{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Incidence of influenza-like illness in France" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import isoweek\n", "import os.path" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The data on the incidence of influenza-like illness are available from the Web site of the [Réseau Sentinelles](http://www.sentiweb.fr/). We download them as a file in CSV format, in which each line corresponds to a week in the observation period. Only the complete dataset, starting in 1984 and ending with a recent week, is available for download." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is the documentation of the data from [the download site](https://ns.sentiweb.fr/incidence/csv-schema-v1.json):\n", "\n", "| Column name | Description |\n", "|--------------|---------------------------------------------------------------------------------------------------------------------------|\n", "| `week` | ISO8601 Yearweek number as numeric (year times 100 + week nubmer) |\n", "| `indicator` | Unique identifier of the indicator, see metadata document https://www.sentiweb.fr/meta.json |\n", "| `inc` | Estimated incidence value for the time step, in the geographic level |\n", "| `inc_low` | Lower bound of the estimated incidence 95% Confidence Interval |\n", "| `inc_up` | Upper bound of the estimated incidence 95% Confidence Interval |\n", "| `inc100` | Estimated rate incidence per 100,000 inhabitants |\n", "| `inc100_low` | Lower bound of the estimated incidence 95% Confidence Interval |\n", "| `inc100_up` | Upper bound of the estimated rate incidence 95% Confidence Interval |\n", "| `geo_insee` | Identifier of the geographic area, from INSEE https://www.insee.fr |\n", "| `geo_name` | Geographic label of the area, corresponding to INSEE code. This label is not an id and is only provided for human reading |\n", "\n", "The first line of the CSV file is a comment, which we ignore with `skip=1`." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We check if the file is already downloaded and store to a local file to prevent to download every time we run the program. If it is not, we use the link and download it and save it locally." ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020204233335028134.038566.05143.059.0FRFrance
120204132794423265.032623.04235.049.0FRFrance
220204032044316381.024505.03125.037.0FRFrance
320203931981015900.023720.03024.036.0FRFrance
420203832556221142.029982.03932.046.0FRFrance
520203731848514649.022321.02822.034.0FRFrance
62020363103907646.013134.01612.020.0FRFrance
7202035399186842.012994.01510.020.0FRFrance
8202034360843090.09078.094.014.0FRFrance
9202033361063411.08801.095.013.0FRFrance
10202032359183330.08506.095.013.0FRFrance
11202031343512269.06433.074.010.0FRFrance
12202030381795442.010916.0128.016.0FRFrance
13202029386875860.011514.0139.017.0FRFrance
14202028383405701.010979.0139.017.0FRFrance
15202027340662406.05726.063.09.0FRFrance
16202026340392389.05689.063.09.0FRFrance
17202025328531488.04218.042.06.0FRFrance
18202024330581690.04426.053.07.0FRFrance
19202023341682468.05868.063.09.0FRFrance
20202022335801947.05213.053.07.0FRFrance
21202021361144026.08202.096.012.0FRFrance
22202020393156775.011855.01410.018.0FRFrance
232020193116798722.014636.01814.022.0FRFrance
2420201831639812851.019945.02520.030.0FRFrance
2520201731808214454.021710.02721.033.0FRFrance
2620201632416519893.028437.03731.043.0FRFrance
2720201534104935377.046721.06253.071.0FRFrance
2820201437166664531.078801.010998.0120.0FRFrance
29202013310774299187.0116297.0164151.0177.0FRFrance
.................................
184719852132609619621.032571.04735.059.0FRFrance
184819852032789620885.034907.05138.064.0FRFrance
184919851934315432821.053487.07859.097.0FRFrance
185019851834055529935.051175.07455.093.0FRFrance
185119851733405324366.043740.06244.080.0FRFrance
185219851635036236451.064273.09166.0116.0FRFrance
185319851536388145538.082224.011683.0149.0FRFrance
18541985143134545114400.0154690.0244207.0281.0FRFrance
18551985133197206176080.0218332.0357319.0395.0FRFrance
18561985123245240223304.0267176.0445405.0485.0FRFrance
18571985113276205252399.0300011.0501458.0544.0FRFrance
18581985103353231326279.0380183.0640591.0689.0FRFrance
18591985093369895341109.0398681.0670618.0722.0FRFrance
18601985083389886359529.0420243.0707652.0762.0FRFrance
18611985073471852432599.0511105.0855784.0926.0FRFrance
18621985063565825518011.0613639.01026939.01113.0FRFrance
18631985053637302592795.0681809.011551074.01236.0FRFrance
18641985043424937390794.0459080.0770708.0832.0FRFrance
18651985033213901174689.0253113.0388317.0459.0FRFrance
186619850239758680949.0114223.0177147.0207.0FRFrance
186719850138548965918.0105060.0155120.0190.0FRFrance
186819845238483060602.0109058.0154110.0198.0FRFrance
1869198451310172680242.0123210.0185146.0224.0FRFrance
18701984503123680101401.0145959.0225184.0266.0FRFrance
1871198449310107381684.0120462.0184149.0219.0FRFrance
187219844837862060634.096606.0143110.0176.0FRFrance
187319844737202954274.089784.013199.0163.0FRFrance
187419844638733067686.0106974.0159123.0195.0FRFrance
18751984453135223101414.0169032.0246184.0308.0FRFrance
187619844436842220056.0116788.012537.0213.0FRFrance
\n", "

1877 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202042 3 33350 28134.0 38566.0 51 43.0 \n", "1 202041 3 27944 23265.0 32623.0 42 35.0 \n", "2 202040 3 20443 16381.0 24505.0 31 25.0 \n", "3 202039 3 19810 15900.0 23720.0 30 24.0 \n", "4 202038 3 25562 21142.0 29982.0 39 32.0 \n", "5 202037 3 18485 14649.0 22321.0 28 22.0 \n", "6 202036 3 10390 7646.0 13134.0 16 12.0 \n", "7 202035 3 9918 6842.0 12994.0 15 10.0 \n", "8 202034 3 6084 3090.0 9078.0 9 4.0 \n", "9 202033 3 6106 3411.0 8801.0 9 5.0 \n", "10 202032 3 5918 3330.0 8506.0 9 5.0 \n", "11 202031 3 4351 2269.0 6433.0 7 4.0 \n", "12 202030 3 8179 5442.0 10916.0 12 8.0 \n", "13 202029 3 8687 5860.0 11514.0 13 9.0 \n", "14 202028 3 8340 5701.0 10979.0 13 9.0 \n", "15 202027 3 4066 2406.0 5726.0 6 3.0 \n", "16 202026 3 4039 2389.0 5689.0 6 3.0 \n", "17 202025 3 2853 1488.0 4218.0 4 2.0 \n", "18 202024 3 3058 1690.0 4426.0 5 3.0 \n", "19 202023 3 4168 2468.0 5868.0 6 3.0 \n", "20 202022 3 3580 1947.0 5213.0 5 3.0 \n", "21 202021 3 6114 4026.0 8202.0 9 6.0 \n", "22 202020 3 9315 6775.0 11855.0 14 10.0 \n", "23 202019 3 11679 8722.0 14636.0 18 14.0 \n", "24 202018 3 16398 12851.0 19945.0 25 20.0 \n", "25 202017 3 18082 14454.0 21710.0 27 21.0 \n", "26 202016 3 24165 19893.0 28437.0 37 31.0 \n", "27 202015 3 41049 35377.0 46721.0 62 53.0 \n", "28 202014 3 71666 64531.0 78801.0 109 98.0 \n", "29 202013 3 107742 99187.0 116297.0 164 151.0 \n", "... ... ... ... ... ... ... ... \n", "1847 198521 3 26096 19621.0 32571.0 47 35.0 \n", "1848 198520 3 27896 20885.0 34907.0 51 38.0 \n", "1849 198519 3 43154 32821.0 53487.0 78 59.0 \n", "1850 198518 3 40555 29935.0 51175.0 74 55.0 \n", "1851 198517 3 34053 24366.0 43740.0 62 44.0 \n", "1852 198516 3 50362 36451.0 64273.0 91 66.0 \n", "1853 198515 3 63881 45538.0 82224.0 116 83.0 \n", "1854 198514 3 134545 114400.0 154690.0 244 207.0 \n", "1855 198513 3 197206 176080.0 218332.0 357 319.0 \n", "1856 198512 3 245240 223304.0 267176.0 445 405.0 \n", "1857 198511 3 276205 252399.0 300011.0 501 458.0 \n", "1858 198510 3 353231 326279.0 380183.0 640 591.0 \n", "1859 198509 3 369895 341109.0 398681.0 670 618.0 \n", "1860 198508 3 389886 359529.0 420243.0 707 652.0 \n", "1861 198507 3 471852 432599.0 511105.0 855 784.0 \n", "1862 198506 3 565825 518011.0 613639.0 1026 939.0 \n", "1863 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", "1864 198504 3 424937 390794.0 459080.0 770 708.0 \n", "1865 198503 3 213901 174689.0 253113.0 388 317.0 \n", "1866 198502 3 97586 80949.0 114223.0 177 147.0 \n", "1867 198501 3 85489 65918.0 105060.0 155 120.0 \n", "1868 198452 3 84830 60602.0 109058.0 154 110.0 \n", "1869 198451 3 101726 80242.0 123210.0 185 146.0 \n", "1870 198450 3 123680 101401.0 145959.0 225 184.0 \n", "1871 198449 3 101073 81684.0 120462.0 184 149.0 \n", "1872 198448 3 78620 60634.0 96606.0 143 110.0 \n", "1873 198447 3 72029 54274.0 89784.0 131 99.0 \n", "1874 198446 3 87330 67686.0 106974.0 159 123.0 \n", "1875 198445 3 135223 101414.0 169032.0 246 184.0 \n", "1876 198444 3 68422 20056.0 116788.0 125 37.0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 59.0 FR France \n", "1 49.0 FR France \n", "2 37.0 FR France \n", "3 36.0 FR France \n", "4 46.0 FR France \n", "5 34.0 FR France \n", "6 20.0 FR France \n", "7 20.0 FR France \n", "8 14.0 FR France \n", "9 13.0 FR France \n", "10 13.0 FR France \n", "11 10.0 FR France \n", "12 16.0 FR France \n", "13 17.0 FR France \n", "14 17.0 FR France \n", "15 9.0 FR France \n", "16 9.0 FR France \n", "17 6.0 FR France \n", "18 7.0 FR France \n", "19 9.0 FR France \n", "20 7.0 FR France \n", "21 12.0 FR France \n", "22 18.0 FR France \n", "23 22.0 FR France \n", "24 30.0 FR France \n", "25 33.0 FR France \n", "26 43.0 FR France \n", "27 71.0 FR France \n", "28 120.0 FR France \n", "29 177.0 FR France \n", "... ... ... ... \n", "1847 59.0 FR France \n", "1848 64.0 FR France \n", "1849 97.0 FR France \n", "1850 93.0 FR France \n", "1851 80.0 FR France \n", "1852 116.0 FR France \n", "1853 149.0 FR France \n", "1854 281.0 FR France \n", "1855 395.0 FR France \n", "1856 485.0 FR France \n", "1857 544.0 FR France \n", "1858 689.0 FR France \n", "1859 722.0 FR France \n", "1860 762.0 FR France \n", "1861 926.0 FR France \n", "1862 1113.0 FR France \n", "1863 1236.0 FR France \n", "1864 832.0 FR France \n", "1865 459.0 FR France \n", "1866 207.0 FR France \n", "1867 190.0 FR France \n", "1868 198.0 FR France \n", "1869 224.0 FR France \n", "1870 266.0 FR France \n", "1871 219.0 FR France \n", "1872 176.0 FR France \n", "1873 163.0 FR France \n", "1874 195.0 FR France \n", "1875 308.0 FR France \n", "1876 213.0 FR France \n", "\n", "[1877 rows x 10 columns]" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "file = \"incidence-PAY-3.csv\"\n", "import urllib.request\n", "if not os.path.exists(file):\n", " urllib.request.urlretrieve(data_url, file)\n", "raw_data = pd.read_csv(file, skiprows=1)\n", "raw_data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Are there missing data points? Yes, week 19 of year 1989 does not have any observed values." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
164019891930NaNNaN0NaNNaNFRFrance
\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n", "1640 198919 3 0 NaN NaN 0 NaN NaN \n", "\n", " geo_insee geo_name \n", "1640 FR France " ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We delete this point, which does not have big consequence for our rather simple analysis." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020204233335028134.038566.05143.059.0FRFrance
120204132794423265.032623.04235.049.0FRFrance
220204032044316381.024505.03125.037.0FRFrance
320203931981015900.023720.03024.036.0FRFrance
420203832556221142.029982.03932.046.0FRFrance
520203731848514649.022321.02822.034.0FRFrance
62020363103907646.013134.01612.020.0FRFrance
7202035399186842.012994.01510.020.0FRFrance
8202034360843090.09078.094.014.0FRFrance
9202033361063411.08801.095.013.0FRFrance
10202032359183330.08506.095.013.0FRFrance
11202031343512269.06433.074.010.0FRFrance
12202030381795442.010916.0128.016.0FRFrance
13202029386875860.011514.0139.017.0FRFrance
14202028383405701.010979.0139.017.0FRFrance
15202027340662406.05726.063.09.0FRFrance
16202026340392389.05689.063.09.0FRFrance
17202025328531488.04218.042.06.0FRFrance
18202024330581690.04426.053.07.0FRFrance
19202023341682468.05868.063.09.0FRFrance
20202022335801947.05213.053.07.0FRFrance
21202021361144026.08202.096.012.0FRFrance
22202020393156775.011855.01410.018.0FRFrance
232020193116798722.014636.01814.022.0FRFrance
2420201831639812851.019945.02520.030.0FRFrance
2520201731808214454.021710.02721.033.0FRFrance
2620201632416519893.028437.03731.043.0FRFrance
2720201534104935377.046721.06253.071.0FRFrance
2820201437166664531.078801.010998.0120.0FRFrance
29202013310774299187.0116297.0164151.0177.0FRFrance
.................................
184719852132609619621.032571.04735.059.0FRFrance
184819852032789620885.034907.05138.064.0FRFrance
184919851934315432821.053487.07859.097.0FRFrance
185019851834055529935.051175.07455.093.0FRFrance
185119851733405324366.043740.06244.080.0FRFrance
185219851635036236451.064273.09166.0116.0FRFrance
185319851536388145538.082224.011683.0149.0FRFrance
18541985143134545114400.0154690.0244207.0281.0FRFrance
18551985133197206176080.0218332.0357319.0395.0FRFrance
18561985123245240223304.0267176.0445405.0485.0FRFrance
18571985113276205252399.0300011.0501458.0544.0FRFrance
18581985103353231326279.0380183.0640591.0689.0FRFrance
18591985093369895341109.0398681.0670618.0722.0FRFrance
18601985083389886359529.0420243.0707652.0762.0FRFrance
18611985073471852432599.0511105.0855784.0926.0FRFrance
18621985063565825518011.0613639.01026939.01113.0FRFrance
18631985053637302592795.0681809.011551074.01236.0FRFrance
18641985043424937390794.0459080.0770708.0832.0FRFrance
18651985033213901174689.0253113.0388317.0459.0FRFrance
186619850239758680949.0114223.0177147.0207.0FRFrance
186719850138548965918.0105060.0155120.0190.0FRFrance
186819845238483060602.0109058.0154110.0198.0FRFrance
1869198451310172680242.0123210.0185146.0224.0FRFrance
18701984503123680101401.0145959.0225184.0266.0FRFrance
1871198449310107381684.0120462.0184149.0219.0FRFrance
187219844837862060634.096606.0143110.0176.0FRFrance
187319844737202954274.089784.013199.0163.0FRFrance
187419844638733067686.0106974.0159123.0195.0FRFrance
18751984453135223101414.0169032.0246184.0308.0FRFrance
187619844436842220056.0116788.012537.0213.0FRFrance
\n", "

1876 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202042 3 33350 28134.0 38566.0 51 43.0 \n", "1 202041 3 27944 23265.0 32623.0 42 35.0 \n", "2 202040 3 20443 16381.0 24505.0 31 25.0 \n", "3 202039 3 19810 15900.0 23720.0 30 24.0 \n", "4 202038 3 25562 21142.0 29982.0 39 32.0 \n", "5 202037 3 18485 14649.0 22321.0 28 22.0 \n", "6 202036 3 10390 7646.0 13134.0 16 12.0 \n", "7 202035 3 9918 6842.0 12994.0 15 10.0 \n", "8 202034 3 6084 3090.0 9078.0 9 4.0 \n", "9 202033 3 6106 3411.0 8801.0 9 5.0 \n", "10 202032 3 5918 3330.0 8506.0 9 5.0 \n", "11 202031 3 4351 2269.0 6433.0 7 4.0 \n", "12 202030 3 8179 5442.0 10916.0 12 8.0 \n", "13 202029 3 8687 5860.0 11514.0 13 9.0 \n", "14 202028 3 8340 5701.0 10979.0 13 9.0 \n", "15 202027 3 4066 2406.0 5726.0 6 3.0 \n", "16 202026 3 4039 2389.0 5689.0 6 3.0 \n", "17 202025 3 2853 1488.0 4218.0 4 2.0 \n", "18 202024 3 3058 1690.0 4426.0 5 3.0 \n", "19 202023 3 4168 2468.0 5868.0 6 3.0 \n", "20 202022 3 3580 1947.0 5213.0 5 3.0 \n", "21 202021 3 6114 4026.0 8202.0 9 6.0 \n", "22 202020 3 9315 6775.0 11855.0 14 10.0 \n", "23 202019 3 11679 8722.0 14636.0 18 14.0 \n", "24 202018 3 16398 12851.0 19945.0 25 20.0 \n", "25 202017 3 18082 14454.0 21710.0 27 21.0 \n", "26 202016 3 24165 19893.0 28437.0 37 31.0 \n", "27 202015 3 41049 35377.0 46721.0 62 53.0 \n", "28 202014 3 71666 64531.0 78801.0 109 98.0 \n", "29 202013 3 107742 99187.0 116297.0 164 151.0 \n", "... ... ... ... ... ... ... ... \n", "1847 198521 3 26096 19621.0 32571.0 47 35.0 \n", "1848 198520 3 27896 20885.0 34907.0 51 38.0 \n", "1849 198519 3 43154 32821.0 53487.0 78 59.0 \n", "1850 198518 3 40555 29935.0 51175.0 74 55.0 \n", "1851 198517 3 34053 24366.0 43740.0 62 44.0 \n", "1852 198516 3 50362 36451.0 64273.0 91 66.0 \n", "1853 198515 3 63881 45538.0 82224.0 116 83.0 \n", "1854 198514 3 134545 114400.0 154690.0 244 207.0 \n", "1855 198513 3 197206 176080.0 218332.0 357 319.0 \n", "1856 198512 3 245240 223304.0 267176.0 445 405.0 \n", "1857 198511 3 276205 252399.0 300011.0 501 458.0 \n", "1858 198510 3 353231 326279.0 380183.0 640 591.0 \n", "1859 198509 3 369895 341109.0 398681.0 670 618.0 \n", "1860 198508 3 389886 359529.0 420243.0 707 652.0 \n", "1861 198507 3 471852 432599.0 511105.0 855 784.0 \n", "1862 198506 3 565825 518011.0 613639.0 1026 939.0 \n", "1863 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", "1864 198504 3 424937 390794.0 459080.0 770 708.0 \n", "1865 198503 3 213901 174689.0 253113.0 388 317.0 \n", "1866 198502 3 97586 80949.0 114223.0 177 147.0 \n", "1867 198501 3 85489 65918.0 105060.0 155 120.0 \n", "1868 198452 3 84830 60602.0 109058.0 154 110.0 \n", "1869 198451 3 101726 80242.0 123210.0 185 146.0 \n", "1870 198450 3 123680 101401.0 145959.0 225 184.0 \n", "1871 198449 3 101073 81684.0 120462.0 184 149.0 \n", "1872 198448 3 78620 60634.0 96606.0 143 110.0 \n", "1873 198447 3 72029 54274.0 89784.0 131 99.0 \n", "1874 198446 3 87330 67686.0 106974.0 159 123.0 \n", "1875 198445 3 135223 101414.0 169032.0 246 184.0 \n", "1876 198444 3 68422 20056.0 116788.0 125 37.0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 59.0 FR France \n", "1 49.0 FR France \n", "2 37.0 FR France \n", "3 36.0 FR France \n", "4 46.0 FR France \n", "5 34.0 FR France \n", "6 20.0 FR France \n", "7 20.0 FR France \n", "8 14.0 FR France \n", "9 13.0 FR France \n", "10 13.0 FR France \n", "11 10.0 FR France \n", "12 16.0 FR France \n", "13 17.0 FR France \n", "14 17.0 FR France \n", "15 9.0 FR France \n", "16 9.0 FR France \n", "17 6.0 FR France \n", "18 7.0 FR France \n", "19 9.0 FR France \n", "20 7.0 FR France \n", "21 12.0 FR France \n", "22 18.0 FR France \n", "23 22.0 FR France \n", "24 30.0 FR France \n", "25 33.0 FR France \n", "26 43.0 FR France \n", "27 71.0 FR France \n", "28 120.0 FR France \n", "29 177.0 FR France \n", "... ... ... ... \n", "1847 59.0 FR France \n", "1848 64.0 FR France \n", "1849 97.0 FR France \n", "1850 93.0 FR France \n", "1851 80.0 FR France \n", "1852 116.0 FR France \n", "1853 149.0 FR France \n", "1854 281.0 FR France \n", "1855 395.0 FR France \n", "1856 485.0 FR France \n", "1857 544.0 FR France \n", "1858 689.0 FR France \n", "1859 722.0 FR France \n", "1860 762.0 FR France \n", "1861 926.0 FR France \n", "1862 1113.0 FR France \n", "1863 1236.0 FR France \n", "1864 832.0 FR France \n", "1865 459.0 FR France \n", "1866 207.0 FR France \n", "1867 190.0 FR France \n", "1868 198.0 FR France \n", "1869 224.0 FR France \n", "1870 266.0 FR France \n", "1871 219.0 FR France \n", "1872 176.0 FR France \n", "1873 163.0 FR France \n", "1874 195.0 FR France \n", "1875 308.0 FR France \n", "1876 213.0 FR France \n", "\n", "[1876 rows x 10 columns]" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = raw_data.dropna().copy()\n", "data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Our dataset uses an uncommon encoding; the week number is attached\n", "to the year number, leaving the impression of a six-digit integer.\n", "That is how Pandas interprets it.\n", "\n", "A second problem is that Pandas does not know about week numbers.\n", "It needs to be given the dates of the beginning and end of the week.\n", "We use the library `isoweek` for that.\n", "\n", "Since the conversion is a bit lengthy, we write a small Python \n", "function for doing it. Then we apply it to all points in our dataset. \n", "The results go into a new column 'period'." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "def convert_week(year_and_week_int):\n", " year_and_week_str = str(year_and_week_int)\n", " year = int(year_and_week_str[:4])\n", " week = int(year_and_week_str[4:])\n", " w = isoweek.Week(year, week)\n", " return pd.Period(w.day(0), 'W')\n", "\n", "data['period'] = [convert_week(yw) for yw in data['week']]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There are two more small changes to make.\n", "\n", "First, we define the observation periods as the new index of\n", "our dataset. That turns it into a time series, which will be\n", "convenient later on.\n", "\n", "Second, we sort the points chronologically." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We check the consistency of the data. Between the end of a period and\n", "the beginning of the next one, the difference should be zero, or very small.\n", "We tolerate an error of one second.\n", "\n", "This is OK except for one pair of consecutive periods between which\n", "a whole week is missing.\n", "\n", "We recognize the dates: it's the week without observations that we\n", "have deleted earlier!" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n" ] } ], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", " delta = p2.to_timestamp() - p1.end_time\n", " if delta > pd.Timedelta('1s'):\n", " print(p1, p2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A first look at the data!" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXm8XEWZ939Pb3fNTXKzAUkgAQIILiAxgLigKKCMgqPM4IzCKL7MKM6os8LrwrwqCjOOCzPqyAiCuCDDoOCwGSIISAgkJAghCQlk38PNcpO79VLvH6fq9DndVaequ09vN8/387mf7nuWqupz6tRTz1LPISEEGIZhGKZWEs1uAMMwDDM+YIHCMAzDxAILFIZhGCYWWKAwDMMwscAChWEYhokFFigMwzBMLLBAYRiGYWKBBQrDMAwTCyxQGIZhmFhINbsBjWTq1Klizpw5zW4GwzBMW7Fs2bI9QohptuMOK4EyZ84cLF26tNnNYBiGaSuIaKPLcWzyYhiGYWKBBQrDMAwTCyxQGIZhmFhggcIwDMPEAgsUhmEYJhasAoWIbiGiXUT0QmBbPxEtJKK18nNyYN81RLSOiNYQ0fmB7acT0fNy341ERHJ7BxH9Qm5fQkRzAudcLutYS0SXB7bPlceuledmar8UDMMwTC24aCi3ArigZNvVABYJIeYBWCT/BxGdDOBSAKfIc75HREl5zvcBXAlgnvxTZV4BYK8Q4ngA3wJwgyyrH8C1AM4AsADAtQHBdQOAb8n698oyGIZhmCZiFShCiMcADJRsvgjAbfL7bQAuDmy/QwgxKoRYD2AdgAVEdCSAPiHEYuG9c/jHJeeosu4CcK7UXs4HsFAIMSCE2AtgIYAL5L53ymNL6x/3PLNhAGt2DDa7GQzDMGVUu7BxhhBiOwAIIbYT0XS5fSaApwLHbZHbsvJ76XZ1zmZZVo6I9gOYEtxecs4UAPuEEDlNWeOeS/5zMQBgw/UXNrklDMMwYeJ2ypNmm4jYXs05UWWVN4joSiJaSkRLd+/ebTqMYRiGqZFqBcpOacaC/Nwlt28BMDtw3CwA2+T2WZrtoXOIKAVgIjwTm6msPQAmyWNLyypDCHGTEGK+EGL+tGnWVDQMwzBMlVQrUO4FoKKuLgdwT2D7pTJyay485/vT0jw2SERnSh/IZSXnqLI+BOC30s/yEIDziGiydMafB+Ahue8ReWxp/QzDMEyTsPpQiOjnAM4BMJWItsCLvLoewJ1EdAWATQAuAQAhxEoiuhPAiwByAK4SQuRlUZ+EFzHWBeAB+QcANwO4nYjWwdNMLpVlDRDRVwA8I4/7shBCBQf8E4A7iOirAJbLMhiGYZgmQt6E//Bg/vz5ot2zDc+5+j4A7JRnGKZxENEyIcR823G8Up5hGIaJBRYoDMMwTCywQGEYhmFigQUKwzAMEwssUBiGYZhYYIHCMAzDxAILlDbicArxZhim/WCBwjAMw8QCC5Q2ghUUhmFaGRYobQTLE4ZhWhkWKAzDMEwssEBpI9gpzzBMK8MChWEYhokFFihtBOsnDMO0MixQ2oh2snj99c+X4/SvLGx2MxiGaSDWF2wxTDX8+jnjW5kZhhmnsIbSRgg2ejEM08KwQGEYhmFigQVKG9FOPhSGYQ4/WKAwDMMwscAChWEYhokFFihtBJu8GIZpZVigMAzDMLHAAqWN4LBhhmFaGRYoDMMwTCywQGkj2IfCMEwrwwKljWB5wjBMK8MChWEYhokFFihtBL9gi2GYVoYFyjhj88AQjr3mPry0c7DZTWEY5jCjJoFCRJ8jopVE9AIR/ZyIOomon4gWEtFa+Tk5cPw1RLSOiNYQ0fmB7acT0fNy341ERHJ7BxH9Qm5fQkRzAudcLutYS0SX1/I72gUX/eT+57ejIIC7lm2pe3sYhmGCVC1QiGgmgL8BMF8I8VoASQCXArgawCIhxDwAi+T/IKKT5f5TAFwA4HtElJTFfR/AlQDmyb8L5PYrAOwVQhwP4FsAbpBl9QO4FsAZABYAuDYouBg2jzEM03hqNXmlAHQRUQpAN4BtAC4CcJvcfxuAi+X3iwDcIYQYFUKsB7AOwAIiOhJAnxBisfBGwR+XnKPKugvAuVJ7OR/AQiHEgBBiL4CFKAqhcYuLjPB0O4ZhmMZTtUARQmwF8A0AmwBsB7BfCPEbADOEENvlMdsBTJenzASwOVDEFrltpvxeuj10jhAiB2A/gCkRZY1vKlA6WEFhGKbR1GLymgxPg5gL4CgAPUT0kahTNNtExPZqzylt55VEtJSIlu7evTuieeMD0l4ahmGY+lOLyetdANYLIXYLIbIA7gbwZgA7pRkL8nOXPH4LgNmB82fBM5Ftkd9Lt4fOkWa1iQAGIsoqQwhxkxBivhBi/rRp06r8qa0B5/JiGKaVqUWgbAJwJhF1S7/GuQBWAbgXgIq6uhzAPfL7vQAulZFbc+E535+WZrFBIjpTlnNZyTmqrA8B+K30szwE4Dwimiw1pfPkNoZhGKZJpKo9UQixhIjuAvAsgByA5QBuAtAL4E4iugKe0LlEHr+SiO4E8KI8/iohRF4W90kAtwLoAvCA/AOAmwHcTkTr4Gkml8qyBojoKwCekcd9WQgxUO1vaRcq8YuwLsMwTKOpWqAAgBDiWnjhu0FG4WkruuOvA3CdZvtSAK/VbB+BFEiafbcAuKXCJrc1LkKCo7wYhmkWvFKeYRiGiQUWKG0EL1ZkGKaVYYEyTmHZwzBMo2GB0ka4+VBIHssShWGYxsIChWlZlm0cwCduW4p8gYUjw7QDNUV5MY3lcDNjffInz2LX4Ch2D47iiImdzW4OwzAWWENpIyoxY40n4cOh0AzTHrBAGWfw2MswTLNggdJOjCOtg2GY8QcLFIZhGCYWWKC0EYebghL1DgOGYVoPFihtxOH2xkbBEoVh2goWKAzDMEwssEBpIyoLGz7cDGQMwzQbFijjDGUdahVxwoKNYQ4fWKC0EW4+lNZyONQmT1gYMUw7wQKFqSu1iAQljIi98gzTFrBAaSMO1/k6Z05mmPaABUobUYk/olVcF7H4UFrktzAMEw0LlHFGi7lQYpEFLE8Ypj1ggdJGtIrWUQm1tLkNfy7DHNawQGHqShz+j3YUpAxzOMICZZzSKo7smjQUeXKr/BaGYaJhgdJGOK1DqeDYdmE8/RaGGc+wQBlvtJhXnoO8GObwgQVKG9GOpp9a2uxy5q7BEYzlClXXwTBMfLBAqYDVOw7ggee3N7sZTrSK6IlFQzEUki8ILLhuEf72zhW1V8IwTM2kmt2AduKCbz8OANhw/YVNqb8SH0qrEMs6FEMh+YK348EXdsRQC8MwtcIaShvRKlpHJdSyUt52akEekGgxvxHDHK6wQGHqSj01FB+WJwzTErBAaSPaM5dXLedGn1xolR/JMAyAGgUKEU0ioruIaDURrSKis4ion4gWEtFa+Tk5cPw1RLSOiNYQ0fmB7acT0fNy340kX+pBRB1E9Au5fQkRzQmcc7msYy0RXV7L7xhPtJz1J5awYX0hBT+9PcMwrUCtGsp3ADwohDgJwBsArAJwNYBFQoh5ABbJ/0FEJwO4FMApAC4A8D0iSspyvg/gSgDz5N8FcvsVAPYKIY4H8C0AN8iy+gFcC+AMAAsAXBsUXOOVdpyP1zP1itJQWk6IMsxhStUChYj6ALwNwM0AIIQYE0LsA3ARgNvkYbcBuFh+vwjAHUKIUSHEegDrACwgoiMB9AkhFgvPxvHjknNUWXcBOFdqL+cDWCiEGBBC7AWwEEUhxABoFfFTz4WNQi4/4RdwMUxrUIuGciyA3QB+RETLieiHRNQDYIYQYjsAyM/p8viZADYHzt8it82U30u3h84RQuQA7AcwJaKscY1b2DA5H9sIanpjo/o0/BjWUBimtahFoKQAvBHA94UQpwE4BGneMqB77EXE9mrPCVdKdCURLSWipbt3745onjuxvDSqupqbVG+TcAwbZnnCMK1BLQJlC4AtQogl8v+74AmYndKMBfm5K3D87MD5swBsk9tnabaHziGiFICJAAYiyipDCHGTEGK+EGL+tGnTqviZ5agFda1Iq83W4xC+phJa+DYwzGFJ1QJFCLEDwGYiOlFuOhfAiwDuBaCiri4HcI/8fi+AS2Xk1lx4zvenpVlskIjOlP6Ry0rOUWV9CMBvpZ/lIQDnEdFk6Yw/T25rCPkmaSitYsaqhHquQxG+yavFpCjDHKbUmnrlrwH8lIgyAF4B8DF4QupOIroCwCYAlwCAEGIlEd0JT+jkAFwlhMjLcj4J4FYAXQAekH+A5/C/nYjWwdNMLpVlDRDRVwA8I4/7shBioMbf4kwrayitJnTiaQ+HDTNMO1CTQBFCrAAwX7PrXMPx1wG4TrN9KYDXaraPQAokzb5bANxSSXvjolkCxaVWFabbKoKlEWHDLFEYpjXglfJVUGhStnQXIdEqgsSnju+UZ6d8OSPZPOZcfR9uX7yh2U1hDkNYoFRBs3woLrRay2oKG/ZfAWza732yD6XIwKExAMB3H3m5yS1hDkdYoFRB80xe7aeixPM+FP32wy2X1yOrd2F4LB95DMtWppmwQKmCdhjIWuXtjrH4UGxO+cNgEH1p5yA+dusz+OI9LzS7KQxjhAVKFTRNQ3FRUCo4thE0QkM5DOQJBkeyAIBXdh90Or7ZE4ote4fw/Jb9TW0D03hYoFQBhw27E0fqFeP+Bq1DOTSaw2fuWI49B0frWk80MqWO9ajWEK9vueERvO8/nmh2M5gGwwKlClpaQ2kxiRLHGxvNGor3We8h9O7lW3HPim345sKX6lyTGSUzXS9ni3UD5jCBBUoVNG2lvMN8X5R8Npt4sg1HJ4esNx0p7zEZyUY7xOuJEppWDaU1FJRxxdfvX4U5V9/X7Ga0BSxQqqDAJq+GYk69El8dgyNZP+S2lM6099qe0VyTFiChqI3ZND5fq6tzew4nfvDYKwCAXL55979dYIFSBa2Qy8s0sLTaQFLPSxVn+vozv7YIb/zKQu0+paGMNlFDUYOZTStrtjN+PJJOeh3s0Gjz7n+7wAKlClrBKW9LmNgq1DLA2c6N86ceiljf4QuUJmooOdnnEhbpWdRk6t2iw4cuqaEOjmab3JLWhwVKFbSCQLHRKgNKPcOGG0Uq4T0mzbzvWamh2JSxVptQjAdSyebf/3aBBUoFJBPe49wKUV62dCStQm2pV1QZBvNeg36rlCe+llAtK7ftx9Z9w1Wd6xpsUbwmLdYRxgEsT+ywQKkAKU94pXyDaZXUK7VOJC688Qmcff1vqzvZ0ZQVj0YocPezWzCaY58BUNQK2+G5bzYsUCpALaBrVrBHUEiYnfKt1enr+cbGRv1S9ROaGeWjBjPboKb213LZH161C39753P41sK11RcyDmFzoh0WKBWgNJSomeo9K7biyZf31L0tVpNXi/T9RqyUrzeqmmy+eRfVtsjTPy6GuvYPe87nXQdGYiitudz25Aa8P6YV+2zyslPrGxsPK1SETdQs8TN3rAAAbLj+wtjrrySXV6sQlwlGu732ot3qlzU10ymranbWUGqoq51MuzauvXdlzWXQOLoe9YY1lApIUHOd8kFsi/2a30JFHU1eDXrA1e3ONevNanD/rXFckvG42j6OxchNvP1tAwuUCiAHk1c9EaHv7eJDqeXk6DKK22sbAe2rz2uf9deKq4bit7WOvquayxUCq7YfqFPpekZiCDBgDcUOC5QKaH7YsL3eVuvz8TTHZvKqrZZG+CVqRbXR1vXiaKvKWFyvvnTjonV4z3cex4vbGidU9g7VsiixvtdjPMECpQJ8k1cL9Cx7+Gjz2wjU9hA2aqW866y/uZKlwiivGmryMxvXUEYUD6/aCQANCUue3d8FANiw51DNZbGGYocFSgX4zsoWMHkZj2mxTh/LGxuNJq94fqt11t8Cl9Rvo6Ut7WDnV6v+M6n6Dz+dKS9tShzCgAWKHRYoFUAtpKGYaInJdIB40tfrKQqC2nwo9ll/dDsaget9jUOAq35e78lJI4RfMUKruWUcLrBAqQCXdSj1JJxt2HCMZX+jqWcur7gCEFzNh83U/oSjyct1vUoUru9eqbp8h/D7uImjrlbT/lsRFigV4LIOpb6419sqXb+mbMP+4GiRnjVi9dXEU01NFJ3yjfEreYXFWFYAJbAaoekXAwziMHnVXMS4hwVKBSiBkmviimmFLWFiq8ymanPK17bfFbsPpXXChm3XsxCDNlXvdSjF1xk37orWkjWHc3m5wwKlAlTW2WZ1LDeT1/jr9GYfSlxO+fqbkWpFDb62wT7WsOE69aXieq66FK+ti53yjYEFSgUkmpwc0oVx6ZQ3RnnVXjYACMv9bCdTR5xhw3E4zXVaiBJYjfRFxrLQs436QbNggVIBtnUo9VbhheG79pgW6fyxhA1bFzbWhutrdZup/akmkiWiLZbUK7UX4aNrTzNMXvFEebXIQ9XCsECpALKsQ2mJGZdo/uAXJJZnsO7rUBro6K6SgqvJKwYVtbiwMY7JgJmGOOVjDKRpJ021WdQsUIgoSUTLieh/5f/9RLSQiNbKz8mBY68honVEtIaIzg9sP52Inpf7biTZC4iog4h+IbcvIaI5gXMul3WsJaLLa/0dLtiSQ9b7Aakk23CrLHCr5YrYc2x5n7U6kW0DRSvMTIsaiuW4WGqLL9WI7toVndy1l+/ejjjKaH4/aHXi0FA+A2BV4P+rASwSQswDsEj+DyI6GcClAE4BcAGA7xFRUp7zfQBXApgn/y6Q268AsFcIcTyAbwG4QZbVD+BaAGcAWADg2qDgqhe2tN71HsSDA6zR5OVPUFuj89eiRYiSz/L9KqKp6irk+W4FNNUp73ic0p7rqBhWVoauEKU1NECi+Gtqaol6izH0eLxTk0AholkALgTww8DmiwDcJr/fBuDiwPY7hBCjQoj1ANYBWEBERwLoE0IsFt4d+3HJOaqsuwCcK7WX8wEsFEIMCCH2AliIohCqG37YsOFBaGZ6c0VxAVyTGxIj9XbKt0PqlWKUl8WHEkNdRR9H7WVFayiN9KHEYPJq/uPd8tSqoXwbwD8CCF7qGUKI7QAgP6fL7TMBbA4ct0Vumym/l24PnSOEyAHYD2BKRFl1xWbyqruGEvxuGWQXvrgTL+8+WN8GORDPTNkUBBFD4WjMa3VrxVlDiWMdSsW1molqRiN9jnE8m2zyslO1QCGiPwKwSwixzPUUzTYRsb3ac8KVEl1JREuJaOnu3budGmrCX4fSJB9KCIeqrvrps/Vvh4V6hg27OqpttINT3nlsjyPKK8aVjbrJQCPfCBlHhFar5PJavmkv7lmxtbmNsFCLhnI2gPcT0QYAdwB4JxH9BMBOacaC/Nwlj98CYHbg/FkAtsntszTbQ+cQUQrARAADEWWVIYS4SQgxXwgxf9q0adX9UoktbLjeJq9KnPKtQw0+FJspquqSK6unFWamamC2DfVxDHoiRo1M155i5FXt5bsSz8Smuf3gA9970n/FeKtStUARQlwjhJglhJgDz9n+WyHERwDcC0BFXV0O4B75/V4Al8rIrbnwnO9PS7PYIBGdKf0jl5Wco8r6kKxDAHgIwHlENFk648+T2xqCSUOpv8lLaL+Hjmn+2BeintmGY1vY6Ci4agowqLGxfpezrpSPL9Q3Hqe8uZRGmLziXSlfcxHjnlQdyrwewJ1EdAWATQAuAQAhxEoiuhPAiwByAK4SQqg37HwSwK0AugA8IP8A4GYAtxPROniayaWyrAEi+gqAZ+RxXxZCDNTht4RQfdKkoTTS5OWSeqVa08XQWA6/WbkTF516VM3mj/oOSvFcb9cXbNVyLWqPRPM+XTWUWqpzyQe3f9h7A+LErrRTe4I0xylf/bmcy8udWASKEOJRAI/K768CONdw3HUArtNsXwrgtZrtI5ACSbPvFgC3VNvmalCDtSn1Sr7eSSNdio+hCV+7fxV+8tQmHDGxE2ceO6WmsuqpocQ1Y3R9H0o967DhqnnEk2LEHnr8hv/3GwDAhusvtBRWvqmRK89VyC/n8moMvFK+AnwNxWDbaqiGUuH2Stg9OAoA2Dc0VnNZsdidmxw2HMu7NGo9X2kotrDhGC93/cKG1TqU2st3hXN5NQYWKBWgOtRoziBQ6mxkdVJQAr2+WgNNOul1i7EYNK56XpH4XrDVDhpKZfXUUl0cCSYVUWU0cgJWy7PZjBeCtSssUCpAdaeDoznt/lbI5RVHn88ogWIQnJUQz4y5vgEIru9DqYWai1B+nHrXE1MZCq2GYsmJFydxhvyyU94OC5QKUAPLoSYJlOCz6WLyqtaHnEl53SIbQ57+WKKOjAEI8WD1ocRwX2t2yjseV9Quqq8wjsWRpWUFaeS6jjgd6qyh2GGBUgXDWf1AW+8O5zJIhIROlc1Jx6ihxDHqm7MCNCbKqxVMXkqoNeIFW7ES0aCGmLwovkSXzV6H0g6wQKkAm1PelOOrnm2pB8lEfC9Aqqcdvh7rUHSDRks45eWn/X0oMfpQ6mQmakayRV6H0hhYoFSA0hBM75QPDsD1eFjCJi+DXyG0DqXG+mo73Sujjg9hXE754GCjGzTqFe1UCa6nt5oPRXePiq8AboAPRX62gpZ5OMACpQJUfzKmr7cMTI0gjj4f5xv14vGhNM4pXzcNpUbroa+hWCYJcSxsLJZRn1l9IwVKsR21RHmpMmJqzDiGBUoFqP5kTF+fDwqUOmgoxn/0VKuhJGK1O8dQhmG7ug21pjIM3itdXbHkx6pxcHZ+Z0uMArxe75Qv7qu9/Dja0cgyxjssUCpAdShj+vpAh6vH7MulQ8fR6VU22Hq/Ata5jHo75QvRE4F2sr/79dRQX5xN1V06W5LVOIk1bLhFVJRWFmwsUCrA11CcfCi11bXrwEj07K7C7ZUQZzbYeDq/yV8UtTfMSDaPv7x9KTbsOVS2L2zy0tQTc8hpNeW5r5SPbyZez5BvoA1fsNUi43gjTYWVwgKlEuR9NL5T3jLTdWXtzkEs+Noi/Oj3G3TVe9+Ns/bid1tEkInia1OrOr1xVNC+J1/eg4dW7sSX//fFsn2NCBuuNZzbf/eLYz21CAO/jDo7shs5468pOWQDc4+50MLyhAVKJRR9KPbUK7V0vk0DQwCAx9dW/kKwWCKf2sTk5TrIAsCIXDvUkSrv8uFgijo55S11WM93Pq7+M/FKtCD9wka7BjySzeNt//IIfvLURue69PV7ny2R7SAmWkWw6WCBUgE2H0o+NGhUX09KLiwsc/4HZ7l1TEcSp1M+loWNMRQ9mvPelKATKDbtIY5BKXhmNX3DtWo116nl3tmEUiUml6gjo8o5MJzFpoEhfPGeF5zr0jdABhjUeaX84EgWp375N3hy3Z6a66mlHc2GBUoFFDUUB5OX4ZiBQ2N4cduByHpSDgsLXdKRVGtrLZq84tBQ6jczrKR5o76GkizbZ4vy8qOeavgpNi3Ihv/GxgaslLf9zkoW8Eb1oUhzWExmN1VObe9DsWtUq7YPYt9QFt9c+FLF5RcKAn/6g8X43UtuFgn2oYwTiivlq/eh/OkPFuO9Nz4eWY9aqV764FY6OFebi6v1woYN2lgF10Ndi1SyfEQOXuYok1ctM0Ob49+Gs4biO9RrwFJZZQJFt81+PeOKAIvj3pWWpcNfu1VFuYOjOSxZP4BP/+xZx3ZUUUmDYIFSAcUXbOnvqMvCxrW7DgIwJ5gEzBpKeKW8oY2BHWNVChTXUMvNA0NYvmlv5DH11M4rebDUIKiubbicgIYSYfKq5UEWIS2o+oKsa4tiuN5WDaWCfqUrS13vqGJcHfbb9g3joZU7jPvjDDCoV7hucSGx2/GtEr6sgwVKBdg0lGA4sanzqfFscMQsUHwNpSqBUKw3W2VyR9/kZRmdvvfoOvzNHcsdW1M9xgetIuew95nQCBRhkdRxZN8NnlqdD0WavCwhCHEGEJhKqiRpqK4PFf081ZnDgvzx957EX96+zFpObe9DgSwj4piqSw8KPbc2sg9lnKDuo9GH4qChkMOiLrWnzCcfMpsYzEAOWowNcjR5DY/lMTyWjzwmHj9M9HaXGtSsLqmZ4geD9nQPq9oU9SCPZPP4yA+XYPUOvX+sVh+KnxXANfVKTAEEOkwvmNO2R3OoTdMv3Rf1W3YcGJH1RLe63iYvvy9WtcZImeVc21FxFQ2DBUoVGE1ege02G3DU++ddFpa5OKqrfYZcc3nlCgJZy1sd49FQooWny+9csv5VAEXtL4g19UrB/sA/u2kvnli3B9feszKyrQCqyuvlei8bETZciSlV75Oy1xPct384a63H9LzFkTnZRYNQ1olqqsn7/Ys1lMMK1aFM61CCmottxhQlcEzPq0s3Cg4o1Q4uvlPecly+IKyO//r6UNxMUS/vPoiHV+0CoDd52ZJD5oX9gfdTslvaaivHhB/lZTkujuSQtutpM3nZ+r6LU77SNEamY1y0Sxvq2kc1wzQmKO5+dos2SwNQ7F+uLWSBMk5Qt9HFKW+652pAML1TpbScUP0OHSkWDcXSDkU2bxco8egohpIdB4sDgRmuzikfXnRorieqGio6nrQEN1clUFxPicWHEr3fJlDyFuFp80WW7nMRKCYzdCwReoVwWTr8KEJN/xoey+Nv73wOf/7DJdpz/WIdm8hhw+MEqw+lgpXykREuDmq60eQVKieyCUZco07yhQKyeVH3jLK232p7wFKJYjdP6HwoQSGscyI7aSjm8wG70LLhPntV9ZmPWb/nEBa//GpEXRYNxTKJsOW0c7mewX0uYcomE3Jx0mEtwoiLj2Ms5+3U9a+NA55msufgqPbcSk1eLaygINXsBrQT6kETwlPrS80noVmV1f8QoaHUYvIKHVRdzyNHk5d60HMFgbRmfUf1LSgtI3qQtj1gQb+JzYcSFeUVvQ4hOpDBZlaz4mgWcSn7Hd94FACw4foLtfttg69NgNsmVkUfSoRACTwDbhqK/qHxJ/8xBClElRG1zmnr3mEAwMSutPZc9ftcW8gayjgh2J90syaXlfK6Y0tx0lAcFvvV2u9sMybliDRlXwbcZlO/WbkDb/uXR4zmM1sZtnYGH3KNPLGuH4pnHUrgezXnOx4XdyJLfR22yVJAQ9GWLwVPJpi2AAAgAElEQVS0g5YO1OZDKTjUZcNlQqEEmk5DGc7KtD9p/XBbqVmOfSjjhOBt1HXgoFZi0lBc3lZnWu1caT+qOWTXcaYaZQJxCQz4/K9ewKaBIQwcGtOXYZz1200RQNiRrSsrPNiXH1DUhKI0FHW+ntrDht20sUpKVvnNTHUZ67BoW8HJlG6/2hIZmFKhyct0TBxOeZcJRVaavHQ+FDVR0gmbYLmuTWSBMk4I3kfdwxC040bN2gE3gaJpgbYthkOqnq26ROEAxVlZlGPepe9XuyjMdbAoWK6JdaW875Q112HLf+b6eui7lm3R5npzHUMqmURUsp4kiO23hDSUiOvtmto+Fg0lBu0yqr1qUpVMlA+pKohBZ24FKjdhtbDFi30olRHo5BqBYYtuCRI16zKtJA47j20trF5DcYlqAooPQqTJq4p6XctQ2+0CJfq+xJnLy9jWYB0R9/7v//s5AOX+DeF/umsPOj9fENN989tn1AyD3wWSMPsStQJcCejISVWgnQ72KpuGUluWA7t2mPUFSvk+X6AYNZRKBUrrShTWUCpAWDq5y6zKz1xahYbi0o/COaOqw3Utg1rUGK2h2FtRNBeZfrfNnBFdvu1tia65vIQwt8V3rJqEotB/d6Uac4gtGsuU2sdWlc2/YQ0b9o8z1xH2R1oaBHMYvqu2HYXLhKIoUMqFxpj8oSYNpdK2sVN+nCBQdOrqbmpoYWMtGophRhRatGgaZI3/uBOMZovCyYfi0AYlZI2L0wznuWoO4dQquv22WX+0wAHsi9PCwRKV3xjXexLcbVsjZLpv1jos1yOfj95f6cLGWjSUWAIqNG0qJesLDbPJy+RDqVRAtLCCwgKlEoQQ/poGbZRXaOYWXVaUQ9LUv5xMXhbzjWJ4LI87nt6kd5r6D6FNKHo/MsrkVcnDYl7t7G7m0RGaUddg8jLtB4pCy2RgstVhJaAlRREs25YWx2jyqkhARz8H2swDat1FRN/IOWj7oeMNv0X10doWNioBaD7G11A0HUBpghpZI8uvrD3jUkMhotlE9AgRrSKilUT0Gbm9n4gWEtFa+Tk5cM41RLSOiNYQ0fmB7acT0fNy340kg/qJqIOIfiG3LyGiOYFzLpd1rCWiy6v9HZUgUAxB1d3UShyJUbm8ilFe4WOcVsobvpdyw4OrcfXdz+PRNeUv9VHn2epTvzFqJuzyIKuJm22WWUo12VltAiPK5BXVFtu6IxenfOQL1SJLDxwXONCmoVjXbhhqtQnooPlJV4JLKpvgs+S0sNFwjBKqtczqXfww6lrrjlDtN53u5JurwD/bTGrRUHIA/k4I8RoAZwK4iohOBnA1gEVCiHkAFsn/IfddCuAUABcA+B4RqdfnfR/AlQDmyb8L5PYrAOwVQhwP4FsAbpBl9QO4FsAZABYAuDYouOqFEEBaet1sJi/j4GAZPIPnRvUbs63erePtGvSytB4a06TRl+fZBkn1sJaaTlxMREGK6Wj0B9vyNJXWWYpNYNiumZuG4m03ZQMOnxY9m44q33Y5g7/FliLFpMHYVoaHNGVNFTbTr/otUfKukrx4pceHtuftGsoF334MV9z6jHG/OjNKk/jJU5tkPeX78v7vNfRvJ4FS/G76LfmCwL8vWouDEe9aqjdVCxQhxHYhxLPy+yCAVQBmArgIwG3ysNsAXCy/XwTgDiHEqBBiPYB1ABYQ0ZEA+oQQi4XXk39cco4q6y4A50rt5XwAC4UQA0KIvQAWoiiE6kZBCF+g6DpwJdmGI1NhO81kDIOBQznBfbr3a/gPkKWfm6K8XM1upZjMFuZQ3PK22I7TDU42DcTFoW7TSF1Sr8QRLVeJhmLab0u6Gdyu11DcNL6ovhEsIw4NJer+rN4xiEWrdxn3u/jqVEZkXf/KSknkkqXchMurMR58YQf+beFL+Pr9q6zl1YtYfCjSFHUagCUAZgghtgOe0AEwXR42E8DmwGlb5LaZ8nvp9tA5QogcgP0ApkSUpWvblUS0lIiW7t7t9s5mE56GYjZ5hW66pZM4OeU19RePMTVS+7X8MCVQIlaOu/6G0oEpeJbL7Mt/R0ylGkowjNvRfGJbh6I1ZTpoKPYJhL68IFF9wsXsUlqPzYdi2q9up4t5T+tDsWgoLrmrKk8OqReOWd+HYi3CSCVrWbS/Vwk1h4mRCZcsHOoaHIh4eV+9qVmgEFEvgP8B8FkhhP7tQvJQzTYRsb3ac8IbhbhJCDFfCDF/2rRpEc2zUxDC96HoOrDLQ+Bn8nUyeYWPcZmRu0SCBY/TRTJW6pSPMnlV8iCbBgWzD6X43VlDsTjlteHgFZi8TISuiUFxiHpDp+urCEJhwxaTlzFs2KKh2DS+kIYS0caoexa8D9VqKPmCiGkdinsZUabwSidMujYAZsGU9F8dXkOemRqpSaAQURqeMPmpEOJuuXmnNGNBfipdcguA2YHTZwHYJrfP0mwPnUNEKQATAQxElFVXgj4U3T2rLDmkfTZavr2yWZubD8acfdcaqWbI5RWysVfwILu8FiCI6/WwrUMJbtOZnSpxytcS5RXplHe8jMHDrOtQLAOcUQm2TBhsb1t08RFWmstL91uCmnMtjmzbBMt2PWzRkC5tC0fO6Y/xI1Atmmk9qSXKiwDcDGCVEOKbgV33Arhcfr8cwD2B7ZfKyK258JzvT0uz2CARnSnLvKzkHFXWhwD8VvpZHgJwHhFNls748+S2ulIQAhnfh1L+sFb0gi2H96GUliA0x5QSsvdH1B+5z59Bug1I5SYv9+sAuER5mbSxIq4CRR82HBAomnKERSDZ6gdKNUf9Mdla7DJ+2e4aikng2HwctusZfg7M5UdqKIFBMeo4PzeeZhANCxRjEVZsJq9gCpvIMGmH62lrQ7C8UlQeMReNrl7UknrlbAAfBfA8Ea2Q2/4vgOsB3ElEVwDYBOASABBCrCSiOwG8CC9C7CohhMpO90kAtwLoAvCA/AM8gXU7Ea2Dp5lcKssaIKKvAFChGV8WQgzU8FucCGootrBh000tJoc01+M/pCVFuMzIXR3iqqyo7Lu2iY4pbDisnkeXoSsv2D5vu/5411msTcOwmRJtqURK26LDKUrH5bXQluvpUk8yQcgXhHXGbKortA7F8hzoinBxcoed8tUtbBzJxqShWMoYDPgstAJWafIOJi9TupywHzB6bKk5KWwNVC1QhBBPwKzhn2s45zoA12m2LwXwWs32EUiBpNl3C4BbXNsbB2EfimbgcRzMAZuGot/uMli4zISD+yjihVNRNn2g6PCMcv5W0rlNSQXNM7vid1envC31itY35iIMLGNeyOxmOCbr0CdsvhQXIZskQh7CeH9tM3JbGLYtbFhllY4UKI6TBYJ3PXXHjGSL2ZRrGWNtAjbYZ/QmLzlBc9DAt+4bxuz+bs0x+uODVPpelXrAK+UroCAE0gmzhpIvFHyTWCUvISrFn42Wbg+dbzo3stqysnQzAtVhH3hhh/H8QsDhWaqhuDixgxS1tmI5LhFz7k75YFnR5ehm7fmCfaZrd8rr2xOuJ6JPOA4ToT5imcmaTF6moBC/Dosgj7L3L9+0t6yeqDbYjlPoJgLDAYFSTx9KsM/orplVoASaPjSmf6WAS24z2wLKRsACpQIKAkinIsKGCwKZlJtAic42rH+gXWafrn3JJLS8fcXvulTqQLj9pTPd8OBpb0sxl1dxm4uZyd0pH/yu0VAsg1dom6GaStYdmQZql9cA2AaLgoMgVtFAZpNXdF22CUM+YoBV6zWC9ehwFShRIefDgcG52nQlLguFbW3NW9ahBPvOkG6hcUk7TH0tarV+o2CB4oi6oVE+lHyhuE7FaOe0JEIEzH4HJ5OXAGb3dwEALj/rGGMd6mzbugvTIBecEY6VLmwMfK8sl5deE3ByDrtqKBEmidLvurKNUV5yh86ECLgJ2ThSrwQPjDJ5ARFh2hYnsk17jHpjYyqQ0CqOhY0UcUzYWW4sIhKb/620bt1vyvo+lOjrDURoKA4TkmZGdylYoDii7mHUSvl8oRC5P3Ssg8O89Ai3gVpgQkca6SShu8PsIotS44PblMZVSvD3RZm8Kklfb0pd4xLRFilQLD6UoOlH59tyaYvVKe8Q+ZaNmNn7GkpkLW6CWF1vk+/LFGWosL7vJKINwQSJUdes0uSQumNUlFtHKmFeVFiBf80lwk/XVFvqleBmk0BxE2yFyHY2AhYojqiOVVwpr3feqgHYGjbskhyy5BAXtVcIb8DQpVQJHSc/tSlkAptMfTP8dspaTV6yTIOd2Mkp72jy0l23YHitbpB1ESiHRvUDgX+eJYV+aT3l7XAbJMJmQ/0xKorIpH3akjfaTDxRb2wMpnCPjHR01VAiQs7VK467MknjbwkGQlQb4RcKT464HrWYvFwSz9oyIzQCFiiOqHtoy+Xl6kOJfJ+2g8Pd6KhGMHzQXL+fAFBTTmihn0FND/7+UpNX+DXE7p08tPYgZM7SH29bD6E7TnfZggLFllLHVM0ND6421l/aBrPJIrg6PPyjbY5yXT3GFdUU7UPxT3MQfDafVOl+mwNbW4eLhqLpJOq+dqWT5nQlwYmRRTi6CFjdMcUElfrfEtz2W0NOMRfNU9XDTvkWZ8veISxatRNA0Qasn5kForwMN9Ul7UTR5BA+JjzQR8zaQNYXtaui9Otpit9Ns57ggFf7wsZyv5JttXUpLteTSP8wqpksYDJllpcVpNLXCrjY4rM5YdwXRSiE1XCOr6EYJgu2hXi2d8aHAzaK3wcOjeEjNy8BABw1sTN6YaOzD8Ucxq9MmV3ppFG4RplugbAm7uZDid5vW1h7zwp9wg8XLdmP8mqiW57fKe/Ae7/zuJ9wLSo5ZKFgN3mpzuAS5VV+rv2Y8CuAzXWofTanvGmtQi7C5OVi7w2ic6y6ONwrdcqnEwm9DyVXQDpJyOaFwYcSvc4g6IMxvebV5b6EhHRJO9T1tl1OU6RcENVE28JGF9OcdoAMaa/FBm0aGPK/d0YM8qVluOSm0v3WUbmwsSOddMqfprsewXti86Fkkgl91FvJRCmdNO8/Y26/tg5b6DvAJq+2IZi9M+oFW3lRTG9vmxFFzdxVCo5SP0jwDKMPBcqHgsjRx9dQtDOm8vaWEmXvr/ZlQHmDPdt0qZwFiiw2mSDtwziWL6BLPuXV+FCC4akGeeLkVwoL6VINRTbccjldXqGgNpt8KMUAAPu915p4ggIlYE7szhRH0o50MtI0kysIt1QiUT4UX0PRD/Sl5+k0NjfNwDsvk9LXk8vr+3VpuSfOmBBaOxM+JtAmNnmNH5TJy/Qg+bm+NA+rEMXFgNEv2NLHrbumXiGYX/QUPM5UTrAec9iwfhYKuAm+EHWO8lJtSCXJ6JTvkRFxJsdswvdLaQRKcAGd0d8T/O4wuOX1GoqNvBD+vbdpulv3DRvaIW3+ht9i828EJwZjhtDdjlTCsrDRi5gkip58qfui66e+DyXKKW/VUOyagfod6aR+wpK1+GnUpp6OZGhyoqsDiFjHZDFVNgIWKBVSNHmV73tu8z7/u22m62I/Lu0YwmFQEoAvTaK6lZp92sKGTe0MpRePiPJy6tsa4ea2DqX43SXzQCapH8RGcwV0ydmzPqVOUfPUVTMayBllfudF9CBcWndpO4r28WgKgUmNrS07D4zo22ERXrYIrOD+MUOgQWeE1uCV4SU7TCXI8u4gWY8mEWbQKW/sxxFaYek220QgbTB55Qyad+m2no5URNhw8JnUHuI/h22ZbfhwJWV4WJUwWfzKq0gnyZqNOFKgGN4yF3qhlGkmXBBIyrDhyPehKE3Jkq7d6JQPbI80eTk4UXR+JRdhUelK+UwqYZzJKnOM1oeSDwoUvUCytSOcLyzaZFH6PXjO+j2HtOf69YuiQDFde9XGg4YXMdlmuiaTlm7/aEB7C/aZjpQ58sprYwGJBCFBZNFkvH26+6qCLTrSSaOZMXjvdCavsA/F0Ab5u8wmr+h+qs7p7UiF8o+FjnEIozdl/24kLFAqJC117NKHYV8gpUQqkdAOxC6DCmCOsnFxyheEQDJBziYvm4ZiChs2zUIBt4gmaI4xaXBOPhSHsOG0QUMZyxfQnfZMXiYNRfnOtD6YwKDkElpqmkFGCemggIl6Z3iuIJC2hK6rvjNoECg2W3zwN+oESnD/aEhDKW73NBR9+YC85hYNRQgRECia+yqDLdIJMt6XYPv1edzcNRTPKW/eX1qeX26FGootdc9zW/bj18/V/fVQWligVEjSEDYcvMlexFD0zC1qdpYz+lCK300DaL4g/DDcKHNTVJSXEEXTnnHwczR5udhzVVtM5oWak0PKfR2phPb3jOUK6O5IlrWhWDYsGoo9CWE4iMHulyoV5MF2DY5kYaJQEEWzrGlGLds4anhfiqrLxe+gSzAZHGDDA3bxe0cqOsorX/DSuKtU+6ZjFLrfMpbzwvijtJzgvdNqrw4v6Sr6UBL6hY0R64uA4n3q7UhhOJvXCgyX7MvBPvK/f2CB0rIEZ/sqOWSUfyOdNJtWFFEaipvJK0JDIds6eUQGBxQCPgPj4Bdl8gquQ3EQKP47t41RXqbfWvyuUqJHHZdJJbQP9GiuGOVlTKmTMAvpsMlL34YojU4RbFvpTDW471CEhpIvCGvouuqHwcE0iO097MH3jOjKUPezK5M09vmejmiTVy4vNRSDVllankkYZFIJJBJkvRal5SmUCSpKsNmivLKhe1J+vmpbrwwMCV5fhctrtXOFgh+kcMKMCfqD6gwLFAdSgVjQnow+Gig4iKaTibKFaYCbaQQIOuXD211m/gVRXAsRNZSrfdqVu6L4ALiFDUetQ7ELFLXS3mQaMIe/Ckyb0AEA2PjqkPaYYBvSyYR+AVzOG3hSCTKsQymakaI0lKm9HW4OdweTV6mADJ5/MCLNS3AyYFojosoa1Qxc4Xbo2zk8lvP9NDqTl6q3K60XKHf91VlGB3awjKTUUEx9MCiYde0YzUqBQuZBOORD0QglJdgnd6e1Az0QjvLSv2CrgE7/eTKbCFWkoS502La41mu/wIy+TmRSCevrn+sFCxQHgvmH1Ew22HFueWI9Pn7rUv//dIq0Dj5XDUV17FKh5fJaVM/k5a0+jzR5aRzhwXo6U8oEpO+Y6kHUObpdZlNB1PmmhY2m3yHg3Y8JHalQWvRS/IVnKb1vayxXQEcqYRy88oXimgjdw6zua19XyinKyyWD86ulAiXQ7qhX+wZD13V9JNgvRw3tUO0z3buhsTwmdqeNbVF9sCOdCA3Yqi+lLWYoVUYyQd7LwEzpf/LR13QsX0BHKulpF4b74i5QMhgxaHSqz3RlksZIsU41bhh8dADQK82uunxeLlGP+YLn6+tIJYyThXrDAsWB4A08e95Ub1ugY/x48Qb/+00fPR1pg1PeltVWoWanpQ9BNnR+hMkrYTd5qeaZbOAqjNYU5aUcw5O60poor0B7HCRKTiNAXUKsC8JbH9LXlcaBCIHiP/DppPa67zgwgnTS01C0PhRb2HCFOaNcfCgDB0s1lOI5pkggVbYavHRtUQKgR5qjdPb6dbsOAjA7f4ezeUzq8gSKznehBHBHKqGdRKWSXvRW1IQnVyhqKKbJdvA6mkzMnuaZiJgY6aPQFGpdyOSejHWNSFc6qW1HtlBARzpaawSA3k5l8iqvJ5w5QNsMZPMFpBMJdKSSrKG0MmrAvOCUI3BEXyeA8E0Npts4+ag+afIqv6H//tt1/veoUNjlm7wQ5NIBwZYZFSj6UIDo1CvqATPNMDsiVHSgOIua3J2JfFWwi8krq/EZua5DISL0daUjNRTVvs50uVN+46teGO5Pl2wy2uu9dBne9dANsmo22JNJGTXPsIYSLXR6O1IYODSq3QeYnemAlwOsM2LwUnVP6NQLhJd2DhpNroqhsTwmdUcLlGSCykwv6jekEp4ZypZ6xfOhmDWU4OCta8doLo9MMoGuTNJorgoLvPJjlPmpvztjFOTqenWmk9p2hDV+nYnZ+1TmdF2kV97hecjmvcWgrKG0Cacc1ec7vYI3OPjSoM50EinDOpRgKJ9JICx++VV/9l+moeSCETwmtVcmW7SoKKpja2dUgVmuWUPxOv3E7nRZtmFbsrwgQgh/0AlrYMVjzCvlBQjAxK5ok1fwgS8d8IOhs16IqmHG7b84rbx8Ncud2J02hn3aHMjBY6ZP6MDWfSPafcH6dIxKMw8QraGo2XDpALjnYFGQmTSUobE8JnaZTV65gjepKYvyktc2lYyO3lJlJCjah5K1aH2jUkPpTCeN0VNhk1f5/qGAhjJiEORq8tidKddQhPB8Vr6GYpiwAAEfiqYPhSIgDddjJFtAZybpaYasobQubz9hGgDgU+84HkTkOfkCNzUR0FA6Ugmkk4nylO4B5k7tMc6Y1kpzA+CZjnIlan1nxGChtsvJdKRJQdmDTRqKmuWaHMhDUuhN7EpjuMTmG2yzTUMxOuKDQsnwbOTy3kA/oTMdvTYj75nG0sly04caAL71p2/QDnJCCBREdNjwb170MlFP7c0YI7CcwobzBaQShLlTe7B6x4GyfcdM6QagjwLyy855s1ST30DVrSKKSoVT0F9ounXDYzl0Z1KewNBl6A1qKJp1HqkEgci8NgSQGkpS+VDMM/Lid7NvTPk9ddfNtg5F9e3+njTGcgW9kPavabn5V/VvJeRNUZVExVxnQxpNKByaXrbba2s2j650AplUIrSgtJGwQHHga3/8OvzuH87xTVupkrDgscDNntCZRkYzcAGeyeXKtx2L9XsO4Yl1e8oGwXxB4Np7VwIArn7PSQDCM6hcwZuBZJIJY6SPqw9FzYJMM8xMKgkis8nr4FgOmVQCk7vT2Lx3uETw2WdTfl2GPEcuixZzMt9Tb0cqUqBkCwWkkglvfVBJe9QgM6OvE6kElQ0IwQie0nYpHl+7BwAwpacDw9m89t6rcnR1BI9JJggzJ3eVCaZsQeC4ab0AojUUL1RWDcT6/QAwQWkoJYOsMvGcfsxk44A/NJZHt5wJ68xARYGSLHk1gNJQEn6AhPHdMAWBZCIRqckEtUHdNVFhw11ycqSLngpu0/X1obE8UglCb4enkekc877W1+GleNFNjNQEzZQDMEnk+y11GkpwHDDdl5FsHl1p775EmUXrCQsUB2ZO6sIxU3r8/yeUDGCqI1zxlrkAPJW+dBaaLwiMZAuhjKu7B8N28uBLmoqzqmLnGst5ETyTutPYa1h34SUHJBkia+5UqlxdpE9OrrswBRcA3lqInkwSx03rRb4gQg+myyp3/zcZAg2C18806IzlBVLJBHo6kpFrM3J5gbRhkZwaIDrTSaQ1EWulM8woM43yK+je3pjNF7zIJ0P6F+8Yz1fTlUniUMmgki8I3yQSZR9XdvREIjoiTQmUUg1DDWbdmaTRAzc8lkdXJokJnSntansv5DdRNrDlAkJV+ehMA1++4KUQ8nwoJoHi1T2lJ6PVPkazUkNRA7VGoATbr+vrw3KQVkJJV4+6t51+IEt5sECUD2Us55mYVbYGnUAJjgMmgaLuS6lm2EhYoFRBb2dYoLyw1TNPKK1CZ/LaO+QJgMndGX9b6VqD+/6wHQBw/PRe7QM3ksujI5XAcdN68Yet+7VtK8jZjmktDOAN0Orh0mooeW+GGeUQ3T04iqm9HVq7bzB4wGbyCmV7DQwcwfeBD2fzWHDdw/ibny8vaacn+Ho6UmUDcOlxqWRCpsQJ/54ReV5XOonuTKpMGKjBW5mIohLvdchJwKMvlb91b3Akh96OlFZoKbbuG0IyQehOpzCWK/jHCSFwcDSH/m7zLFmhtAeTqajM5FUyQKpZf08mpV+kly9gcDSH7kwSE7sz2DdU7rvK5z2za6mTOmjyUj46k0AZyebRkUrKZ8kQGCLvVb8hAsvXUDLmgfrgaLH9Os1SDdKdmgmeX49cke+vzdEEIkSFDY/K57oz452vN3nZn6nhbB6d6SQ6SjTDRsICpQq6Myk89tLusu3Kzt7bmSoLY1XCY0pvBvd++uzQNgD47iPr/HTiI7JjqO8AsGjVTtz3h+3YODCE187sw8u7D5bN3JdtHMCGV71BKZ3Sp38BgDddt8ifjZlMXqkkRZpndhwYxRETO31NKmQ6sGRwDTI0Gjyv3Gw2va8Dew9lsWtwFPeW5CdSs/HeTHgALiVb8IIZUhYNxdM8w/dNPZi9hhl9EKU1fuaOFWX7Fr64Ez2ZlMyiUH5NXtx2AA+t3In9w1kcNcmLJNyy1+sP+4ezGMsVMLvf86GYNJQnX96D3YOjKBQ8v160QFFRWuGBR93Hvq6U9t7d8ICnRW8aGMbanYN4eNXOsnqGsnl0Z1JSgyleT1V3SmovuvoVB0aymNiVRlfanNL97uVbAHh9RDfQHxrNoTOd1Gr7isERT9MGUGYOBYoCulPTzxXK+a8WAwefKTW5Ur9XZ74dkZrUhA6l4ZZrfWoCmyCzD214zNOmeGFjm7Fq+wHsHcriD1v24Wv3rwIAnHb0JH//0f3d2DQwhP2B2VvQzt7f42kpQbPVvz60xv9OVLS5qs5zxW3ewsl8QWBSdwZjuULZ7O6D31/snx81swtG8ugEytBoDl3plNFsNjSWwyu7DuKIvk7fhBcWKMVzBkfN0VcAsHGgmD03/I4Vr7zpEzqNaVWy0imvtCST2UvNdlPJ8rBhdX270klpOivRUJSJSNZRKrR+8LuX/e9/+fZjtfWv3LYfW/cNY8eBEfR2pMpMnQCw4dXidZjS6/UPNSnZJY+f3teJ3o4UDhhyef2z9L+pdTW6e/fDx9cDMEd5FZ3QHcgVRFn/eGytN5Eayeb9+1V6f4akBtPXmca+oazfH3xzWkfSH2BHxvR99MBwDn1dKXRnksbIufuf3wEAmD25u2yg33toDNv3j+CEGRPQIxcM6tYqDY7kMFk+jzoNZd2ug5g1uTvwPJa3Zf2eQziir1Obrkj1tw5fQ5D7+i4AABvkSURBVNFHo3Wkk+hMez4jXa62Xz/nWS+mTegw5nIbDvpQOGy4/Rgay+Omx14BAHzwjbP87W+aMxn5gsC63YMAPPPQV/73RQDeYKEESulqaEWSyLfZqxncjD4vxcifzJ+FPjkYBAeWoPO7M+057nUz9tLBKChcFANDY+jvSctokfIylrwygMHRHN518gzfbjwUMnl5bZnYldaaRIJ89OanAXhpS0JmM2mum9HXgR2m93ZIp7waMHSO+UfW7MLdz27FhM6UdMrrfQad6QR6NdFiagDpNQiUr8sZ+1vnTUVHKomLTz0KR0tNQhG8Nq+fNbEsggsIC8N0ielk1wEpUCZ0YNqEDq1AAoo+ud7OlBeooPFvPPDCDr8soFygqLZOkX20VDuYJ3NEfXjBbD9QoXSQPTiaQ09HCvOm9yJXEH7k4uBoDp1pLwpS+SR11wLw+mlfZxqd6aR2EA8O/tMmeBpKUGPfKF83fPy0Xsyc1AUA2KJ5odjgSNY3Q+uel237hzF3ak/AYlB+zL6hMRw1qasoUAKmZtV2pQXptD5vwpMAERnv26rt3nXq60xr/VYbXz2EoaAPJfBbNr56CLcv3hCZ7y4uWKBUwTknemHEwVlR0DeiHhaVX+p7jxYXNB7d343uTAqd6YTvV3l2095Q+YkE+XHrqgPPndqDU2dPwvV//Hp/UVqw4wWFU08maTStbCrJebV218HQw/mfv3sZI9kCJvdkMKU3Uyb0Nuw5hI/d+gwA4LTZk9CtHrSQMPDKm9qbiVwf8j/Ltvjf3zBrYqjDqwdi+oRO4/kqPXlRQykfeD72I6+tq3cMIpVIlIViK8duVyZZFi225+AoHlrpDcDKiW3ySw35s+9UmaYUFMpzp/Zg677hskEyeJ0y/sDknfeDxzwtaEZfJ6b1mgXKXim8zzlhWpnDXAgRqvPko/pk28pNXplUwv+9B0tCwmdO6kImlcA7T5qB71x6GgDgUMkxe4fGMKkrjaPkQL730BgGDo3hpsde8fvk62dNBAA8sqbcdJzNFzA0lkdfV9qooSiN/h0nTkOnfN9JcBBV2sik7rSvgewvmdzk8gWs2j6IWZO7ZL2l2mse+4aymNHXYfShjOUKeG7LfqRkmDQQbodqu3pmdWbI/cNZ9Ml1PaZAhxl9HTj3pOmY0KnXUD8un8mDo7kyDeWZDXvxxXtWRmaTiAsWKFXwlYteC8Czeysm96T977Mmd4GoKFCULXzOlG6/Y07p6cDLuw7isZd2Y/X2wVD5Og1lcCSH/p4MEgnyH/Zgxwu+fc9bN0HYNzRW1oGVaUWVAQCbZft2DY7gejnj7u/OYFpvB3YNhrWDz91Z9A9M7e3wI2h+//Ief7saYGZN7i57iBUDh8bwd//9HABvAO3vyYQEinpwj5hoFij7hrKY1JXxBUpU6DBQvEdq4H1kzS7cvdzTXjpSSfR2JENC+tM/exbf+M1LAIBeOSDocrQBwLKN3qRACE+4q5n3L5dvwUduXgIAuPHDp2Hu1B4IUZ7MUk0u/ueTZ/mJKNXApPbNmtyFIyd1Ysn6gdDAtvfQGN75b4/6/18yf3bZwHTjonU46YsPAlBarvd7SgfrYekzmNrraTC7SrTDwZGcf64yd5YK0J3Sv3akvHdrdg7i509vAhAMo/XOVdtL6wCAvs6U50PRaChqkfCrh8aKPpKA+Uy9n2hiVxq9mRSIytP+L37FW0T8pjn9AMoXDyo/6fS+Tj+Cr1TjvvVJz4S4aPUuZKTGFjQTqrarvqcLQjgwnPUXivZ2pDCo6ccHhnOYO7UHfV16DUVp0GcfNzWkoQgh8PfyOTtykvlZigsWKFUwu78bx0zpDvk9gmHFHakkjprYhU1S7d51YATHTuvBwr99u39Mf08Gi1bvwmW3PO3bZ//izXMAeKlclBlnx37vgR4cyflCQM12BoaKA7A6DgBeO7MPyQTh2U378MmfLPO33//8dnz6Z16k1JL/ey5+8NHTAXgqOwDs3F+c+fb3ZLTmFWU+ADxNSnXkm59Y72+/ffFGAN5sfHA0px3o1bUBgIc+9zZfoAghsH84i5/JgUaZXhRqIBVCeAKlJ+0PcIsDQg0Afvj4K/73T55znD9I/myJV/bHfvQMXtl9yN/e25HGcDZffKNhoN39ckAIPsy6NTZvlL60Xy3fhvv+sB2f+8Vz/r63nzANpxzlzcyf2TDgbx8ey+O7j7yMvs4UTj+mvyyTb08mhQVz+pFOJvC6md75H/nhEv/8B17YgVd2exOF973hKABeHwnOZL/18Ev+9384/yTMmtyFZILw8u7iQtov/Op5/HjxRnSlk34AgJpsAJ52GhQAvRrNcCSbx/7hLGb0dWLO1B5M6clgzY5B/z6+Q2r3QUrf8Hn5LZ4ZtK8rja5MqszstvDFndgm+/uX/uhkf1IzlPXuze/X7fEjAmdM7PT76YGSgViZW980px+TutNYF7gWj6/bgytv956dGX2dmNLj9ZFXAylxnt+y3/dJdaWTvpaxb7j4XKqJw1ETveemVJsD1MQo7f/mfUNhq8DOAyMYzuYxpbcDE7vS/gQjyGiugDPm9uNdJ8/ARJnbLpcv4MBwsT41Sa0nbS1QiOgCIlpDROuI6OpG1v3xs+f63z9w2szQQAt4dt1fLt+K/cNZbBwYwpnHTvFtrEB4db0aXM881pspJYhwwvQJOLq/249sGhzJ+gJFOW0/9qNn8OPFGzCay/t+hv/967fgA6fN8gc+tYobAD7102f9792ZFKbKcm57cgOAotllYlcaZx03BdMndGLngdGQlrPrwCiO6OvEii+9GwBwrFxsd8npswEA2/cPY6mcrb/leC+R5qJVxTYIIfDhm57Cxd/9vd/euVN7ZAqXAlZuO4Af/O5lf4C8+LSZ6MkkfROJulb7h7MYyxcwuTvjD7Lf+M1L2LLX2796xwF89b5Vsm2z8E8XnOQLjm89/FIoYkwNdqW+GFUuAEzqziCdJCx8cSe++8g65PKFkHC55HTPh3bJ/Nk4Zko3Xto5iKt+Vrze6roeN60Hk7vT+MKvXsC/PrQaG/Ycwmu+5GkOasArOne9RXJL1g9gep8Sel4fWLpxrz/wBDUEFSFWqqEofwfg9c3OdBLH9HeHBMpPnvKExRETO30z0OaA4D/nG48CKPrdujPlwRBKG1c+mjlTe7B+zyF8++G1AICvfuB1/rGfkOu29gZm/U9vGMDzMiS+r9OL8hrLh0Oo/8+Pi5m958/p932SavLzhV+94O9Xk42+zjRufXID3vXN3wHwhJJi7rQevOPE6XhmfVHIr91ZtBrMnNSF/p4MiIA9gaSd7/uPJ/yAiTuuPNP/zaodew+N+drBAvlsB6/V0FgOf3X7Muw4MOJre7MmdWFbSdqdp155FQBw4hG9OLq/G9v2jYS0oEOjOazZOYgzj50CwHsXSq4g8NyW/dh+wLsfb5VJbetN2woUIkoC+C6A9wA4GcCHiejkRtV/udQmAPgDcxD10J319UXYN1RUaRXHTS1qNN9+eC0yyQROPtIbwBbM7UciQZg/ZzKefPlVzLn6PuwdyvqzpKDw+tI9K3H+tx7Dfy/dDAA46QjPafqLK88C4JlJnt20F68GnO/fufRUAPBny79asQ2/X7fHN5v98lNvxoTOtK8iX/+ANzCP5vJYsXkf3n3yDEwK+IxmTurCE+v24FfLt+J30ib+upkT8c6TpqO3I4XfvbQbB0ayGB7L49BYHovlA3La0ZPwWjloq6Sb1z+wOmSGSScTWPnlC/DViz0z44pN+5DNF3DqlxcC8Ew2mVTCd4R/Q2qNSzcU/VJqMFbvTgEQWtPy7pNnACgOPnsPjeG5zfvw86c3+8cMjeaRzQss27gX//rQGnz6Z8v9meJ5J8/ADR98vX/sGXP7sWLzPuggIt8v9N1HXvYHaQD4q7cfB6C4qPW/Hn8FS6Umo8xHpwaiCc/6+m/x9ftXYdv+ohZx8akzAXgD09Z9w1izYxC5fAHZvEB/Twb/7/2nBBrjRUpl84WQaesv3jwHPR0p9PdksHzTPt8hrPjun70RAPwU9q/sOYRCQWDtzkF/wFaD/DH93ViyfsCf8PQH+s07XzMdAPCblTuweWAIz23eh5UBM3JvZwrHT/cmLOp+bgloTD+8bD6A4vOwde8wsvkC1u8pRswp1GRs3a6DGBrL+ULpzcdNQW9HCnOm9GDHgRFfgKrJyNnHT8GxU3uQTBCm9HRgm3Ts/2FL8f7+0wUn4Q2zJ2Far3ePlEC5/amNxd8ihe/X7l/ta2SPrN6NB6WPTkXdTZ3QEdKC9g2N4TN3rECCgLfOm4Zjp/UgXxDYJKMjCwWBd3/zdxCiOAF66zxPC7zj6U2+QPvMufPKrkk9SNkPaVkWAFgnhHgFAIjoDgAXAXixUQ246aOn48rbl2HB3Cll+2792AK865u/8wfHBXP7Q/uvfd8p2HFgBE++rGYfE3D0lG785nNvw1wpbP5swdG4+9mt/jnKn9CZTuLBz74VF3z7cQDAhoA9PiVntxO70/jCha/BV+9bhT/+3pM46YgJSCYIHz97Di6Sg05nOonLzzoGty3eiD+XJpQEeb4PwNO8bn58Pf5L/inOKTFb9HWlsWr7AXz2F0X/yj1XnY1EgjC7vxt3P7s19DsATxu78cOn+f9ffOpMXHP383hi3R5s2zeMY6f1YFHARPi6mRMxfUIH/vF//oAfP7XB366yE3z/I2/EhTc+gV+t2Ib7X9gRmsEp7Ukn+O/8y7P8e3PsNO+6Bwd5xWuOnBByED+4coc/GPzZGUeHNM4JnemQP2j+MZPxb3/yBv//3s7yx+7tJ0zDP55/IgD42sGKzfvwpzc9BQB4x4ne4HvSEX143xuOwq+f24bhbB4/kFGGpx09Cb/81Nl+eSfLycL5337M3/b5974GHzy9GI2otMB5n38An3vXCf72d5zk1TWxK42HV+3Ew6t24ljZJ694y1xc+PojAQBHyf74rw+tCZl/AeBtMv/dW0+YiruXe/f+/W84yjdPAcAbj56M3o4Urr77+bLrcdrRk3ytFAA+/F9PlR3zLjkRmC376yd/GtYI13/9vf73eTMmYPUOT+s4+UsP+dvVfZnd713zt/7LI6EyfvqJM/3vew6O4q5lWzCpK41HpX/lZ584A2cd5z3/fV3eff3qfat8gQR440QiQVgwpx9PbxjAF371Aja+OoQn1hVNtJefNccrozOFkWwBJ33xAVx9wUn+/Z0vTZ7HTvUE7P+9+wV8+IzZePXgmG/+mz9nMgBPmB8zpRv/HQh6OXV2cSJST9pWQwEwE8DmwP9b5LaGcd4pR+DZL77bn+EGOX56L75w4Wv8/885ITwIT+xO4ydXnOH/r7SGE2ZM8E0e8+f04+/P8x70qb0ZfCgwGJx0RB/WXfee0MyjdBYyf05RiK3eMYh8QfgOSMWX3ncK/u7dxcHk2Gm9frRKdyaFzwd+g0LNgBSfPOe40P9Kw/LadHzZ+QBw3QdeF4rgSiTID3Z4Zc8hvOe1R3hZkyVEhA+c5t1elZngoc++zdf8TjlqIv50vic4lDAh8gaVOXIw7O1I4VPnHBe6X2+SDyFQjHwKctNHT8eG6y/ElN4OrPjSeb5pK0jp61b/RLZD8c/vPyXkY/unC04qK+PWj73Jv2aJBOGys44J7T8moNHeeOmpuOCUI0L7S/ugbgB54zGTQ/9f/8dF85Pysaz40rt9Te3tgT77ipz1q3xigHdP/iKgqSsWX/NOvw9/4LRZ+NoHXocLX3dkaAIBeBOan3zijLLz//68E/DLT52N7kwK3ZkU/s9b54b2n3TEBCz/4rv9/5WmFOSBz7w11H901+ORvz8HR0rfRulzAQC/uPLM0P/q+frhE+uxbtdBTOnJ4M3HT/XrISJ89l3hZ/Afzj8R58l79Q8XeBOGny7Z5AuTk46YgKeuORfTpYZ+2tHePRrJFvDPv34R2/eP4MMLZuPf5bU7RfbRpzcM4HO/eA5fvW8VpvRk8Mzn3xWyGgTvy40fPs2faNYbMuVJanWI6BIA5wshPiH//yiABUKIvy457koAVwLA0UcfffrGjRvLyqoX+YLAfc9vx7FTe3zTTinDY3l0phOhzl8pz2wYwMxJXX6YZpBfydnhbYs34O0nTMPfvHNeaDateHn3QTyyehc+cNpMTOntCO1TqUty+QJIphTX8cLW/Th+eq8fwaMoFARu/O1abB4YxmuOnICPnHlM2TGKZRv34oWt+/HnZxxd9hAIIbBy2wHc/exWzJvRiw8vODq0X5k7nt24F4MjOXz8LXO1bS3I+/K2E6aVmSLVOzRWbN6H2f3dvt+llK8/sApPrN2Df//wab4fKchINo9bfr8eubzA3xjMDc9v2Y8l61/Fu0+eERI4gNd3Nr56CBsHhjA8lsd7X3ektoxCQeCZDQNYMLe/rA+NZPPYPTiK+5/fjrOPn6rtg0II/N2dz+Hu5VvxX5fNLxNMOw+M4N4V23Drkxtw/ilH4B8vOLHs3j26Zhc2vjqE04+ZjEwqUfH7zLftG4YA8OALO9CRSuAjZ4aFaaEgMDA0hodf3ImpvR1450nTy/rw7sFR7Dno+fuOntLtC0VFNl/Awhd3oq8zjW37hnHq0ZPK2umZkoYwo68DW/cO+2tugozlCnhlz0E88PwOzJ8zuWxyBXjX9JE1u0BEOOeEaf59KRQEbn5iPbbtH8ZJR0zA2cdPRX9PxvdFKX61fCte2XMI84+ZDAHgbfOmhu7tpleH8NvVO/HSroM4dmoPzn3NDN+qUdpWNTmsFSJaJoSYbz2ujQXKWQD+WQhxvvz/GgAQQnzddM78+fPF0qVLTbsZhmEYDa4CpZ1NXs8AmEdEc4koA+BSAPc2uU0MwzCHLW3rlBdC5Ijo0wAeApAEcIsQYmWTm8UwDHPY0rYCBQCEEPcDuL/Z7WAYhmHa2+TFMAzDtBAsUBiGYZhYYIHCMAzDxAILFIZhGCYWWKAwDMMwsdC2CxurgYgGAayJOGQigP2WYo4GUP4SB/cyXOqIo4xa2xlXO2zH2NrZqHaMl3YCfO/jLqNd2gnU595PBdAjhChPC1CKEOKw+QOw1LL/JocydtdShmMdcZRRUzsb+Fsi29kq17Rd2sn3nu993O2wjZvBPzZ5hfm1wzH6vOTuZbjUEUcZtbYzrnbYjrG1s1HtGC/tBPjex11Gu7QTaMy9N3K4mbyWCod8NPUuoxFwO+OlXdoJtE9buZ3xU4+2VlLm4aah3NQiZTQCbme8tEs7gfZpK7czfurRVucyDysNhWEYhqkfh5uGwjAMw9SJw16gENEtRLSLiF4IbHsDES0moueJ6NdE1Ce3p4noNrl9lXoHi9z3KBGtIaIV8m96E9uZIaIfye3PEdE5gXNOl9vXEdGNVMubverbznpfz9lE9Ii8jyuJ6DNyez8RLSSitfJzcuCca+R1W0NE5we21/uaxtnWul3XSttJRFPk8QeJ6D9KyqrbNY25nS3VT4no3US0TF67ZUT0zkBZde2nAA6vsGFDiNzbALwRwAuBbc8AeLv8/nEAX5Hf/wzAHfJ7N4ANAObI/x8FML9F2nkVgB/J79MBLAOQkP8/DeAsAATgAQDvadF21vt6HgngjfL7BAAvATgZwL8AuFpuvxrADfL7yQCeA9ABYC6AlwEkG3RN42xr3a5rFe3sAfAWAH8F4D9KyqrbNY25na3WT08DcJT8/loAWxtxTdXfYa+hCCEeAzBQsvlEAI/J7wsBfFAdDqCHiFIAugCMATjQgu08GcAied4ueKGE84noSAB9QojFwuthPwZwcau1M872mBBCbBdCPCu/DwJYBWAmgIsA3CYPuw3F63MRvMnEqBBiPYB1ABY06JrG0tY42xRHO4UQh4QQTwAYCZZT72saVzsbQRVtXS6E2Ca3rwTQSUQdjeinAJu8TLwA4P3y+yUAZsvvdwE4BGA7vNWo3xBCBAfPH0m194t1USfd2/kcgIuIKEVEcwGcLvfNBLAlcP4Wua3V2qloyPUkojnwZnZLAMwQQmwHvIcZnuYEeNdpc+A0de0aek1rbKui7tfVsZ0mGnZNa2ynopX6aZAPAlguhBhFg64pCxQ9HwdwFREtg6dmjsntCwDkARwFz5Twd0R0rNz350KI1wF4q/z7aBPbeQu8DrMUwLcBPAkgB0/VLaURYX6VthNo0PUkol4A/wPgs0KIKG3TdO0adk1jaCvQgOtaQTuNRWi2xX5NY2gn0Hr9VB1/CoAbAPyl2qQ5LPZrygJFgxBitRDiPCHE6QB+Ds8GDXg+lAeFEFlpovk9pIlGCLFVfg4C+BkaY2LQtlMIkRNCfE4IcaoQ4iIAkwCshTd4zwoUMQvAttJyW6CdDbmeRJSG95D+VAhxt9y8U5oHlOlll9y+BWHtSV27hlzTmNpa9+taYTtN1P2axtTOVuynIKJZAH4J4DIhhBq7GtJPWaBoUJEaRJQA8AUA/yl3bQLwTvLoAXAmgNXSZDNVnpMG8EfwzDxNaScRdcv2gYjeDSAnhHhRqsaDRHSmVM0vA3BPq7WzEddT/v6bAawSQnwzsOteAJfL75ejeH3uBXCptEfPBTAPwNONuKZxtbXe17WKdmqp9zWNq52t2E+JaBKA+wBcI4T4vTq4Yc9+3F7+dvuDN2PeDiALT4pfAeAz8KIpXgJwPYoLQHsB/Dc8Z9eLAP5BFKNAlgH4g9z3Hciomia1cw68rMqrADwM4JhAOfPhdfqXAfyHOqeV2tmg6/kWeCr/HwCskH/vBTAFXqDAWvnZHzjn8/K6rUEgQqYB1zSWttb7ulbZzg3wgjgOyv5ycr2vaVztbMV+Cm/Cdihw7AoA0xvRT4UQvFKeYRiGiQc2eTEMwzCxwAKFYRiGiQUWKAzDMEwssEBhGIZhYoEFCsMwDBMLLFAYpkUgor8iossqOH4OBbI6M0yzSTW7AQzDeIvkhBD/aT+SYVoXFigMExMyed+D8JL3nQZvIedlAF4D4JvwFsbuAfAXQojtRPQovPxlZwO4l4gmADgohPgGEZ0KL6NAN7yFaB8XQuwlotPh5UAbAvBE434dw9hhkxfDxMuJAG4SQrwe3qsNrgLw7wA+JLxcZrcAuC5w/CQhxNuF+P/t3S9KRFEUx/HvQS0Wk9UVuAFBF+ASRGSYDVgFiyuwaNGi+KeI1SKmaXYZbBYXoINovYZ3B+ExKg5HZsL3E0843Jd+nMvj3LLf6nMO7NQ+D8BerZ8C26WUlf/8CGkcTihSrufytUPpEtileejorm42n6FZTTN01W4QEQs0QdOrpTPgekT9AljP/wRpPAaKlKu9y+gN6P8wUbz/oXeM6C9NDa+8pFxLETEMjw3gHlgc1iJirr5V8a1SygB4iYi1WtoCeqWUV2AQEau1vpl/fGl8TihSrkegExHHNJtgD4Fb4KBeWc3SPCbW/6VPBziKiHngCejWehc4iYiP2leaGm4blpLUv7xuSinLEz6KNBFeeUmSUjihSJJSOKFIklIYKJKkFAaKJCmFgSJJSmGgSJJSGCiSpBSfSRuZV/oO5MYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'].plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A zoom on the last few years shows more clearly that the peaks are situated in winter." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztvXl8XOV59/29ZtUuS7JkG9mOjW1WE0xwDASykgAhTSEJNM77FEhKSkJJmzxv2yT0bUublCehTUNDk9DS4rBkg5DkhSQscYAkZYmNSYiNbWzL2OBVkiXZWkaa0cxczx/nHGk0Hs2mkUayru/nMx+N7zn3Pfccz5zfuZb7ukVVMQzDMIx88JV7AoZhGMbMwUTDMAzDyBsTDcMwDCNvTDQMwzCMvDHRMAzDMPLGRMMwDMPIGxMNwzAMI29MNAzDMIy8MdEwDMMw8iZQ7gmUmrlz5+qSJUvKPQ3DMIwZxYsvvnhEVZtzHXfCicaSJUvYtGlTuadhGIYxoxCR1/I5ztxThmEYRt6YaBiGYRh5k7doiIhfRH4nIj91/90oIutFZJf7tyHl2JtFpE1EdojIpSnt54rIFve1O0RE3PawiDzgtm8QkSUpfa5z32OXiFxXig9tGIZhFEchlsange0p//488KSqrgCedP+NiJwBrAXOBC4DvikifrfPncANwAr3cZnbfj3Qo6rLgduB29yxGoFbgPOANcAtqeJkGIZhTC15iYaILATeB/x3SvMVwL3u83uBK1Pav6+qUVXdA7QBa0RkAVCnqs+rs4nHfWl9vLEeAi52rZBLgfWq2q2qPcB6RoXGMAzDmGLytTT+DfgskExpm6eqhwDcvy1ueyuwL+W4/W5bq/s8vX1MH1WNA8eApixjjUFEbhCRTSKyqbOzM8+PZBiGYRRKTtEQkT8AOlT1xTzHlAxtmqW92D6jDap3qepqVV3d3JwzzdgwDMMoknwsjQuBPxSRvcD3gXeJyLeBdtflhPu3wz1+P7Aopf9C4KDbvjBD+5g+IhIA6oHuLGMZxqxkaDjBg5v2Yds0G+Uip2io6s2qulBVl+AEuJ9S1T8GHgG8bKbrgIfd548Aa92MqKU4Ae+NrgurT0TOd+MV16b18ca6yn0PBZ4ALhGRBjcAfonbZhizkqde6eCzD21m26Heck/FmKVMZEX4l4EHReR64HXgagBV3SoiDwLbgDhwk6om3D43AvcAlcBj7gPgbuB+EWnDsTDWumN1i8gXgRfc476gqt0TmLNhzGi6+qMADMYSOY40jMmhINFQ1V8Cv3SfdwEXj3PcrcCtGdo3ASsztA/hik6G19YB6wqZp2GcqHQNxAAYGk7mONIwJgdbEW4YM4ieEdEwS8MoDyYahjGD6I4MAzAUN9EwyoOJhmHMIHrMPWWUGRMNw5hBdJl7yigzJhqGMYOwmIZRbkw0DGOGoKp0RxzRiMbNPWWUBxMNw5ghRGIJYq5YmKVhlAsTDcOYIXS7rikw0TDKh4mGYcwQxoqGuaeM8mCiYRgzBC+eAWZpGOXDRMMwZghe5lTAJwxZINwoEyYahjFD8NxT8+oqzNIwyoaJhmHMELoHYgR8wtzasImGUTZMNAxjhtATidFQHaIy6CNqgXCjTJhoGMYMoXsgRmNViIqg3woWGmXDRMMwZgjdAzEaqoNUBPzmnjLKRk7REJEKEdkoIr8Xka0i8o9u+z+IyAERecl9XJ7S52YRaRORHSJyaUr7uSKyxX3tDnfbV9ytYR9w2zeIyJKUPteJyC73cR2GMUvpiQwzpzJERdBn6zSMspHPzn1R4F2q2i8iQeAZEfG2ab1dVb+SerCInIGzXeuZwEnAL0TkFHfL1zuBG4DfAI8Cl+Fs+Xo90KOqy0VkLXAb8GERaQRuAVYDCrwoIo+oas/EPrZhzDyi8QSVIT/hgM8sDaNs5LQ01KHf/WfQfWiWLlcA31fVqKruAdqANSKyAKhT1edVVYH7gCtT+tzrPn8IuNi1Qi4F1qtqtysU63GExjBmHbF4kpDf58Q0TDSMMpFXTENE/CLyEtCBcxHf4L70KRHZLCLrRKTBbWsF9qV03++2tbrP09vH9FHVOHAMaMoyVvr8bhCRTSKyqbOzM5+PZBgzjlg8SSjgIxz02eI+o2zkJRqqmlDVVcBCHKthJY6raRmwCjgE/Kt7uGQaIkt7sX1S53eXqq5W1dXNzc1ZP4thzFQ80agI+InFkyST2Qx+w5gcCsqeUtWjwC+By1S13RWTJPBfwBr3sP3AopRuC4GDbvvCDO1j+ohIAKgHurOMZRizjlgiSdB1T4HtqWGUh3yyp5pFZI77vBJ4N/CKG6Pw+ADwsvv8EWCtmxG1FFgBbFTVQ0CfiJzvxiuuBR5O6eNlRl0FPOXGPZ4ALhGRBtf9dYnbZhizimRSGU6oY2kEnZ+txTWMcpBP9tQC4F4R8eOIzIOq+lMRuV9EVuG4i/YCnwBQ1a0i8iCwDYgDN7mZUwA3AvcAlThZU14W1t3A/SLShmNhrHXH6haRLwIvuMd9QVW7J/B5DWNGMpx0rIpwYNTSsAV+RjnIKRqquhk4J0P7NVn63ArcmqF9E7AyQ/sQcPU4Y60D1uWap2GcyHg79jnZU56lYe4pY+qxFeGGMQMYEQ03EA7mnjLKg4mGYcwAYglHNFID4SYaRjkw0TCMGUCqpRE295RRRkw0DGMGMJxIcU9ZINwoIyYahjEDiKYGwt2YRtTcU0YZMNEwjBmA554KByx7yigvJhqGMQMYG9OwQLhRPkw0DGMGMCZ7KmArwo3yYaJhGDOAzIFwc08ZU4+JhmHMAMauCDf3lFE+TDQMYwYQTYlp+H1C0C8WCDfKgomGYcwAUrOnACoCtnufUR5MNAxjBpAaCAcIB/1EbXGfUQZMNAxjBjCc4p4CqAj6zD1llAUTDcOYAcQS6aJh7imjPJhoGMYMIDV7CjxLw0TDmHry2e61QkQ2isjvRWSriPyj294oIutFZJf7tyGlz80i0iYiO0Tk0pT2c0Vki/vaHe62r7hbwz7gtm8QkSUpfa5z32OXiFyHYcxCPNEI+gWAcMDPcELLOSVjlpKPpREF3qWqZwOrgMtE5Hzg88CTqroCeNL9NyJyBs52rWcClwHfdLeKBbgTuAFn3/AV7usA1wM9qrocuB24zR2rEbgFOA9YA9ySKk6GMVuIJpKE/D7c+yyCfhlxWRnGVJJTNNSh3/1n0H0ocAVwr9t+L3Cl+/wK4PuqGlXVPUAbsEZEFgB1qvq8qipwX1ofb6yHgItdK+RSYL2qdqtqD7CeUaExjFnDcFxH4hngZFENm2gYZSCvmIaI+EXkJaAD5yK+AZinqocA3L8t7uGtwL6U7vvdtlb3eXr7mD6qGgeOAU1ZxjKmIarKlx7bzssHjpV7KiccsUTCRMOYFgTyOUhVE8AqEZkD/FhEVmY5XDINkaW92D6jbyhyA47bi8WLF2eZmjGZRGIJ/vNXrxIO+FnZWl/u6ZxQxOLJkSA4OO6puMU0jDJQUPaUqh4FfonjImp3XU64fzvcw/YDi1K6LQQOuu0LM7SP6SMiAaAe6M4yVvq87lLV1aq6urm5uZCPZJSQSMzJ5olE42WeyYlHLJ48ztKwmIZRDvLJnmp2LQxEpBJ4N/AK8AjgZTNdBzzsPn8EWOtmRC3FCXhvdF1YfSJyvhuvuDatjzfWVcBTbtzjCeASEWlwA+CXuG3GNGTQFY2BmKWClppYIjmSOQVO6q25p4xykI97agFwr5sB5QMeVNWfisjzwIMicj3wOnA1gKpuFZEHgW1AHLjJdW8B3AjcA1QCj7kPgLuB+0WkDcfCWOuO1S0iXwRecI/7gqp2T+QDG5NHZNixMAbM0ig5jqXhH/l3wC8Mx809ZUw9OUVDVTcD52Ro7wIuHqfPrcCtGdo3AcfFQ1R1CFd0Mry2DliXa55G+RmIuu6pmIlGqYklLHvKmB7YinCjZIy4p6Lmnio1sXiCsN9Ewyg/JhpGyfAsDLM0Sk96IDwU8NmKcKMsmGgYJWPQrYXUbzGNkhNLpGdPiVkaRlkw0TBKxkjKrWVPlZxYfGz2VMDnI55UnCRDw5g6TDSMkuFlTVn2VOkZTuiY7CnP6jAXlTHVmGgYJWMwxdKwO+DSkmlFOGAuKmPKMdEwSkbEjWnEk0o0bhezUhLNsCIcTDSMqcdEwygZgymxDItrlJZYPEE4g2hYKRFjqjHRMEpGaqqtxTVKS3oZkVH3lLkBjanFRMMoGQNmaUwawxlWhAPEzdIwphgTjRyoKv/wyFaebTtS7qlMe1LdU7ZWo3QkkkoiqYT8o9lTFtMwykVe+2nMZp5pO8I9z+3l9e4IFy6fW+7pTGsisTh+n5BIqq0KLyHe/uCZLI2YFS00phizNHJw169fBeD53V0MDZvLJRuDsQSN1SHA6k+VkkyiEQpYyq1RHkw0srDtYC//s+sI5y1tZHA4waa9PeWe0rQmEkvQXBN2n5ulUSqiCUeAQ2krwgHiSRMNY2ox0RgHVeVfnniFmnCAr609h5Dfx692duTuOIuJxBI01zqiYdlTpcPLkDL3lDEdMNEYh59va+fpHZ185t0rmF9fwZqljfxqZ2e5pzWticTizHUtDdu9r3SYe8qYTuSz3esiEXlaRLaLyFYR+bTb/g8ickBEXnIfl6f0uVlE2kRkh4hcmtJ+rohscV+7w932FXdr2Afc9g0isiSlz3Uisst9XMcUkEwqX/zpNk6bX8tH3+JM5YJlTexs7+fY4PBUTGFGEoklaKwOImL7hJeSEdGw7CljGpCPpREH/lJVTwfOB24SkTPc125X1VXu41EA97W1wJnAZcA33a1iAe4EbsDZN3yF+zrA9UCPqi4Hbgduc8dqBG4BzgPWALe4e4VPKl0DMfb3DLL2zYsIuD/OuTVOgNdSSTOTcEuHVIcDVIcCZmmUkGzZUyYaxlSTUzRU9ZCq/tZ93gdsB1qzdLkC+L6qRlV1D9AGrBGRBUCdqj6vTjW7+4ArU/rc6z5/CLjYtUIuBdarareq9gDrGRWaSaOjbwiAeXUVI21VISc72Xz1mfH20qgK+akK+e08lZCYFwgPZCpYaDENY2opKKbhuo3OATa4TZ8Skc0isi7FAmgF9qV02++2tbrP09vH9FHVOHAMaMoy1qTS0RcFoCVFNGrCJhrZ8NxRlaEANWGzNEqJF+weW0bELA2jPOQtGiJSA/wQ+Iyq9uK4mpYBq4BDwL96h2borlnai+2TOrcbRGSTiGzq7Jx4sLqj17E0WtxMIHDuoMHWH4yHVzakKuinKuy3mEYJ8YoSZipYaKJhTDV5iYaIBHEE4zuq+iMAVW1X1YSqJoH/wok5gGMNLErpvhA46LYvzNA+po+IBIB6oDvLWGNQ1btUdbWqrm5ubs7nI2Wlo9exNJpTRKPaszRs/UFGPNGoDvupCgXsPJWQbIHwmLmnjCkmn+wpAe4GtqvqV1PaF6Qc9gHgZff5I8BaNyNqKU7Ae6OqHgL6ROR8d8xrgYdT+niZUVcBT7lxjyeAS0SkwXV/XeK2TSodfVHqK4NUBEd/pJ5o2KK1zAwOj7qnqkN+s8hKSMaUWytYaJSJfGpPXQhcA2wRkZfctr8BPiIiq3DcRXuBTwCo6lYReRDYhpN5dZOqeleQG4F7gErgMfcBjijdLyJtOBbGWnesbhH5IvCCe9wXVLW7uI+aPx19Q2NcUwDVrnuq3y6GGfFEoirkpzoc4LXuSJlndOKQKRAesJ37jDKRUzRU9RkyxxYezdLnVuDWDO2bgJUZ2oeAq8cZax2wLtc8S0lHX5SWujTR8CwN89VnxHNPVQb9VIcCRExcS4ZnaWQOhJt7yphabEV4Bjp6o7TUVoxpqwx6gXATjUx47qmqkBMIt5hG6fC2zk11l3oCErNtdY0pxkQjDVWlsy96nHvK5xPHV2+ppBkZDYS7i/uicZywlDFRosPHi4aIEPSLuaeMKcdEI42jkWFiieSYzCmPqnDAAuHj4G3AVBnyU18ZJKm2er5UeCX5U1Nuwal0G0+aMBtTi4lGGt7CvtTV4B414YAFwsdhJBAe9NPg7qnRPRAr55ROGKLxJD6BgG9saDHoF3NPGVOOiUYaXgmRdPcUOP56C4RnJjIcJ+T3EfD7aHJFo8tEoyRE4wkqgn7c+p4jhAI+c08ZU46JRhrewr6WDJZGdShgLpdxiA4nCQedr5O3e193v4lGKRgaTh7nmgIng8pEw5hqTDTSGKk7lcHSqA77RwK+xli8u2FIEQ2zNEpCNJ4gHPAf1+6IhsU0jKnFRCONzr7oyAK1dKrCVh5jPKLx0bvhphpzT5WSaHzUikslYNlTRhkw0UijayA6ctFLp8ZNJTWOJ1U0KoN+wgEf3QPRMs/qxCA6nKQig6URMveUUQZMNNLoHojRVH28awpwq7eaeyoT0eEkIffCJiI0VYfoHrBdDkvBUDyR0dIw95RRDkw00ujqj41k/6RT7VZvtUVrx+P43Ue/To01IbM0SkR03EC4uaeMqcdEI42ugehIIDed6nCApDrZLMZYUt1TAI3VYQuEl4jUJINULHvKKAcmGimoKt0DMRrHiWlUh71KtxbXSCcWTxJOubA1VYcsEF4isqfcmtVrTC0mGin0ReMMJzSrewpsT41MHG9phMzSKBHjp9yae8qYekw0UvAWo40XCPcsDdtg6Hii8cSY/R4aq0NEYomRuklG8aQLskfQ77MyIsaUY6KRgudOGd89ZVu+jkd6sLbRSomUjGia688jaGVECubA0UHae4fKPY0ZTT7bvS4SkadFZLuIbBWRT7vtjSKyXkR2uX8bUvrcLCJtIrJDRC5NaT9XRLa4r93hbvuKuzXsA277BhFZktLnOvc9donIdUwinjtlPPdUleuesrUax+PcDY9e2DzR6DHRmDBDw4mMlkbIb1VuC+Wm7/yWz/1wc7mnMaPJx9KIA3+pqqcD5wM3icgZwOeBJ1V1BfCk+2/c19YCZwKXAd8UEe9qcidwA86+4Svc1wGuB3pUdTlwO3CbO1YjcAtwHrAGuCVVnEpNV7+TIjp+9pS5p8YjlpZya0ULS8e4K8J9wrC5p/ImmVReOdzL7s7+ck9lRpNTNFT1kKr+1n3eB2wHWoErgHvdw+4FrnSfXwF8X1WjqroHaAPWiMgCoE5Vn1dnocN9aX28sR4CLnatkEuB9ararao9wHpGhabkdA3kiGmEzD01HukXttH6U7ZWYyKoKrF45hXhwYCPmGVP5c2Bo4MMDSc5eHTI3HoToKCYhus2OgfYAMxT1UPgCAvQ4h7WCuxL6bbfbWt1n6e3j+mjqnHgGNCUZaxJoXsgRlXIT2Xo+B8o2D7h46Gqjmj4Uy0NR3i7rNLthPC2es1kaVgZkcLY1dEHQCKpHDpqcY1iyVs0RKQG+CHwGVXtzXZohjbN0l5sn9S53SAim0RkU2dnZ5apZad7IDauawpS3FNW6XYMsYR3YRsV29qKAAGfmHtqgnhbvY6Xchs30cibXe2jbqnXuyNlnMnMJi/REJEgjmB8R1V/5Da3uy4n3L8dbvt+YFFK94XAQbd9YYb2MX1EJADUA91ZxhqDqt6lqqtVdXVzc3M+HykjXQPjlxAB584u4BMLhKcxcjecEtPw+YSFDZW81jVQrmmdEETjmbd6BVvcVyhtHf2EXGvYRKN48smeEuBuYLuqfjXlpUcAL5vpOuDhlPa1bkbUUpyA90bXhdUnIue7Y16b1scb6yrgKTfu8QRwiYg0uAHwS9y2SaGrf/wSIuAU4qsK+U000ohlEA2AZc01vNppojERPEHOVEYk4PcRSyStFlqe7Oro55zFcwj6xURjAhy/acTxXAhcA2wRkZfctr8Bvgw8KCLXA68DVwOo6lYReRDYhpN5dZOqev6cG4F7gErgMfcBjijdLyJtOBbGWnesbhH5IvCCe9wXVLW7yM+ak+6BGKfNr8t6TFUoYLWn0hi1NMZe2E5uruaZtiMkkorfl8nTaOTCWxyZOeXWOafxpBL02/nNhqqyu6OfD76plY6+KPt6TDSKJadoqOozZI4tAFw8Tp9bgVsztG8CVmZoH8IVnQyvrQPW5ZrnRFFVxz01zsI+j1DAN+IyMByi7oUtlMHSiMaTHDw6yKLGqnJMbcaTyfXnEXRdLcOJ5MhzIzPtvVH6onGWt9SwpyvCPrM0isa+aS4DsQSxeDJrTAOcH2/UcuPHMN6F7eTmGgDLi58A3g3KeFVuAYtr5EFbh/MdXNZSw+LGSnNPTQATDZfheJLLzpzPKfNrsx4XDppopDNeWuiy5moAdltco2iGhrNYGoFRS8PITnfEyeJrqa1gUUMVRyPDHBu0TcKKIZ+YxqygoTrEf1xzbs7jwgG/FYlLIzZOTKOxOkR9ZZBXzdIompHsqUyWhhsnMtHIjbe2qjrsZ7HrKt3XHaG+tb6c05qRmKVRIGGLaRzHeGmhIsKy5mpzT02AaDZLw3NPxc09lQtvbVVVMMD8+goAOvusWkExmGgUSMhiGsfhXdjSA+FgabcTJVvKreeeipmlkRPP0qgM+Wmo8krc2MLTYjDRKJBwwDdykTQcxku5BVgxr4aOvii/2NY+1dM6Icgv5da+j7kYiCUI+X2EAj4avArMERONYjDRKJBwwG/uqTSyrVr+8OrFvHFhPZ/49os89YoJR6HklXJr7qmcRGJxqtwyQHUVAfw+MdEoEhONAgkHbLe0dGJZiurVVwX57p+ez7zaMA+8sO+4143sZAuEB/zmnsqXSCwxUqVaRGioCtITseypYjDRKBBLuT0e73yExllgVhMOsGrxHHa2W0C8ULyU24qMlobjnrKbmNxEYnGqUqpXz6kK2QZhRWKiUSAhv99EI41sd8Mep8yrZW/XAINWIbggovEEfp+MWBWpeMFxc5fmZiCaoCo8usKgsSpkgfAiMdEoEMfSsB9pKtnSQj1OnVeL6ujKXCM/0vdeT8XbmMlqoeUmEotTnWJpNFQHOWruqaIw0SiQcMApR52wvZlHiMaT+MTZfnQ8vJX2O9r7pmpaJwTReDJjui1AhRtD8jKsjPEZiCaoCo1aGg1VoZFV4kZhmGgUiJdWan7kUWKJJOGAH6fifWaWNFUTCvjYaaJREEPDiXEtDW+HSRON3KTHNBqqQxyNxKysfBGYaBSI9wM20RglOpzIuLAvFb9PWNFSwyuHTTQKIRrPxz1lopGLgVhiZOdNgIaqIMMJpd/2xikYE40C8S6OFtcYJduFLZVT59Wy00SjIKLxRMZFkzAaCB+0mEZOBmPHu6cAegYsrlEoJhoFEh4RDfuhekTjyYxrNNI5ZX4th3uHOGYByLwZGk6OxC7S8b6LZmlkR1UZSA+EV9mq8GLJZ7vXdSLSISIvp7T9g4gcEJGX3MflKa/dLCJtIrJDRC5NaT9XRLa4r93hbvmKuy3sA277BhFZktLnOhHZ5T687WDLStjSHI8jFk+OezecyooWZ3+NXR1mbeRLNkvD5xPCAR9D9l3MytBwElXGpNx6pUQsGF44+Vga9wCXZWi/XVVXuY9HAUTkDJytWs90+3xTRLxv/J3ADTh7hq9IGfN6oEdVlwO3A7e5YzUCtwDnAWuAW9x9wsvK6N2dWRoezoUt91dpRYuTQWVpt/mTy4qrCPqtFloOBmJuWfTQ2JgGwFETjYLJ+UtX1V/j7NudD1cA31fVqKruAdqANSKyAKhT1efVSVe4D7gypc+97vOHgItdK+RSYL2qdqtqD7CezOI1pYStsuhxROPJnIFwgNaGSsIBn4lGATjrNMa34iqCPlswmYNI1C2LnhLTaPQsDYtpFMxEYhqfEpHNrvvKswBagdQCQ/vdtlb3eXr7mD6qGgeOAU1ZxiorI4Fwu7sbIdsCtFT8PuHk5hrabH+NvBmKJ3JaGuaeys6IpZGSPVVXEcQnZmkUQ7GicSewDFgFHAL+1W3PlKivWdqL7TMGEblBRDaJyKbOzs5s854w3l2fxTRGyeZ3T2d5S41ZGgWQS5Arg34LhOcgEvP20hi1NHw+YY6VEimKokRDVdtVNaGqSeC/cGIO4FgDi1IOXQgcdNsXZmgf00dEAkA9jjtsvLEyzecuVV2tqqubm5uL+Uh5Y9lTx5Nvyi3A8uYaDhwdNJdKnuQS5HDQb/G1HAy47qnUmAbgVro10SiUokTDjVF4fADwMqseAda6GVFLcQLeG1X1ENAnIue78YprgYdT+niZUVcBT7lxjyeAS0SkwXV/XeK2lRUv/dFEY5RYPJm1WGEqy1tqUMW2gM2TSCwxZiVzOhUBH4NmaWQlEjs+pgFuKRGzNAomkOsAEfke8A5grojsx8loeoeIrMJxF+0FPgGgqltF5EFgGxAHblJV7xt9I04mViXwmPsAuBu4X0TacCyMte5Y3SLyReAF97gvqGq+AflJw8qIHE80nhy3LHo6y92029/tO8qBo4Nccsa8rOVHZjOqyuBwDtEI+s0vn4NIhpgGQFNNiD1HbCviQskpGqr6kQzNd2c5/lbg1gztm4CVGdqHgKvHGWsdsC7XHKcSWxF+PNEcwdpUlsytwifw9w+/jCp862Nv5p2ntkzyDGcm3vqCyiyiURn0c9jcU1kZGMfSmFsTZuOest+HzjhsRXiBhC176jjyzZ4Cx1I786R65tVWUBMO8NiWQ5M8u5mLd4dclcX1VxE091QuItHMlkZzbZieyDDDlj5fECYaBTKaPWVfNI9oIr8V4R73X7+Gp/7q7bznjHn8fFu7/WjHYTxffCoVlj2Vk4FYApHRAo8ec2vCAHT1m3uvEEw0CsTcU2NRVbeMSP5fpTlVIapCAd67cj5HI8M8v7trEmc4c/HEIJt7ykQjN5FonKqgH1/afi/NtY5oHOmPlmNaMxYTjQLx+4SgXywQ7jKyP3gBouHxtlOaqQ75eexlc1FlYtTSyCEa9l3MykBs7FavHp5odPaZaBSCiUYRhPw+c0+5eOehEEvDoyLo501vaGDrwd5ST+uEwBON7JaGj1g8aTtJZiF9AyaP5hoTjWIw0SiCcNBv7imXqOsaGW9L0lwsaqxiX3eklFM6YRgcdgPhOWIaYO7SbETS9tLw8GIaneaeKggTjSIIB3yWPeXipTOmZ6bky6JRq7f8AAAgAElEQVSGKnoiw/QNWeG4dPJyT1nV5ZxE0vbS8KgM+akNB8zSKBATjSIIB8w95TEQzX03nI3FjVUA7OseLNmcThRG3FNZrDjbJzw3A9HMMQ2AubVhC4QXiIlGEYQDfguEu3gXtuoiRWNRYyUA+3rMRZXOYF4xDW/LVxON8Rhws6cy0VwTNkujQEw0iiAU8JkP2cUrO11VpHtq1NIw0UgnH/eUtz7GLI3x6R0apr4ymPG1ubUhi2kUiIlGEZh7apRIdGKWRn1lkNpwwEQjA4OuIKcvSkvFK6BpMY3xOTY4zJyqzKLRXBPmiFkaBWGiUQThoImGx0ipiyx3w9kQERY1VvG6icZxRGIJKjMsSkvFi3eYpZGZoeEEQ8NJ6saxNJprw/QOxe38FYCJRhGEA5Zy65GPCyUXixor2ddjgfB0clW4hdGYhl30MnNs0MnKG8/SGCklYiXS88ZEowgs5XaU0a00i3NPgZN2u687grONiuExGEtkDYJDqmjY9zETRyOuaFSGMr5uq8ILx0SjCEIBHzErsgc4MQ2fFLci3GNxUxXReNJ+uGnk2oAJUmMaZmlkIpelMa+uAoBXDllVgnwx0SgCszRGGYjFqQ4FJrSR0iI3g+o1i2uMITKcGLOvdSYs5TY73gZV42VPnbGgjjNPquPrT7eNpNHv74nwrz/fwV/94Pe8ajtMHkdO0RCRdSLSISIvp7Q1ish6Ednl/m1Iee1mEWkTkR0icmlK+7kissV97Q5321fcrWEfcNs3iMiSlD7Xue+xS0S8LWHLjsU0RolEE0Wn23qcPr8OgK0HjpViSicMg7Hx1xd4WEwjO0ddS2M80fD5hM9edhr7ewb53sbXSSaVP73vRb7xdBsPvbifx7censrpzgjysTTuAS5La/s88KSqrgCedP+NiJyBs13rmW6fb4qI962/E7gBZ9/wFSljXg/0qOpy4HbgNnesRpytZc8D1gC3pIpTObGU21E8S2MizKsL01wbZrOJxhgKcU/Z9zEzxyLZ3VMAb1sxlwtObuKfH3+FLz22ne2Hern9w6uoDPrptr02jiOnaKjqr3H27k7lCuBe9/m9wJUp7d9X1aiq7gHagDUisgCoU9Xn1Yl23pfWxxvrIeBi1wq5FFivqt2q2gOs53jxKguWcjvKYGziloaI8MbWerbsN9FIJZ9AeMjvQ8QsjfE4NjiM3yfUZEnUEBFu//AqGqpD/Nf/7OGs1nre/8aTaKwO0W1ZVcdRbExjnqoeAnD/eps8twL7Uo7b77a1us/T28f0UdU4cAxoyjJW2QkH/CSSStyC4QzE4kXXnUrlrIX17O7sH6llZYyu08iGiFAR8I+UHDHGcnQwRn1lMGfMbX59Bd++/jwuWj6XL1xxJj6fMLcmxBETjeModSA80/+MZmkvts/YNxW5QUQ2icimzs7OvCY6EbwNhyyDKj8XSj6c1VpPUmGbZbGMMN4+EOlUhvwMWYwtI0cjw8wZJ56RzpK51Xz74+dxzmLHC95YHaLLSowcR7Gi0e66nHD/drjt+4FFKcctBA667QsztI/pIyIBoB7HHTbeWMehqnep6mpVXd3c3FzkR8ofL73UMqicYnATjWmAIxoAm81FNcJgHtlT4JRHt3UamTk2OEx9lnhGNppqwuaeykCxovEI4GUzXQc8nNK+1s2IWooT8N7ourD6ROR8N15xbVofb6yrgKfcuMcTwCUi0uAGwC9x28qOVyTO4hqlszRa6iqYX1fBlv1HSzCrmc9wIslwQvM6txVBv6XcjkMhlkY6TTUhuvpjtug0jZy3MSLyPeAdwFwR2Y+T0fRl4EERuR54HbgaQFW3isiDwDYgDtykqt63+UacTKxK4DH3AXA3cL+ItOFYGGvdsbpF5IvAC+5xX1DV9IB8WfA2HOqPDgMV5Z1MmRmIxie0GjyV0xfUsrPd8uJhdN1FPqIRDvpHdlA0xnJscJjlLTVF9W2qDhFLJOmPxqmtKE54TkRy/tpV9SPjvHTxOMffCtyaoX0TsDJD+xCu6GR4bR2wLtccp5qRbSL7YixvyXHwCU6pLA2A+fWV5p5yyWcvDY/KoLmnxuNoJDbuGo1cNFW7dan6YyYaKdiK8CLwRGO27/gViyeJJ7VklsaC+gq6BmK2cJLCCkGaeyoziaTSOxQvXjRqnHpVXQOz+3eejolGEcx1v0yzXTQmWhY9nfn1jquvo3d2n1cYPbeVwdyCXF8ZpHfQ9lhPpzdH3alcpFoaxigmGkUwpyqET+zLNFCCsuipzHeLxx06NlSS8WYygwWc2wZbhJaRXMUKczFqadi5TcVEowj8PqGx2jakj0Q9S6N07imAw70mGoW4pxqrQvREYiSTluWTSq66U7lorHZEwwR5LCYaRTK3JjTrRcOzNKonWEbEY54nGsdsQ6ZIAYHwhuoQSXX2wjZGGa1wm3kvjVxUBP3UhAOz/neejolGkTTXhumc5e6pUlsateEA1SE/h4/Zj3Rw2Itp5GFpVDt30nZHPJZjE7Q0YHSthjGKiUaRzLUN6UctjRKJhogwr76Cw71maYy6p3Kf20Y3YNsTsYtbKl5szEuwKIYmixcdh4lGkXjuqdm8WnQke6pE7ilw4hqHLRA+cpdcV5mHaFR5vndzT6WyvyfCnKpg1gq3ubDY5fGYaBTJ3Jow0bizWnS2EimxpQHO9psmGnCgZ5A5VcG8LI2GEfeUXdxSOdAzSOucygmNMbfGLI10TDSKZHSB3+z9QnllzEttaXT0RUnM8kygA0fzv+CNZvmYpZHKgaODLGyYmGg01YToGojN+u9jKiYaRTK31laFj/jd8wjW5sv8ugriSZ31JakLuUuuCgWoCPosppGCqrK/Z5DWOVUTGmdeXQWJpJq1kYKJRpGMrAqfxcHwgVicUMBHwF+6r9H8eudCOZvXaqiqY2kUcJfcWGVulFSORoaJxBIFncNMtLg3h+2z+PuYjolGkTRb/Ski0QTVJVoN7nHSHCfTZW9XpKTjziRGLngF+OMbqkP0mGiMsL/HycCbqHuqxa1S0DmLbw7TMdEokgbXjzyb12r0TKCC6HicMq+WyqCf377WU9JxZxIHjhZ+wWusDtFt7qkRDhx1bjomGgg3S+N4TDSKJOj30VAVnNW+94NHBzlpgj/KdIJ+H6sWzeHFWSwa3l1yIf74BnNPjcE7h4saJhbTaHZFo8MsjRFMNCZAc214Vn+ZDh4dKrloAKxe0sC2Q70j2VmzDc/SKCimYYvQxrC/Z5CacCCvdS7ZCAf8NFQFzdJIYUKiISJ7RWSLiLwkIpvctkYRWS8iu9y/DSnH3ywibSKyQ0QuTWk/1x2nTUTucLeExd029gG3fYOILJnIfEvNvLqKWSsaw4kk7X2TJRqNJJLKS/tm59avB3oGqQw6F6t8aawO0TcUZzhhmzHBaLqteymZELP5d56JUlga71TVVaq62v3354EnVXUF8KT7b0TkDJytXM8ELgO+KSJeFPVO4AacPcVXuK8DXA/0qOpy4HbgthLMt2S01FbQMUvvQNp7h1CF1jml3+72nMVzEIEX9k6L3X2nnINu5lQhFzwvxmZptw77S7Cwz6O5Njxrf+eZmAz31BXAve7ze4ErU9q/r6pRVd0DtAFrRGQBUKeqz6tTk+O+tD7eWA8BF0spbh1KxLw6xz01G0tSHzzq/IgW1Jfe0qirCHLa/Do27Z2dcY1CFvZ5eKVEemyBH8mk8nrXAIsaJxbP8DBLYywTFQ0Ffi4iL4rIDW7bPFU9BOD+9XbRbgX2pfTd77a1us/T28f0UdU4cAxomuCcS4a38Gc2btJy0PW7T4Z7CuDshfVsP9Q7KWNPZ5xFaZGC1xd4q8Jta1LY1xNhIJbg9AW1JRmvpTZM5yy9OczEREXjQlV9E/Be4CYReVuWYzNZCJqlPVufsQOL3CAim0RkU2dnZ645l4x5dbM3He/AiGiU3j0FsLylhq6B2Kxbe7C/Z5CeyDCnzS/sgtfifhc9C3A2491snL6griTjtdSGiSfVUppdJiQaqnrQ/dsB/BhYA7S7Lifcvx3u4fuBRSndFwIH3faFGdrH9BGRAFAPHOfoVtW7VHW1qq5ubm6eyEcqiNm88Ofg0UEa8iyoVwzLmmsA2N3ZPynjT1d+82oXAOctLcygfkNjFSG/j10dfZMxrRnF9kN9+MRZ81MK5rm/89l4c5iJokVDRKpFpNZ7DlwCvAw8AlznHnYd8LD7/BFgrZsRtRQn4L3RdWH1icj5brzi2rQ+3lhXAU/pNKpFPpu/TIeOTU7mlMdsFY0Ne7ppqAqyoqWmoH4Bv4+Tm6vZ1T67zlcmth/qZencaipKVBPNs+IsruEwkdvEecCP3bh0APiuqj4uIi8AD4rI9cDrwNUAqrpVRB4EtgFx4CZVTbhj3QjcA1QCj7kPgLuB+0WkDcfCWDuB+ZYcr5RIe+/s+zIdPDrIwgkunMpGa0MloYCP3Z0Dk/Ye05ENe7p485JGfL7C8z1WzKvld6/PzuSBVLYf7uWNC+eUbLyWWufm0DKoHIoWDVV9FTg7Q3sXcPE4fW4Fbs3QvglYmaF9CFd0piOhgI+m6hDtfbPvy3Tg6CDnLW2ctPH9PuHkudXs7pgdd85tHX3E4sq+7kE++palRY1xSksNP/n9QQaicaonsPHQTKZvaJh93YOsffPiko1p8aKxzM5vVglpqZt9azX6hobpG4pPqnsKYFlLDVsPHJvU95gOHI3EuPxrzzCcdBbmFSvGK1wffltHP2cvKt2d9kxix2EnplNoIkE2wgE/b2iqsniRi5URmSDz6sKzzj3V5t79Ly5RHvx4LGuu4fXuCEPDidwHz2Ce391FLJHkHac0885Tm4vO+jllnhMH2dk+ey9um/c7NxmlypzyOH1+Ha8cmr3nNRUTjQkyr7Zi1gXCvZXa5y5pyHHkxFjWXE1S4bUTvEz6M21HqAkHuOva1XzrY2vwFxHPAHhDUzWhgI9ds8Sll0wqf/WD3/PrnaNp9o9uOcSp82pLbgWftqCWPV0DDMam7w3Mhle7eHkKLHMTjQkyr87ZeD4+i2r+bNzTzclzq0cChJOFl0G14wS/c3627QjnLW0kOMHNrPw+YVlzDbtO8PPlsWFPNw+9uJ/PPPASnX1R9vdE2PRaD3+46qSSv9dp8+tQnb7fxVg8yWd/uJm/fPD3THaCqYnGBGmpqyCpzJpV4cmksnFPN2smMQjucer8Wuorg2PuJE809nVH2NsV4cLlc0sy3hkL6nhp39FZcRPz8EsHqAz66Y/G+euHfs/3Nr4OwB+eXXrR8FaXvzJNqxTc9/xeXuuKcPPlp5WkSGM2TDQmiLciel/3ie1C8djR3kfvUHxKRCPo9/HOU5t56pUOEidoCYfndh8B4KIVpRGNd5/eQk9kmI17Tuxij9F4gke3HOK9K+fzd+87nV/u6OQbT+/mnMVzSlZzKpVFDVVUh/y8cnj6WRpHIzHueHIXbzulmXec2pK7wwQx0Zggp813Am6zpU6SdzGaCtEAePcZ8+geiJ2w6w8ee/kwC+orCl7MNx7vOLWFyqCfx14+XJLxpitPv9JB71CcK85p5ZoLlvDTP7+I9599En9x8YpJeT+fTzh1fu20+J2/tO8or6Ysen3ghX30DsW5+b2nTcn7m2hMkAX1FdRXBtk2SzIrNu7p5qT6ikld2JfK205pJugX1m9vn5L3m0oOHxvi1zs7+eCbWkvmUqgM+XnHqc08vvXwCVtg7/WuCH//8FZa51Ry4TKn3MrK1nr+/SPn8M5JvNM+bUEd2w/1ltXqHYjGuebuDXz8vk3EE0mSSeW7G19nzdLGkmeMjYeJxgQREc5YUMe2aXAHMtkkk8pzu49wwbLSuFLyoa4iyPknN/HEyyfeRfBHv9tPUuGqcxflPrgALls5n86+6Am5H0n3QIxr1m0gGk+y7qNvJjDB5IFCuGj5XHqH4jy65dCUvWc6P/rdAfqG4rzaOcCPfnuAZ3cf4bWuCP/rvNItZsyFiUYJOH1BHTsOl/cOZCrYdqiXnsgwFy6f2ur0V527kL1dEX6+7cRwuRw+NsT9z+/luxte581LGlg6t7qk47/79HnMqQry9afbSjpuuRlOJLnx2y9y6NgQ6z76Zk4t4QK+fLj0zPmsaKnha0/uKstvPZlU7nl2D2e11rNq0Rxue/wV/ubHW2isDnHZyvlTNg8TjRJwxkl1DA0n2XPkxK6T5AVtS5Xpky/vO2sBb2iq4htP7570dMLJprMvyofufI6/e3grB48WXzIkG9XhAJ9653L+Z9cRnm07UvLxy0E0nuB/P/ASG/Z0888feiPnvmFy1whlwu8TPv3uFbR19PMfv9o95cLx7O4j7O4c4GMXLuFv33c6IsKCukq+/MGzCAdKU5wxH0w0SoCXjjcdgmSFEosn874QP9PWxfKWmpHqvlNFwO/jxrcvY8uBYzwzgy+C0XiCP71vE10DUX7wyQvY8U/v5X1vXDAp7/XH57+B1jmV/NPPthONT98FafkQjSe45u6N/HTzIW5+72lceU5r7k6TxOUrF/DWFXP5lyd28Idff4a+oanbKfHBTfuprwzyvjcuYPWSRjb97bt58JMXcMmZU2dlgIlGSVjRUkvQLzMurrG/J8Lb/+VpPvDN57KmDP9s8yH+6afbeGFPNxdNsZXh8YE3tVId8vP4DM4K+vpTbby07yj/9uFVvHnJxBfzZaMi6OeW95/B9kO93PLw1kl7n6nguxteZ+Oebr5y9dl84u3LyjoXn0+470/W8LW1q9h2qJfbHn9lSt73WGSYJ7Ye5opVJ02pVZEJK1hYAkIBH2csqOOeZ/cyEI3z+feeNmmbE5WK7oEYH/vWC/QPxemP9vPOr/ySeXUV/MHZC/jrS04dCTC29w7xVz/4PYNu/ad3njb5eeCZCAf8nH9yE8/t7irL+0+E9t4hNu8/xp2/3M0H39TKZSsnx7pI55Iz53PTO5fxjad3c+Hyubx/Eha9TTaRWJxvPL2bC05u4qpzF+buMAWICFesauX3+46x7tk9XL5yAW+Z5Jupn2w+SCye5OoSJ00Uw/S+ss0gvrb2HL7+dBv3/+Y1egeHuf3DqyZ9ZWaxPLhpH//n0e0MROPc+ydrWNRQxfc2vs7O9n7+81evsuNwH//+kXOorQjy1Z/vJJ5M8uRfvp2KoJ/WSa5sm40Ll8/lyVc62N8TmbKU34ny9I4OPn7vJhJJZW5NmL//gzOm9P3/3/ecyvpt7Xzj6Tb+4I0Lpu13MpVXO/uJJ3Uk6HykP8p/XvOmck/rOP7q0lN46pV2PnbPC3zxypX80erSX9D3dUf45i/beHJ7B6fOq2Vl69Sk1WbDRKNELJlbzVeuPpvFjVV8df1OXuuO0NbRz/knN3HjO5bxpsVTH7jLxN4jA3zuh5tZ/YYGvnDFypHc7s9e5iwM+u6G1/n7h1/mQ3c+x9tPaeYHL+7jYxcuHakDVU68APxzbV380ZvLKxp7jwxw6NgQ4aCPY5FhdnX0sbtjgLrKAGctnMOlZ85jMJbgcw9tZllzNTdffjpntdYzpyo0pfP0+4SPv/VkPvvQZp5pO8JbV0zddsi56B6Icc+ze/j1riO8d+V8lrfU8POt7Tz44j5U4dR5texo7+ODb2rl3DdMzWLSQqgKBfjhjW/hL77/Oz770Gb6huJcf1HuxIaegRh/+YPfs/1QL/Gkcsq8Gj5/2emctbB+zHF9Q8N89FsbOXh0iLNa6/nf7zllWoi+zIRsFBG5DPga4Af+W1W/PN6xq1ev1k2bNk3Z3NJJJpU/+85v2X64l3MXN/DrXZ3E4kmeu/liakq8MU5H3xCHjw3RUlvB/Pr8gtO3PPwy3934Os9+7l0je5yn82zbEW789osMxBJcduZ8vvShs6irCJZy6kWhqrz51id5y7Im7vjIOWWbw/2/eY0v/GQb8bTsmbk1IfqG4kTjSWrCAfw+YSAa5/+/6UJWttaPM+LkE40nuOi2pzl5bjX3Xb+m7D5xgMdfPsznfriZY4PDrGipGanMG/QL15y/hJqwn++9sI+PX7SUG9528rS4WI5HPJHkz7/3Ox57+TD/+Idnct1blox7rKryiftf5OkdHbz/7JPwi/Art7bafdev4Rfb2jncO0R0OMmO9j62Huzl29efxwXLJj/NXUReVNXVOY+b7qIhIn5gJ/AeYD/wAvARVd2W6fhyi0Y6L+07ypXfeJb/7/LT+dO3nZzxmI6+IXa19/PGhfXU5rg4H43E+PWuIzy5vZ2fbT40cuFatWgO7z/7JJY1V3Py3BpaGyqPK7F9bHCYC770JJetnM9X/2hV1vfpcHcjnOxKtoXyme//jie3d3DXtatpqgnRNzR83F1oJBanJzJM65xKkkll/fZ27n1uL0PDCd6ybC6nL6jjzUsaxhXN8djZ3setP9vOr3Z28q7TWrj+oqXE4knqKoMsaaqiqSZMMqk803aEJ7YeJpFU3nFqy5Tm0I/H/c/v5e8e3spp82u5/qKlnH9yE4saqxhOJHm1c4CGqiBNNeGiy7Lny54jA/zLE6/w6JbDnNVaz1euPptT59fyyuFeegfjnHlS3YzcdTAWT/Jn3/ktv9jezgfPaSXo9zGnKsgfvPEkFjdWseXAMR7feojDx6L8Ynv7mOvBK4d7+cA3nmNwOIEINFaFCAV8VAT9fPLtJ/PhEu5CmI0TSTQuAP5BVS91/30zgKp+KdPx0000AP6f//oNuzv7+dVfv5OAT9h84BjPtTk5131DcX69s5NYIonfJ1x+1gJufPsyBocTHDo2SPdAjKDfx+LGKoaGE/z1Q5vpHohRWxHgqnMXcsHJTeztGuCBF/aN2U875PexsKESBAZjCQaicQaHEwwnlJ/9xUWceVL57nwnwqud/Xz83k28mrIm5prz30A8meTxlw8TCvjo7Iu6K60XcvDoIM/t7qJ1TiXNtWE27z9KUp3khQ+vXkRtRYD+aDzje1WHA5w2v5ZwwM+vdnbywAuvUxMO8BcXr+BPLlxa1D7e5eSpV9q5+UdbaO+N4hP4o9WL+O3rPexsd+7yfQJza8LMq6ugpTZMa0Mll505n7m1YV4+cIzOvihtHf20dfbz1hXNnDy3mt+86iQmDCeUw72DLGmq5rQFdaBKIqlUhvycNr+O53Z38ePf7Wdnez+VQT+ffPsybnzHMkKBEyeBM5FUvvTodv77mT00VAXpG4qPsUZrwgHmVAV5y7ImvvzBN475/jz9SgePv3yYj7916cgOjFPNiSQaVwGXqerH3X9fA5ynqp/KdPx0FI1ndh3hj+/eQCjgI+T3jVykWudUEg74uGjFXN5xajPPtXXx7Q2vMTQ8flnrU+fV8n8+uJKzF84ZU0JBVTnSH2Nv1wB7Ogd49cgAr3cPIAhVIT/V4QCVIT/Lm2v40DTJQimWgWicbz27hzlVIV7tHGDds3sI+oX3nbWAoN/H/PoKBmMJvvXcXiqDfm6+/DQ+vHoRAb+PwViCXR193P/8a/zwt/vxiVBTESDT5b8/Gmc44fw+Aj7hj89/A5++eAUN1VMblyglyaTS1tnPd37zGvf/5jUW1Fdy0zuXk1Clo3eIjt4o7X3O39e6BhhI23SosTrEosYqNu8/iirUVwYJB3z4RJhXF2Z358C4IrxmSSOXnDmP95990pSv9ZlKIrE4lUE/PZFhfr2zkyP9UebXV/Du0+dRESy/a3A8TiTRuBq4NE001qjqn6cccwNwA8DixYvPfe2118oy12w8vaODZ3cdYSie4PyTm7jg5CaaasLHHXfw6CDPtB2huSbMgjkVNFWHGU4k2dnex8GjQ1x5zknTPp13qnmu7QgLG6pY3DQ2OL67s5/acGBcN9TQcIKQ3zeuxRCLJ3n1SD/JJLTUhZmb4f9rJtMzEKMy5B/3QjY0nODJ7R0MDSc4e1E9C+orqQr5ERH2dUfoicRYeVL9mPMXTyQ50h/D7xP8PqF3cJitB3tZMa+GU8p0B23kx4kkGjPePWUYhjHdyVc0ZoJD8QVghYgsFZEQsBZ4pMxzMgzDmJVMez+HqsZF5FPAEzgpt+tUdWbXRTAMw5ihTHvRAFDVR4FHyz0PwzCM2c5McE8ZhmEY0wQTDcMwDCNvTDQMwzCMvDHRMAzDMPLGRMMwDMPIm2m/uK9QRKQP2DHBYeYCpdxXtB44NovGg9Kew1LObzI+62SMO5u+g3buyj/eXKBaVXPXzlfVE+oBbJoOY6SNd9dsGq/U57CU85uMzzpJ/yez5jto56784xVyzsw9NTX8ZJaNV2pKOb/J+qyz6RyWejw7d9NrvKyciO6pTZpH/ZTJHmO2Y+dwYtj5Kx47d4VTyDk7ES2Nu6bJGLMdO4cTw85f8di5K5y8z9kJZ2kYhmEYk8eJaGkYhmEYk8SsEA0RWSQiT4vIdhHZKiKfdtsbRWS9iOxy/za47U3u8f0i8vWUcWpF5KWUxxER+bdyfa6ppFTn0H3tIyKyRUQ2i8jjIjK3HJ9pKinx+fuwe+62isg/l+PzTCVFnLv3iMiL7nfsRRF5V8pY57rtbSJyh4jMrD17pwOlTP2arg9gAfAm93ktsBM4A/hn4PNu++eB29zn1cBFwCeBr2cZ90XgbeX+fDPpHOJUVu4A5rr//mecTbbK/hlnyPlrAl4Hmt1/3wtcXO7PN83O3TnASe7zlcCBlLE2AhcAAjwGvLfcn2+mPWaFpaGqh1T1t+7zPmA70ApcgfOjw/17pXvMgKo+AwyNN6aIrABagP+ZxKlPG0p4DsV9VLt3eXXAwcn/BOWlhOfvZGCnqna6//4F8KFJnn5ZKeLc/U5Vve/UVqBCRMIisgCoU9Xn1VGQ+7w+Rv7MCtFIRUSW4NyJbADmqeohcL6YOCKQLx8BHnC/fLOKiZxDVR0GbgS24IjFGcDdkzjdaccEv4NtwGkiskREAjgXvUWTN9vpRRHn7kPA71Q1inkHMA0AAANlSURBVCM0+1Ne2++2GQUwq0RDRGqAHwKfUdXeCQ63FvjexGc1s5joORSRII5onAOcBGwGbi7pJKcxEz1/qtqDc/4ewLFy9wLxUs5xulLouRORM4HbgE94TRkOm3U3fRNl1oiGe7H6IfAdVf2R29zumqy4fzvyHOtsIKCqL07KZKcpJTqHqwBUdbdrpT0IvGWSpjytKNV3UFV/oqrnqeoFOHXWdk3WnKcLhZ47EVkI/Bi4VlV3u837gYUpwy5kFrhGS82sEA3Xd343sF1Vv5ry0iPAde7z64CH8xzyI8wyK6OE5/AAcIaIeIXR3oPjoz6hKeV3UERa3L8NwJ8B/13a2U4vCj13IjIH+Blws6o+6x3surD6ROR8d8xryf83b3iUOxI/FQ+cLBTFcYW85D4ux8lEeRLnTu1JoDGlz16gG+jHuUM5I+W1V4HTyv25Zuo5xMkI2u6O9ROgqdyfb4adv+8B29zH2nJ/tul27oC/BQZSjn0JaHFfWw28DOwGvo67wNke+T9sRbhhGIaRN7PCPWUYhmGUBhMNwzAMI29MNAzDMIy8MdEwDMMw8sZEwzAMw8gbEw3DmGJE5JMicm0Bxy8RkZcnc06GkS+Bck/AMGYTIhJQ1f8o9zwMo1hMNAyjQNyieY/jFM07B6dU97XA6cBXgRrgCPBRVT0kIr8EngMuBB4RkVqgX1W/IiKrgP8AqnAWnP2JqvaIyLnAOiACPDN1n84wsmPuKcMojlOBu1T1jUAvcBPw78BVqupd8G9NOX6Oqr5dVf81bZz7gM+542wBbnHbvwX8hTr1pQxj2mCWhmEUxz4drWv0beBvcDb8We9uBucHDqUc/0D6ACJSjyMmv3Kb7gV+kKH9fuC9pf8IhlE4JhqGURzp9Xf6gK1ZLIOBAsaWDOMbxrTA3FOGURyLRcQTiI8AvwGavTYRCbr7OYyLqh4DekTkrW7TNcCvVPUocExELnLb/1fpp28YxWGWhmEUx3bgOhH5T5wqq/8OPAHc4bqXAsC/4Ww3mo3rgP8QkSqc6skfc9s/BqwTkYg7rmFMC6zKrWEUiJs99VNVXVnmqRjGlGPuKcMwDCNvzNIwDMMw8sYsDcMwDCNvTDQMwzCMvDHRMAzDMPLGRMMwDMPIGxMNwzAMI29MNAzDMIy8+b9r2uNYXM4UswAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'][-200:].plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Study of the annual incidence" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Since the peaks of the epidemic happen in winter, near the transition\n", "between calendar years, we define the reference period for the annual\n", "incidence from August 1st of year $N$ to August 1st of year $N+1$. We\n", "label this period as year $N+1$ because the peak is always located in\n", "year $N+1$. The very low incidence in summer ensures that the arbitrariness\n", "of the choice of reference period has no impact on our conclusions.\n", "\n", "Our task is a bit complicated by the fact that a year does not have an\n", "integer number of weeks. Therefore we modify our reference period a bit:\n", "instead of August 1st, we use the first day of the week containing August 1st.\n", "\n", "A final detail: the dataset starts in October 1984, the first peak is thus\n", "incomplete, We start the analysis with the first full peak." ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", " for y in range(1985,\n", " sorted_data.index[-1].year)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Starting from this list of weeks that contain August 1st, we obtain intervals of approximately one year as the periods between two adjacent weeks in this list. We compute the sums of weekly incidences for all these periods.\n", "\n", "We also check that our periods contain between 51 and 52 weeks, as a safeguard against potential mistakes in our code." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "year = []\n", "yearly_incidence = []\n", "for week1, week2 in zip(first_august_week[:-1],\n", " first_august_week[1:]):\n", " one_year = sorted_data['inc'][week1:week2-1]\n", " assert abs(len(one_year)-52) < 2\n", " yearly_incidence.append(one_year.sum())\n", " year.append(week2.year)\n", "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And here are the annual incidences." ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAD8CAYAAAC7IukgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3X+w1fV95/HnC0GwiSgQMPxQYSPJBE0Xyx10x+5uxC2QHxOwNQ2rVWbqDIniju1mVqTJjqnSmZhpYsu6ISE1FbWK1MSRTaF4jTq1XQJcgr+Q0Hu7UkSIXOaiYmegXnjvH9/Pqd97cjmcc/lyftz7esycOd/7OZ/P53zul8N9n8+P7/ejiMDMzKxIwxrdADMzG3wcXMzMrHAOLmZmVjgHFzMzK5yDi5mZFc7BxczMCufgYmZmhXNwMTOzwjm4mJlZ4YY3ugH19JGPfCSmTp3a6GaYmbWU7du3H4qI8bWUGVLBZerUqXR0dDS6GWZmLUXSP9daxsNiZmZWOAcXMzMrnIOLmZkVrqrgImmPpFckvSipI6V9Q9KbKe1FSZ/N5V8uqUvSbknzcumzUj1dklZKUkofKenxlL5F0tRcmcWSOtNjcS59Wsrbmcqeffqnw8zMilBLz+XqiJgZEW25tPtS2syI2AAgaQawCLgUmA98V9JZKf8qYAkwPT3mp/SbgcMRcQlwH3BvqmsscBdwBTAbuEvSmFTm3vT+04HDqQ4zM2sCZ2JYbAGwNiKORcTrQBcwW9JEYHREbI5sh7KHgIW5MmvS8RPANalXMw9oj4ieiDgMtAPz02tzUl5S2VJdLe/gu0f53e9v5uCRo41uipnZgFQbXAJ4WtJ2SUty6bdJelnSD3M9isnAG7k8+1La5HRcnt6nTET0Au8A4yrUNQ54O+Utr6vlrfxpJ9v29LDymc5GN8XMbECqvc7lqojYL2kC0C7pF2RDXPeQBZ57gG8Dvw+on/JRIZ0BlKlUVx8pGC4BuOiii/rL0jQ+8fWNHOs98W8/P7JlL49s2cvI4cPYveIzDWyZmVltquq5RMT+9HwQeBKYHRFvRcTxiDgB/IBsTgSyXsSFueJTgP0pfUo/6X3KSBoOnAf0VKjrEHB+ylteV3nbV0dEW0S0jR9f0wWmdffCHVfzhZmTGDUi+2cZNWIYC2ZO4oVlVze4ZWZmtTllcJH0IUnnlo6BucCraQ6l5Frg1XS8HliUVoBNI5u43xoRB4Ajkq5McyY3AU/lypRWgl0HPJvmZTYBcyWNScNuc4FN6bXnUl5S2VJdLWvC6FGcO3I4x3pPMHL4MI71nuDckcOZcO6oRjfNzKwm1QyLXQA8mVYNDwcejYi/lfSwpJlkw1F7gC8DRMROSeuA14BeYGlEHE913QI8CJwDbEwPgAeAhyV1kfVYFqW6eiTdA2xL+e6OiJ50vAxYK2kFsCPV0fIOvXeMG664mOtnX8SjW/fS7Ul9M2tByjoBQ0NbW1v43mJmZrWRtL3sMpRT8hX6ZmZWOAcXMzMrnIOLmZkVzsHFzMwK5+BiZmaFc3BpUb7/mJk1MweXFuX7j5lZM6v23mLWJHz/MTNrBe65tBjff8zMWoGDS4vx/cfMrBV4WKwF+f5jZtbsfG+xKhx89yi3PbaD+6+/3D0EMxtyfG+xM8Qrs8zMauNhsQq8MsvMbGDcc6nAK7PMzAbGwaUCr8wyMxuYqoKLpD2SXpH0oqSOlDZWUrukzvQ8Jpd/uaQuSbslzculz0r1dElambY7Jm2J/HhK3yJpaq7M4vQenZIW59KnpbydqezZp386flVpZdaTt17FDVdcTPd7x87E25iZDSpVrRaTtAdoi4hDubRvAT0R8U1JdwJjImKZpBnAY8BsYBLwDPDxiDguaStwO/AzYAOwMiI2SroV+PWI+IqkRcC1EfElSWOBDqCNbDvl7cCsiDictlL+cUSslfQ94KWIWFXp9/BOlGZmtav3arEFwJp0vAZYmEtfGxHHIuJ1oAuYLWkiMDoiNkcW0R4qK1Oq6wngmtSrmQe0R0RPRBwG2oH56bU5KW/5+5uZWYNVG1wCeFrSdklLUtoFEXEAID1PSOmTgTdyZfeltMnpuDy9T5mI6AXeAcZVqGsc8HbKW16XmZk1WLVLka+KiP2SJgDtkn5RIa/6SYsK6QMpU6muvo3JguESgIsuuqi/LGZmVrCqei4RsT89HwSeJJtPeSsNdZGeD6bs+4ALc8WnAPtT+pR+0vuUkTQcOA/oqVDXIeD8lLe8rvK2r46ItohoGz9+fDW/rpmZnaZTBhdJH5J0bukYmAu8CqwHSqu3FgNPpeP1wKK0AmwaMB3YmobOjki6Ms2Z3FRWplTXdcCzaV5mEzBX0pi0Gm0usCm99lzKW/7+ZmbWYNUMi10APJlWDQ8HHo2Iv5W0DVgn6WZgL/BFgIjYmVZyvQb0Aksj4niq6xbgQeAcYGN6ADwAPCypi6zHsijV1SPpHmBbynd3RPSk42XAWkkrgB2pDjMzawK+caWZmVXkG1eamVlTcHAxM7PCObiYmVnhHFzMzKxwDi5mZlY4BxczMyucg4uZmRXOwcXMzArn4GJmZoVzcDEzs8I5uJiZWeEcXMzMrHAOLmZmVjgHFzMzK5yDi5mZFc7BxczMCufgYmZmhas6uEg6S9IOST9JP39D0puSXkyPz+byLpfUJWm3pHm59FmSXkmvrVTaO1nSSEmPp/QtkqbmyiyW1Jkei3Pp01LezlT27NM7FWZmVpRaei63A7vK0u6LiJnpsQFA0gxgEXApMB/4rqSzUv5VwBJgenrMT+k3A4cj4hLgPuDeVNdY4C7gCmA2cJekManMven9pwOHUx1mZtYEqgoukqYAnwP+oorsC4C1EXEsIl4HuoDZkiYCoyNic0QE8BCwMFdmTTp+Argm9WrmAe0R0RMRh4F2YH56bU7KSypbqsvMzBqs2p7LnwF3ACfK0m+T9LKkH+Z6FJOBN3J59qW0yem4PL1PmYjoBd4BxlWoaxzwdspbXpeZmTXYKYOLpM8DByNie9lLq4CPATOBA8C3S0X6qSYqpA+kTKW6+pC0RFKHpI7u7u7+spiZWcGq6blcBXxB0h5gLTBH0iMR8VZEHI+IE8APyOZEIOtFXJgrPwXYn9Kn9JPep4yk4cB5QE+Fug4B56e85XX1ERGrI6ItItrGjx9fxa9rZman65TBJSKWR8SUiJhKNlH/bET8XppDKbkWeDUdrwcWpRVg08gm7rdGxAHgiKQr05zJTcBTuTKllWDXpfcIYBMwV9KYNOw2F9iUXnsu5SWVLdVlZmYNNvzUWU7qW5Jmkg1H7QG+DBAROyWtA14DeoGlEXE8lbkFeBA4B9iYHgAPAA9L6iLrsSxKdfVIugfYlvLdHRE96XgZsFbSCmBHqsPMzJqAsk7A0NDW1hYdHR2NboaZWUuRtD0i2mop4yv0zcyscA4uZmZWOAcXMzMrnIOLmZkVzsHFzMwK5+BiZmaFc3AxM7PCObiYmVnhHFzMbMg7+O5Rfvf7mzl45GijmzJoOLiY2ZC38qedbNvTw8pnOhvdlEHjdO4tZmbW0j7x9Y0c6/1gm6pHtuzlkS17GTl8GLtXfKaBLWt97rmY2ZD1wh1X84WZkxg1IvtTOGrEMBbMnMQLy65ucMtan4OLmTWdes2BTBg9inNHDudY7wlGDh/Gsd4TnDtyOBPOHXVG33cocHAxs6ZTzzmQQ+8d44YrLubJW6/ihisupvu9Y2f8PYcC33LfzJpG+RxIiedAGsu33DezluY5kMHDwcXMmobnQAaPqoOLpLMk7ZD0k/TzWEntkjrT85hc3uWSuiTtljQvlz5L0ivptZWSlNJHSno8pW+RNDVXZnF6j05Ji3Pp01LezlT27NM7FWbWDDwHMjhUPeci6b8DbcDoiPi8pG8BPRHxTUl3AmMiYpmkGcBjwGxgEvAM8PGIOC5pK3A78DNgA7AyIjZKuhX49Yj4iqRFwLUR8SVJY4GO9L4BbAdmRcRhSeuAH0fEWknfA16KiFWVfgfPuZiZ1e6MzblImgJ8DviLXPICYE06XgMszKWvjYhjEfE60AXMljSRLDBtjiyiPVRWplTXE8A1qVczD2iPiJ6IOAy0A/PTa3NS3vL3NzOzBqt2WOzPgDuA/DKOCyLiAEB6npDSJwNv5PLtS2mT03F5ep8yEdELvAOMq1DXOODtlLe8rj4kLZHUIamju7u7yl/XzMxOxymDi6TPAwcjYnuVdaqftKiQPpAylerqmxixOiLaIqJt/Pjx/WUxM7OCVdNzuQr4gqQ9wFpgjqRHgLfSUBfp+WDKvw+4MFd+CrA/pU/pJ71PGUnDgfOAngp1HQLOT3nL6zKrie+Ia1a8UwaXiFgeEVMiYiqwCHg2In4PWA+UVm8tBp5Kx+uBRWkF2DRgOrA1DZ0dkXRlmjO5qaxMqa7r0nsEsAmYK2lMWo02F9iUXnsu5S1/f7Oa+I64ZsU7nbsifxNYJ+lmYC/wRYCI2JlWcr0G9AJLI+J4KnML8CBwDrAxPQAeAB6W1EXWY1mU6uqRdA+wLeW7OyJ60vEyYK2kFcCOVIdZ1XxHXLMzx7d/sSHr4LtHWbFhF0/v/CVH3z/BqBHDmHfpR/na5z7pi/bMcnz7F7Ma1HI1eKvOy7Rqu631ObjYkFbt1eCtOi/Tqu221udhMbMKWvUuva3abmtOHhYzK1ir3qW3Vdttg4eDi1kFrXqX3lZttw0ep7MU2WxIKM3LXD/7Ih7dupfuFpkcb9V22+DgORczM6vIcy5mZtYUHFzMzKxwDi5mZgXyhasZBxczswL5wtWMV4tZSzr47lFue2wH919/uZfXWlPwjVD7cs/FWpK/HVqz8YWrfbnnYi3F3w4/4N5bc/GFq32552Itxd8OP+DeW/Op9kaoQ4F7LtZ0Kn0j97dD996a2fdv/OA6wxULL2tgSxrvlD0XSaMkbZX0kqSdkv44pX9D0puSXkyPz+bKLJfUJWm3pHm59FmSXkmvrUzbHZO2RH48pW+RNDVXZrGkzvRYnEuflvJ2prJnF3NKbKCKWoJ5qm/kQ/3boXtv1gqq6bkcA+ZExHuSRgB/L6m0PfF9EfGn+cySZpBtU3wpMAl4RtLH01bHq4AlwM+ADcB8sq2ObwYOR8QlkhYB9wJfkjQWuAtoAwLYLml9RBxOee6LiLWSvpfqWDXwU2GnKx8UVlz7qZrLV/uNfKh/O3TvzVrBKXsukXkv/TgiPSrdkGwBsDYijkXE60AXMFvSRGB0RGyO7IZmDwELc2XWpOMngGtSr2Ye0B4RPSmgtAPz02tzUl5S2VJdVmef+PpGpt75NzyyZS8RWVCYeuff8Imvbzx14Rx/I6/eUO+9WfOras5F0lnAduAS4H9HxBZJnwFuk3QT0AF8NQWAyWQ9k5J9Ke39dFyeTnp+AyAieiW9A4zLp5eVGQe8HRG9/dRldfbCHVefdC/6WvgbefWGeu/Nml9Vq8Ui4nhEzASmkPVCLiMbgvoYMBM4AHw7ZVd/VVRIH0iZSnX1IWmJpA5JHd3d3f1lsdNUZFDwN/LBz7dHGRpqWi0WEW9Leh6Yn59rkfQD4Cfpx33AhbliU4D9KX1KP+n5MvskDQfOA3pS+qfLyjwPHALOlzQ89V7ydZW3eTWwGrJb7tfy+1r1ito7xN/IB7/TnZuz1nDK/VwkjQfeT4HlHOBpssn07RFxIOX5Q+CKiFgk6VLgUWA22YT+T4HpEXFc0jbgvwFbyCb0/1dEbJC0FPhURHwlTej/dkT8bprQ3w78RmrOz4FZEdEj6a+BH+Um9F+OiO9W+l28n4tZ45Qv2CjxEurmN5D9XKrpuUwE1qR5l2HAuoj4iaSHJc0kG47aA3wZICJ2SloHvAb0AkvTSjGAW4AHgXPIVomVZnwfAB6W1EXWY1mU6uqRdA+wLeW7OyJ60vEyYK2kFcCOVIeZNami5uasNZwyuETEy8Dl/aTfWKHMnwB/0k96B/ArYx0RcRT44knq+iHww37S/x9Z78jMWoAXbAwtvkLfzOqmqLk5a36nnHMZTDznYmZWu4HMufjGlWZmVjgHFzMzK5yDi5mZFc7BxczMCufgYmZmhXNwMTOzwjm4mJlZ4RxczMyscA4uZmZWOAcXszrzfiY2FDi4mNVZfj8Ts8HKN640q5Py/Uwe2bKXR7bs9X4mNii552JWJy/ccTVfmDmJUSOy/3ajRgxjwcxJvLDs6ga3zKx4Di5mdeL9TGwocXCxQa3ZJs9L+5k8eetV3HDFxXS/d6zRTTI7I04ZXCSNkrRV0kuSdkr645Q+VlK7pM70PCZXZrmkLkm7Jc3Lpc+S9Ep6baUkpfSRkh5P6VskTc2VWZzeo1PS4lz6tJS3M5U9u5hTYoNJs02ef//GNlYsvIwZk0azYuFlfP/GmrbIMGsZp9wsLAWAD0XEe5JGAH8P3A78NtATEd+UdCcwJiKWSZoBPEa2BfEk4Bng4xFxXNLWVPZnwAZgZURslHQr8OsR8RVJi4BrI+JLksYCHUAbEMB2YFZEHJa0DvhxRKyV9D3gpYhYVel38WZhQ0f55HmJJ8/NandGNguLzHvpxxHpEcACYE1KXwMsTMcLgLURcSwiXge6gNmSJgKjI2JzZBHtobIypbqeAK5JQW0e0B4RPRFxGGgH5qfX5qS85e9v5snzBmm2YUhrnKrmXCSdJelF4CDZH/stwAURcQAgPU9I2ScDb+SK70tpk9NxeXqfMhHRC7wDjKtQ1zjg7ZS3vK7yti+R1CGpo7u7u5pf1wYBT543RrMNQ1rjVHWdS0QcB2ZKOh94UtJlFbKrvyoqpA+kTKW6+iZGrAZWQzYs1l8eG5xKk+fXz76IR7fupdvfps8YX8Nj5Wq6iDIi3pb0PDAfeEvSxIg4kIa8DqZs+4ALc8WmAPtT+pR+0vNl9kkaDpwH9KT0T5eVeR44BJwvaXjqveTrMgPoM1m+YmGl70N2ul6442pWbNjF0zt/ydH3TzBqxDDmXfpRvva5Tza6adYg1awWG596LEg6B/gvwC+A9UBp9dZi4Kl0vB5YlFaATQOmA1vT0NkRSVemOZObysqU6roOeDbNy2wC5koak1ajzQU2pdeeS3nL39/M6szDkFaump7LRGCNpLPIgtG6iPiJpM3AOkk3A3uBLwJExM60kus1oBdYmobVAG4BHgTOATamB8ADwMOSush6LItSXT2S7gG2pXx3R0RPOl4GrJW0AtiR6jCzBvEwpOWdcinyYHImlyIffPcotz22g/uvv9zf1szqpFX/37Vau8/IUmSrjlfJmNVfq/6/a9V218I9l9Pki/XM6q9V/9+1arvdc2kAX6xnVn+t+v+uVds9EA4up6mWVTK+etlaWTN9flt1dVqrtnsgHFwKUO2dbofCOKsNXs32+W3VO0y3artr5TmXOmjVcVYz8OfXPOfStIbSOKsNPv78Nq9mGqos5+BSB4NhnLWZP8R2Zg2Gz+9g1WxDlXk13VvMBq7Vr17Of4hXXPupRjfH6qzVP7+DTSvcKNRzLlaRx9vNms/Bd4+e9EahZ6JH6TkXK5zH282aTysMVXpYzCpqhQ+x2VDU7EOVDi52Ss3+ITYbipp9vyLPuQxxrXZ3VjOrP8+5WM2aeSmjmbUuD4sNUa2wlLHVuBdo9oFqtjm+UNJzknZJ2inp9pT+DUlvSnoxPT6bK7NcUpek3ZLm5dJnSXolvbYybXdM2hL58ZS+RdLUXJnFkjrTY3EufVrK25nKnl3MKRkavAqseO4Fmn2gmp5LL/DViPi5pHOB7ZLa02v3RcSf5jNLmkG2TfGlwCTgGUkfT1sdrwKWAD8DNgDzybY6vhk4HBGXSFoE3At8SdJY4C6gDYj03usj4nDKc19ErJX0vVTHqoGfiqHFq8CK416g2a86Zc8lIg5ExM/T8RFgFzC5QpEFwNqIOBYRrwNdwGxJE4HREbE5slUEDwELc2XWpOMngGtSr2Ye0B4RPSmgtAPz02tzUl5S2VJdVqWhcnfWM829QLNfVdOcSxquuhzYAlwF3CbpJqCDrHdzmCzw/CxXbF9Kez8dl6eTnt8AiIheSe8A4/LpZWXGAW9HRG8/dVmVmn0pY6twL9DsV1W9WkzSh4EfAX8QEe+SDUF9DJgJHAC+XcraT/GokD6QMpXqKm/3Ekkdkjq6u7v7y2J22twLNOurqp6LpBFkgeWvIuLHABHxVu71HwA/ST/uAy7MFZ8C7E/pU/pJz5fZJ2k4cB7Qk9I/XVbmeeAQcL6k4an3kq+rj4hYDayG7DqXan5fs1q5F2jWVzWrxQQ8AOyKiO/k0ifmsl0LvJqO1wOL0gqwacB0YGtEHACOSLoy1XkT8FSuTGkl2HXAs2leZhMwV9IYSWOAucCm9NpzKS+pbKkuMzNrsGp6LlcBNwKvSHoxpf0R8F8lzSQbjtoDfBkgInZKWge8RrbSbGlaKQZwC/AgcA7ZKrGNKf0B4GFJXWQ9lkWprh5J9wDbUr67I6InHS8D1kpaAexIdZiZWRPw7V/MzKwi3/7FzMyagoOLmVkTavWtxR1czKzl/5ANRq1+OyHfuNLM+vwhW3HtpxrdnCFtsNxOyBP6ZkNY+R+yklb7QzaYHHz3KCs27OLpnb/k6PsnGDViGPMu/Shf+9wnB3TXhyLu1u0JfTOrie+L1nyKvp1Qo4bXPCxm1oTqtTeM74vWnIrYWrzRw2sOLmZNqJ5zIEX8IbNiFXE7oRfuuPqkw2v14OBi1kQa8W3T90UbnBrdK/Wci1kT8RxI8YbyMutG3q3bPRezJtLob5uD0VBeZt3IXqmDi1mT8RxIMRo9oT3U+ToXMxuUir5eZCjzdS5mZomHGBvLw2JmNmh5iLFxPCxmZmYVeVjMzMyawimDi6QLJT0naZeknZJuT+ljJbVL6kzPY3JllkvqkrRb0rxc+ixJr6TXVkpSSh8p6fGUvkXS1FyZxek9OiUtzqVPS3k7U9mzizklZmZ2uqrpufQCX42ITwJXAkslzQDuBH4aEdOBn6afSa8tAi4F5gPflXRWqmsVsASYnh7zU/rNwOGIuAS4D7g31TUWuAu4ApgN3JULYvcC96X3P5zqMDOzJnDK4BIRByLi5+n4CLALmAwsANakbGuAhel4AbA2Io5FxOtAFzBb0kRgdERsjmyi56GyMqW6ngCuSb2aeUB7RPRExGGgHZifXpuT8pa/v5mZNVhNcy5puOpyYAtwQUQcgCwAARNStsnAG7li+1La5HRcnt6nTET0Au8A4yrUNQ54O+Utr8vMzBqs6uAi6cPAj4A/iIh3K2XtJy0qpA+kTKW6+jZGWiKpQ1JHd3d3f1nMzKxgVQUXSSPIAstfRcSPU/JbaaiL9Hwwpe8DLswVnwLsT+lT+knvU0bScOA8oKdCXYeA81Pe8rr6iIjVEdEWEW3jx4+v5tc1M7PTVM1qMQEPALsi4ju5l9YDpdVbi4GncumL0gqwaWQT91vT0NkRSVemOm8qK1Oq6zrg2TQvswmYK2lMmsifC2xKrz2X8pa/v5mZNVg1V+hfBdwIvCLpxZT2R8A3gXWSbgb2Al8EiIidktYBr5GtNFsaEcdTuVuAB4FzgI3pAVnwelhSF1mPZVGqq0fSPcC2lO/uiOhJx8uAtZJWADtSHWZm1gR8hb6ZmVXkK/St6Q3ljZvMhhIHF6ur/MZNZjZ4+a7IVhfeuMlsaHHPxerCe8ObDS0OLlYX3rjJbGjxsJjVjTduMhs6vBTZzMwq8lJkMzNrCg4uZmZWOAeXQcwXLJpZozi4DGK+YNHMGsWrxQYhX7BoZo3mnssg5AsWzYrnYebaOLgMQr5g0ax4HmaujYfFBilfsGhWDA8zD4wvojQzq+Dgu0dZsWEXT+/8JUffP8GoEcOYd+lH+drnPjlkRgPOyEWUkn4o6aCkV3Np35D0pqQX0+OzudeWS+qStFvSvFz6LEmvpNdWpq2OSdshP57St0iamiuzWFJneizOpU9LeTtT2bNr+aXNzKrlYeaBqWbO5UFgfj/p90XEzPTYACBpBtkWxZemMt+VdFbKvwpYAkxPj1KdNwOHI+IS4D7g3lTXWOAu4ApgNnCXpDGpzL3p/acDh1MdZmZnRGmY+clbr+KGKy6m+71jjW5S0zvlnEtE/F2+N3EKC4C1EXEMeF1SFzBb0h5gdERsBpD0ELAQ2JjKfCOVfwK4P/Vq5gHtEdGTyrQD8yWtBeYA16cya1L5VVW20cysJt+/8YMRoRULL2tgS1rH6awWu03Sy2nYrNSjmAy8kcuzL6VNTsfl6X3KREQv8A4wrkJd44C3U97yuszMrAkMNLisAj4GzAQOAN9O6eonb1RIH0iZSnX9CklLJHVI6uju7j5ZNjMzK9CAgktEvBURxyPiBPADsjkRyHoRF+ayTgH2p/Qp/aT3KSNpOHAe0FOhrkPA+SlveV39tXV1RLRFRNv48eNr/VXNzGwABhRcJE3M/XgtUFpJth5YlFaATSObuN8aEQeAI5KuTPMpNwFP5cqUVoJdBzwb2froTcBcSWPSsNtcYFN67bmUl1S2VJeZmTWBU07oS3oM+DTwEUn7yFZwfVrSTLLhqD3AlwEiYqekdcBrQC+wNCKOp6puIVt5dg7ZRP7GlP4A8HCa/O8hW21GRPRIugfYlvLdXZrcB5YBayWtAHakOszMrEn4IkozM6toIBdRDqngIqkb+Od+XvoI2VxOq3G768vtrq9WbTe0bttP1u6LI6KmSeshFVxORlJHrVG5Gbjd9eV211erthtat+1Fttt3RTYzs8I5uJiZWeEcXDKrG92AAXK768vtrq9WbTe0btsLa7fnXMzMrHDuuZiZWeEGZXA5yR40/17S5rSnzP+RNDqlj5C0JqXvkrQ8V+b5tC9Nad+aCU3U7rMl/WVKf0nSp3Nl+t07pwXaXe/zfaGk59K/+05Jt6f0sZLa035B7bkbs9a8X1ELtLtu57zWdksal/K/J+n+srrq/Rkvsu3NfM5/S9L2dG63S5qTq6u2cx4Rg+4B/CfgN4BXc2nbgP+cjn8fuCcdX0+2TQDAr5HdcWBq+vl5oK1J270U+Mt0PAHYDgxLP28F/gPZTT43Ap9pkXbX+3xPBH4jHZ8L/CMwA/jPDIkDAAADj0lEQVQWcGdKvxO4Nx3PAF4CRgLTgH8Czqr3OS+43XU75wNo94eA3wS+AtxfVle9P+NFtr2Zz/nlwKR0fBnw5kDP+aDsuUTE35HdSibvE8DfpeN24HdK2YEPKbsR5jnAvwLv1qOd5Wps9wzgp6ncQeBtoE3Zfd9GR8TmyD4Rpb1zmrrdZ7J9JxMRByLi5+n4CLCLbPuGBWT7BJGeS+fv3/YriojXgdJ+RXU950W1+0y172RqbXdE/EtE/D1wNF9Pgz7jhbS93gbQ7h0RUboR8E5glLJ7RdZ8zgdlcDmJV4EvpOMv8sEdl58A/oVs64C9wJ/GB/cwA/jL1HX9n2e6630SJ2v3S8ACScOV3SR0Vnqt0t459VRru0sacr6VbYh3ObAFuCCym62SnkvDFgPZr+iMOs12l9T9nFfZ7pNp6Gf8NNte0grn/HeAHZFt/ljzOR9KweX3gaWStpN1D/81pc8GjgOTyIYMvirp36XXboiITwH/MT1urG+TgZO3+4dk/8AdwJ8B/5fsZqE17XdzBtXabmjQ+Zb0YeBHwB9ERKVeayF7DBWlgHZDA855De0+aRX9pNXlM15A26EFzrmkS8m2k/9yKamfbBXP+ZAJLhHxi4iYGxGzgMfIxp0hm3P524h4Pw3T/ANpmCYi3kzPR4BHacxQQr/tjojeiPjDiJgZEQuA84FOKu+d08ztbsj5ljSC7D/dX0XEj1PyW2kYoDQEczClD2S/omZud93PeY3tPpmGfMYLanvTn3NJU4AngZsiovR3suZzPmSCS2lFhqRhwNeB76WX9gJzlPkQcCXwizRs85FUZgTweT7Yt6bh7Zb0a6m9SPotoDciXovKe+c0bbsbcb7T+XkA2BUR38m9lN9jKL9f0ED2K2radtf7nA+g3f1qxGe8qLY3+zmXdD7wN8DyiPiHUuYBnfNKs/2t+iD7pnwAeJ8s4t4M3E62UuIfgW/ywQWkHwb+mmzy6jXgf8QHqz22Ay+n1/6ctMKmSdo9FdhNNkH3DNldS0v1tJF9YP8JuL9Uppnb3aDz/ZtkXfuXgRfT47PAOLJFB53peWyuzNfSed1NbrVMPc95Ue2u9zkfYLv3kC0WeS99tmY06DNeSNub/ZyTfRH8l1zeF4EJAznnvkLfzMwKN2SGxczMrH4cXMzMrHAOLmZmVjgHFzMzK5yDi5mZFc7BxczMCufgYmZmhXNwMTOzwv1/q4MdzlEclD8AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "yearly_incidence.plot(style='*')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A sorted list makes it easier to find the highest values (at the end)." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2014 1600941\n", "1991 1659249\n", "1995 1840410\n", "2012 2175217\n", "2003 2234584\n", "2019 2254386\n", "2006 2307352\n", "2017 2321583\n", "2001 2529279\n", "1992 2574578\n", "1993 2703886\n", "2018 2705325\n", "1988 2765617\n", "2007 2780164\n", "1987 2855570\n", "2016 2856393\n", "2011 2857040\n", "2008 2973918\n", "1998 3034904\n", "2002 3125418\n", "2009 3444020\n", "1994 3514763\n", "1996 3539413\n", "2004 3567744\n", "1997 3620066\n", "2015 3654892\n", "2000 3826372\n", "2005 3835025\n", "1999 3908112\n", "2010 4111392\n", "2013 4182691\n", "1986 5115251\n", "1990 5235827\n", "1989 5466192\n", "dtype: int64" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "yearly_incidence.sort_values()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally, a histogram clearly shows the few very strong epidemics, which affect about 10% of the French population,\n", "but are rare: there were three of them in the course of 35 years. The typical epidemic affects only half as many people." ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEKCAYAAAAGvn7fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGalJREFUeJzt3X2UJXV95/H3h5kBhmkYjAONDsr4QAhIqzgXXWQ13WhcdNCcGE5QQcVIGo0PRCdnM8v6sLrLOj5MsphgkklUiAodw8PZyBjUE2hQNEgPqA2OEBdmlSEMAjLSMAuMfPePX7XctP1wq+69XcXPz+ucPn3vrbpVn/rdut9b9auqexURmJlZPvaqO4CZmfWWC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLzNJ+TnzVqlWxZs2aWYc9+OCDrFixop+zr6zJ2aDZ+Zytuibnc7bqyubbunXrPRFxUFczjYi+/a1duzbmctVVV805rG5NzhbR7HzOVl2T8zlbdWXzARPRZe11V4yZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWWmVGGX9B5JN0u6SdJFkvbtVzAzM6um48IuaTXwbqAVEUcDS4DX9SuYmZlVU7YrZimwXNJSYD/gzt5HMjOzbihK/OappLOAc4DdwFcj4tRZxhkFRgEGBwfXjo2NzTqtqakpBgYGqmTuuyZng97nm9yxq2fTGlwOO3d3Pv7Q6pU9m/dCftVe115yturK5hsZGdkaEa1u5tlxYZf0JOAS4BTgfuAfgIsj4vNzPafVasXExMSsw8bHxxkeHi6bd1E0ORv0Pt+aDVt6Nq31Q3vYNNn5N1Vs37iuZ/NeyK/a69pLzlZd2XySui7sZbpiXg7cHhE/iYhHgUuBF3czczMz670yhf1HwH+QtJ8kAS8DtvUnlpmZVdVxYY+I64CLgRuAyeK5m/uUy8zMKir1tb0R8UHgg33KYmZmPeArT83MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy03Fhl3SEpO+0/f1M0h/1M5yZmZXX8U/jRcQtwPMBJC0BdgCX9SmXmZlVVLUr5mXA/4mI/9vLMGZm1j1FRPknSZ8BboiIv5hl2CgwCjA4OLh2bGxs1mlMTU0xMDBQet6LocnZoPf5Jnfs6tm0BpfDzt2djz+0emXP5r2Q9nbr5TKXMd/yNnm9c7bqyuYbGRnZGhGtbuZZurBL2hu4E3hOROycb9xWqxUTExOzDhsfH2d4eLjUvBdLk7NB7/Ot2bClZ9NaP7SHTZMd9/CxfeO6ns17Ie3t1stlLmO+5W3yeuds1ZXNJ6nrwl6lK+aVpK31eYu6mZnVo0phfz1wUa+DmJlZb5Qq7JL2A34LuLQ/cczMrFudd4YCEfEQ8OQ+ZTEzsx7wladmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmSn703gHSrpY0g8kbZN0XL+CmZlZNaV+Gg84F7giIk6WtDewXx8ymZlZFzou7JIOAF4KnA4QEY8Aj/QnlpmZVaWI6GxE6fnAZuD7wPOArcBZEfHgjPFGgVGAwcHBtWNjY7NOb2pqioGBgerJ+6jJ2aD3+SZ37OrZtAaXw87dnY8/tHplz+a9kPZ26+UylzHf8jZ5vXO26srmGxkZ2RoRrW7mWaawt4B/AY6PiOsknQv8LCLeP9dzWq1WTExMzDpsfHyc4eHh8okXQZOzQe/zrdmwpWfTWj+0h02Tnffwbd+4rmfzXkh7u/VymcuYb3mbvN45W3Vl80nqurCXOXh6B3BHRFxX3L8YeEE3Mzczs97ruLBHxF3AjyUdUTz0MlK3jJmZNUjZs2LeBXyhOCPmNuAtvY9kZmbdKFXYI+I7QFd9P2Zm1l++8tTMLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsM6V+QUnSduAB4OfAnm5/SdvMzHqv7G+eAoxExD09T2JmZj3hrhgzs8woIjofWbod+CkQwF9HxOZZxhkFRgEGBwfXjo2NzTqtqakpBgYGqmTuq8kduxhcDjt3L/68h1av7Gi8Xrfd5I5dPZtW2bbrdJl7ob3dernMZcy3vE19T4CzdaNsvpGRka3ddnOXLexPjYg7JR0MfA14V0RcM9f4rVYrJiYmZh02Pj7O8PBwybj9t2bDFtYP7WHTZJVequ5s37iuo/F63XZrNmzp2bTKtl2ny9wL7e3Wy2UuY77lbep7ApytG2XzSeq6sJfqiomIO4v/dwOXAS/sZuZmZtZ7HRd2SSsk7T99G3gFcFO/gpmZWTVl+hsGgcskTT/vwoi4oi+pzMysso4Le0TcBjyvj1nMzKwHfLqjmVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZKF3ZJSyTdKOnyfgQyM7PuVNliPwvY1usgZmbWG6UKu6RDgXXA3/YnjpmZdUsR0fnI0sXAR4D9gT+OiJNmGWcUGAUYHBxcOzY2Nuu0pqamGBgYqJK5ryZ37GJwOezcXXeSuTU5X9lsQ6tX9i/MDO3r3OSOXYs233bzLW9T3xPgbN0om29kZGRrRLS6mefSTkeUdBJwd0RslTQ813gRsRnYDNBqtWJ4ePZRx8fHmWtYnU7fsIX1Q3vYNNlx0yy6Jucrm237qcP9CzND+zp3+oYtizbfdvMtb1PfE+Bs3agjX5mumOOB10jaDowBJ0j6fF9SmZlZZR0X9oj4LxFxaESsAV4HXBkRp/UtmZmZVeLz2M3MMlOpozYixoHxniYxM7Oe8Ba7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8tMx4Vd0r6Svi3pu5JulvShfgYzM7NqyvyC0sPACRExJWkZ8A1J/xQR/9KnbGZmVkHHhT0iApgq7i4r/qIfoczMrDqlet3hyNISYCvwbOC8iPiTWcYZBUYBBgcH146Njc06rampKQYGBuac1+SOXR3n6rXB5bBzd22zX1CT85XNNrR6Zf/CzNC+ztW1fs23vAu9J+r0RM3WhNe5bNuNjIxsjYhWN/MvVdh/8STpQOAy4F0RcdNc47VarZiYmJh12Pj4OMPDw3POY82GLaVz9cr6oT1smqz0O9+Losn5ymbbvnFdH9P8e+3rXF3r13zLu9B7ok5P1GxNeJ3Ltp2krgt7pbNiIuJ+YBw4sZuZm5lZ75U5K+agYksdScuBlwM/6FcwMzOrpsz+/FOAC4p+9r2AL0bE5f2JZWZmVZU5K+Z7wDF9zGJmZj3gK0/NzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMlPmN0+fJukqSdsk3SzprH4GMzOzasr85ukeYH1E3CBpf2CrpK9FxPf7lM3MzCroeIs9Iv4tIm4obj8AbANW9yuYmZlVo4go/yRpDXANcHRE/GzGsFFgFGBwcHDt2NjYrNOYmppiYGBgznlM7thVOlevDC6Hnbtrm/2CmpzP2arrd76h1SsrP3eh92ud5stWVx1pb+uybTcyMrI1IlrdzL90YZc0AFwNnBMRl843bqvViomJiVmHjY+PMzw8POdz12zYUipXL60f2sOmyTK9VIuryfmcrbp+59u+cV3l5y70fq3TfNnqqiPtbV227SR1XdhLnRUjaRlwCfCFhYq6mZnVo8xZMQI+DWyLiD/tXyQzM+tGmS3244E3AidI+k7x96o+5TIzs4o67tCLiG8A6mMWMzPrAV95amaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpaZMr95+hlJd0u6qZ+BzMysO2W22M8HTuxTDjMz65GOC3tEXAPc18csZmbWA4qIzkeW1gCXR8TR84wzCowCDA4Orh0bG5t1vKmpKQYGBuac1+SOXR3n6rXB5bBzd22zX1CT8zlbdf3ON7R6ZeXnLvR+rdN82eqqI+1tXbbtRkZGtkZEq5v597ywt2u1WjExMTHrsPHxcYaHh+d87poNWzrO1Wvrh/awaXJpbfNfSJPzOVt1/c63feO6ys9d6P1ap/my1VVH2tu6bNtJ6rqw+6wYM7PMuLCbmWWmzOmOFwHfAo6QdIekt/YvlpmZVdVxh15EvL6fQczMrDfcFWNmlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWmVKFXdKJkm6R9ENJG/oVyszMqivzm6dLgPOAVwJHAa+XdFS/gpmZWTVltthfCPwwIm6LiEeAMeC3+xPLzMyqUkR0NqJ0MnBiRJxR3H8j8KKIeOeM8UaB0eLuEcAtc0xyFXBPldCLoMnZoNn5nK26JudzturK5jssIg7qZoZLS4yrWR77pU+FiNgMbF5wYtJERLRKzH/RNDkbNDufs1XX5HzOVl0d+cp0xdwBPK3t/qHAnb2NY2Zm3SpT2K8HDpf0DEl7A68D/rE/sczMrKqOu2IiYo+kdwJfAZYAn4mIm7uY94LdNTVqcjZodj5nq67J+ZytukXP1/HBUzMze2LwladmZplxYTczy4wLu5lZZp6QhV3Sakmr684xG0nPlPQeSSfUnWWmJmeDZudztuqanK/J2aB6vidUYZe0RtLVwBXAxyW9pO5M7ST9R+BrpO/SeZukt9cc6ReanA2anc/ZqmtyviZngy7zRUSj/4B9226/FvhEcfvNwD8AQ8V91ZDtBOAZ0/MHPgCcVtx/EfAlYLiOfE3O1vR8zpZnviZn63W+Rm6xSzpA0l9JuhX4hKTDikG/A/youD0G/BA4Y/ppi5jvKEnfA/4b8FlJJ0Rq7aOAQwAi4jrgm8BbFjNfk7M1PZ+z5Zmvydn6la+RhR04EdiXtGCPAB+QtJy0W/JqgIh4GLgYeElx/7F+hZF0qKQD2h46BbgkIl5K+oB5g6TDgQun8xUuA46WtE+/8jU5W9PzOVue+ZqcbbHy1VbYlSyV9FZJX5d0lqRnFYOfDTwSEXuAPwN+CpwGfBV4iqRfK8a7FfixpOP6lPFISV8GvgF8WNL01xT/P2C/4vYXgbuAdaRP1Ce37WHcR/p2y+f9KmVrej5nyzNfk7Mtdr7aCnuxq/GbwJuAjwH7AH9TDL4LuLv4ZPoxaWGeRWqA7/P41wIvA+4tHu8JSSva7j4fuCMi1gBXAp8oHr8PeFjS/hFxH/CvwFOLHN8E3luMtzfwc2B77tmans/Z8szX5Gx15lu0wi7pOEkflXR6cV/AkcAVEfGliPgYcJikFwM7SJ9gRxZP3wYMFI/9BfAqSa8mfSgMAt/tMtuTJJ0v6Xpgo6SDinxDwLWSFBH/CNwvaR1pT2H/YjjF/YOBx0h7GAdL+hvgImBPRNydY7am53O26pqcr8nZmpJvUQq7pOcAfwk8APyepPcW814NPFAsNMD5wBtIhXoP8OLi8RtIR4wfiohrgA3A6cDxwH+PiMfaplHFS4v5vYp0UOJs4ADSl50dUuxdAFxQ5Pt2sSyvBIiIbxXTWBoR24AzgZuB/xkRb6E7Tc7W9HzOlme+JmdrRr65Tpep+kfasj6DtNuxtHjsT4Gzitst4JPAycDLga+0PfdppF0VSIX8RtKvMB0D/G/gKW3jlj4dqWjYM4GrSd05q4rHvwi8u7j9DGBjMfxYUn/YkrZl+0kxndWkPYl3Ap8FPgWs6KLdGput6fmcza+r2+7f//V0i13S80kHOH8b+CDwvmLQDtJvpkL65LkW+F3gn4FDJD1X0rJI/ek7JL0kIq4kfd3lR4FLgYsi4t+m5xVFy5R0EvAa4EPAcaS+fUhn20zvHfwY+Drwyoi4nvSJO1LMcwq4Djg2InYAbyR1Bd0FvC8iHiwbqG1P49VNyzaD266axrUbuO26yfZEaLsyP433SyS9EDgc+GpE/IS0NX5rRJwu6QXAOZJawDjwnyTtFxEPSfou8HukczQvBP4A+KSk3cAkcHsxi78CLoyIXSUyKSJC0rGk3ZyvA1sinR7568BtEXGlpNtJV6++AtgK/I6kVRFxj6R/BR6U9HTgz4HTJB1M+tWoe0m7TkTEBDBRod1apL2aB4CPA3cDz6w7m9uuWrYnQru57fJru/mU2mJXskzSmyTdSOrYPxCYLrw/B7YXW983kHYtjgMe4vFTeAAeJe2CHELaKr+J1L9+NXBPRNwBaau8YlF/KfAZ0lHllwMfKUZ5DLhV0vKIuL3I91zSi3Un6XzS6eVYQmqfS4qMpwJrgc1R8RxXSSslfbaY5u3AuRFxt6S9SJ/kdWZbUrTdb5J2BRvTdsV6NyDpfBrWdsU8Q9IwzVzn9pG0oqFtd0DD225A0r6SLqBhbbegTvprgBXAi4vbBxbBPjnLeGeRLoNdXdw/mdSffhjpKwCuLh7fl9QNs6rtuccAe3eSZ8Y89wPexuNb/suAPwLeUQx/EvC9YvqnkPq71hTDTiqWZVVxexJYSerf/3J7HmCvLrJdRLpibIDUtXRm2zjTxyHeCfyPxcrW9rqeQVrZ1pMO8DSl7aazXVqsVwc1rO32B7aQfkkM4D1NaLcZ+b4M/HVx/2PA2+puO9J74s2k9/8lTWu7tnxXAn9fPNaY9a7TvwW32CWdDdwGbJE0GBH3k/qF7iz6xl+jxy8Q+hbpAOj0hUbXkg6iPhQRFwA/lfQ50kHRW4Bf9CFFxI0R8chCeWZkOwS4HBgGPkc6QPFa0l7CnmK6PyUdeH03qe/rYB4/jfIa0rn0j0TE5cCnSVeznkc6Yv1oW75Sn6ozsv0d8PYi263AEZI2FltRv690wdUVpD2Yvmcr8q0gvblOIF0/8ArScY9jSVtKdbZde7bNpLMFXku6huE36m67wnLStRfPkrSKtM4vKaZZS7vNkm9v0rr2VFIXx9GSPlJX20laRjrGdjLw8Yj43WLQMW3TrK3tZuT7WERMb3FPAkfV2XaldfAJNkzavfhb4D3FY8eSitYdRfALgU3FsHOAD7c9/3rgmOL2PqRTgI7txacSaeV9Udv900lbJm8Gvt32+FOBO4vb7yBdtvuk4vlfAp7eNu6qPmV7E+lI968Df1/8vR74X6Rz+RctW9v0Dmy7/Z9Jb6ZT6267WbL9MemUsWc2qO3eTOprfT/wVtKBtOvrbrdZ8r2PtMezqgltR9oDO3XGY6cA1zWh7ebI9/QiQ+3rXcfL0cGCTp+acwowXtxeRtqaWlncP4y0tX4saRfwYtKW1j+RPqn26Uv41Mcl+MVvt76Ax7t77iWdMzo97tcoCi1p9+mrxTh/skjZjgG+Mb3ito23jHRw+YTi/jn9zjYj5wGk4xs7gQ8X9+8FButqu1my3VXMdwVFN19dbdf2er6F1M32WuALxWP31N1uc+QbKx5rP124lvWO1EVxK7CpmP8HivpxH3BwA9a59nxXkb6Y69C617vSy1FigZ9MulDoOcX9pTOGnw+cPL0CkboezqRPRX2OlfkCHj9f/nPAR4vbv0ba43h62wtzNG1fCbxI2d7R/lhx+5Ci7Z672NnaMvwh6XzbzaR+7W8WbzjV2XYzsp1HOq3s2U1oO9JXRi8h9aFeTdoyvgl4f93r3Cz5/pl0htkLGtJ2XyHtgT2NtBV8FmnDsCnrXHu+L5Au/T+8CW3X6d900emIpE8BP4uIDcX9vUjnXb4DeA5wSpTsJ+8VSYeS+rTeFRG3Kn2h2GiRazXwnejNVWXdZHt7RNxWPHYMqVtqXZHtD+vI1k7pOoQzSW+yI0kr66HU2HZt2Y4mvdn+nHSW1UnU1HaSBkjdHPuQ2uk3SBeenE3aUj6cGtttlnyHk45P/BbpmNfLSO1Xy3qn4rTn4vbzSO/Ta0mX1Ne+zs3IdzTpSvdzSd80W9t6V0bZ89g3A+cWBxmOJK3Ex5NelLPrKuqFYyjOgZd0Bqn//2xSF9IPIp1+WXe2HxXZbietHHtIW/E31pit3b2kg4Dvi4i/k3QacHND8t1P6ie+ifS6LqO+tttDOnviUdKW+s9J6/8k8N4GtNtc+R6W9BpSwa9tvZsumoX7Sced3h8RFzag7Wbme4C08boN+K/Uu951rOwW++tIB0ofJn3j2JURcUufspUi6VrSwbXtpHNIPxQR36s1VGFGtruADQ1qt5WkLbg3kL7/fjNwXkQ8Ou8TF8Es2T4dEZvqTfXLigtPpvuy76o7z0xFvpOBz0Y666TuPPuQfnPhjaQ96r8EPhXpa7prN0u+zRHxZ/WmKqfjwi7puaTzOS8mHSzq2VfldqvYg/ggaUv485GuWmuEJmcDkLSU1P3yMClfk17XxmaDdFEX8FiU2TpaRE3OJ+lM0mm1n2va6wrNz7eQUlvsZmbWfE39aTwzM6vIhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlpn/D0QBdzhJVkBDAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "yearly_incidence.hist(xrot=20)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 1 }