{ "cells": [ { "cell_type": "markdown", "metadata": { "hideCode": true, "hidePrompt": true }, "source": [ "# Notebook exercice 4 Module 2" ] }, { "cell_type": "markdown", "metadata": { "hideCode": true, "hidePrompt": true }, "source": [ "**Importer la base de données _zonulin_**" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import csv" ] }, { "cell_type": "code", "execution_count": 56, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " echantillon visite zonulin_ng_per_ml\n", "0 1 V1 1.552755\n", "1 2 V1 0.427315\n", "2 3 V1 2.370457\n", "3 4 V1 0.365768\n", "4 5 V1 2.933177\n", "5 6 V1 1.798945\n", "6 7 V1 0.444900\n", "7 8 V1 3.742087\n", "8 9 V1 0.128370\n", "9 10 V1 -0.302462\n", "10 11 V1 -0.601407\n", "11 12 V1 2.097890\n", "12 13 V1 2.871630\n", "13 14 V1 2.713365\n", "14 15 V1 1.412075\n", "15 16 V1 0.524033\n", "16 17 V1 -0.117819\n", "17 18 V1 0.998828\n", "18 19 V1 1.104338\n", "19 20 V1 0.550410\n", "20 21 V1 1.007620\n", "21 22 V1 -1.181712\n", "22 23 V1 0.894490\n", "23 24 V1 0.361079\n", "24 25 V1 0.853458\n", "25 26 V1 0.232122\n", "26 27 V1 1.064478\n", "27 28 V1 -0.043376\n", "28 29 V1 -0.143025\n", "29 30 V1 -0.066823\n", ".. ... ... ...\n", "58 15 V3 0.594373\n", "59 16 V3 -0.355217\n", "60 17 V3 0.708675\n", "61 18 V3 0.972450\n", "62 19 V3 -0.320047\n", "63 20 V3 0.093200\n", "64 21 V3 1.702227\n", "65 22 V3 -0.522274\n", "66 23 V3 1.539273\n", "67 24 V3 -0.031653\n", "68 25 V3 -0.037515\n", "69 26 V3 0.015240\n", "70 27 V3 NaN\n", "71 28 V3 -0.500586\n", "72 29 V3 -0.600234\n", "73 30 V3 0.097304\n", "74 31 V3 -0.400938\n", "75 32 V3 -0.377491\n", "76 33 V3 -0.412661\n", "77 34 V3 -0.365768\n", "78 35 V3 0.091442\n", "79 36 V3 -0.143025\n", "80 37 V3 -0.166471\n", "81 38 V3 0.284877\n", "82 39 V3 0.237984\n", "83 40 V3 0.179367\n", "84 41 V3 0.923798\n", "85 42 V3 1.263775\n", "86 43 V3 0.185229\n", "87 44 V3 0.179367\n", "\n", "[88 rows x 3 columns]\n" ] } ], "source": [ "file = pd.read_csv('zonulin_test_virg.csv', ';')\n", "print(file)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Graphique zonulin selon la visite**" ] }, { "cell_type": "code", "execution_count": 62, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEcCAYAAAAhoQi5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGghJREFUeJzt3X+cXHV97/HXO78QIvKj4GoAWdHo3Zgi2KXearhNDFdAoHIpSjZgFVcCrYlQ8YHA6hWt28JV23pje2vaBFDIgqQYKRECpbvKFgQCAiWstjwgSAjKb0wCJiR87h/nDE6G2V/ZMzM7+b6fj8c8snPmnO/5nsmZ8z7n+/3OGUUEZmaWpgmNroCZmTWOQ8DMLGEOATOzhDkEzMwS5hAwM0uYQ8DMLGEOAasbSZdJ+mqj69FoQ70Pkj4hqb8OdfgHSV8cwXxrJc2udX2scSY1ugJWf5LWAS3AduBl4DbgrIh4rJH1KicpgOkR8VCj67IrioizRjjfu0p/S7oIeHtEnFareln9+UogXSdExOuBNwO/AhY3uD41o4z3dbMq/MFIXET8BlgBzChNk7SXpO9IekrSo5K+UDqISvp/klaUzXuJpFvyA+1sSeslXSjpaUnrJJ062LolnSHpIUnPSrpO0rR8+o/zWe6TtEnSKVWWnSjpG/l6HpG0UFJImpS/3iepW9K/Ay8Ch0ialq/n2Xy9Z5SVt0MTTWlbyp6vk3SBpAclPSfpUkmvK3v9eEn3Snpe0m2SDi177XBJ90jaKOlq4NXlBn9rtFjSC5J+JmluPvEjku6umPFcSSurFDBP0pqKaX8u6brK7ZW0n6Tr87o/K+nWsv/vdZKOknQMcCFwSv5/cl/++l6Slkp6QtLjkr4qaeIw22fjiEMgcZL2AE4BflI2eTGwF3AI8IfAnwCn56+dCxyat10fCXQCH4/f3n/kTcB+wAHAx4Elkt5ZZb0fAP4K+CjZ1cijwFUAEfE/8tneHRGvj4irq1T9DOBY4DDgPcCJVeb5GLAA2DMvvwdYD0wDTgb+snSAHaFTgaOBtwHvAL6Qb8t7gGXAmcDvAN8GrpO0m6QpwErgu8C+wDXAHw+znvcCD5O9j18CrpW0L3Ad8FZJbWXznpaXXek64J2SppdNmw8srzLvuWTvy/5kzYQXAjvcTyYibgT+Erg6/z95d/7S5cA24O3A4cAHgU8Ns302jjgE0rVS0vPAr4H/CXwNsjNsslC4ICI2RsQ64BtkB1Qi4kWyA89fA1cAiyJifUXZX4yILRHxI2AV2YG+0qnAsoi4JyK2ABcAfyCpdYT1/yjwzYhYHxHPARdXmeeyiFgbEdvIwmkW8PmI+E1E3Av8U2m7RuhbEfFYRDwLdAMd+fQzgG9HxB0RsT0iLge2AP89f0wG/jYiXo6IFcBdw6znybL5rwZ+DhyXv09Xk73/SHoX0ApcX1lA/v/0g1Id8zD4b2ThUOllsiA+OF/nrWWhPihJLWRBfE5EbI6IJ4G/AeYNt6yNHw6BdJ0YEXsDuwELgR9JKp3FTyE7cy55lOzMHoCIuJPsTFXA9yrKfS4iNlcsO63K+qeVryMiNgHPlK9nGNOA8o7sap3a5dOmAc9GxMaKuo10fZXllW/XwcC5eXPK83m4HpS/Pg14vOKgWv7eVlNt/tK6LgfmSxJZgH0vD4dqlvPboJoPrMzDodLXgIeAmyQ9LOn8YepXcjBZwD1Rtt3fBt44wuVtHHAIJC4/c72WbKTQLOBpsjPDg8tmewvweOmJpE+ThccG4LyKIveRNLVi2Q1VVr2hfB35Mr9Tvp5hPAesKvUBUL1JpPxAugHYV9KeFXUrrW8zsEfZa2+qUt5BFcuWtusxoDsi9i577BERPcATwAH5Qbt82aFUm38DQET8BNgKHEl2YK+23SU3AftJOowsDMqbgo4ha0ojv+I7NyIOAU4APjtIM1nl1cFjZFc8+5Vt9xvKRxTZ+OcQSFzeofthYB9gICK2k53dd0vaU9LBwGfJmn6Q9A7gq2RNEh8DzssPMuW+LGlK3mdwPFk7eKXlwOmSDpO0G1l78x158xNkI5YOGaLqpSaQaZL2Bl4Yajvz4a+3AX8l6XV5x20ncGU+y73AhyTtm18RnVOlmE9LOjBvn7+QrGkG4B+BsyS9N38/p0o6Lg+c28nazD8jaZKkk4DfH6quZGfSn5E0WdJHgDbgh2Wvfwf4FrAtIgb9TkHeDLaC7Ex/X+DmavPlndpvz4Pn12QnBNurzPoroLXUaRwRT5AFzTckvUHSBElvk/SHw2yfjSMOgXT9i6RNZB/6brLO3bX5a4vIzowfBvrJDtjL8rPuK4BLIuK+iPgvsoPhd/MDOcAvyc7SN5AdYM+KiJ9VrjwibgG+CPwz2dny29ixLfki4PK8maFan8JV+b8/zR8/JDvYVjt4lXSQtaFvAL4PfCkiSgfG7wL3AevIDmzVOqOX5689nD++mm/LGrJ+gW/l2/4Q8In8ta3ASfnz58j6W64doo4AdwDTya7KuoGTI+KZiquemQx9FVBe56OAa/JQqGY68K/AJrLQ+vuI6KsyXynMn5F0T/73n5A1Hz5Itn0ryPoXrFlEhB9+jPlBdnB7CXiF7GCyBegjG2X0HeApsrbtLwAT8mU+QRYyXyc7gDwCHFtW5jrgqLLnFwFX5H+3kjVPTMqf3w88M5Jyh9iGPuAvgH8HNpI3p5TV5ZJ8G54hC7Ad6jdImReRHRivzsu8h2zUU+n1aWRB+FRez89UWfYKsrD+VD5997ys6RXzXpPPuxH4D7IRTBeQdTQ/BnywYls/1ej9xo/GP3wlYIWIbBTLsWRn2dPIzpR7GHq4KWTDIX9O1iH9f4ClFe3hgyldeUyUdABZKNxT9vrOljs/r98byc5wP5dPnwx8hmxU05vzbRppp/KHyQ7Q+5Kdma/Mm3omAP9CdgVyADAXOEfS0RXLrgD25rdNV38K3BXZlVi5E8iuDvYhuzpaTXa1fwDwFbJOW7MdOASsFpaTnWn+E0MMN809GhH/GFlfxOVkB9iWEayjdEB/muyAt5lsSORYy700Iv4zIl4i6xsp9XfsAdweEf2RNfH8b17bUTqYuyNiRUS8TDa09nVkQ0ePAPaPiK9ExNaIeJisf6G8Wez2iFgZEa9ExEvKbvlxNtnY/kq3RsTqyJp9riEb939xvt6ryNrz9x5hnS0RvneQFSYi+iR9F3gf2VnzsMNNyfoQSsu/mJ+sv34Eq/tN/u8+EbFNUl/ZtLGU+8uyv18sW+ZqsiaZ8jKfGUF5UDa0NCJeUfZN5GlkITItH1pZMhG4tdqy+fKtQ6znV2V/vwQ8nYdg6Tlk2/M8ZjmHgBVG0jyyztcjIuJlSeXDTR/MZ9thuOkwRjJss16eAF795rOk3cmGtI7Eq0NL8yagA8mazbYBj0TE9MEWZORXG2Y7xc1BVghJh5O1/58YEU9B9h0EhhhuOgL3AvPy9vN2sls9NMoK4ARJ78tvBfFlftskNZzfk3RSPrrnHLJO858AdwK/lvR5Sbsrux/STElH1GQLzKpwCFhRSt816Fd2g7FNkm5gkOGmIyzzi2RDR58jO+hWu+9NXUQ2fHYRWdv6E2QjcJ4kO6AP5wdkfSPPkfWHnBTZ7Rm2k3XmHkY2Muhpsn6UvQrfALNBKMJXm2ajJanUtj49Ih4ZYr6L8D34bRzzlYDZCEk6QdIe+S0uvk42Fn9dY2tlNjaFhUDenvlTSa+5o6HZeFHWVFX5OHIEi3+YrEN3A9m3bOdFREi6YZAyLyy47nVZj6WlsOYgSZ8F2oE3RMTxhRRqZmY1VciVgKQDgePIOrXMzKxJFNUc9LdktxR+ZbAZJC2QtCZ/LChovWZmNgZjbg6SdDzwoYj4M0mzgc8N1xy03377RWtr65jWa6+1efNmpk6dOvyMZuOE99naufvuu5+OiP2Hm6+Ibwy/H/gjSR8iuyfKGyRdMdSQuNbWVtasWTPYy7aT+vr6mD17dqOrYTZi3mdrR9Jwv2AHFNAcFBEXRMSB+T1N5gH/5jHRZmbNwd8TMDNLWKE3kIvs14j6iizTzMxqx1cCZmYJcwiYmSXMIbAL6OnpYebMmcydO5eZM2fS09PT6CqZWZPwj8o0uZ6eHrq6uli6dCnbt29n4sSJdHZ2AtDR0dHg2pnZeOcrgSbX3d3N0qVLmTNnDpMmTWLOnDksXbqU7u7uRlfNzJqAQ6DJDQwMMGvWrB2mzZo1i4GBgQbVyMyaiUOgybW1tdHf37/DtP7+ftra2hpUIzNrJg6BJtfV1UVnZye9vb1s27aN3t5eOjs76erqanTVzKwJuGO4yZU6fxctWsTAwABtbW10d3e7U9jMRsQhsAvo6Oigo6PDN+Mys1Fzc5CZWcIcAmZmCXMImJklzCFgZpYwh4CZWcIcAmZWd77p4fjhEDCzuurp6eHss89m8+bNRASbN2/m7LPPdhA0iEPAzOrqvPPOY+LEiSxbtoybbrqJZcuWMXHiRM4777xGVy1JDgEzq6v169dz+umns2jRIo4++mgWLVrE6aefzvr16xtdtST5G8NmVneXXnopy5cvf/U3MObPn9/oKiXLVwJmVleTJk1i69atO0zbunUrkyb5nLQR/K6bWV1t376dCRMm8MlPfpJf/OIXvOUtb2HChAls37690VVLkq8EzKyuZsyYwZlnnsnUqVMBmDp1KmeeeSYzZsxocM3S5CsBM6urrq6uqr+L7Z9EbQyHgJnVlX8DY3xxCJhZ3fk3MMYP9wmYmSXMIWBmljCHgJlZwhwCZmYJG3MISHqdpDsl3SdpraQvF1ExMzOrvSJGB20BPhARmyRNBvol3RARPymgbDMzq6Exh0BEBLApfzo5f8RYyzUzs9orpE9A0kRJ9wJPAjdHxB1FlGtmZrVVyJfFImI7cJikvYHvS5oZEQ+UzyNpAbAAoKWlhb6+viJWbcAtt9zCFVdc8erNuE477TTmzp3b6GqZDWvTpk0+FjRYod8YjojnJfUBxwAPVLy2BFgC0N7eHv6WYDF6enq48sorWbZs2Q73YZkxY4a/hm/jnr8x3HhFjA7aP78CQNLuwFHAz8Zaro1Md3c38+fP3+FXmubPn++bcZnZiBRxJfBm4HJJE8lC5XsRcX0B5doIPPjgg7z44ouvuSPjunXrGl01M2sCY74SiIj7I+LwiDg0ImZGxFeKqJiNzJQpU1i4cCFz5sxh0qRJzJkzh4ULFzJlypRGV83MmoDvItrktm7dyuLFizn88MPZvn07vb29LF68+DU/32dmVo1DoMnNmDGDE088cYd7s5966qmsXLmy0VUzsybgewc1ua6uLpYvX87ixYtZvXo1ixcvZvny5XR1dTW6amaD6unpYebMmcydO5eZM2fS09PT6Coly1cCTa6jo4PbbruNY489li1btrDbbrtxxhlneHiojVs9PT1Vf14S8H7bAL4SaHI9PT2sWrWKG264gZtvvpkbbriBVatW+czKxq3u7m6WLl26w2CGpUuXelhzgzgEmpw/UNZsBgYGmDVr1g7TZs2axcDAQINqlDaHQJPzB8qaTVtbG/39/TtM6+/vp62trUE1SptDoMn5A2XNpquri87OTnp7e9m2bRu9vb10dnZ6MEODuGO4yZU+UKVOttIHys1BNl6VOn/LhzV3d3e7U7hBlP0cQH21t7fHmjVr6r7eXVVPTw/d3d2vfqC6urr8gbKm4BvI1Y6kuyOifbj5fCWwC+jo6KCjo8MfKDMbNfcJmJklzCFgZpYwh4CZWcIcAmZmCXMImJklzCFgZpYwh4CZWcIcAmZmCfOXxcys5iTt1HKNuKNBahwCTcgfKGs2g+17reevYt3Fx9W5NlbOzUFNKCKqPg7+/PWDvuYAMLNqHAJmZglzCJiZJcwhYGaWMIeAmVnCHAJmZglzCJiZJcwhYGaWMIeAmVnCHAJmZgkbcwhIOkhSr6QBSWslnV1ExczMrPaKuHfQNuDciLhH0p7A3ZJujogHCyjbzMxqaMxXAhHxRETck/+9ERgADhhruWZmVnuF9glIagUOB+4oslwzM6uNwm4lLen1wD8D50TEr6u8vgBYANDS0kJfX19Rq7Yyfl+t2XifbaxCQkDSZLIAuDIirq02T0QsAZYAtLe3x+zZs4tYtZW7cRV+X62peJ9tuCJGBwlYCgxExF+PvUpmZlYvRfQJvB/4GPABSffmjw8VUK6ZmdXYmJuDIqIf2LnfOzQzs4byN4bNzBLmEDAzS5hDwMwsYQ4BM7OEOQTMzBLmEDAzS5hDwMwsYQ4BM7OEOQTMzBLmEDAzS5hDwMwsYQ4BM7OEOQTMzBLmEDAzS5hDwMwsYQ4BM7OEOQTMzBLmEDAzS5hDwMwsYQ4BM7OEOQTMzBLmEDAzS5hDwMwsYQ4BM7OEOQTMzBLmEDAzS5hDwMwsYQ4BM7OEOQTMzBLmEDAzS5hDwMwsYYWEgKRlkp6U9EAR5ZmZWX0UdSVwGXBMQWWZmVmdFBICEfFj4NkiyjIzs/qZVK8VSVoALABoaWmhr6+vXqtuSp++ZTObXx79cq3nrxrV/FMnw9/NnTr6FZkVxMeCxlJEFFOQ1ApcHxEzh5u3vb091qxZU8h6d1Wt569i3cXHjWqZvr4+Zs+eXfP1mFXz7i/fxAsv7cSZyyjttftk7vvSB2u+nmYn6e6IaB9uvrpdCZjZru2Fl16u24mLFcdDRM3MElbUENEe4HbgnZLWS+osolwzM6utQpqDIqKjiHLMzKy+3BxkZpYwh4CZWcIcAmZmCXMImJklzCFgZpYwh4CZWcIcAmZmCXMImJklzCFgZpYwh4CZWcIcAmZmCXMImJklzCFgZpYwh4CZWcIcAmZmCXMImJklzL8xPE7t2XY+v3v5+aNf8PLRrgfAPzRvliqHwDi1ceBi/2i3mdWcm4PMzBLmEDAzS5hDwMwsYQ4BM7OEOQTMzBLmEDAzS5hDwMwsYQ4BM7OEOQTMzBLmbwybWSF8q5Pm5BAws0L4VifNyc1BZmYJKyQEJB0j6eeSHpK0E9eDZmbWCGMOAUkTgb8DjgVmAB2SZoy1XDMzq70irgR+H3goIh6OiK3AVcCHCyjXzMxqrIgQOAB4rOz5+nyamZmNc0WMDlKVafGamaQFwAKAlpYW+vr6Clj1rm2079GmTZt26n31/4UVxfts8ykiBNYDB5U9PxDYUDlTRCwBlgC0t7fHaIeFJefGVXzixs2jXEjA6JbZa/fJox6iZ1bVjatGvS/tzBDRnVmPDa6IELgLmC7prcDjwDxgfgHlJm20460hGz+9M8uZWbrGHAIRsU3SQmA1MBFYFhFrx1wzMzOruUK+MRwRPwR+WERZZmZWP/7GsJlZwhwCZmYJ8w3kzKwwO3VztxtHt8xeu08e/TpsUA4BMyuER7Q1JzcHmZklzCFgZpYwh4CZWcIcAmZmCXMImJklzCFgZpYwh4CZWcIcAmZmCXMImJklzCFgZpYwh4CZWcIcAmZmCXMImJklzCFgZpYwh4CZWcIcAmZmCXMImJklzCFgZpYwh4CZWcIcAmZmCXMImJklzCFgZpYwh4CZWcIcAmZmCXMImJklzCFgZpYwh4CZWcLGFAKSPiJpraRXJLUXVSkzM6uPsV4JPACcBPy4gLqYmVmdTRrLwhExACCpmNqYmVlduU/AzCxhw14JSPpX4E1VXuqKiB+MdEWSFgALAFpaWujr6xvpojYKfl+t2XifbaxhQyAijipiRRGxBFgC0N7eHrNnzy6iWCt34yr8vlpT8T7bcG4OMjNL2FiHiP4vSeuBPwBWSVpdTLXMzKwexjo66PvA9wuqi5mZ1Zmbg8zMEuYQMDNL2Jiag6wxhvpyni4ZfLmIqEFtzKyZ+UqgCUVE1Udvb++grzkArJEkVX08esnxg77mOxHUh0PAzGrOJy7jl0PAzCxhDgEzs4Q5BMzMEuYQMDNLmEPAzCxhDgEzs4Q5BMzMEuYQMDNLmBrxhQxJTwGP1n3Fu779gKcbXQmzUfA+WzsHR8T+w83UkBCw2pC0JiLaG10Ps5HyPtt4bg4yM0uYQ8DMLGEOgV3LkkZXwGyUvM82mPsEzMwS5isBM7OEOQSakKQ+SUdXTDtH0t9LulHS85Kub1T9zCoNsc9eKuluSfdKWivprEbVMVUOgebUA8yrmDYvn/414GN1r5HZ0AbbZy8D3hcRhwHvBc6XNK3OdUuaQ6A5rQCOl7QbgKRWYBrQHxG3ABsbVzWzqgbbZ38cEVvyeXbDx6S68xvehCLiGeBO4Jh80jzg6nAvv41TQ+2zkg6SdD/wGHBJRGxoVD1T5BBoXuWX16WmILPxrOo+GxGPRcShwNuBj0tqaVD9kuQQaF4rgbmS3gPsHhH3NLpCZsMYcp/NrwDWAkc2onKpcgg0qYjYBPQBy/BVgDWBavuspAMl7Z7/vQ/wfuDnjapjihwCza0HeDdwVWmCpFuBa8jOuNZXDssza7DKfbYNuEPSfcCPgK9HxH80qnIp8jeGzcwS5isBM7OEOQTMzBLmEDAzS5hDwMwsYQ4BM7OEOQTMAEnTJK0YZp7b8n9bJc2vT83MastDRM1GSdJs4HMRcXyj62I2Vr4SsORIukTSn5U9v0jSuZIeyJ+/S9Kd+T3u75c0PZ++KV/kYuDI/PU/lzRR0tck3ZXPf2b9t8ps5zgELEVXAaeUPf8ocFfZ87OAb+b3uG8H1lcsfz5wa0QcFhF/A3QCL0TEEcARwBmS3lqz2psVaFKjK2BWbxHxU0lvzH+8ZH/gOeAXZbPcDnRJOhC4NiL+a5giPwgcKunk/PlewHTgkYKrblY4h4ClagVwMvAmyu69BBARyyXdARwHrJb0qYj4tyHKErAoIlbXrLZmNeLmIEvVVWT3tD+ZLBBeJekQ4OGI+L/AdcChFctuBPYse74a+FNJk/Pl3yFpaq0qblYkXwlYkiJiraQ9gccj4on85w5LTgFOk/Qy8EvgKxWL3w9sy+98eRnwTaAVuEeSgKeAE2u6AWYF8RBRM7OEuTnIzCxhDgEzs4Q5BMzMEuYQMDNLmEPAzCxhDgEzs4Q5BMzMEuYQMDNL2P8HBPgDp4fRqrIAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import pylab as P\n", "boxplot = file.boxplot(column=\"zonulin_ng_per_ml\",by=\"visite\")\n", "plt.show(boxplot)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Statistiques descriptives selon la _visite_**" ] }, { "cell_type": "code", "execution_count": 83, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.6812853031818181\n" ] } ], "source": [ "V1 = file.loc[0:43,'zonulin_ng_per_ml'].mean()\n", "print(V1)" ] }, { "cell_type": "code", "execution_count": 82, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.6134845552558138\n" ] } ], "source": [ "V3 = file.loc[44:87,'zonulin_ng_per_ml'].mean()\n", "print(V3)" ] }, { "cell_type": "code", "execution_count": 88, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1.038927303020351\n" ] } ], "source": [ "V1 = file.loc[0:43,'zonulin_ng_per_ml'].std(ddof = 1)\n", "print(V1)" ] }, { "cell_type": "code", "execution_count": 89, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1.1582042761298077\n" ] } ], "source": [ "V3 = file.loc[44:87,'zonulin_ng_per_ml'].std(ddof = 1)\n", "print(V3)" ] }, { "cell_type": "code", "execution_count": 90, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.44988276700000007\n" ] } ], "source": [ "V1 = file.loc[0:43,'zonulin_ng_per_ml'].median()\n", "print(V1)" ] }, { "cell_type": "code", "execution_count": 91, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.185228605\n" ] } ], "source": [ "V3 = file.loc[44:87,'zonulin_ng_per_ml'].median()\n", "print(V3)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "hide_code_all_hidden": true, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }