"Nous pouvons désormais isoler l'évolution lente d'arrière-plan $f(t)$ en moyennant sur un an les valeurs (on recrée artificiellement un filtre passe-bas) :"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"test = full_data.copy()\n",
"test[interpolated_marks == 1] = np.nan\n",
"print(np.mean)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1958-03-29 316.118235\n",
"1958-04-05 316.118235\n",
"1958-04-12 316.118235\n",
"1958-04-19 316.118235\n",
"1958-04-26 316.118235\n",
"1958-05-03 316.118235\n",
"1958-05-10 315.947778\n",
"1958-05-17 315.806316\n",
"1958-05-24 315.694500\n",
"1958-05-31 315.614286\n",
"1958-06-07 315.566364\n",
"1958-06-14 315.516087\n",
"1958-06-21 315.485000\n",
"1958-06-28 315.474000\n",
"1958-07-05 315.465000\n",
"1958-07-12 315.466296\n",
"1958-07-19 315.474286\n",
"1958-07-26 315.487586\n",
"1958-08-02 315.485333\n",
"1958-08-09 315.485333\n",
"1958-08-16 315.532258\n",
"1958-08-23 315.565938\n",
"1958-08-30 315.597879\n",
"1958-09-06 315.633529\n",
"1958-09-13 315.633529\n",
"1958-09-20 315.664857\n",
"1958-09-27 315.693889\n",
"1958-10-04 315.736389\n",
"1958-10-11 315.731111\n",
"1958-10-18 315.729722\n",
" ... \n",
"2024-04-20 423.620943\n",
"2024-04-27 423.687170\n",
"2024-05-04 423.772642\n",
"2024-05-11 423.850189\n",
"2024-05-18 NaN\n",
"2024-05-25 NaN\n",
"2024-06-01 NaN\n",
"2024-06-08 NaN\n",
"2024-06-15 NaN\n",
"2024-06-22 NaN\n",
"2024-06-29 NaN\n",
"2024-07-06 NaN\n",
"2024-07-13 NaN\n",
"2024-07-20 NaN\n",
"2024-07-27 NaN\n",
"2024-08-03 NaN\n",
"2024-08-10 NaN\n",
"2024-08-17 NaN\n",
"2024-08-24 NaN\n",
"2024-08-31 NaN\n",
"2024-09-07 NaN\n",
"2024-09-14 NaN\n",
"2024-09-21 NaN\n",
"2024-09-28 NaN\n",
"2024-10-05 NaN\n",
"2024-10-12 NaN\n",
"2024-10-19 NaN\n",
"2024-10-26 NaN\n",
"2024-11-02 NaN\n",
"2024-11-09 NaN\n",
"Freq: 7D, Length: 3477, dtype: float64\n"
]
},
{
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f61da17fe10>"