diff --git a/module2/exo1/toy_document_fr.Rmd b/module2/exo1/toy_document_fr.Rmd index 4544d12b9df19ad4a1385c1aece067c03430acc0..fa3f4c7283d65bb6e05eba8f77fe450390ded151 100644 --- a/module2/exo1/toy_document_fr.Rmd +++ b/module2/exo1/toy_document_fr.Rmd @@ -1,7 +1,7 @@ --- -title: "Votre titre" -author: "Ziqing Wu" -date: "La date du jour" +title: "A propos du calcul de pi" +author: "Arnaud Legrand" +date: "25 juin 2018" output: html_document --- @@ -10,24 +10,39 @@ output: html_document knitr::opts_chunk$set(echo = TRUE) ``` -## Quelques explications +# En demandant à la lib maths -Ceci est un document R markdown que vous pouvez aisément exporter au format HTML, PDF, et MS Word. Pour plus de détails sur R Markdown consultez . +Mon ordinateur m’indique que $\pi$ vaut *approximativement* -Lorsque vous cliquerez sur le bouton **Knit** ce document sera compilé afin de ré-exécuter le code R et d'inclure les résultats dans un document final. Comme nous vous l'avons montré dans la vidéo, on inclue du code R de la façon suivante: - -```{r cars} -summary(cars) +```{r} +pi ``` -Et on peut aussi aisément inclure des figures. Par exemple: +# En utilisant la méthode des aiguilles de Buffon +Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** : -```{r pressure, echo=FALSE} -plot(pressure) +```{r} +set.seed(42) +N = 100000 +x = runif(N) +theta = pi/2*runif(N) +2/(mean(x+sin(theta)>1)) ``` -Vous remarquerez le paramètre `echo = FALSE` qui indique que le code ne doit pas apparaître dans la version finale du document. Nous vous recommandons dans le cadre de ce MOOC de ne pas utiliser ce paramètre car l'objectif est que vos analyses de données soient parfaitement transparentes pour être reproductibles. +# Avec un argument “fréquentiel” de surface +Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ alors $P[X^2+Y^2\leq 1]=\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait: + +```{r} +set.seed(42) +N = 1000 +df = data.frame(X = runif(N), Y = runif(N)) +df$Accept = (df$X**2 + df$Y**2 <=1) +library(ggplot2) +ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() +``` -Comme les résultats ne sont pas stockés dans les fichiers Rmd, pour faciliter la relecture de vos analyses par d'autres personnes, vous aurez donc intérêt à générer un HTML ou un PDF et à le commiter. +Il est alors aisé d’obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2+Y^2$ est inférieur à 1: +```{r} +4*mean(df$Accept) +``` -Maintenant, à vous de jouer! Vous pouvez effacer toutes ces informations et les remplacer par votre document computationnel. diff --git a/module2/exo1/toy_document_fr.html b/module2/exo1/toy_document_fr.html index 5d17af7368454d03b55e9885c0e43f6c46dc5bf4..0973dce212a44cbf72aff72dabe462c08b0e57ad 100644 --- a/module2/exo1/toy_document_fr.html +++ b/module2/exo1/toy_document_fr.html @@ -9,10 +9,10 @@ - + -Votre titre +A propos du calcul de pi @@ -164,30 +164,43 @@ pre code { -

Votre titre

-

Ziqing Wu

-

La date du jour

+

A propos du calcul de pi

+

Arnaud Legrand

+

25 juin 2018

-
-

Quelques explications

-

Ceci est un document R markdown que vous pouvez aisément exporter au format HTML, PDF, et MS Word. Pour plus de détails sur R Markdown consultez http://rmarkdown.rstudio.com.

-

Lorsque vous cliquerez sur le bouton Knit ce document sera compilé afin de ré-exécuter le code R et d’inclure les résultats dans un document final. Comme nous vous l’avons montré dans la vidéo, on inclue du code R de la façon suivante:

-
summary(cars)
-
##      speed           dist       
-##  Min.   : 4.0   Min.   :  2.00  
-##  1st Qu.:12.0   1st Qu.: 26.00  
-##  Median :15.0   Median : 36.00  
-##  Mean   :15.4   Mean   : 42.98  
-##  3rd Qu.:19.0   3rd Qu.: 56.00  
-##  Max.   :25.0   Max.   :120.00
-

Et on peut aussi aisément inclure des figures. Par exemple:

-

-

Vous remarquerez le paramètre echo = FALSE qui indique que le code ne doit pas apparaître dans la version finale du document. Nous vous recommandons dans le cadre de ce MOOC de ne pas utiliser ce paramètre car l’objectif est que vos analyses de données soient parfaitement transparentes pour être reproductibles.

-

Comme les résultats ne sont pas stockés dans les fichiers Rmd, pour faciliter la relecture de vos analyses par d’autres personnes, vous aurez donc intérêt à générer un HTML ou un PDF et à le commiter.

-

Maintenant, à vous de jouer! Vous pouvez effacer toutes ces informations et les remplacer par votre document computationnel.

+
+

En demandant à la lib maths

+

Mon ordinateur m’indique que \(\pi\) vaut approximativement

+
pi
+
## [1] 3.141593
+
+
+

En utilisant la méthode des aiguilles de Buffon

+

Mais calculé avec la méthode des aiguilles de Buffon, on obtiendrait comme approximation :

+
set.seed(42)
+N = 100000
+x = runif(N)
+theta = pi/2*runif(N)
+2/(mean(x+sin(theta)>1))
+
## [1] 3.14327
+
+
+

Avec un argument “fréquentiel” de surface

+

Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si \(X\sim U(0,1)\) alors \(P[X^2+Y^2\leq 1]=\pi/4\) (voir méthode de Monte Carlo sur Wikipedia). Le code suivant illustre ce fait:

+
set.seed(42)
+N = 1000
+df = data.frame(X = runif(N), Y = runif(N))
+df$Accept = (df$X**2 + df$Y**2 <=1)
+library(ggplot2)
+
## Warning: package 'ggplot2' was built under R version 4.0.5
+
ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
+

+

Il est alors aisé d’obtenir une approximation (pas terrible) de \(\pi\) en comptant combien de fois, en moyenne, \(X^2+Y^2\) est inférieur à 1:

+
4*mean(df$Accept)
+
## [1] 3.156
diff --git a/module2/exo1/toy_document_fr.pdf b/module2/exo1/toy_document_fr.pdf new file mode 100644 index 0000000000000000000000000000000000000000..effc2c7886509b17994ee089aa3d915fbf3df3d5 Binary files /dev/null and b/module2/exo1/toy_document_fr.pdf differ