhp1LzjVt59mPdpSbf/cWuSLmxm3QEvz9ICT4uu1H5VuUU+Wh88PU7C3aNlBqn486CUtd7uAkGvLTOA1KCK54vYCzjJVXbfP+K1IxOu7OgIKKEsY0D3brE/8rYGd6j0fSClGC21TZ6kP28YhfnzmVVZ6Qb22pC277uC1ZEvt0vPt9twWHbmyNth7glqS+0BLMbW/cpjxApShj0cVLVGctyv/GoqnNtc2bVP7jFu3YWc0nPAIgJ9stE+SrqBTNMA6sToSY4SZ5mf7Y55ywTQqgJ7ntQakZuNzoN/Qg1wYfsPxeviLXqbakgMLHgWVH2Xp4zBmrnp1eajsn3340M5hU87/VStq2JRe8fmQfzltWJk0eEdc/x2w8oYt6yOg75yztI/PA74pi3rM6QlYxdDzdFeTgrY96yOoXJbfradmqL4YOSZdN/ULvN2blzz3BPRCfMXFbnbFap1hBeXLdPWd5jqLpttkR+tijKq6qMRQi1sjop8pP8l35WtY39GmMFjcXkIxwBZXWWPueiTozG1ISQKJ8xzFmsZpPK58GuUjoWhNt1sNfUGOb8Br+xR2oG7vLbz50I6SKwPFxMPsLRXlbHUbeDPEy9hucKcwo+Ebb51IxW6m6fzOt4OKuLyilWTINmwbaUjEn1c0wi+FzbqIjhymdmuSO7zlR77ra1T+/NwSdlLJoF31fB2IYG580hOF66Apo+Wv/9mhjNghvIl6qLG500g+AL7eW2ykt35ft3W/TsiBOaBa+ouUxu61b3XGGA4NOd5dZd8Bn762+Gf697IiZC+1l0rusmzxWvIZlGHKLt0n/NV+6zbrc7IKVm1RNgLpj3caE3RXNHfqk8M9yxuKS4Lu6HZK/RhSGHhQQXRM7Z9W6Sn7n/rlUdV+Y1ujDksJDgVPlVuZT1qraZNrDY+Wk3//3oYiHBPeWXXVe/r2ob56dxUeMtOuiEDxYSnCqPyx+9jnNU6lhIcEHEpz9MaaV5/t2K6zySsQwWEsx+mzl0sebSJePDkhqH0GvRlhLMg8+HOVl+pPg5QE1DqAnuII89/HCl0WnoR6gJds0CnLrG6DT0I9QEr+pVxs5HXDM6Df0INcFsRnh0k1B62TrkBDMWWqNhQlBwaAHBxIFg4ugluDCr8G4dNVCcFVr3HYNAJ8EfRvaNVPccKBDSbL2bDAitcybV6CN4V2cnc76cfvfOQfGrXGJu3ELOUYmhj2BX6bf0lOCD+WTJHKk5q25iu5BDH8FTV0nNOnXFG/3ztXzQP/oq56jE0EfwiagL7GK08q7Uk2/LYTeSeR/4iaHTSdbuZo4EdSO+AuHoi/bYr7lHpQWug4kDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxDGx4BUJjlGhPLKXD+YVnNYp37nMaw5boBLzCo6Xh/V2DqFa3WIwr2DX9BpD9mkLAswruO8Wxm6Gh/TofB7oJThzSabK7a/G9hvTWN2MHMAbnQT36j6zR3eV7z86M7cV+O8FlNFH8Oo3pSZlRfDBQLDoI3i0PGnCbqtWSbc0+gie9ZnUfPFR8MFAsOgj+Gr49pvp4V6TwgPx6FT57NzAhAFnVSUG+GDeymeACwIqn1360UWHZK25AQ4IqHy2fbiL2B7aMgNcEFf5bOknQaYEeCKu8hkEmwIBlc9uAcGmQNx1MASbAggmDgQTR5zgjX+LVeRPDzwogHvvFxG15n0iot5/r4ioD9Su8mtuoHwDUYNgf4gpdjNmq4ioi+aKiPr9myKiXmyrpjcEu4DgIIBgCA4CCIbgIIDgIIBg4oK7nhERdZyQabOWeNVW5cGeUSKiXm6vprdAwWJeiS3UXDjLFyXFIqI6RUzAq/IXK1AwMAMQTBwIJg4EEweCiQPBxIFg4kAwcUQJLq5Wo0aNNnxjlg2tLtcF3tDwwfjzvKPyzvfrZ+63Z3PPtTKqqlxFCT5fm3/MxDG/k1Rcr/192agXeUflnG/u/TsrRjl453orqqpcRQk+Wp9/zEwmq0iLlyTX4HdrsTIq53xz0xjLeJR3rreiqspVlOA9f3Y8HJvNO6qsYsJr0g91eIaWowrId1I7AbnKUVXlKkrw4V5Hbo7wGu2iFVnFyGHSD0+qnfHFX1T++W58MldArnJUVbmKPIsu/QPvEcOyion9pB8ezuEcVYZrvosb5AjI1RVVJuBcRQk+d1g6M739m+OGHHB5JGNn/uhjQLqmqLzzXdVIPnnmnWtlVFW5ihK8/vGT5W/9H++o8n9VQe3NZX268I7KOd+rdU/KH5xzvRVVVa7CDtHvPvpQ/EmuEfNq1JAuAC+wb//6YAt+s4Hcjso33/nVpUvVGnmcc70dVU2uuJNFHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBbmQKGG9jNBDsBgRbnZJOf3miY9Hehv0d/0hnbE2jv8Rc+tfHO3X/NgGCLc6yOGfF4J2Z1daz9U+zMw8eZKlJtz+yap2r6AjBFmfHo2tvSkfiWoyVVb80O46xG78vvfUxsxVjGyHY6qTZa75cmFlP+une7En31qtXr9a5Wx8TuzK2F4KtT17M5Mz/cLKb1S4vqqzGeOtjRpL01xiCLc60MU5ntymZ96Sxz/7KLvwpm+3tf/vjQK2zZckQbHEuNX/siTY3Mp8a/HSDnYytbfTUczv+9ZHyyDMfPGF0gvwJLcGVULzcvSsQTBwIJk4oCg4pIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4vw/C6hxe08+0jwAAAAASUVORK5CYII=\n"
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"%%R\n",
"plot(cars)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
......@@ -16,10 +180,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment