From b9b4eb87366d45af9cc5969066ca6e89f1f3cecd Mon Sep 17 00:00:00 2001
From: 5212fa3d0a7441c34b57f854081c7450
<5212fa3d0a7441c34b57f854081c7450@app-learninglab.inria.fr>
Date: Sun, 2 Feb 2025 09:24:19 +0000
Subject: [PATCH] Upload New File for test
---
module3/exo1/analyse-syndrome-grippal2.ipynb | 2543 ++++++++++++++++++
1 file changed, 2543 insertions(+)
create mode 100644 module3/exo1/analyse-syndrome-grippal2.ipynb
diff --git a/module3/exo1/analyse-syndrome-grippal2.ipynb b/module3/exo1/analyse-syndrome-grippal2.ipynb
new file mode 100644
index 0000000..4556eb3
--- /dev/null
+++ b/module3/exo1/analyse-syndrome-grippal2.ipynb
@@ -0,0 +1,2543 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Incidence du syndrome grippal"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pandas as pd\n",
+ "import isoweek"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Les données de l'incidence du syndrome grippal sont disponibles du site Web du [Réseau Sentinelles](http://www.sentiweb.fr/). Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1984 et se termine avec une semaine récente."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Voici l'explication des colonnes données [sur le site d'origine](https://ns.sentiweb.fr/incidence/csv-schema-v1.json):\n",
+ "\n",
+ "| Nom de colonne | Libellé de colonne |\n",
+ "|----------------|-----------------------------------------------------------------------------------------------------------------------------------|\n",
+ "| week | Semaine calendaire (ISO 8601) |\n",
+ "| indicator | Code de l'indicateur de surveillance |\n",
+ "| inc | Estimation de l'incidence de consultations en nombre de cas |\n",
+ "| inc_low | Estimation de la borne inférieure de l'IC95% du nombre de cas de consultation |\n",
+ "| inc_up | Estimation de la borne supérieure de l'IC95% du nombre de cas de consultation |\n",
+ "| inc100 | Estimation du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
+ "| inc100_low | Estimation de la borne inférieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
+ "| inc100_up | Estimation de la borne supérieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
+ "| geo_insee | Code de la zone géographique concernée (Code INSEE) http://www.insee.fr/fr/methodes/nomenclatures/cog/ |\n",
+ "| geo_name | Libellé de la zone géographique (ce libellé peut être modifié sans préavis) |\n",
+ "\n",
+ "La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant `skiprows=1`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 202504 \n",
+ " 3 \n",
+ " 375118 \n",
+ " 356288.0 \n",
+ " 393948.0 \n",
+ " 560 \n",
+ " 532.0 \n",
+ " 588.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 202503 \n",
+ " 3 \n",
+ " 253215 \n",
+ " 239337.0 \n",
+ " 267093.0 \n",
+ " 378 \n",
+ " 357.0 \n",
+ " 399.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 202502 \n",
+ " 3 \n",
+ " 257247 \n",
+ " 242991.0 \n",
+ " 271503.0 \n",
+ " 384 \n",
+ " 363.0 \n",
+ " 405.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 202501 \n",
+ " 3 \n",
+ " 231549 \n",
+ " 214627.0 \n",
+ " 248471.0 \n",
+ " 345 \n",
+ " 320.0 \n",
+ " 370.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 202452 \n",
+ " 3 \n",
+ " 201726 \n",
+ " 185870.0 \n",
+ " 217582.0 \n",
+ " 302 \n",
+ " 278.0 \n",
+ " 326.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202451 \n",
+ " 3 \n",
+ " 201697 \n",
+ " 187843.0 \n",
+ " 215551.0 \n",
+ " 302 \n",
+ " 281.0 \n",
+ " 323.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 202450 \n",
+ " 3 \n",
+ " 136694 \n",
+ " 126369.0 \n",
+ " 147019.0 \n",
+ " 205 \n",
+ " 190.0 \n",
+ " 220.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 202449 \n",
+ " 3 \n",
+ " 108487 \n",
+ " 99037.0 \n",
+ " 117937.0 \n",
+ " 163 \n",
+ " 149.0 \n",
+ " 177.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 202448 \n",
+ " 3 \n",
+ " 87381 \n",
+ " 78687.0 \n",
+ " 96075.0 \n",
+ " 131 \n",
+ " 118.0 \n",
+ " 144.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 202447 \n",
+ " 3 \n",
+ " 76286 \n",
+ " 67626.0 \n",
+ " 84946.0 \n",
+ " 114 \n",
+ " 101.0 \n",
+ " 127.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 202446 \n",
+ " 3 \n",
+ " 56399 \n",
+ " 49006.0 \n",
+ " 63792.0 \n",
+ " 85 \n",
+ " 74.0 \n",
+ " 96.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 202445 \n",
+ " 3 \n",
+ " 47347 \n",
+ " 40843.0 \n",
+ " 53851.0 \n",
+ " 71 \n",
+ " 61.0 \n",
+ " 81.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 202444 \n",
+ " 3 \n",
+ " 36039 \n",
+ " 30122.0 \n",
+ " 41956.0 \n",
+ " 54 \n",
+ " 45.0 \n",
+ " 63.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 202443 \n",
+ " 3 \n",
+ " 46572 \n",
+ " 39928.0 \n",
+ " 53216.0 \n",
+ " 70 \n",
+ " 60.0 \n",
+ " 80.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 202442 \n",
+ " 3 \n",
+ " 67785 \n",
+ " 60009.0 \n",
+ " 75561.0 \n",
+ " 102 \n",
+ " 90.0 \n",
+ " 114.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 202441 \n",
+ " 3 \n",
+ " 79435 \n",
+ " 71386.0 \n",
+ " 87484.0 \n",
+ " 119 \n",
+ " 107.0 \n",
+ " 131.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 202440 \n",
+ " 3 \n",
+ " 84965 \n",
+ " 76555.0 \n",
+ " 93375.0 \n",
+ " 127 \n",
+ " 114.0 \n",
+ " 140.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 202439 \n",
+ " 3 \n",
+ " 91660 \n",
+ " 82937.0 \n",
+ " 100383.0 \n",
+ " 137 \n",
+ " 124.0 \n",
+ " 150.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 202438 \n",
+ " 3 \n",
+ " 91786 \n",
+ " 82903.0 \n",
+ " 100669.0 \n",
+ " 138 \n",
+ " 125.0 \n",
+ " 151.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 202437 \n",
+ " 3 \n",
+ " 56460 \n",
+ " 49319.0 \n",
+ " 63601.0 \n",
+ " 85 \n",
+ " 74.0 \n",
+ " 96.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 202436 \n",
+ " 3 \n",
+ " 33657 \n",
+ " 27906.0 \n",
+ " 39408.0 \n",
+ " 50 \n",
+ " 41.0 \n",
+ " 59.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 202435 \n",
+ " 3 \n",
+ " 27404 \n",
+ " 22036.0 \n",
+ " 32772.0 \n",
+ " 41 \n",
+ " 33.0 \n",
+ " 49.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 202434 \n",
+ " 3 \n",
+ " 26717 \n",
+ " 21003.0 \n",
+ " 32431.0 \n",
+ " 40 \n",
+ " 31.0 \n",
+ " 49.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 202433 \n",
+ " 3 \n",
+ " 20623 \n",
+ " 15349.0 \n",
+ " 25897.0 \n",
+ " 31 \n",
+ " 23.0 \n",
+ " 39.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 202432 \n",
+ " 3 \n",
+ " 23187 \n",
+ " 17532.0 \n",
+ " 28842.0 \n",
+ " 35 \n",
+ " 27.0 \n",
+ " 43.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 202431 \n",
+ " 3 \n",
+ " 26035 \n",
+ " 20267.0 \n",
+ " 31803.0 \n",
+ " 39 \n",
+ " 30.0 \n",
+ " 48.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 202430 \n",
+ " 3 \n",
+ " 36393 \n",
+ " 28593.0 \n",
+ " 44193.0 \n",
+ " 55 \n",
+ " 43.0 \n",
+ " 67.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 202429 \n",
+ " 3 \n",
+ " 39560 \n",
+ " 32592.0 \n",
+ " 46528.0 \n",
+ " 59 \n",
+ " 49.0 \n",
+ " 69.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 202428 \n",
+ " 3 \n",
+ " 54342 \n",
+ " 45781.0 \n",
+ " 62903.0 \n",
+ " 81 \n",
+ " 68.0 \n",
+ " 94.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 202427 \n",
+ " 3 \n",
+ " 47364 \n",
+ " 40234.0 \n",
+ " 54494.0 \n",
+ " 71 \n",
+ " 60.0 \n",
+ " 82.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 2070 \n",
+ " 198521 \n",
+ " 3 \n",
+ " 26096 \n",
+ " 19621.0 \n",
+ " 32571.0 \n",
+ " 47 \n",
+ " 35.0 \n",
+ " 59.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2071 \n",
+ " 198520 \n",
+ " 3 \n",
+ " 27896 \n",
+ " 20885.0 \n",
+ " 34907.0 \n",
+ " 51 \n",
+ " 38.0 \n",
+ " 64.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2072 \n",
+ " 198519 \n",
+ " 3 \n",
+ " 43154 \n",
+ " 32821.0 \n",
+ " 53487.0 \n",
+ " 78 \n",
+ " 59.0 \n",
+ " 97.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2073 \n",
+ " 198518 \n",
+ " 3 \n",
+ " 40555 \n",
+ " 29935.0 \n",
+ " 51175.0 \n",
+ " 74 \n",
+ " 55.0 \n",
+ " 93.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2074 \n",
+ " 198517 \n",
+ " 3 \n",
+ " 34053 \n",
+ " 24366.0 \n",
+ " 43740.0 \n",
+ " 62 \n",
+ " 44.0 \n",
+ " 80.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2075 \n",
+ " 198516 \n",
+ " 3 \n",
+ " 50362 \n",
+ " 36451.0 \n",
+ " 64273.0 \n",
+ " 91 \n",
+ " 66.0 \n",
+ " 116.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2076 \n",
+ " 198515 \n",
+ " 3 \n",
+ " 63881 \n",
+ " 45538.0 \n",
+ " 82224.0 \n",
+ " 116 \n",
+ " 83.0 \n",
+ " 149.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2077 \n",
+ " 198514 \n",
+ " 3 \n",
+ " 134545 \n",
+ " 114400.0 \n",
+ " 154690.0 \n",
+ " 244 \n",
+ " 207.0 \n",
+ " 281.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2078 \n",
+ " 198513 \n",
+ " 3 \n",
+ " 197206 \n",
+ " 176080.0 \n",
+ " 218332.0 \n",
+ " 357 \n",
+ " 319.0 \n",
+ " 395.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2079 \n",
+ " 198512 \n",
+ " 3 \n",
+ " 245240 \n",
+ " 223304.0 \n",
+ " 267176.0 \n",
+ " 445 \n",
+ " 405.0 \n",
+ " 485.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2080 \n",
+ " 198511 \n",
+ " 3 \n",
+ " 276205 \n",
+ " 252399.0 \n",
+ " 300011.0 \n",
+ " 501 \n",
+ " 458.0 \n",
+ " 544.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2081 \n",
+ " 198510 \n",
+ " 3 \n",
+ " 353231 \n",
+ " 326279.0 \n",
+ " 380183.0 \n",
+ " 640 \n",
+ " 591.0 \n",
+ " 689.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2082 \n",
+ " 198509 \n",
+ " 3 \n",
+ " 369895 \n",
+ " 341109.0 \n",
+ " 398681.0 \n",
+ " 670 \n",
+ " 618.0 \n",
+ " 722.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2083 \n",
+ " 198508 \n",
+ " 3 \n",
+ " 389886 \n",
+ " 359529.0 \n",
+ " 420243.0 \n",
+ " 707 \n",
+ " 652.0 \n",
+ " 762.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2084 \n",
+ " 198507 \n",
+ " 3 \n",
+ " 471852 \n",
+ " 432599.0 \n",
+ " 511105.0 \n",
+ " 855 \n",
+ " 784.0 \n",
+ " 926.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2085 \n",
+ " 198506 \n",
+ " 3 \n",
+ " 565825 \n",
+ " 518011.0 \n",
+ " 613639.0 \n",
+ " 1026 \n",
+ " 939.0 \n",
+ " 1113.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2086 \n",
+ " 198505 \n",
+ " 3 \n",
+ " 637302 \n",
+ " 592795.0 \n",
+ " 681809.0 \n",
+ " 1155 \n",
+ " 1074.0 \n",
+ " 1236.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2087 \n",
+ " 198504 \n",
+ " 3 \n",
+ " 424937 \n",
+ " 390794.0 \n",
+ " 459080.0 \n",
+ " 770 \n",
+ " 708.0 \n",
+ " 832.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2088 \n",
+ " 198503 \n",
+ " 3 \n",
+ " 213901 \n",
+ " 174689.0 \n",
+ " 253113.0 \n",
+ " 388 \n",
+ " 317.0 \n",
+ " 459.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2089 \n",
+ " 198502 \n",
+ " 3 \n",
+ " 97586 \n",
+ " 80949.0 \n",
+ " 114223.0 \n",
+ " 177 \n",
+ " 147.0 \n",
+ " 207.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2090 \n",
+ " 198501 \n",
+ " 3 \n",
+ " 85489 \n",
+ " 65918.0 \n",
+ " 105060.0 \n",
+ " 155 \n",
+ " 120.0 \n",
+ " 190.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2091 \n",
+ " 198452 \n",
+ " 3 \n",
+ " 84830 \n",
+ " 60602.0 \n",
+ " 109058.0 \n",
+ " 154 \n",
+ " 110.0 \n",
+ " 198.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2092 \n",
+ " 198451 \n",
+ " 3 \n",
+ " 101726 \n",
+ " 80242.0 \n",
+ " 123210.0 \n",
+ " 185 \n",
+ " 146.0 \n",
+ " 224.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2093 \n",
+ " 198450 \n",
+ " 3 \n",
+ " 123680 \n",
+ " 101401.0 \n",
+ " 145959.0 \n",
+ " 225 \n",
+ " 184.0 \n",
+ " 266.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2094 \n",
+ " 198449 \n",
+ " 3 \n",
+ " 101073 \n",
+ " 81684.0 \n",
+ " 120462.0 \n",
+ " 184 \n",
+ " 149.0 \n",
+ " 219.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2095 \n",
+ " 198448 \n",
+ " 3 \n",
+ " 78620 \n",
+ " 60634.0 \n",
+ " 96606.0 \n",
+ " 143 \n",
+ " 110.0 \n",
+ " 176.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2096 \n",
+ " 198447 \n",
+ " 3 \n",
+ " 72029 \n",
+ " 54274.0 \n",
+ " 89784.0 \n",
+ " 131 \n",
+ " 99.0 \n",
+ " 163.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2097 \n",
+ " 198446 \n",
+ " 3 \n",
+ " 87330 \n",
+ " 67686.0 \n",
+ " 106974.0 \n",
+ " 159 \n",
+ " 123.0 \n",
+ " 195.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2098 \n",
+ " 198445 \n",
+ " 3 \n",
+ " 135223 \n",
+ " 101414.0 \n",
+ " 169032.0 \n",
+ " 246 \n",
+ " 184.0 \n",
+ " 308.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2099 \n",
+ " 198444 \n",
+ " 3 \n",
+ " 68422 \n",
+ " 20056.0 \n",
+ " 116788.0 \n",
+ " 125 \n",
+ " 37.0 \n",
+ " 213.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
2100 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202504 3 375118 356288.0 393948.0 560 532.0 \n",
+ "1 202503 3 253215 239337.0 267093.0 378 357.0 \n",
+ "2 202502 3 257247 242991.0 271503.0 384 363.0 \n",
+ "3 202501 3 231549 214627.0 248471.0 345 320.0 \n",
+ "4 202452 3 201726 185870.0 217582.0 302 278.0 \n",
+ "5 202451 3 201697 187843.0 215551.0 302 281.0 \n",
+ "6 202450 3 136694 126369.0 147019.0 205 190.0 \n",
+ "7 202449 3 108487 99037.0 117937.0 163 149.0 \n",
+ "8 202448 3 87381 78687.0 96075.0 131 118.0 \n",
+ "9 202447 3 76286 67626.0 84946.0 114 101.0 \n",
+ "10 202446 3 56399 49006.0 63792.0 85 74.0 \n",
+ "11 202445 3 47347 40843.0 53851.0 71 61.0 \n",
+ "12 202444 3 36039 30122.0 41956.0 54 45.0 \n",
+ "13 202443 3 46572 39928.0 53216.0 70 60.0 \n",
+ "14 202442 3 67785 60009.0 75561.0 102 90.0 \n",
+ "15 202441 3 79435 71386.0 87484.0 119 107.0 \n",
+ "16 202440 3 84965 76555.0 93375.0 127 114.0 \n",
+ "17 202439 3 91660 82937.0 100383.0 137 124.0 \n",
+ "18 202438 3 91786 82903.0 100669.0 138 125.0 \n",
+ "19 202437 3 56460 49319.0 63601.0 85 74.0 \n",
+ "20 202436 3 33657 27906.0 39408.0 50 41.0 \n",
+ "21 202435 3 27404 22036.0 32772.0 41 33.0 \n",
+ "22 202434 3 26717 21003.0 32431.0 40 31.0 \n",
+ "23 202433 3 20623 15349.0 25897.0 31 23.0 \n",
+ "24 202432 3 23187 17532.0 28842.0 35 27.0 \n",
+ "25 202431 3 26035 20267.0 31803.0 39 30.0 \n",
+ "26 202430 3 36393 28593.0 44193.0 55 43.0 \n",
+ "27 202429 3 39560 32592.0 46528.0 59 49.0 \n",
+ "28 202428 3 54342 45781.0 62903.0 81 68.0 \n",
+ "29 202427 3 47364 40234.0 54494.0 71 60.0 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "2070 198521 3 26096 19621.0 32571.0 47 35.0 \n",
+ "2071 198520 3 27896 20885.0 34907.0 51 38.0 \n",
+ "2072 198519 3 43154 32821.0 53487.0 78 59.0 \n",
+ "2073 198518 3 40555 29935.0 51175.0 74 55.0 \n",
+ "2074 198517 3 34053 24366.0 43740.0 62 44.0 \n",
+ "2075 198516 3 50362 36451.0 64273.0 91 66.0 \n",
+ "2076 198515 3 63881 45538.0 82224.0 116 83.0 \n",
+ "2077 198514 3 134545 114400.0 154690.0 244 207.0 \n",
+ "2078 198513 3 197206 176080.0 218332.0 357 319.0 \n",
+ "2079 198512 3 245240 223304.0 267176.0 445 405.0 \n",
+ "2080 198511 3 276205 252399.0 300011.0 501 458.0 \n",
+ "2081 198510 3 353231 326279.0 380183.0 640 591.0 \n",
+ "2082 198509 3 369895 341109.0 398681.0 670 618.0 \n",
+ "2083 198508 3 389886 359529.0 420243.0 707 652.0 \n",
+ "2084 198507 3 471852 432599.0 511105.0 855 784.0 \n",
+ "2085 198506 3 565825 518011.0 613639.0 1026 939.0 \n",
+ "2086 198505 3 637302 592795.0 681809.0 1155 1074.0 \n",
+ "2087 198504 3 424937 390794.0 459080.0 770 708.0 \n",
+ "2088 198503 3 213901 174689.0 253113.0 388 317.0 \n",
+ "2089 198502 3 97586 80949.0 114223.0 177 147.0 \n",
+ "2090 198501 3 85489 65918.0 105060.0 155 120.0 \n",
+ "2091 198452 3 84830 60602.0 109058.0 154 110.0 \n",
+ "2092 198451 3 101726 80242.0 123210.0 185 146.0 \n",
+ "2093 198450 3 123680 101401.0 145959.0 225 184.0 \n",
+ "2094 198449 3 101073 81684.0 120462.0 184 149.0 \n",
+ "2095 198448 3 78620 60634.0 96606.0 143 110.0 \n",
+ "2096 198447 3 72029 54274.0 89784.0 131 99.0 \n",
+ "2097 198446 3 87330 67686.0 106974.0 159 123.0 \n",
+ "2098 198445 3 135223 101414.0 169032.0 246 184.0 \n",
+ "2099 198444 3 68422 20056.0 116788.0 125 37.0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 588.0 FR France \n",
+ "1 399.0 FR France \n",
+ "2 405.0 FR France \n",
+ "3 370.0 FR France \n",
+ "4 326.0 FR France \n",
+ "5 323.0 FR France \n",
+ "6 220.0 FR France \n",
+ "7 177.0 FR France \n",
+ "8 144.0 FR France \n",
+ "9 127.0 FR France \n",
+ "10 96.0 FR France \n",
+ "11 81.0 FR France \n",
+ "12 63.0 FR France \n",
+ "13 80.0 FR France \n",
+ "14 114.0 FR France \n",
+ "15 131.0 FR France \n",
+ "16 140.0 FR France \n",
+ "17 150.0 FR France \n",
+ "18 151.0 FR France \n",
+ "19 96.0 FR France \n",
+ "20 59.0 FR France \n",
+ "21 49.0 FR France \n",
+ "22 49.0 FR France \n",
+ "23 39.0 FR France \n",
+ "24 43.0 FR France \n",
+ "25 48.0 FR France \n",
+ "26 67.0 FR France \n",
+ "27 69.0 FR France \n",
+ "28 94.0 FR France \n",
+ "29 82.0 FR France \n",
+ "... ... ... ... \n",
+ "2070 59.0 FR France \n",
+ "2071 64.0 FR France \n",
+ "2072 97.0 FR France \n",
+ "2073 93.0 FR France \n",
+ "2074 80.0 FR France \n",
+ "2075 116.0 FR France \n",
+ "2076 149.0 FR France \n",
+ "2077 281.0 FR France \n",
+ "2078 395.0 FR France \n",
+ "2079 485.0 FR France \n",
+ "2080 544.0 FR France \n",
+ "2081 689.0 FR France \n",
+ "2082 722.0 FR France \n",
+ "2083 762.0 FR France \n",
+ "2084 926.0 FR France \n",
+ "2085 1113.0 FR France \n",
+ "2086 1236.0 FR France \n",
+ "2087 832.0 FR France \n",
+ "2088 459.0 FR France \n",
+ "2089 207.0 FR France \n",
+ "2090 190.0 FR France \n",
+ "2091 198.0 FR France \n",
+ "2092 224.0 FR France \n",
+ "2093 266.0 FR France \n",
+ "2094 219.0 FR France \n",
+ "2095 176.0 FR France \n",
+ "2096 163.0 FR France \n",
+ "2097 195.0 FR France \n",
+ "2098 308.0 FR France \n",
+ "2099 213.0 FR France \n",
+ "\n",
+ "[2100 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data = pd.read_csv(data_url, skiprows=1)\n",
+ "raw_data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Modification du code pour utiliser le fichier local contenant les données :"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "ename": "ParserError",
+ "evalue": "Error tokenizing data. C error: Expected 1 fields in line 30, saw 21\n",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mParserError\u001b[0m Traceback (most recent call last)",
+ "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mraw_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_csv\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'https://app-learninglab.inria.fr/moocrr/gitlab/5212fa3d0a7441c34b57f854081c7450/mooc-rr/blob/master/module3/exo1/inc-25-PAY.csv'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mencoding\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'iso-8859-1'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mskiprows\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mraw_data\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36mparser_f\u001b[0;34m(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, escapechar, comment, encoding, dialect, tupleize_cols, error_bad_lines, warn_bad_lines, skipfooter, skip_footer, doublequote, delim_whitespace, as_recarray, compact_ints, use_unsigned, low_memory, buffer_lines, memory_map, float_precision)\u001b[0m\n\u001b[1;32m 707\u001b[0m skip_blank_lines=skip_blank_lines)\n\u001b[1;32m 708\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 709\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_read\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 710\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 711\u001b[0m \u001b[0mparser_f\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__name__\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m_read\u001b[0;34m(filepath_or_buffer, kwds)\u001b[0m\n\u001b[1;32m 453\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 454\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 455\u001b[0;31m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mparser\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnrows\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 456\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 457\u001b[0m \u001b[0mparser\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclose\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36mread\u001b[0;34m(self, nrows)\u001b[0m\n\u001b[1;32m 1067\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'skipfooter not supported for iteration'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1068\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1069\u001b[0;31m \u001b[0mret\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnrows\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1070\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1071\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptions\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'as_recarray'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36mread\u001b[0;34m(self, nrows)\u001b[0m\n\u001b[1;32m 1837\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnrows\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1838\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1839\u001b[0;31m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_reader\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnrows\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1840\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mStopIteration\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1841\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_first_chunk\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32mpandas/_libs/parsers.pyx\u001b[0m in \u001b[0;36mpandas._libs.parsers.TextReader.read\u001b[0;34m()\u001b[0m\n",
+ "\u001b[0;32mpandas/_libs/parsers.pyx\u001b[0m in \u001b[0;36mpandas._libs.parsers.TextReader._read_low_memory\u001b[0;34m()\u001b[0m\n",
+ "\u001b[0;32mpandas/_libs/parsers.pyx\u001b[0m in \u001b[0;36mpandas._libs.parsers.TextReader._read_rows\u001b[0;34m()\u001b[0m\n",
+ "\u001b[0;32mpandas/_libs/parsers.pyx\u001b[0m in \u001b[0;36mpandas._libs.parsers.TextReader._tokenize_rows\u001b[0;34m()\u001b[0m\n",
+ "\u001b[0;32mpandas/_libs/parsers.pyx\u001b[0m in \u001b[0;36mpandas._libs.parsers.raise_parser_error\u001b[0;34m()\u001b[0m\n",
+ "\u001b[0;31mParserError\u001b[0m: Error tokenizing data. C error: Expected 1 fields in line 30, saw 21\n"
+ ]
+ }
+ ],
+ "source": [
+ "raw_data = pd.read_csv('https://app-learninglab.inria.fr/moocrr/gitlab/5212fa3d0a7441c34b57f854081c7450/mooc-rr/blob/master/module3/exo1/inc-25-PAY.csv', encoding = 'iso-8859-1', skiprows=1)\n",
+ "raw_data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Y a-t-il des points manquants dans ce jeux de données ? Oui, la semaine 19 de l'année 1989 n'a pas de valeurs associées."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1863 \n",
+ " 198919 \n",
+ " 3 \n",
+ " - \n",
+ " NaN \n",
+ " NaN \n",
+ " - \n",
+ " NaN \n",
+ " NaN \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n",
+ "1863 198919 3 - NaN NaN - NaN NaN \n",
+ "\n",
+ " geo_insee geo_name \n",
+ "1863 FR France "
+ ]
+ },
+ "execution_count": 21,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data[raw_data.isnull().any(axis=1)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nous éliminons ce point, ce qui n'a pas d'impact fort sur notre analyse qui est assez simple."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 202504 \n",
+ " 3 \n",
+ " 375118 \n",
+ " 356288.0 \n",
+ " 393948.0 \n",
+ " 560 \n",
+ " 532.0 \n",
+ " 588.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 202503 \n",
+ " 3 \n",
+ " 253215 \n",
+ " 239337.0 \n",
+ " 267093.0 \n",
+ " 378 \n",
+ " 357.0 \n",
+ " 399.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 202502 \n",
+ " 3 \n",
+ " 257247 \n",
+ " 242991.0 \n",
+ " 271503.0 \n",
+ " 384 \n",
+ " 363.0 \n",
+ " 405.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 202501 \n",
+ " 3 \n",
+ " 231549 \n",
+ " 214627.0 \n",
+ " 248471.0 \n",
+ " 345 \n",
+ " 320.0 \n",
+ " 370.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 202452 \n",
+ " 3 \n",
+ " 201726 \n",
+ " 185870.0 \n",
+ " 217582.0 \n",
+ " 302 \n",
+ " 278.0 \n",
+ " 326.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202451 \n",
+ " 3 \n",
+ " 201697 \n",
+ " 187843.0 \n",
+ " 215551.0 \n",
+ " 302 \n",
+ " 281.0 \n",
+ " 323.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 202450 \n",
+ " 3 \n",
+ " 136694 \n",
+ " 126369.0 \n",
+ " 147019.0 \n",
+ " 205 \n",
+ " 190.0 \n",
+ " 220.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 202449 \n",
+ " 3 \n",
+ " 108487 \n",
+ " 99037.0 \n",
+ " 117937.0 \n",
+ " 163 \n",
+ " 149.0 \n",
+ " 177.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 202448 \n",
+ " 3 \n",
+ " 87381 \n",
+ " 78687.0 \n",
+ " 96075.0 \n",
+ " 131 \n",
+ " 118.0 \n",
+ " 144.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 202447 \n",
+ " 3 \n",
+ " 76286 \n",
+ " 67626.0 \n",
+ " 84946.0 \n",
+ " 114 \n",
+ " 101.0 \n",
+ " 127.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 202446 \n",
+ " 3 \n",
+ " 56399 \n",
+ " 49006.0 \n",
+ " 63792.0 \n",
+ " 85 \n",
+ " 74.0 \n",
+ " 96.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 202445 \n",
+ " 3 \n",
+ " 47347 \n",
+ " 40843.0 \n",
+ " 53851.0 \n",
+ " 71 \n",
+ " 61.0 \n",
+ " 81.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 202444 \n",
+ " 3 \n",
+ " 36039 \n",
+ " 30122.0 \n",
+ " 41956.0 \n",
+ " 54 \n",
+ " 45.0 \n",
+ " 63.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 202443 \n",
+ " 3 \n",
+ " 46572 \n",
+ " 39928.0 \n",
+ " 53216.0 \n",
+ " 70 \n",
+ " 60.0 \n",
+ " 80.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 202442 \n",
+ " 3 \n",
+ " 67785 \n",
+ " 60009.0 \n",
+ " 75561.0 \n",
+ " 102 \n",
+ " 90.0 \n",
+ " 114.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 202441 \n",
+ " 3 \n",
+ " 79435 \n",
+ " 71386.0 \n",
+ " 87484.0 \n",
+ " 119 \n",
+ " 107.0 \n",
+ " 131.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 202440 \n",
+ " 3 \n",
+ " 84965 \n",
+ " 76555.0 \n",
+ " 93375.0 \n",
+ " 127 \n",
+ " 114.0 \n",
+ " 140.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 202439 \n",
+ " 3 \n",
+ " 91660 \n",
+ " 82937.0 \n",
+ " 100383.0 \n",
+ " 137 \n",
+ " 124.0 \n",
+ " 150.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 202438 \n",
+ " 3 \n",
+ " 91786 \n",
+ " 82903.0 \n",
+ " 100669.0 \n",
+ " 138 \n",
+ " 125.0 \n",
+ " 151.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 202437 \n",
+ " 3 \n",
+ " 56460 \n",
+ " 49319.0 \n",
+ " 63601.0 \n",
+ " 85 \n",
+ " 74.0 \n",
+ " 96.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 202436 \n",
+ " 3 \n",
+ " 33657 \n",
+ " 27906.0 \n",
+ " 39408.0 \n",
+ " 50 \n",
+ " 41.0 \n",
+ " 59.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 202435 \n",
+ " 3 \n",
+ " 27404 \n",
+ " 22036.0 \n",
+ " 32772.0 \n",
+ " 41 \n",
+ " 33.0 \n",
+ " 49.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 202434 \n",
+ " 3 \n",
+ " 26717 \n",
+ " 21003.0 \n",
+ " 32431.0 \n",
+ " 40 \n",
+ " 31.0 \n",
+ " 49.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 202433 \n",
+ " 3 \n",
+ " 20623 \n",
+ " 15349.0 \n",
+ " 25897.0 \n",
+ " 31 \n",
+ " 23.0 \n",
+ " 39.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 202432 \n",
+ " 3 \n",
+ " 23187 \n",
+ " 17532.0 \n",
+ " 28842.0 \n",
+ " 35 \n",
+ " 27.0 \n",
+ " 43.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 202431 \n",
+ " 3 \n",
+ " 26035 \n",
+ " 20267.0 \n",
+ " 31803.0 \n",
+ " 39 \n",
+ " 30.0 \n",
+ " 48.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 202430 \n",
+ " 3 \n",
+ " 36393 \n",
+ " 28593.0 \n",
+ " 44193.0 \n",
+ " 55 \n",
+ " 43.0 \n",
+ " 67.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 202429 \n",
+ " 3 \n",
+ " 39560 \n",
+ " 32592.0 \n",
+ " 46528.0 \n",
+ " 59 \n",
+ " 49.0 \n",
+ " 69.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 202428 \n",
+ " 3 \n",
+ " 54342 \n",
+ " 45781.0 \n",
+ " 62903.0 \n",
+ " 81 \n",
+ " 68.0 \n",
+ " 94.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 202427 \n",
+ " 3 \n",
+ " 47364 \n",
+ " 40234.0 \n",
+ " 54494.0 \n",
+ " 71 \n",
+ " 60.0 \n",
+ " 82.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 2070 \n",
+ " 198521 \n",
+ " 3 \n",
+ " 26096 \n",
+ " 19621.0 \n",
+ " 32571.0 \n",
+ " 47 \n",
+ " 35.0 \n",
+ " 59.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2071 \n",
+ " 198520 \n",
+ " 3 \n",
+ " 27896 \n",
+ " 20885.0 \n",
+ " 34907.0 \n",
+ " 51 \n",
+ " 38.0 \n",
+ " 64.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2072 \n",
+ " 198519 \n",
+ " 3 \n",
+ " 43154 \n",
+ " 32821.0 \n",
+ " 53487.0 \n",
+ " 78 \n",
+ " 59.0 \n",
+ " 97.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2073 \n",
+ " 198518 \n",
+ " 3 \n",
+ " 40555 \n",
+ " 29935.0 \n",
+ " 51175.0 \n",
+ " 74 \n",
+ " 55.0 \n",
+ " 93.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2074 \n",
+ " 198517 \n",
+ " 3 \n",
+ " 34053 \n",
+ " 24366.0 \n",
+ " 43740.0 \n",
+ " 62 \n",
+ " 44.0 \n",
+ " 80.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2075 \n",
+ " 198516 \n",
+ " 3 \n",
+ " 50362 \n",
+ " 36451.0 \n",
+ " 64273.0 \n",
+ " 91 \n",
+ " 66.0 \n",
+ " 116.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2076 \n",
+ " 198515 \n",
+ " 3 \n",
+ " 63881 \n",
+ " 45538.0 \n",
+ " 82224.0 \n",
+ " 116 \n",
+ " 83.0 \n",
+ " 149.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2077 \n",
+ " 198514 \n",
+ " 3 \n",
+ " 134545 \n",
+ " 114400.0 \n",
+ " 154690.0 \n",
+ " 244 \n",
+ " 207.0 \n",
+ " 281.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2078 \n",
+ " 198513 \n",
+ " 3 \n",
+ " 197206 \n",
+ " 176080.0 \n",
+ " 218332.0 \n",
+ " 357 \n",
+ " 319.0 \n",
+ " 395.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2079 \n",
+ " 198512 \n",
+ " 3 \n",
+ " 245240 \n",
+ " 223304.0 \n",
+ " 267176.0 \n",
+ " 445 \n",
+ " 405.0 \n",
+ " 485.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2080 \n",
+ " 198511 \n",
+ " 3 \n",
+ " 276205 \n",
+ " 252399.0 \n",
+ " 300011.0 \n",
+ " 501 \n",
+ " 458.0 \n",
+ " 544.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2081 \n",
+ " 198510 \n",
+ " 3 \n",
+ " 353231 \n",
+ " 326279.0 \n",
+ " 380183.0 \n",
+ " 640 \n",
+ " 591.0 \n",
+ " 689.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2082 \n",
+ " 198509 \n",
+ " 3 \n",
+ " 369895 \n",
+ " 341109.0 \n",
+ " 398681.0 \n",
+ " 670 \n",
+ " 618.0 \n",
+ " 722.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2083 \n",
+ " 198508 \n",
+ " 3 \n",
+ " 389886 \n",
+ " 359529.0 \n",
+ " 420243.0 \n",
+ " 707 \n",
+ " 652.0 \n",
+ " 762.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2084 \n",
+ " 198507 \n",
+ " 3 \n",
+ " 471852 \n",
+ " 432599.0 \n",
+ " 511105.0 \n",
+ " 855 \n",
+ " 784.0 \n",
+ " 926.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2085 \n",
+ " 198506 \n",
+ " 3 \n",
+ " 565825 \n",
+ " 518011.0 \n",
+ " 613639.0 \n",
+ " 1026 \n",
+ " 939.0 \n",
+ " 1113.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2086 \n",
+ " 198505 \n",
+ " 3 \n",
+ " 637302 \n",
+ " 592795.0 \n",
+ " 681809.0 \n",
+ " 1155 \n",
+ " 1074.0 \n",
+ " 1236.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2087 \n",
+ " 198504 \n",
+ " 3 \n",
+ " 424937 \n",
+ " 390794.0 \n",
+ " 459080.0 \n",
+ " 770 \n",
+ " 708.0 \n",
+ " 832.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2088 \n",
+ " 198503 \n",
+ " 3 \n",
+ " 213901 \n",
+ " 174689.0 \n",
+ " 253113.0 \n",
+ " 388 \n",
+ " 317.0 \n",
+ " 459.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2089 \n",
+ " 198502 \n",
+ " 3 \n",
+ " 97586 \n",
+ " 80949.0 \n",
+ " 114223.0 \n",
+ " 177 \n",
+ " 147.0 \n",
+ " 207.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2090 \n",
+ " 198501 \n",
+ " 3 \n",
+ " 85489 \n",
+ " 65918.0 \n",
+ " 105060.0 \n",
+ " 155 \n",
+ " 120.0 \n",
+ " 190.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2091 \n",
+ " 198452 \n",
+ " 3 \n",
+ " 84830 \n",
+ " 60602.0 \n",
+ " 109058.0 \n",
+ " 154 \n",
+ " 110.0 \n",
+ " 198.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2092 \n",
+ " 198451 \n",
+ " 3 \n",
+ " 101726 \n",
+ " 80242.0 \n",
+ " 123210.0 \n",
+ " 185 \n",
+ " 146.0 \n",
+ " 224.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2093 \n",
+ " 198450 \n",
+ " 3 \n",
+ " 123680 \n",
+ " 101401.0 \n",
+ " 145959.0 \n",
+ " 225 \n",
+ " 184.0 \n",
+ " 266.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2094 \n",
+ " 198449 \n",
+ " 3 \n",
+ " 101073 \n",
+ " 81684.0 \n",
+ " 120462.0 \n",
+ " 184 \n",
+ " 149.0 \n",
+ " 219.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2095 \n",
+ " 198448 \n",
+ " 3 \n",
+ " 78620 \n",
+ " 60634.0 \n",
+ " 96606.0 \n",
+ " 143 \n",
+ " 110.0 \n",
+ " 176.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2096 \n",
+ " 198447 \n",
+ " 3 \n",
+ " 72029 \n",
+ " 54274.0 \n",
+ " 89784.0 \n",
+ " 131 \n",
+ " 99.0 \n",
+ " 163.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2097 \n",
+ " 198446 \n",
+ " 3 \n",
+ " 87330 \n",
+ " 67686.0 \n",
+ " 106974.0 \n",
+ " 159 \n",
+ " 123.0 \n",
+ " 195.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2098 \n",
+ " 198445 \n",
+ " 3 \n",
+ " 135223 \n",
+ " 101414.0 \n",
+ " 169032.0 \n",
+ " 246 \n",
+ " 184.0 \n",
+ " 308.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2099 \n",
+ " 198444 \n",
+ " 3 \n",
+ " 68422 \n",
+ " 20056.0 \n",
+ " 116788.0 \n",
+ " 125 \n",
+ " 37.0 \n",
+ " 213.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
2099 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202504 3 375118 356288.0 393948.0 560 532.0 \n",
+ "1 202503 3 253215 239337.0 267093.0 378 357.0 \n",
+ "2 202502 3 257247 242991.0 271503.0 384 363.0 \n",
+ "3 202501 3 231549 214627.0 248471.0 345 320.0 \n",
+ "4 202452 3 201726 185870.0 217582.0 302 278.0 \n",
+ "5 202451 3 201697 187843.0 215551.0 302 281.0 \n",
+ "6 202450 3 136694 126369.0 147019.0 205 190.0 \n",
+ "7 202449 3 108487 99037.0 117937.0 163 149.0 \n",
+ "8 202448 3 87381 78687.0 96075.0 131 118.0 \n",
+ "9 202447 3 76286 67626.0 84946.0 114 101.0 \n",
+ "10 202446 3 56399 49006.0 63792.0 85 74.0 \n",
+ "11 202445 3 47347 40843.0 53851.0 71 61.0 \n",
+ "12 202444 3 36039 30122.0 41956.0 54 45.0 \n",
+ "13 202443 3 46572 39928.0 53216.0 70 60.0 \n",
+ "14 202442 3 67785 60009.0 75561.0 102 90.0 \n",
+ "15 202441 3 79435 71386.0 87484.0 119 107.0 \n",
+ "16 202440 3 84965 76555.0 93375.0 127 114.0 \n",
+ "17 202439 3 91660 82937.0 100383.0 137 124.0 \n",
+ "18 202438 3 91786 82903.0 100669.0 138 125.0 \n",
+ "19 202437 3 56460 49319.0 63601.0 85 74.0 \n",
+ "20 202436 3 33657 27906.0 39408.0 50 41.0 \n",
+ "21 202435 3 27404 22036.0 32772.0 41 33.0 \n",
+ "22 202434 3 26717 21003.0 32431.0 40 31.0 \n",
+ "23 202433 3 20623 15349.0 25897.0 31 23.0 \n",
+ "24 202432 3 23187 17532.0 28842.0 35 27.0 \n",
+ "25 202431 3 26035 20267.0 31803.0 39 30.0 \n",
+ "26 202430 3 36393 28593.0 44193.0 55 43.0 \n",
+ "27 202429 3 39560 32592.0 46528.0 59 49.0 \n",
+ "28 202428 3 54342 45781.0 62903.0 81 68.0 \n",
+ "29 202427 3 47364 40234.0 54494.0 71 60.0 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "2070 198521 3 26096 19621.0 32571.0 47 35.0 \n",
+ "2071 198520 3 27896 20885.0 34907.0 51 38.0 \n",
+ "2072 198519 3 43154 32821.0 53487.0 78 59.0 \n",
+ "2073 198518 3 40555 29935.0 51175.0 74 55.0 \n",
+ "2074 198517 3 34053 24366.0 43740.0 62 44.0 \n",
+ "2075 198516 3 50362 36451.0 64273.0 91 66.0 \n",
+ "2076 198515 3 63881 45538.0 82224.0 116 83.0 \n",
+ "2077 198514 3 134545 114400.0 154690.0 244 207.0 \n",
+ "2078 198513 3 197206 176080.0 218332.0 357 319.0 \n",
+ "2079 198512 3 245240 223304.0 267176.0 445 405.0 \n",
+ "2080 198511 3 276205 252399.0 300011.0 501 458.0 \n",
+ "2081 198510 3 353231 326279.0 380183.0 640 591.0 \n",
+ "2082 198509 3 369895 341109.0 398681.0 670 618.0 \n",
+ "2083 198508 3 389886 359529.0 420243.0 707 652.0 \n",
+ "2084 198507 3 471852 432599.0 511105.0 855 784.0 \n",
+ "2085 198506 3 565825 518011.0 613639.0 1026 939.0 \n",
+ "2086 198505 3 637302 592795.0 681809.0 1155 1074.0 \n",
+ "2087 198504 3 424937 390794.0 459080.0 770 708.0 \n",
+ "2088 198503 3 213901 174689.0 253113.0 388 317.0 \n",
+ "2089 198502 3 97586 80949.0 114223.0 177 147.0 \n",
+ "2090 198501 3 85489 65918.0 105060.0 155 120.0 \n",
+ "2091 198452 3 84830 60602.0 109058.0 154 110.0 \n",
+ "2092 198451 3 101726 80242.0 123210.0 185 146.0 \n",
+ "2093 198450 3 123680 101401.0 145959.0 225 184.0 \n",
+ "2094 198449 3 101073 81684.0 120462.0 184 149.0 \n",
+ "2095 198448 3 78620 60634.0 96606.0 143 110.0 \n",
+ "2096 198447 3 72029 54274.0 89784.0 131 99.0 \n",
+ "2097 198446 3 87330 67686.0 106974.0 159 123.0 \n",
+ "2098 198445 3 135223 101414.0 169032.0 246 184.0 \n",
+ "2099 198444 3 68422 20056.0 116788.0 125 37.0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 588.0 FR France \n",
+ "1 399.0 FR France \n",
+ "2 405.0 FR France \n",
+ "3 370.0 FR France \n",
+ "4 326.0 FR France \n",
+ "5 323.0 FR France \n",
+ "6 220.0 FR France \n",
+ "7 177.0 FR France \n",
+ "8 144.0 FR France \n",
+ "9 127.0 FR France \n",
+ "10 96.0 FR France \n",
+ "11 81.0 FR France \n",
+ "12 63.0 FR France \n",
+ "13 80.0 FR France \n",
+ "14 114.0 FR France \n",
+ "15 131.0 FR France \n",
+ "16 140.0 FR France \n",
+ "17 150.0 FR France \n",
+ "18 151.0 FR France \n",
+ "19 96.0 FR France \n",
+ "20 59.0 FR France \n",
+ "21 49.0 FR France \n",
+ "22 49.0 FR France \n",
+ "23 39.0 FR France \n",
+ "24 43.0 FR France \n",
+ "25 48.0 FR France \n",
+ "26 67.0 FR France \n",
+ "27 69.0 FR France \n",
+ "28 94.0 FR France \n",
+ "29 82.0 FR France \n",
+ "... ... ... ... \n",
+ "2070 59.0 FR France \n",
+ "2071 64.0 FR France \n",
+ "2072 97.0 FR France \n",
+ "2073 93.0 FR France \n",
+ "2074 80.0 FR France \n",
+ "2075 116.0 FR France \n",
+ "2076 149.0 FR France \n",
+ "2077 281.0 FR France \n",
+ "2078 395.0 FR France \n",
+ "2079 485.0 FR France \n",
+ "2080 544.0 FR France \n",
+ "2081 689.0 FR France \n",
+ "2082 722.0 FR France \n",
+ "2083 762.0 FR France \n",
+ "2084 926.0 FR France \n",
+ "2085 1113.0 FR France \n",
+ "2086 1236.0 FR France \n",
+ "2087 832.0 FR France \n",
+ "2088 459.0 FR France \n",
+ "2089 207.0 FR France \n",
+ "2090 190.0 FR France \n",
+ "2091 198.0 FR France \n",
+ "2092 224.0 FR France \n",
+ "2093 266.0 FR France \n",
+ "2094 219.0 FR France \n",
+ "2095 176.0 FR France \n",
+ "2096 163.0 FR France \n",
+ "2097 195.0 FR France \n",
+ "2098 308.0 FR France \n",
+ "2099 213.0 FR France \n",
+ "\n",
+ "[2099 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 22,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data = raw_data.dropna().copy()\n",
+ "data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nos données utilisent une convention inhabituelle: le numéro de\n",
+ "semaine est collé à l'année, donnant l'impression qu'il s'agit\n",
+ "de nombre entier. C'est comme ça que Pandas les interprète.\n",
+ " \n",
+ "Un deuxième problème est que Pandas ne comprend pas les numéros de\n",
+ "semaine. Il faut lui fournir les dates de début et de fin de\n",
+ "semaine. Nous utilisons pour cela la bibliothèque `isoweek`.\n",
+ "\n",
+ "Comme la conversion des semaines est devenu assez complexe, nous\n",
+ "écrivons une petite fonction Python pour cela. Ensuite, nous\n",
+ "l'appliquons à tous les points de nos donnés. Les résultats vont\n",
+ "dans une nouvelle colonne 'period'."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def convert_week(year_and_week_int):\n",
+ " year_and_week_str = str(year_and_week_int)\n",
+ " year = int(year_and_week_str[:4])\n",
+ " week = int(year_and_week_str[4:])\n",
+ " w = isoweek.Week(year, week)\n",
+ " return pd.Period(w.day(0), 'W')\n",
+ "\n",
+ "data['period'] = [convert_week(yw) for yw in data['week']]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Il restent deux petites modifications à faire.\n",
+ "\n",
+ "Premièrement, nous définissons les périodes d'observation\n",
+ "comme nouvel index de notre jeux de données. Ceci en fait\n",
+ "une suite chronologique, ce qui sera pratique par la suite.\n",
+ "\n",
+ "Deuxièmement, nous trions les points par période, dans\n",
+ "le sens chronologique."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sorted_data = data.set_index('period').sort_index()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nous vérifions la cohérence des données. Entre la fin d'une période et\n",
+ "le début de la période qui suit, la différence temporelle doit être\n",
+ "zéro, ou au moins très faible. Nous laissons une \"marge d'erreur\"\n",
+ "d'une seconde.\n",
+ "\n",
+ "Ceci s'avère tout à fait juste sauf pour deux périodes consécutives\n",
+ "entre lesquelles il manque une semaine.\n",
+ "\n",
+ "Nous reconnaissons ces dates: c'est la semaine sans observations\n",
+ "que nous avions supprimées !"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n"
+ ]
+ }
+ ],
+ "source": [
+ "periods = sorted_data.index\n",
+ "for p1, p2 in zip(periods[:-1], periods[1:]):\n",
+ " delta = p2.to_timestamp() - p1.end_time\n",
+ " if delta > pd.Timedelta('1s'):\n",
+ " print(p1, p2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Un premier regard sur les données !"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 37,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztvXm8HFWZ//95uvv2XbPdLBASQsIiq7LFgOICIps6ot8BRUSiojjKjMs4Kow6uOEPZhgX3EGCCCoyqAOKgBl2EAJh3xISEkhCQrab5eauvZzfH3VO9amqU6eqq6tvd98879frvm73qTpLVZ86z3mWc4qEEGAYhmGYWsk0ugEMwzDM+IAFCsMwDJMKLFAYhmGYVGCBwjAMw6QCCxSGYRgmFVigMAzDMKnAAoVhGIZJBRYoDMMwTCqwQGEYhmFSIdfoBowl06ZNE3Pnzm10MxiGYVqKxx57bIsQYnrUebuVQJk7dy6WLl3a6GYwDMO0FET0Spzz2OTFMAzDpAILFIZhGCYVWKAwDMMwqcAChWEYhkkFFigMwzBMKrBAYRiGYVKBBQrDMAyTCixQmpz124dw17KNjW4GwzBMJCxQmpx3X3E/Pv4rXozJMEzzwwKlydk2WGh0ExiGYWIRKVCIaBERbSKiZ7W0XiJaTEQr5P8p2rGLiGglES0nolO09KOJ6Bl57AoiIpneTkS/l+lLiGiulmehrGMFES3U0ufJc1fIvPnabwXDMAxTC3E0lF8BONWXdiGAO4UQBwC4U34HER0C4CwAh8o8PyWirMzzMwDnAzhA/qkyzwOwTQixP4DvA7hMltUL4GIAxwBYAOBiTXBdBuD7sv5tsgyGYRimgUQKFCHEfQD6fMmnA7hWfr4WwPu09BuEECNCiNUAVgJYQEQzAUwUQjwkhBAAfu3Lo8q6CcCJUns5BcBiIUSfEGIbgMUATpXH3iHP9dfPMAzDNIikPpQ9hBAbAED+nyHTZwFYq523TqbNkp/96Z48QogigB0AplrKmgpguzzXXxbDMAzTINJ2ypMhTVjSk+SxlRVsENH5RLSUiJZu3rw57LSmx1HsGIZhmpekAmWjNGNB/t8k09cB2Fs7bzaA9TJ9tiHdk4eIcgAmwTGxhZW1BcBkea6/rABCiCuFEPOFEPOnT498P0zTUmZ5wjBMk5NUoNwCQEVdLQRws5Z+lozcmgfH+f6INIv1E9Gx0gdyri+PKusMAHdJP8sdAE4moinSGX8ygDvksbvluf76xy2soTAM0+xEvrGRiH4H4HgA04hoHZzIq0sB3EhE5wFYA+BMABBCPEdENwJ4HkARwAVCiJIs6tNwIsY6Adwm/wDgagDXEdFKOJrJWbKsPiL6NoBH5XnfEkKo4ICvALiBiL4D4AlZxriGxQnDMM1OpEARQnwo5NCJIedfAuASQ/pSAIcZ0ochBZLh2CIAiwzpq+CEEu82lFlDYRimyeGV8i0CyxOGYZodFigtAgsUhmGaHRYoLYJgLwrDME0OC5QWgcOGGYZpdligtAgcNswwTLPDAqVFYA2FYZhmhwVKq8AChWGYJocFSovA61AYhml2WKC0CM0mToQQ7NdhGMYDC5QWodk0lHkX/RWn/+TBRjeDYZgmggVKi9Bk8gQA8PS6HY1uAsMwTQQLlBaBzUsMwzQ7LFBaBBYnDMM0OyxQWoRm86EwDMP4YYHSIrA8YRim2WGB0iKwPGEYptlhgcIwDMOkAguUFoGjvBiGaXZYoDAMwzCpwAKlRWAFhWGYZocFCsMwDJMKLFAYhmGYVGCBwjAMw6QCC5QWIcyH8o7L78EXb3xqbBvDMAxjgAVKiyBCljau2jKAPzy+boxbwzAME4QFCsMwDJMKLFBaBA4bZhim2WGBwjAMw6QCC5QWgRUUhmGaHRYoDMMwTCrUJFCI6AtE9BwRPUtEvyOiDiLqJaLFRLRC/p+inX8REa0kouVEdIqWfjQRPSOPXUFEJNPbiej3Mn0JEc3V8iyUdawgooW1XEcrwJtDMgzT7CQWKEQ0C8BnAcwXQhwGIAvgLAAXArhTCHEAgDvldxDRIfL4oQBOBfBTIsrK4n4G4HwAB8i/U2X6eQC2CSH2B/B9AJfJsnoBXAzgGAALAFysC67xCIsThmGanVpNXjkAnUSUA9AFYD2A0wFcK49fC+B98vPpAG4QQowIIVYDWAlgARHNBDBRCPGQcKbhv/blUWXdBOBEqb2cAmCxEKJPCLENwGJUhBDDMAzTABILFCHEqwAuB7AGwAYAO4QQfwOwhxBigzxnA4AZMsssAGu1ItbJtFnysz/dk0cIUQSwA8BUS1kBiOh8IlpKREs3b96c7GKbALZ4MQzT7NRi8poCR4OYB2AvAN1EdI4tiyFNWNKT5vEmCnGlEGK+EGL+9OnTLc1jGIZhaqEWk9c7AawWQmwWQhQA/BHAmwFslGYsyP+b5PnrAOyt5Z8Nx0S2Tn72p3vySLPaJAB9lrLGMayiMAzT3NQiUNYAOJaIuqRf40QALwC4BYCKuloI4Gb5+RYAZ8nIrXlwnO+PSLNYPxEdK8s515dHlXUGgLukn+UOACcT0RSpKZ0s0xiGYZgGkUuaUQixhIhuAvA4gCKAJwBcCaAHwI1EdB4coXOmPP85IroRwPPy/AuEECVZ3KcB/ApAJ4Db5B8AXA3gOiJaCUczOUuW1UdE3wbwqDzvW0KIvqTX0gqMJx/Kmq2DuOO51/DJt+3b6KYwDJMiiQUKAAghLoYTvqszAkdbMZ1/CYBLDOlLARxmSB+GFEiGY4sALKqyyUwT8KGrHsar24dw5vzZmNyVb3RzGIZJCV4p3yKMIwUFA6NFAONL62IYhgVKyzCeBt/xdC0Mw1RggcKMOWobGTIFfzMM07KwQGkRwt7Y2MqQcTkRwzCtCgsUhmEYJhVYoLQI7HdgGKbZYYHCjDksGxlmfMICpUUYlxoKu1AYZlzBAqVFGI9O+fF4SQyzO8MChRl7WJAwzLiEBUqLMB5NXuNS62KY3RgWKEzDGI9CkmF2Z1igMA2D5QnDjC9YoDBjDgsShhmfsEBpEcajeUiMx4timN0YFigtwnh0YI+/K2KY3RsWKFXw3b++gGseXN3oZowbWEFhmPFFTW9s3N248r5VAICPHTdvzOseT4Mvm7oYZnzCGgrTMMajGY9hdmdYoLQI43LoDbmoZa/txNZdI2PbFoZhaoYFCjPmRAnHU39wP075wX1j0haGYdKDBUqLMB79DrYr2rJrdMzawTBMOrBAYRrGOJSRDLNbwwKlRRiPYy875RlmfMECpUUYT7P58XQtDMNUYIHCNAwWLAwzvmCB0jKMn9FXmbrGzxUxDAOwQGEayHiMXGOY3RkWKC3CeBp7x9O1MAxToSaBQkSTiegmIlpGRC8Q0ZuIqJeIFhPRCvl/inb+RUS0koiWE9EpWvrRRPSMPHYFEZFMbyei38v0JUQ0V8uzUNaxgogW1nIdTGNgwcIw44taNZQfArhdCHEQgMMBvADgQgB3CiEOAHCn/A4iOgTAWQAOBXAqgJ8SUVaW8zMA5wM4QP6dKtPPA7BNCLE/gO8DuEyW1QvgYgDHAFgA4GJdcI1HeOxlGKbZSSxQiGgigLcBuBoAhBCjQojtAE4HcK087VoA75OfTwdwgxBiRAixGsBKAAuIaCaAiUKIh4RjVP+1L48q6yYAJ0rt5RQAi4UQfUKIbQAWoyKExiXjaTY/ji4lNXYMFnDHc681uhkMUxO1aCj7AtgM4BoieoKIfklE3QD2EEJsAAD5f4Y8fxaAtVr+dTJtlvzsT/fkEUIUAewAMNVSFtNCjCchWSu/fGAVPnXdY3h63fZGN4VhElOLQMkBOArAz4QQRwIYgDRvhUCGNGFJT5rHWynR+US0lIiWbt682dK85sYUEdXqUVK8Ur7C42u2AQB2DBUa3BKGSU4tAmUdgHVCiCXy+01wBMxGacaC/L9JO39vLf9sAOtl+mxDuicPEeUATALQZykrgBDiSiHEfCHE/OnTpye4zOalxeVJy7c/LsVSGTc/+ap1AkByjrS73BNmfJJYoAghXgOwlogOlEknAngewC0AVNTVQgA3y8+3ADhLRm7Ng+N8f0SaxfqJ6FjpHznXl0eVdQaAu6Sf5Q4AJxPRFOmMP1mmjVtM40zLjj0t2/BkXHX/anzuhidx85PGOQ8AgKTOvZvdGmacUesrgP8FwG+IKA9gFYCPwRFSNxLReQDWADgTAIQQzxHRjXCEThHABUKIkizn0wB+BaATwG3yD3Ac/tcR0Uo4mslZsqw+Ivo2gEfled8SQvTVeC3MGGMUkuNwir5x5zAAoG8gekv+sb7+x17pw/cXr8A1H3sj2rK8LI2pjZoEihDiSQDzDYdODDn/EgCXGNKXAjjMkD4MKZAMxxYBWFRNe1sZ0zjT6oOvqf3lOl/S1/73GRy050Scc+w+9a2oSohMbsH684XfP4U1fYN4ddsQ5k7rbkgbmPFDrRoK00BaW5w0RkO5/uE1ANB8AkX+H+vfdKToGAna21g7YWqHe1GLYIqIalUFxRbd1aKXVDOuD2WMf9RCyakvm2mMhsSML1igtAomk1eLD7+msbPcqlKyRlwNZYwvf7RYlhWPbb21svj5jfgbLwRtOligMA2kPlrX3cs24cI/PF17QWNIo3wooyVHoLSYPMEnf70U51/3WKObwfhggdIimP0NY96MVKh3uz/2q0dxw6Nro08cY2wyo1EaimJ31QyZdGGBwjSMVjN5lcsCy17bmTh/nEsb66tvtCBjxhcsUFoEc9jw2LcjTVpN6/rJ3Stx6g/ux7Ov7qgqX046vG3Cslan/PPrdybKywsqmTRhgdLCjEenfDNf0dNSkLy6faiqfCqCqmhdZJPch3Lvi5vxrivuT2TmU1u+lOu9AIjZLWCB0iK0uvDQsV1JM5u8VGRttYOvEiglS75aNIWXtwwAAF7YkNwcxzBpwAIlReZddCuuvO+lupQ9Pk1erbW2JuuarpLlswkURS3X36i8Sfn9o2uwctOusa+YqRssUFJCCAEhgO/+ddnY1TlmNdUH4yDWxBelQntLVY6+cQRKZV1hLX6Q5HkboRl+5Q/P4JQf3Dfm9TL1gwVKSsSZfdZCM22kmFa9rRbllSG1xXx1bczFMXkhmfbj5IVsV/V5FY266/V+bpixhQVKSlQ7a02DVn0UbQNymteUtsDNJpzNZ2I45StRXgkaVsOiSJWzmQU50zqwQEmJcrm+5Zvf2FjfOsOotV7h/q/vWyjTvj9KQylV+VurfLHChmsQqclkUfiLvS78w9P481Ph73BhGD8sUBJgivJphIbSKNK6UrPJK6XCkf6sOxNjPYmJak5vlMnL/6uWywI3PLoW//K7J2oplNnNYIGSAJPwaIQPpVE2r1q1CFv2NMOj0749ScOG1TXZDFOVVwAnd6wnoWLy8qYPFUqBc9Ok1d/lw5hhgZIAk/Co+8KwJtptuK61plh42mOWO+jXox2pRFvVYC7zZa23T4V98eMTFigJMAmUhjjlW9SHYisnzYGm6RaD1mlzyIp2U31ehPhu6n3nWEMZn7BASYBJeNRbQzE6sOtaY/0xX1PzOuWTRmJVM3gm6UaZGrQb1+TlCzQQ9Q4yqW/xTINggZIAdsrX71rTvI3N8pOo7kIWFSVOJFgYabxKxf+b1t/k1SQ/DpMqLFASYFpPUHenvHHrlUYtbKxfOWkONM1i8opzSWm8AjiRuSwkbLj+Jq+0ymmO35hxYIGSAJOGUu91KCZa/VEyr/5PsXxbNNkYagJulFe9fSjVZw0149Vbg6jnpIRpHCxQEmDUUBrwALa+U74BodZu3XWtuuq6yDV5JaigDiavet+ftLRHlifNBQuUBBijvBoQB6k/lA+v2tqQetMmVZOXpayxtOFXU1Mt7Uqm3ah6/WW1hobCvpjmggVKAozrUBo42waAs658uK7114N6m7xsMr4W+V+1QJUXZbu2iskreaRWTdu2+Oqt9zCd1vPCAqW5YIGSgIaslG+i1xvW0/6d6iVZZt1Np6G4ob/Vl081vJ3Ldcr70hs9QYpdDsuTpoIFSgKMYcMNMXk1hnrWm+rmkBa/wJgKFGFuj05NW68kapU3b0BDqbcPJaUgFtZQmgsWKAkwOeXr78Q0pDVMQ0ltfhlISXWlvCVyKVk9yVakxzFFUQ0aSqWeGvKOdZRXWk55lidNBQuUBDTN1istvpeX+ZalqaGEf2+EhhLn0mpZ2FhLKHTQKV91UVXBTvnxSc0ChYiyRPQEEf1Ffu8losVEtEL+n6KdexERrSSi5UR0ipZ+NBE9I49dQdKwS0TtRPR7mb6EiOZqeRbKOlYQ0cJaryMK/WFtRJTXeHxu6u+UF6Hf6721iE6cS8ok3NYF0N+lkpyxNnml55RPpRgmJdLQUD4H4AXt+4UA7hRCHADgTvkdRHQIgLMAHArgVAA/JaKszPMzAOcDOED+nSrTzwOwTQixP4DvA7hMltUL4GIAxwBYAOBiXXDVA73/G/fy4s0hU6GeJq/G+1DCqSxOTOJDqWFzyJBFka3jlB/bh+DPT63HgV+7DSPF+m7v36rUJFCIaDaAdwP4pZZ8OoBr5edrAbxPS79BCDEihFgNYCWABUQ0E8BEIcRDwukdv/blUWXdBOBEqb2cAmCxEKJPCLENwGJUhFBd0LttY9ahGPw2da4xFK3itLcKSfd9KOFljW2UV319KFEayqadw3hl60BEvWMbNpyeySudcuJy6W3LMFIsY8uu0bGtuEWoVUP5AYAvA9ANCHsIITYAgPw/Q6bPArBWO2+dTJslP/vTPXmEEEUAOwBMtZRVN6JMXnXfbdg0+Nb4VF562zJcfsfy6tuSmkO1zsENKTvlE2/CqDSUGBdX28JGc94F370Tb/+veyIyp9eOOKSlWfBeXs1FYoFCRO8BsEkI8VjcLIY0YUlPmsdbKdH5RLSUiJZu3rw5VkNN6IUXDC8Vb8X3ofz83pfw47tX1lRvLW0wZU13c0jf97Q0qzqcn3Rr/LSw3auxqC8p7EOJ5vn1O3HZ7cuwZddI3euqRUM5DsB7iehlADcAeAcRXQ9gozRjQf7fJM9fB2BvLf9sAOtl+mxDuicPEeUATALQZykrgBDiSiHEfCHE/OnTpye7UngfsOGCQaA04hXADUKEfE6l7DFyytf0c1XZSCW87NmSr0Nx60mQp7L1it8pX98el9bEgTWUaFZs6sfP7nkJO4YKda8rsUARQlwkhJgthJgLx9l+lxDiHAC3AFBRVwsB3Cw/3wLgLBm5NQ+O8/0RaRbrJ6JjpX/kXF8eVdYZsg4B4A4AJxPRFOmMP1mm1Q39ARgcLVqP706M9XbrtZSvf63pZVRVZo23OWSysj3l1+J/sdyretCqPpRWRN3rFPYQjSRXhzIvBXAjEZ0HYA2AMwFACPEcEd0I4HkARQAXCCFUqMSnAfwKQCeA2+QfAFwN4DoiWglHMzlLltVHRN8G8Kg871tCiL46XIuRodFghIfBCpYqZh9KfesMQxciNU30jQsbx8bkVUs91eaNM96HaQrxyk9+LSpCzKbN1YP0TF6NeQhaSTNS/SOTxpvYIkhFoAgh7gFwj/y8FcCJIeddAuASQ/pSAIcZ0ochBZLh2CIAi5K2uVr0/lOwRHmNwW/m0gwLG9N+rtIsL7i2QhOEtfh+EmootnzqUJIZt3oXT02bQ/q/17lrpRXE0qhhvYXkids/xmJs4pXyMdEfVuMLtmQPq9dvZnz/esM0FO1zLY+0SetKXlqwLL8Zp2EaShXnJ9JQEmcNFiIZ23U6NfwWDbJ5tZKJW7V0LDQUFigx0fuP7RXANJYqSoOo58uR0n0fSnh9Ne2ZlVRDsdw3dU4yH0ocp7+Z0HUo9dZQGqQtpkUr+W7GUvixQImJZzBqhIZS59l8VegaSsqDQaomL98d8kZ51WIeqsedd8pM5kNJoXaLNlcPGqUtpkUjdhdPjGxqJsMaStOgq+V2DaVO9Ue0afxQ2zXZ/CS1rkNJGokVR4NIRUNJtG2LLMNfZp2nKyLkc7WwUz6aek92dVigxMRrLrEIlDH52Rwa5pDUP9fkQjFpesnLA/z+Hf8xXUNJXkfSKC/rOa7jPoGGUoMwqrzL3q/NVV9WNaSnLTaGRixkTgr7UJoQfXda6yuA66WhGDpwqzvlazV5FQ2x2l7bvM8vEHJetST1oVjPgdIyErQnQZ5AGWPslPdqi7WUwyavKFwNhaO8mgd94DSbvJz/498l770XtWkohrSYBT776g7s/9XbcNeyjaFl2t7xUU6wbijpWxXjCF1Xy0gwUKVh0hjzNzampKE0alxvIQWlsrCRBUrz4B2MDAKlxlmAEAI3PLIGw4VqtsVulP24fi2IO0AsfdlZx3rPcu/+bN7BqT5O+aQr5W2CSB2pZaV8kisK26k4jtB89tUduP3Z1xLUml7EHTvloxHuhINNXk2D3n1MGkq5Rh/KHc9txIV/fAbfW/xi/DY1anaWVjkmM17M0kvytKwvcsVmSknN91OtQKmizKaJ8oqR50NXPox/uv6xRFpVLVFeHu1mDF+UptOa61DqXxcLlJhEqei1RnkNFZz9wTbtHA6p35CWrKpUSX0zw5jFleRIkiWLQPEXnZqGUu0AaG6P55yaFogmzxu2DiWOkOgfcfrsaIJ9h2p5e2YcH97qLQM4+6qHMTAS3HcvDVpJoJTHcI0cC5SY6N3H5pQP+8mGCyX0DYS/lCebcX4Kk/bj1N9MTnltMEi57LiTXTWGZbPeO25bMFfr2gfXcV513vjnJ2lXGtaXgPCtIq/pdQ6R9dWioYSUo3PZbcvw95e24t4Xq3tlxdwLb8UHf/FQ5HktZPFiDaUZ0Ttukjc2nn3Vwzjq24tDj+fkr90Kttm0InTMW6/ENHlJDSXnN3lpn22rv8fSV1HxodhOcv4lEnS1aCghgQbVtKNYCj/3+fU7ja/LrcWfFSdvLe+XWbI6ep/ZVnhOFaqp7ENpIiLf2Kh+tBC18vE1253zQjpiNkKgmE1eTdCpa7HU1KB1KU3Ob/KyaSi2kGLFx3/1KD5y9RLjsXLCQT9e2LC3jqrKrz5LsIwaVJQwDWVT/zDedcX9+Pc/PmvNX8vrAMLyVoIN6vOMNGoPsSS4TvkxGO1ZoMRE7z5Gp3zM0M3BkCiuJBpKvU1ehVIZ7/3xA3hw5ZbQetNehxJ3sFb3SZkK3TK1sc3fNq/2Yi73rmWbcP+KLeaDrskrVhO1uoSxPZ6SRbKynfLDj5nW6njqhblt1YyXpt23AaB/2PFfPL5mW7Bej5ZbBw3F1byqKrqKNtSn3Hqg7gEvbGwiIsOGK3qllTCBofbZCfWhmDSUlDp12Gxr/fYhPL1uBy7849PeelNah2IibnHqPuWyfpOXzYeS3MwCVCKKqp5RV3FOspXy4XmiHOaV9S/+9sRvx5NS+66GtN6eGXW76jXut9JKed56pQmJXtgY70dLU1VOS51v1CzPWG4c85AQ+Nk9LwEIhg3bbq9+bCyd8nF8KLWEDdsYLVYkhW23Bf+Rarrpgy+ZNTp3nzBjeLheV3INJfS3qPPo2UpRXqqlrKE0EVFRKRWzhp0wDSRskz5EpKdBpB06MNPXPtdQrylvnAf1la2D7ueAU96ihdT6gq1yyOAbRZxtVWryoVjyjGgCxVZ2Eqf8sfv2AgBmT+mMPNdWX9X3M4YPxVbopp3DVS4gruCGWbeQzYu3XmlC9O5ji/KK6mjhUSn2X7uee3lFDR62PbFqe6d8smvSZ1r+WZd++4NOef1zEtOSzFsHm5e6F2Ht2tQ/jE395jVKtmvR+6pJwL66fUh+9jcoqsXa64MTbRejfa4yfxwfirpu04RjwXfvxAW/ebyqOsPKbwXULRoLgVKPd8qPS6KivErugGAvJ6ojNmKzu7CHMkzrquc6lDjl6X54qw/Fl69Wu70qO6k8sZq8Ah+8LLjkTgDAy5e+OzyvgbKv37ZltXweTbN6DUX9DmFuGvt9Sq4txjGXuVsh+dK37HLWgt25bFN1lfpoIXnCW680I1HrUNQsK8pZFx4WHCFoItpUC2EPhzLPBUxeKbUhqclL95vYt17xlmWbrceh4m+oLm+sSYI8Jcwkai8/3rFqfsdYTZbnlEL2P7GZgWvRFj2nh2QNex7XbXPMpX7NpVpayYdy+d+c7Zx4YWMTofcf227DSU1eSfpnvZ3yagAOhN9aZrZ+dgwVMDhq3v4ijcg1/6zL47C1lF1LNFVY1sXPb8TcC2/Fll0j3nyhLQpSTLA5lW1ws/n+bO+HieP4VueETaJsCx6jfJI24rzXRpXpPz4w4vhOOvNZf5aqGEuBUioL/Pffllt32ogDO+WbCH3gtDnlk2oo5YjBqp5e+TAh6PqFbHVHtOvwb/4Nb/vPu6vIHH2httmtTWh4TF4JNhWMWtj464deBuDswhvWpjBU/ypYBuEk2PwNHn9TgjU7Kj3c5GUTKNFCITxvdB3qNvr7wGjJESh+zbZaxtKHct+KzfjRXSvx9ZvtC0TDeMv+0wDwK4CbiiiTV0kzD9lmv+ECRdZTheSot8mrFGLyqla6Kbt1LW3xnKOdZDNr+dtdsgyucVA5wrJ2SAfFcME7wkbl048l2xcrvGCb38g7SQovM9THpsxKIdI5vP/4gyeq+y3iOOXL7mTIJ1CKznf/DgvVMpYWr4KM1BspJNtaOZshHD57UppNCoUFSkz0/mNzyocdN52nExlpZdqmxJojPmF1V0x7NpNXcpKavGyDpG6ODJq8ks+K9XrD7ld7znmc/HtXxRkwaxEo1nBgSzu8vojwY1FBG2FNtmnrNmEWhaXZlbrdqEtvulroWetsfSw1lMq2TsnyjxbLyOfGZqhngRKTyL28tDTbgxTllK9m5pNWRFi4D6Us6/HVGyNvHMwGr+pMXkENRV/IFz9fLFyTl/mwMqOE3S+rhlKDycuu+cQbuP2HbOHXipJ7P8L6j83kpdeVXEMJ6y+lEOGvZvtJnfJqUB/blfJOXUlF4GiJBUrTEamh6BFElklm2DHX5BXST42z+fBqqiKsTcqpavdTpNQI1ZYaNRR9QLZHeSVpm1lj8xMY5GLUVZPJy1KBfp3+fuv1KYUfCzV/igBbAAAgAElEQVTTyvSwQIKwoA6gNoGiFxf6PIWY29T9rdVBPZbh/er2J23zaLGMfJYFSlPh8aEYOpPH5GXTUBKbvJIhhMBnf/dEYIPHOHWrtgZMRxEBCnEx5RWWQc54ThVCo9ZXAKssYYMY+c5z8yF8YK2c42CLjHLKDh+czb6KcAFrM11Ws3gw1ClvkdoFiyYZRZyQ4zANRZlETWNzNUIigdxPjGoWm7zGEXpns70CGLAPVlEOzOraFH1OWQC3PLUeH/6leUt25xz7gBHHmZyEyEWgocI3vH6vDyV8AK1pL68QwRC220GcquJqKKZ7VumbUZqA75iljbZ8lXQ5aIecYFtTU9IEZ9hvsXJTv7HsOP6XsAjFuGa4KMYybFhdr02gLHpgNa687yXjMcfkVVuYdFxYoMRE7z7G3YaF/bh7Xsh44c4yQwYrc/+N7tTKHGHrjKEmL1egpDswV8oxCOY4phbL7Fnfrt1fvC0CLA6VsOHq8tk0CO0sANG7A5sEjitOIjSUYNhwPE0vbObuaihRGq7hsG4mM93PFzf2453fuw8/umtl4Jj3fHPdKnQ7TEMxEacvu9vNNMDkZdue6Vt/eR7f/esy47GRQolNXs2G3n+iNBRrlFeMQbJSZ5T5w3o4si22uoHKLDLJ7DUO5mvW6g+13YfXr/821QygcXBNXhF5beG5UUSZvGw7XZty2oS/7TLiCHYlMKJ8LKZ6bL4uANi409m3bMnqrYFj8RY2msuuvF89mKcaR3vYNV/30Mt4JMYbH6uhsnVKMkaKZbS3NblAIaK9iehuInqBiJ4jos/J9F4iWkxEK+T/KVqei4hoJREtJ6JTtPSjiegZeewKkqKYiNqJ6PcyfQkRzdXyLJR1rCCihUmvIy4eNTvCKW/rmOEhmLIe7XCUJhCn+8fZVj8qbDgwEKXlQzFMxqN8Vf46gxpK5bt/8K1VELqDU0Rev1kzTra4Jq+SQeDYFlx6fSj+Ss3n+b9HmZXCBlerySsiQCInNwozCdhqNGR/21wfiuGJqM7kZU7/+s3P4QMx3klfDapdSZzyu0aK2DowihkT2lNtUxi1iK0igC8KIQ4GcCyAC4joEAAXArhTCHEAgDvld8hjZwE4FMCpAH5KRMqw9zMA5wM4QP6dKtPPA7BNCLE/gO8DuEyW1QvgYgDHAFgA4GJdcNUD9aNmM2SMavEsmrOMCZEr5Q1pTv3JBu54GkpYunnm6xV6NQiUiAEw3CkfXr/+2/gH35r38orIqx73gCBz2xpddpRAKRg6ly3k3KqhWDZojBNiHWXysjrlPabJ4HltctNP8/Wa26nQ1wEFfSjh97eaPjGW29erdiWJdB6R2/RP6cqn2aRQEgsUIcQGIcTj8nM/gBcAzAJwOoBr5WnXAnif/Hw6gBuEECNCiNUAVgJYQEQzAUwUQjwknJ71a18eVdZNAE6U2sspABYLIfqEENsALEZFCNUFXaCY+lLsdSghx6JeQmQSDHH6fyWqJbw3RmkodtNIdBuqqTfqmv35bE5X/72uVUCH7Q/lx9/ueE555yT9hVhxytbbZarGZrryCA1bvgiBYdKabPn8bTHdT7Wmx6ShRP2Oar8u/7lAfK0pDPd9KHXyoYwWyxga9S+MVXVXL1HUbzAW264AKflQpCnqSABLAOwhhNgAOEIHwAx52iwAa7Vs62TaLPnZn+7JI4QoAtgBYKqlLFPbzieipUS0dPPmzckuEJXZXFssDcXSaUMePjeLZ2ZoOK63KUanjmPyCrWRq4WN1nUOtWgohkQtLY7Jy3+Kbpu3DaDJTF6BJnqhYBv0HHHChqNup0mDCfMX6Mf8n/3nB0xeMdbsuD6UCA3GRKEcXndYmkI/YjptYKQYetz16xh+C725xRBNUT1H9VrYeNoP78PB/3G7J03VlCRsWA1VtW41E5eaBQoR9QD4A4DPCyF22k41pAlLetI83kQhrhRCzBdCzJ8+fbqleXY8Goqhr3lmxjaBEjFIet/nYX/o4nRpW9y926YwG3gcp3wN8fjRJq+wfOFl6Nfin41W45Q3h6va8yq7fJgPxYY6J2qgss3YzSav8Nm8bWD2vOkxdMIRdTz8WkYK4VoEYA9OiPodd2kCJUxDMfvvKucOR2iKdZIneGnzQCDNDSRI4JZX/WmMgrxqEyhE1AZHmPxGCPFHmbxRmrEg/6s32awDsLeWfTaA9TJ9tiHdk4eIcgAmAeizlFU3VAdqy2aMGkocZzIQ/vCZNRCtzIQmL6UR2TpjmBkgbKBKb2FjME1PimMetPlQbKu/ozQUW9RdlGYY5kOxzQCihFVY2YB91q2n+LPa6vrOrS9Uygg5TeUP6z+VdUzB47pZx1R+/G1bgsdtrz1W5RqtDNrJm/tHAsej2lev1fPuy8ISaSgqb5NrKNKXcTWAF4QQ39MO3QJgofy8EMDNWvpZMnJrHhzn+yPSLNZPRMfKMs/15VFlnQHgLulnuQPAyUQ0RTrjT5ZpdUM9rLksGdeSeLdeqV5DMTlWo4RUnHDUOO/X2BLy8BRDBqqwNgbaF/GARb0COI7wDYQNW6K84jiaw8rV2xY1bvhn1/E2hwyfOXvKNpzgRnkZ8loX3Ma410C0SStq80jTYDZcjNBQrALFPqEpeda4CN8xIf+b2lv5/NoO8+uW/eWE5U+TortdTPV51fW3gsnrOAAfAfAOInpS/r0LwKUATiKiFQBOkt8hhHgOwI0AngdwO4ALhBCqV30awC/hOOpfAnCbTL8awFQiWgngXyEjxoQQfQC+DeBR+fctmVY3VL/MZTLGSJHYW69ExezrdVqicOLiPlCW/vSJXy81poetlPfOem2miYi2WRzMev22c2wmL//vVI4p9E3l6mlh16x+r9AoL2uN4fXqWE1eEX6BYJSX+XPcNlW2rzcfD1sYC3i3+Ddlt+4Dpn82CpTw42Gh8P5zhwohL4Wz1JtkH7Y42EKdo1D3sdb3v8Ql8TvlhRAPIHyYOjEkzyUALjGkLwVwmCF9GMCZIWUtArAobntroX+4gFf65KtDsxS923CCSJIkJi/9yZrU2WYst9IZq8f1oQTaZZ8hKqKiZkxmcuE5HkegeI/pYab+5zvK5BV1XSopNMzaHWDr6EOxzIyjfCj+eVBcn1KYhlWMECg2oT1aDNci9LKN5XpMnqZ2xTB5GQZ//d4Pjdq3SDLu51cnFcUNrAl5iP3WET2iyw05bnaBsjtx5s8fwrLX+gGEhw2ntg5Ff1gi8qmUfC6D/aZ3G8uNWnltI8qk4RwLzx+54aV5BKzkDynca3KrQkOxzNaDeS2aQMhlqVsdvg7FMmijUrYQItTmbRoIbetQbDsHxDVdRr3vJMnCxqh1KLb1IlE+FNt6o4qGEsynpw0VSsETYJ9U2K63FlTUYFif0O9lsSyQ14SHOtQKJq/dBiVMAKAtY3bKx12HEmVvFiHn2mbMGQo3WUTNbmyE7cUUZXLw1x2G2awUrN+Wz19GweZD0b6bir70tspeSDaFMHyhn9MvkvhQ4m6tb996xXDMcq9EyGc/kSavCB+L6ai+Z5lJdhRCIgz1csPaZvNn2sx0+rlhAsW2IWZYqHESTBOjsGf45idfrbTBdzMrJq/UmmaFBUqVhIYNC+G+tMdu8jKnR5m8zGHDUlgkiOCqdpALb5clfyLHt11L8OcLmjR0k5dvMIkQ0IseXG1sRyUxPC9QESSB7T5CTIeetnn2Jws/0+xDkc0zzbotgirsVQEbdgz5yg8RGJbBFYhYhxKx23Bcs7FZuwm/5qJFCOrtGBo1+1DUOVHvRKoVXTBEma2/8odn3M/+NVCVVfasoTQlbbmMcTuIUtkJKQYi/AoxZt0u+mzdMvkhsphhQhx6cfp+MXQDP/tg4B4zmemitC5P/pByLWUUPTM7/8Nl/mxKq3ZFup4nbJZoI+4rpG1br0T5Imy7RuvlfviqJaHn6WWp9NCwYUvfGLVsj2Ir019uVN5g0EZZ/g8XzABCd+51194Y6i2kKVB0TTvGhEThv66xdsqzQKmStgxBCLMqrV5iY4v2iPILeOzaUQsbZZKtq4RtX68PLiccaF7wGTbbj9KcTHkq5+ttCOaJY/LyrkPxHrOFDdvMP7Z2uHVZjun1+bUI9RvYqoxyNCvMm0OGDzh2DaXyuVCsfNnkCyOPmo0nccoXSsLdr8vUcpsPJUpDsV2zLZAgzpoqm/AO2wUjCXrfrSzGjC7fb3Zrya1Xdidy8iEwDVYdbeE7pCqiFoHpA7/eZ21O+QxR6OxFPZf+7qSfH2eG6X1xlbmNtvxueyJm4rFMXjHCQp3z/DNy+0AUdq5bniFwQqeioZhniTZsPji9vhHDCm6bycvuQ6l81ydBHW3elzEZB88YwjnKKd8uX/pk0zKMgQYec5m93sD29SFmPv/3Q2ZONLbbFjoeZ81XXHTBoD6b+pF/8urXkgqyv/D7UJoUZdYKmFPKwn0Qk2go5nDQKA0lWkWpaCh+k1f0wK23Keya7CYv/XNwZhitJYQIFL3tBpOGu7GgZcCIGuONC0mFqsMuUAJmB5lR3xLEVp/NVLd6y67QeiP9CZZy9d+3M58JPc9UbuhOC2pmbWjXSLGM9ly4idgmhKOeC6tJtBTed1SV2QxhONQpH96+NKO8TPfX1Cf97fRrSWoC0s6vAG5OlEDRZyMjxRJWbRlA365RAMHBV1gGQDddlueJRNKO2/aWIqeSkHLN6frpYRpVyWDH9eeNq6GYIsbMfowYGopHc/MeK5ac4IgMmQZ2cz1RdfjzRGmZ/uPq3qmXRpnzVj7bZtW7RoIDnWtSs7QJCM5e9Xr0dSEdvtfFViuoKu0yC1hAaShKoATzBjfYDJbrtM1w3KLB2Ex16j53tWXDBYorJO311krB0E7TfdQXiDr5vN9HXYHCrwBuSkyRXPcsd3Yx7pcz0NFApEXlc5Q2EOZjMAoibUYVRpyFjWGqukdD0c6Ju7BRV9tNC8KSbr3iNYt5214sC7RlM86OBhbTUdRk0vYStbDw0KIbNmx2yocNUv76whyrADBoiD4K28TTn3fEV79ezahHQ/EOPuYQW+142GTGEhFVKJVdjd7UD9RAaOrbtq1V/PUFwspj3Oeu9mzo5pDWsOGQZyQJ+mRO3QuzQPH+pn6hpjSUPGsozYnSUKwzqJABBbCEWBpCTnUbt3nvIee4zYcSZ/uSKBMO4NNQtHNsz41pK/lSRLionhIeEVf5HNQGHJNXNhPc0cD22lnbRpL+a6hWQ6kIlHgvd/IXrzdlcNSkoajJiH1w9ftf9PN1rbor7/ehBNvr0T7DXslguV+FYiWIxdRu1R7TXCmsL5ra5i/aE2gSmHA4/7vzucA7SRSuycvoQ6mkffmmp43541LwWUAAu0A5Zl6vk883UIyWnONs8mpSVGRKWNQTEPxR9QcmbDAyDgoebSV8sMjIyDNbuX4VxWPyChsg9XaHmLysGorh4fWkWYSkc7x6YVgsOyavbIaC0Val8JntX57Z4KsjvN6wyYS6j/7fX6WbHOoKm5Nbv2emF3CF7bnmL9cuUCqfJ3Z4t/GJMnmFCX6byWu0VEa71FBMCrK6ziizaFSotM2HEjaJ6MxnMVwsWQMzooT3/zy2LnC8GvSylPZoek7VAsz9ZvQE8gHASIE1lKbjvLfMcz9PkA+b10zk/RH9Jq+CZSBTmLY5iTKVuU5Ey6Ild5WtL10vLY4PxWPygrmNfjwOUJMGFmXyiuGUN2kDuSzJLXJ8v4M8ty0b3D5n2DcjtYXKhpm81HH/7Fal+01OOrZdgfX7aAqOsPlQdK0o4MDVBy1N2EyU+8J94Z2vc86LcHyHLta1CZRiGR0xNBTTIBr1rpZSqRIqbzMfhoWVd+dzEMJrBnTrs5i89N8mbG89G0KYf2f129y1bFPgN1S/74R2Zxctv/manfJNyLxplX2ypk9oB+DtmH5HacE3E7S9RVBhms15TF6WKK9shkK3sg972IVnUI72oYQJHZuGoj8UFQ3FPrvUWbdtyJiusuWzmcCDXSgJ5DIZR0Px+1dKZbRlCRkKCpugBmcRKBEmL79ZSrUjroYSMNVFaCgVH0qwXfoAFNBQtK+jPn/XnN4uvOWAac55Js1HJuazmciw4VCnvOtDCeYdcf0GwevVr8mkLaqkNkPbPG+K9LVL3b+udqddw4YNIlUW2z0BgDftOzV4QgRh48SI5kO58r5VnjxKQ+mRAkUvo3+44EYWjpWGwptDxkD9uL3deewztQtA5Yf781Pr8W//8xQAoLMti6FCKTCQmQbWYB1BFd/z2TQTUz4US1+p7APkCxvWnaqhA2TlJM/MWDvd5nw0rVq3bYvhtKuSuFVGzQXOkXXmsmTQUMqOhlIy+VDKyMmbFeUztfkNwkKoVX0DPse5Sh8tlVEqC6Oj2bu2xntMHyRMs2bbmo0Rj0DxaSghM+KibKNqps28k89lQjU2W1ScN8rLoqEYBIauAZqEtOq37bmMQUMJfxbVqcqHNFwsYRLafOcIY15/W5NsZV/0PG9BgQIAz6/3vhRXCdcJHc5Qrl/vCZffiy27nEWqHOXVRKgH8X1HzHIHJPXD3fti5T311523AEBw1jQaoaI7dSiBEjQTOenBPLrJK8qH4reKhXVeU5v0cgBfOLNlYNY1NZMJw+aU72zLon/YvG5DlWEaMApyMMyFOOVzWWeg9P8O/iHeFtkUpq2pdg2O+DUUfXAwm730ATbgFzKYP3SeXLsdgHlzyKFCyS13xBcUoOrJZcg76ZFredT+TzZtzWQ+rLQ7fIAdLVaivEwCR12n6ZiKwMplyHg/VVXtuazBjxauCbpRXnlncPabl/TtZkz3pKjdE5PgjyJMQ9F/c3+5qo090hSv32clTIig7UpQX1igxEA5KQ+eOUFbKV/p1IppPY45zP/Q67sVh/WzbYMFeVx7CC2zKaDSqW3bKrgr8EPS/Z91dNONPqjFdcrr5oXKxonmcvxpEztz2DVSMJar2tvRlg0MOLc+vQGrNg8gQ0HtpVguoy2bkSYvb5l+Dc72itgwE6E63jcwGkhXP5F/UFfYZuwee7qvA62V7+lx8gXLHS6U0ZXPIp/NBGbzqv90tGU9fbZUVmt5VABKsFzVH/MGoe4/x2mHzyxcEq6ZxiQkKxpKuMlrUmebVUPpzGcC9yvWOhSlofh+qyifpltvWzaRhuLREkMmEf5y/RqKes70CVNPe675XwG8O/GB+Xtj0Ufn44yjZwfWoejmi462bGC2BwCf1N6IGLZH0X1S0ykbBmF/eqUs2QabhhIxm3Z8DeZzdNOCJ+Q2tlPerqHY9lOa2NEWU0Mx30/Ti9CKcv8oouCg7X/cTGGjFZNX2D112jJaKuOVrQOVfGWBbjl4DodoKMWSqEQ9BQRK+EzfExQY4kPpaMuiPZcJmrxcwZwJzI6zGXJNqcbV6JrJKzQaT0vXt4MXQmC0VMbEjvB7EhXZlM9l0NGWNQroSv8Iaig2gaIuU2ko/i3sowIR1D3szGetywrCCNuHTv/d7l+xxRNG/PgrjnZaccrLPqo9F+rYWMACJQaZDOEdB+0BInIFiOowukDJ5zJoy2Zi75SqePbVHcbjXjOEafBFoA1+1IOZ9TlaSjEG5cFC0X3oveG+mnCxOuVF4LN3FXO4yWtCRy5UoKgoHtOAAQAzJ3UY16GMSh+KE2btEyi+WzhoiMhy11WE+lCAWZM7AQDLNa20WBbods0o5ryjlpXjqh+0ZSkwm9cHG9MvMSxNS+1t2cBsXvW19pxXQ1Gh11aTl1DmneACUr0ct52FciBdaSimezJaVBptsOyRghMhZhKSgNPHshlCPht8d1GhXHbNP8GdiJ3v3a6GEr5o0BYAMaGjzah1RbFtsKLZekLFff3tiTWOELn+4Vfw+6Vr3TqBSl/R6x+rjSEBFihV4/eh6IP5hI6c8aE/aM8J7mZzNy4Nxqev2lKZzYa9IMps05fmLMvCRvUg53ydShcoYVrM4EjJDSFdv30okBeIvw7F7EMJ5imVy8hlCD0dbe7OA8FyZdvbgrPjyV1tOPmQPZClcA3FbPLyfjdpKJXZX4iJp1x2IwL12a2joTiDVJgPpVgWoT4U1Se68rnAzFcJic62rFFLHZY+lPZcJjCbVz9PR1smEOWl/FB6/d5rlRpK1vkNTAOsLsD0wdndDqRNtStcQzGZjoZGS+jMZ5HPBc14Kk8uQ2jLZQIh/KWScB3UYa+I7gwRKPpvZ9xXS7ZlQkeuapPXjsECTvvh/e53/ZkcLZYxrSfvfldb+OimdBV9umPIMRMXfPnHChYoVeL3oag1IHtN6kBb1tFQ/J1pqFDC6/ZwFh75f1whBD77uycAAGcePds7U9TK8UcOAZUHIJ8Lhs8qlDnB77D1mAUsPpS5U50B8lUthNe7o68xq2x/UNvy+lCC9arZ5YT2HHYN230o7bmgNjhScMJRTaa8YrmMXDbjOOUjwrz8ob8vbxlwH9bwrVeEa8tW+YUQKJWFdTZeLjvnVAY6vyB08nTns4H+owa9jrZM6Ky5M59Fe5vB5KX5ULz2eyf0urIrhKnNzv/KO4ACp3gG5CFPqK/SuByzlWlLmkE5mTCuDi+WQrUuwBFG+WwGbRkK/FbFcmWFfth7a1zzpK9dnuAaw/WO6BpKlQJl8y7vKwO8Jq8y3vX6me73nbIf6pOg3m5H4GwbCO4nOFYv1wJYoFSNf9amBuzffvJYADAKlIGRkmd/JP242gcMAKb2tHseetWpuvNZbB8MDq6qz7VnzS/9AioaSthszDTLd9s9WsS+8l31utocV0MxOZP9Jq/n1+/0BiKUnL24etpzobvz6sLQb34bKcoZuWGgGi06ZZNBQ/GjhIfiH3/2d63dQZ/WcKGE/uFiQKAoAaI0PdPgqe6Nev1BWNhwV3suMFB5NBRfuUII3L9iCwqlMlZtHsBfnvbtBiCvodPni1Aaihp4javztcmMyuNnxLOoMtgXHIGSMQpZ9dubtMHhQgkduWyodlMsCbTlMk5YucGHorZy9z8y6jonub+V+V47eW0mr+o1lFe3e9dc6QJltOgIyPu/fAIAYKc0Bbf5zO0T2nPoGxzF/Ss245jv3ukeG6uXawEsUKpGhToOF0p49tUduP7hNQCAudLU0ZajgK11x9AoJnXmsXevY1/fqQ1WD6/e6n5uzznOUdVZB+RDdeisSVixaVfoDNNfp2LHYMF9rW3Y6mtnlh/s/CNFZ4Cc3tOOtiyFhxBbBmbTwkh94HlizXa864r78aO7VlSuSYasTujIYVeYU97Tdq+JsCwcM0x3PhswWxXLamGj4T0qvvv37b887/m+Vc781ADqN8f9+5+c17CqCC/1Ctk+aRefOakDgHndhPKhKTu435yiJgs2DaUznw0M6s++utPz37nO4MA+qbMNQ4WStveWs5bHFSiGwVFtUjlZDr6mc55Yu82NmBoymLyUY93klFcC2SSohgpldORVoIHZ5NWWJbRlg1FehVK5IgR991m/H/42A97fzryvVhlEzu+kv7AsDj+9e6Xnu/qdtg2MYnDUCUKYPaUTbVlyha3/2qd057FtYBSfu+FJT7ptnVrasECpEjWL/NR1j+E9P3ogcLzNF545MFpCoSQwpasNXzzpQADAdilQLrn1efzi3lXuufoDLITAedc60WFH7zMFpbLAhu2V7c9f2TqAr//vswCUczr4YP3wzspAHVT9Kw+1acatFhVO7WlHR84729fNVrYABF0gmHwoKzY57/bQF2sVyo6fo6cjh4HRkvHB1duut2VEs8135bPBFeulirPZL2B/8H/OverRImJMJqTpMjR8c793K3q1FsTZ6ZjcupUJYuYkZzJh0lDO+PlDAMyLPwHgG7c8B0D5UPwCxfne250PXaGvow+wamKzlwwkGCyUsLZvEI+v2Y5chIYyINfaKFOL/7pe2zGMQklomlrl+HrZj6f15AN9q1J+xeTl/x2GRovSKR9u8lLmZ5NZq+KrMmsgSqD476eutZo0c6U55XNBK0UUb5zb6/munhM1sdk2OAoiwoSONvRLU/BOn0l4SncefYOFQNi6bWumtGGBUiWmFaenHLqH+3nvKV1YuanyEqR7lm8C4DiLJ3U5HVV1zKvuX+0ruyJQdIebihzS/SiLHqjkzYdEluW0xUz+B0/NciZ3OgOCP7/a9mRaT16aj3QHe+Vc03bqivU7Kmp8xYfi5NVDGdu1NwSWpA9FDewms9fQaAld+aCfRJk/2nNZdOZzgRlmoaR8KF6T187hgmtyuOrc+fj3dx0EoKKF6AOaco5u2um1ee+QJslMhtCpCTOl2ew1OVxDUSjt12/GeWWrs9akuz2ooSitdfqEdvQPF7xvpZT/j9de8az/jqofKv/e2r5BvP+njmmvK59z+6PpN1AD/lQpYP1CwW8y1I9vkP1i7yld6O3OY4thRwS9Tn/fXL1lEPtM7TL6hQDnfu05sQM50wahZYH2NiVQvPnUvZ0iheSg77rVQsEJHTmzQCmW0NHmCDL9dxocLbrjQBj++6Xa/ccnXgVQmeD1tFeiH3cOOf+v+NCRAIDerjb0DXj7JcBRXk1NjyGmW39l6rxp3e5AWiyV8c+/dRzuROTOfHYY/CEAPDNCfZaqtnsZ0FZg64NwT0fOKFD0sNuRYtmjhajZqYoO8T+Ydy/fhFyG8Ma5vejwPbglQzl+hBC45sGX3e8q2ka1s1eLWlGbBAKOeSeXybi+CP9g9sCKLfjlA6vdSB7TnkftuQy62rIBYVeQzlr/OhT995jU2eY6ZdWK90P+4w73uFq8utGnoSjh055ztCNlbvuvO5YBAGZN7pJlhgtgJawGQrZOn9Pb7Zj1tGtWAmJ6TzsKJeGNrJLlfPrt++FTb9sXgPd33j5YQIaAQ/ZyIhBf2znsDpqZDKE9l8W8ad2B7T6cNhY9bfb7G255yhkIlXDWBYrS2nq785g2oR1bfRoZYDIAABsASURBVA7pkWIJI8WyG77r2dCxVMbWgRHsOanTGLkGOH1yWk+7jPLyBoGMFMvoagtuU+LUWzEt5rOZwO+g7s0eEzuMPrgHV26FgDPB0+v9wf+twEeveRSPr9kWzCTbdduzr3nSvv2X5/H+nz7ofldKhm4K7hsYxQkHTsd7D98LgCMIX9o0AD/TutuN9dYDFihVMqU7j4NnTsT+crtowGt/33NSB/qHi9g1UsTSVyod6A2zJ7n2Zv9sROFukVEsuzPAX398gTvA6RqKPhPtaTc7AfVV1ABw5zJnlvToy334p+sfB1ARVrrTf/32IVz/8CvYc1IHpnTnAwvIdOG1M8TP4X9AKu/FrphoFLpAVqG9Pe3OvfL7Ub75Z8f842yjEpwJAo4/oas969kC5dLbljmmHBk2rE8w9d8jk4HH7r96y4BH0/m43Hl6/XavQDli9mQAwGeO3x9d+Zz7Wyn/heovW33mCGUqA4APH7OP5zr6Bkbx339b7h6fNsG5Z/pgpQSEEnS6GURpSZ35LA7cc4Jzvk9DmdTZ5u4E0T9cdB24Kvhk9ZYB/O35jQHNqKKhmE1eP7n7JQDAgXtOlMcr+fsGRkEETO7Ko6c9Gxi4V2x0NPy9e9W+eZW82wYLEEJqzrlsYCI0WixjxaZdyGQgo7yCEw61+aNfoKhr6m7POf3HNyHZ3O8IlOk97YG82wdHsXrLALYPFgKBOU9IQRK2N92qLQOusFIMFUp4Ys12V5B84SRn52ddQ9mwYwgzpfUCAOZO7Q5o5acdtid+fPaRxnrrAQuUBBwzrxdrtlYGa71zKefrazuGPGs3DtpzoquhfP73T+KaB73mLsCroajBYEJHztWKBrTZra59tOcy6B8uYpP2itlCqYwHVm4BUInyeHGjY0Z7ZHWfe55aN6HbXd986V3oHy66Qmblpl24VXtfiHI4T+4yr2Zfuakfn/mNV2CpAUlpKlO1WZNu4t01UkRPRw49roYStBMr1OLHFzf244EVW7Bw0aOyXXnHh1Jw3mlRKJXx83udAS6XCYYN69dQKAp0yhnsbx5+BSdcfo97bMaEdhy3/zTMnNThMWu+tmMYj7zch3cePAP7z+hxNgmVv9/8faYAcCYaAPBfdyx3hevqLQN430+cWeisyZ2utqg00avuX4Uf3eU4a//p7fuhSwpe1d5tA6O4Su4+u8dEp3x90FKDS1c+WzGnaYJh+1ABk7vy2GNSBzIELNtQibibMdE7q/W/vljtsD25Ky/L1TWfShv2ktetD3RbB0YxpSuPbIbQlc8FtLY/STOP8itU3vcicPuzTj+c1tOOSZ1t2DHkNfP9ZskrAIC/PvMacr6BXd+yBQiGQ+8aKbomq+58zmMRABwNZXJXG3q78wH/hW62U35J1e7X5L3rHy5gy64RXH7Hck/dyjc6SxMOCiGAL51yIA6Sgrm3O4+Vm3dhcLSIbYMFT553v2FmIP9//MMhmCH7xljAAiUBpxy6p2eWePoRe7mf95Q/3oYdw9iww+koz37zFADedyR888/PI5/L4NRD93TT8lnnoR8YKboz3O72nDtj/stTG9wBRHXg/aZ3u7P9BVqo4JnS0fvOg2fg4YtOdMqS5ejvRpg9xRnw/Y48IDzc8DlpAtlrUmcgfh7w+hcWffSNACoz56fkjFwXjqu1hZ1q1qyEqP6gru0bdIXhCQdOx6TONuwaKeLk79+Hc65e4vpBpnS1oSufQ6nsbPFx1pUPu2Ws2zaIjjavw14fHIrlMhbIt9895zP1bJIz1NftMcHj4/roNY8AqNwvPSCgUCrjrXIbeIXSSvQJx3sOn+nOnNXMWBda579tX8yRwnlNn3O/PnvDE1gv+9hBMx0NRG35snXXCP5Frm/q1PwhuiaxY6iAiVJDmTWl0/O6gE+/fT9Pm/X+sWnnMK64cwW681l0tgX3vTriW4vdz/tO7/HUe82Dq/GbJWtczbM772goL2yo3OurpX/w8L0drU/1jyfXbsfXb3Y01KndefR2t6FQEq65sW9gFDfJF1vlc5nAbgvq8xQpBP2z+f7hghtp192eDUxmXtk6iOk97Zg+od3VVhTKGvCTs4/yrN9Zsmor1vY59/Vfb3wK87/zf/jx3Stx5wuOtaBUFjjn6iUAgGs/vgB/+PSbsIdPmM+YUPl+5JzJ6BsYxaMvO1rP7CkVgbLf9B74UcEgYwULlASoAUdxmrboSEXM3Pr0BmzYMYTJXZXBMZf13u5chjBL6xCvnzUJAPDAyi2uuaa7PeeuYbj9uddwyV9fAAD0DYzgiL0n438vOM5jMgIc85IatM4+Zg4mdjr1L5I+DTV7/uJJr8NUKYz0AePAPZzB6U+feTMA4Lj9K+92EELg5ifXAwAO3Wsinlm33TNDvP7hV3D2L50H5KLTDsK+UgN66KWteGbdDnewWPjmfdw8umlu51ABEzva3Bn9p657zC3/rf95t3veNR9b4JoQ/UzuzLsD3dBoCY9ppsdlr/Vjak8eKzb245f3r0KxVPYMOkfOmYLe7jzetO/UwCxUzQb37u3ECxt24hPXLsU1D652hYvyk3Tms3ho1VY8t34Hnlq3Ay9s6PeUc8bPH8LfX9oSEOJKA1F+I33w7+3OY28p/NXAr/s2lMlLbTKqotac+9HmBpPoGspTa7e7k4y9JnV6BLvSPH557nwA8Aygn7r+MQCOr0cPowfg0dxnTe5017Oowfubf3ailtSETJlzT/vh/Vj22k78WAshV4L46XVOWLWuJU2f0I5eqeUqn8xFf3zanQT84pyjMaUrj10jRVc7vu5hR3s5fG/nOdPDypes2orfPbK2Ytaa0O5OIACn3z/z6g5M7cnLAIii5/d55tUdIHICICbL4JvN/SNu2/2oe/3UuorJc/aUThy9T29AWKlnAQDmTXOExsJFziRmL4NWAwA/P+doXPaPrzceqyctLVCI6FQiWk5EK4nowrGqN5shXPmRo43H1IzhhkfX4vqH1xgXJCoGR0vYY2I7rl44H/f82/GYM7UL03ryuPS2ZfjyH5x3Uve05wKbu/30npVYtWUAe/d2YUJHG84+Zo57bN22QY99//jXzXAHkzV9gxgulLB9qIDOtiz+5cQDXBOSmtmVygJrtw3io2+e684uD5892d3/6KXNlVnzkXOmYNtgAWv7hlCQoc5fk6HMnW1ZfOrt+7m7nN69fLNn8dbxBzqa06eP3w/rtg2hWCrjxkfXYsWmXXh41VaPKv/YK9uMC8lU1JyfGRPb3a1OTA7uB1duxctbB/GdW1/A129+zr2mv33hbe4586Z3e/bjAuAu8lT+nf97YaM7QALAeW91/CtKo3z3FU5YuXrft/6itrOvWoJHX66YHs88ejZy2Qx6u/PuoKgEy9ffc4hTrzQDviQ1F+WP2bu30511q/2gdJt8d3sOnXnnUd85VMBXbnoaJ3//XuwYKuDvLznroPaa3IlnXg0OfkdJk50a+IQQnlcEq9n0qs3OALlqS6V/3P75twJw+sLwaClwPwFnsabi5S0DuPxvLwIATj10T0zvaUcuQ3hl6yDKZYE/P+WYu3rac9hnarc7Gdo6MIpiqYw7ntsIwJkQnXDQDLdvbx8cxbptg+7LqY7bzxFUz66vXO8HNS0WcEyy2zSBv0r6R046ZE/3GdcF8N3LN2GvSZ3obs+5/rKVm3Z5FjTrPL1uOx57pQ9f+L2zZmRCR84Vzv6urmsZb9rP++KuA2Z4tZLPnngAzjx6Nk49bE988I1zMNa07Au2iCgL4CcATgKwDsCjRHSLEOJ5e850OFmaqt5x0Ax/u6z5vvEPh+Ab2iB00J4T8bbXVcI6Z03u9Jh5JnY4W09/9M1z8au/vwwA+M/bHUetssW3ZTO48LSDcOlty/CWy+52O9lPzj7KDRn8xFvm4ZcPrMZBX78d7zhohmsjn9TZhjftOxUPrdqKz9/wBHYOFzE4WsIbZk9y2+Bsxy0w98Jb8WbZoe//8gmubfisKx/C+h3DHtPOT885yv188MyJeGHDTjfK5Rv/cAg62rLYc1IW+03vQbEscN+Kza4QPefYfdxr3zlcxH/dsdzzGmalIapZtGL2lE78+Z/fgo62LGZMcGZ1x116l3u8pz2Haz/+Rvzjzx5y0373yBr3sz7gz57S6Qk+mNPbhR+e5Tg3lcanc/Yxc1wh6H/9q9o247bPvRUHff12N/3XDzkz5pWXnOZqr30Do1j8/EbMvfBWAMDbXzfdvXa1C+4Vd63EkXKgB4Dz37afO3D95+3LcfMT692Q8Ze++y4AFef4RX96xjMDvuT9hwHwmjf/QwowwNGMervz+NFdK11/js7MSZ3YZ2oXLvnrCzjpkD08ZjplPprak8e1D72Ca+X1AsDjXz8JgNdkowJFAOBr7zkYmQyhJAQWPbjaXaALAE/8x0nIZsg19V522zJ89sQD3OPXfcJ5L1FvV8UUrO+FpXwK1zz4Mr76roNxt7ZbxaEy4q2nw9mpYddIERu2D+Gk79/nlDW31/X5rd4ygINnTsSiB1a7GzYCwP5yIrb4hY14TZok//mE/fHju1fih2cdgcv/thy3PfuaG7iSz2XwhLwfAHDD+cfiT4+/6m78OFPTUHrac/jeBw7Hv974FD5y7D6BZ+BfpfO+UbSyhrIAwEohxCohxCiAGwCcPpYNWP6dU3GVNAnoPPUfJ7uff64NrADw0ePm4R8Or/hc5s+d4jn+vQ8e4fmuBNQ33nsolvz7iZ5j+0ytDIBHSnszUFkwqNYXAMAnZdgo4LybWo+y+vw7nYfxf59cj7tkJNgx2itM502v1KNmtHv3drmCS9nx71/hBAF88q3zcMKBFUH7jX9wBqgr71sFIuDsYyrmLuW0/vivnEWcMya044snOwtA//eC4wAAS1b34fzrHDPLB+bPxq8+5vhl9AcNcJy4alaq/A06t33urTh6n148842TA8eAyr5UQNBB+tMPH+Xes7fuPx1+LnnfYe7nI/b2/qbKBNLRlsWZR88O5PWbQnV030K3Ntv92DVOAMLbXzcd5xzjnYku39jvajlKUCizq9+coiLLvn16pf0fO26u5xy/PwUA3nv4Xnjsa+8E4Gx+CgDHX34PvnOrY5K9Wf52QEV7UVx17nz3Xiozr863Tz/U9e35l3ssmNfr/k7K3LNkdR8+LM2s1523wJ1M7Kv1WzVJWyrbrNaO7f/V2zyvl/j5OY7loVgqY8uuURx28R2uMNl3WjcO2WuiO/H4zG8ex9wLb8W35OJDNRZM6c7j9bMm4bdL1uCuZZuQIeDfTjkQL1/6bpx+xCx84Z3eQf/S//d6Tx84dt+puOyMN+AXHzkaX33Xwa5ZUPH+I2fht584Bl9998GBe9doWlmgzAKwVvu+TqaNGe25rNFxrZtiDt0r+MB85dQD8enj98NL332XO+tU7De9B/d/+QT87pPH4sXvnOY5tsfEDvdBXTC31xUEANwoEB09tHmPiR1ucAAAN3YdcAbiD8yfjTm9XWjLEv7xqNmeAfXUQ/f0aB/KBDO5K4+vGTr1hzWBATiDgBI+Zxw12/N+632mdrnOVwD49PGVwWvf6T344Py9PWV9872HuffswD0m4OYLjnMDG/75Hfu7582b2o0PawPtOw/eww1DndDRhpcvfTf+8Ok3ucfPOdY7KL/38L087wU/TBv4Xj97Eq5eON8VDm/eb6pHM9WDNACvWeI77z8Mv/3kMfjSKY7QVG/5VPzpM292TWaAM1tV5LIZ3PH5t3nO/9IpB7p1+2en+2oaFwBcf94xnu+f0iYZnfksHrroHVj8hbcFtGx9MqL43gcOdxc16sIIAP74mTd7ftNvvvdQ9/Ml7z8MJx1SWQg8tds7w+7KZ/GRN811v/9Am2AdOWcyvnLqQe736RPaA7/bG2ZX6j1ozwm4/MzD3e9nHD3b9TW993DvUHHknMm490vHu33Eb3l49+tn4q5/Ox7ZDKG7PYe5vgnLT84+ynNdJ2iLSS86zfuM/L+jZuP7Hzwc5xw7BysuOQ3/76jgJANwgn9M956I8Ob9pwV8p80A2d5n0cwQ0ZkAThFCfEJ+/wiABUKIf/Gddz6A8wFgzpw5R7/yyiuBsuqBEAIbdgyHOs1qYXP/iBtiqjM0WsKm/mF86X+exmdO2A/HHzgjcM5woYS+gdFE7SqWnH22/APOaLGMlZt2YcWmfpx+hFmmCyGwZHUfjpozxSNQ9Gu698XNeN8RewVm7CW5G68pnyq7VBahM30hRKgp8ul129E/XMRx+08zHlcmsQ8tMNujw94RX08GR4s45Qf34fy37usZfAEneu6Ku1agtyuPs4+Z45qdFJt2Dru+miQsf60f2Qx5Jit63Z1t2apXZg+NljBaKmOkWHK1i2p5cWM/nn11R+jg7O8DpbLAfS9uxq6RIo6cM9nViPxlTujIoasth458xrNLxtBoCS9vHcDgaAlTutpcf6OiWCpj5eZdeN2MCWO6Ur1eENFjQoigOcZ/XgsLlDcB+IYQ4hT5/SIAEEL8f2F55s+fL5YuXRp2mGEYhjEQV6C0ssnrUQAHENE8IsoDOAvALQ1uE8MwzG5Ly0Z5CSGKRPTPAO4AkAWwSAjxXIObxTAMs9vSsgIFAIQQfwXw10a3g2EYhmltkxfDMAzTRLBAYRiGYVKBBQrDMAyTCixQGIZhmFRggcIwDMOkQssubEwCEfUDeA2AeU9ph0mW43MArAk5FpXXdqzW441qV1TeVmxXPX+nRrWrUX2rWdvFz2J1+efAkRXBTez8CCF2mz8ASwFcGXFO6HEAm2vIm7jeZm1XjLwt1646/04NaVej+laztoufxXSvSf/bHU1ef67h+HbLsai8tdQbdbxR7YrK24rtqufv1Kh2NapvRR1vxT4fdbwV+3xU/qi8LrubyWupiLEfTb3y1wtuV3Vwu+LTjG0CuF3VUku7qsm7u2koVzY4f73gdlUHtys+zdgmgNtVLbW0K3be3UpDYRiGYerH7qahMAzDMHVitxcoRLSIiDYR0bNa2uFE9BARPUNEfyaiiTK9jYiulekvqHewyGP3ENFyInpS/gXfblW/duWJ6BqZ/hQRHa/lOVqmrySiKyjqpfdj06a079XeRHS3/E2eI6LPyfReIlpMRCvk/ylanovkPVlORKdo6WnerzTblco9q7ZNRDRVnr+LiH7sK6th9yqiXan1rwTtOomIHpP35TEieodWViPvl61d6T2PccPBxusfgLcBOArAs1raowDeLj9/HMC35eezAdwgP3cBeBnAXPn9HgDzG9SuCwBcIz/PAPAYgIz8/giANwEgALcBOK0J2pT2vZoJ4Cj5eQKAFwEcAuA/AVwo0y8EcJn8fAiApwC0A5gH4CUA2TrcrzTblco9S9CmbgBvAfBPAH7sK6uR98rWrtT6V4J2HQlgL/n5MACvNsn9srUrvfuVRiGt/gdgLryD5E5U/Et7A3hefv4QnPC6HICp8kfsTftHSdCunwA4RzvvTgALZKdbpqV/CMAvGtmmet0rXxtvBnASgOUAZsq0mQCWy88XAbhIO/8O+aCnfr/SaFc971lUm7TzPgpt4G70vQprV737V9x2yXQCsBXOBKEp7pe/XWnfr93e5BXCswDeKz+fCWegBICbAAwA2ABn1enlQog+Ld81UmX8ei3qbIJ2PQXgdCLKEdE8AEfLY7MArNPyr5NpjWyToi73iojmwpmNLQGwhxBiAwDI/0qVnwVgrZZN3Ze63a8a26VI9Z7FbFMYjb5XUaTevxK06x8BPCGEGEFz3S+9XYpU7hcLFDMfB3ABET0GR50clekLAJQA7AXHJPFFItpXHvuwEOL1AN4q/z4yhu1aBKeDLgXwAwB/B1CEMxPxk3ZYX7VtAup0r4ioB8AfAHxeCLHTdqohTVjSG90uIOV7VkWbQoswpI3lvbKRev+qtl1EdCiAywB8SiUZThvz+2VoF5Di/WKBYkAIsUwIcbIQ4mgAv4NjywYcH8rtQoiCEGITgAcBzJd5XpX/+wH8Fo7wGZN2CSGKQogvCCGOEEKcDmAygBVwBvTZWhGzAaxvcJvqcq+IqA3Og/UbIcQfZfJGIpopj88EsEmmr4NXW1L3JfX7lVK7Ur1nVbYpjEbfq1DS7l/VtouIZgP4E4BzhRBq7Gj4/QppV6r3iwWKARXlQEQZAF8D8HN5aA2Ad5BDN4BjASyTZp1pMk8bgPfAMQWNSbuIqEu2B0R0EoCiEOJ5qfL2E9GxUo09F46ttWFtqse9ktd2NYAXhBDf0w7dAmCh/LwQlWu/BcBZRNQuzXEHAHgk7fuVVrvSvGcJ2mSkCe5VWDmp9q9q20VEkwHcCscX9qA6udH3K6xdqT+PaTmFWvUPzqx6A4ACnFnEeQA+B8fh/iKAS1FxOvcA+B8AzwF4HsCXZHo3nCimp+WxH0JG54xRu+bCcca9AOD/AOyjlTNfdpCXAPxY5WlUm+p0r94Cx3zwNIAn5d+74ARO3AlHM7oTMoBC5vmqvCfLoUXbpHy/UmlXmvcsYZteBtAHYJf83Q9pknsVaFfa/avadsGZVA1o5z4JYEaj71dYu9K+X7xSnmEYhkkFNnkxDMMwqcAChWEYhkkFFigMwzBMKrBAYRiGYVKBBQrDMAyTCixQGKZJIKJ/IqJzqzh/Lmk7PzNMo8k1ugEMwzgLzIQQP48+k2GaFxYoDJMScpO+2+Fs0ncknMWe5wI4GMD34CyM3QLgo0KIDUR0D5w9zo4DcAsRTQCwSwhxOREdAWfXgS44C+E+LoTYRkRHw9knbRDAA2N3dQwTDZu8GCZdDgRwpRDiDXC29r8AwI8AnCGc/c4WAbhEO3+yEOLtQoj/9pXzawBfkeU8A+BimX4NgM8KId5Uz4tgmCSwhsIw6bJWVPZKuh7Av8N5odFiuSt4Fs72NYrf+wsgoklwBM29MulaAP9jSL8OwGnpXwLDJIMFCsOki38vo34Az1k0ioEqyiZD+QzTNLDJi2HSZQ4RKeHxIQAPA5iu0oioTb6TIhQhxA4A24jorTLpIwDuFUJsB7CDiN4i0z+cfvMZJjmsoTBMurwAYCER/QLOjq8/gvMq3yukySoH54Vjz0WUsxDAz4moC8AqAB+T6R8DsIiIBmW5DNM08G7DDJMSMsrrL0KIwxrcFIZpCGzyYhiGYVKBNRSGYRgmFVhDYRiGYVKBBQrDMAyTCixQGIZhmFRggcIwDMOkAgsUhmEYJhVYoDAMwzCp8P8DHO1C/W+DpeMAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sorted_data['inc_up'].plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Un zoom sur les dernières années montre mieux la situation des pics en hiver. Le creux des incidences se trouve en été."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 36,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXmYnFWV8H+nu3rftySd7g7pLARCwAAhBAjInojOgAoaRyE6KA6DjsvMOOI38+GIzKfjKMrMiKKEzVFA0AGVxQiyhyQdCGQnnbU76aT3fantfn+8tzrV3dXV1Z3qrqXP73nqqepT77116+2qOu9Z7jlijEFRFEVRIiEl1gtQFEVREgdVGoqiKErEqNJQFEVRIkaVhqIoihIxqjQURVGUiFGloSiKokSMKg1FURQlYlRpKIqiKBGjSkNRFEWJGFesFxBtSktLzdy5c2O9DEVRlIRiy5YtzcaYsrGOSzqlMXfuXGpqamK9DEVRlIRCRA5Fcpy6pxRFUZSIUaWhKIqiREzESkNEUkXkbRH5vf27WETWi8hee18UdOztIlIrIntEZFWQ/FwR2Wafu0dExMozROQxK98oInODxqy1r7FXRNZG400riqIoE2M8lsaXgF1Bf38deMEYsxB4wf6NiCwG1gBnAKuBH4tIqh1zL3ALsNDeVlv5zUCbMWYBcDfwXTtXMXAHcD6wHLgjWDkpiqIoU0tESkNEKoEPAj8PEl8LPGQfPwRcFyR/1BgzYIw5ANQCy0WkHMg3xmwwThOPh4eNCcz1BHCFtUJWAeuNMa3GmDZgPScUjaIoijLFRGpp/BD4GuAPks00xjQA2PsZVl4B1AUdV29lFfbxcPmQMcYYL9ABlISZawgicouI1IhITVNTU4RvSVEURRkvYyoNEfkQ0GiM2RLhnBJCZsLIJzrmhMCY+4wxy4wxy8rKxkwzVhRFUSZIJJbGRcBfishB4FHgchH5BXDcupyw9432+HqgKmh8JXDUyitDyIeMEREXUAC0hplLURRFCeLJLfX8cuPhSX+dMZWGMeZ2Y0ylMWYuToD7RWPMp4CngUA201rgKfv4aWCNzYiqxgl4b7IurC4RWWHjFTcNGxOY63r7GgZ4HrhaRIpsAPxqK1MURVGC+N+tR/j1lrqxDzxJTmZH+HeAx0XkZuAwcAOAMWaHiDwO7AS8wG3GGJ8dcyvwIJAFPGtvAPcDj4hILY6FscbO1SoidwKb7XHfMsa0nsSaFUVRkhK310966uRvvRuX0jDGvAS8ZB+3AFeMctxdwF0h5DXAkhDyfqzSCfHcOmDdeNapKIoy3fD4/ORkTH5lKN0RriiKkgR4fIa0KbA0VGkoiqIkAR6fn7TUUAmn0UWVhqIoShLg9vnV0lAURVEiw+ObmkC4Kg1FUZQkwOPVmIaiKIoSIR6fnzSXxjQURVGUCNCYhqIoihIxU7W5T5WGoihKEuBRS0NRFEWJBJ/f4Deo0lAURVHGxuNzWh1pIFxRFEUZE7dVGhrTUBRFUcbE47VKw6VKQ1EURRkDj89paKoxDUVRFGVMBmMaqjQURVGUsXAPKo04CISLSKaIbBKRd0Rkh4j8q5V/U0SOiMhWe7smaMztIlIrIntEZFWQ/FwR2Wafu8e2fcW2hn3MyjeKyNygMWtFZK+9rUVRFEUZgmcKA+GRtHkaAC43xnSLSBrwmogE2rTebYz5j+CDRWQxTrvWM4DZwJ9E5FTb8vVe4BbgTeAZYDVOy9ebgTZjzAIRWQN8F/i4iBQDdwDLAANsEZGnjTFtJ/e2FUVRkgePN45iGsah2/6ZZm8mzJBrgUeNMQPGmANALbBcRMqBfGPMBmOMAR4Grgsa85B9/ARwhbVCVgHrjTGtVlGsx1E0iqIoimXQPRUv2VMikioiW4FGnB/xjfapL4jIuyKyTkSKrKwCqAsaXm9lFfbxcPmQMcYYL9ABlISZS1EURbG4vXEU0wAwxviMMUuBShyrYQmOq2k+sBRoAL5vDw+1ahNGPtExg4jILSJSIyI1TU1NYd+LoihKsjGVMY1xvYIxph14CVhtjDlulYkf+Bmw3B5WD1QFDasEjlp5ZQj5kDEi4gIKgNYwcw1f133GmGXGmGVlZWXjeUuKoigJT1yl3IpImYgU2sdZwJXAbhujCPBhYLt9/DSwxmZEVQMLgU3GmAagS0RW2HjFTcBTQWMCmVHXAy/auMfzwNUiUmTdX1dbmaIoimKZSqURSfZUOfCQiKTiKJnHjTG/F5FHRGQpjrvoIPB5AGPMDhF5HNgJeIHbbOYUwK3Ag0AWTtZUIAvrfuAREanFsTDW2LlaReROYLM97lvGmNaTeL+KoihJh9vuCE+fgoKFYyoNY8y7wNkh5DeGGXMXcFcIeQ2wJIS8H7hhlLnWAevGWqeiKMp0ZbD2VGrqpL+W7ghXFEVJcLQ0uqIoihIxcRUIVxRFUeIbt1a5VRRFUSIlbvdpKIqiKPGHJ952hCuKoijxi8fnRwRSU1RpKIqiKGPg9hnSUlOw3SYmFVUaiqIoCY7b65+SeAao0lAURUl4PD7/lMQzQJWGoihKwuMoDbU0FEVRlAhwq9JQFEVRIsXjM6RPQdc+UKWhKIqS8Hg0EK4oiqJEisfnn5JihaBKQ1EUJeHRmIaiKIoSMXGVPSUimSKySUTeEZEdIvKvVl4sIutFZK+9Lwoac7uI1IrIHhFZFSQ/V0S22efusW1fsa1hH7PyjSIyN2jMWvsae0VkLYqiKMoQPD4TVzGNAeByY8z7gKXAahFZAXwdeMEYsxB4wf6NiCzGadd6BrAa+LFtFQtwL3ALTt/whfZ5gJuBNmPMAuBu4Lt2rmLgDuB8YDlwR7ByUhRFUeJsc59x6LZ/ptmbAa4FHrLyh4Dr7ONrgUeNMQPGmANALbBcRMqBfGPMBmOMAR4eNiYw1xPAFdYKWQWsN8a0GmPagPWcUDSKoigKThmRuHFPAYhIqohsBRpxfsQ3AjONMQ0A9n6GPbwCqAsaXm9lFfbxcPmQMcYYL9ABlISZS1EURbE42VNxpDSMMT5jzFKgEsdqWBLm8FA2kgkjn+iYEy8ocouI1IhITVNTU5ilKYqiJB9uX5zu0zDGtAMv4biIjluXE/a+0R5WD1QFDasEjlp5ZQj5kDEi4gIKgNYwcw1f133GmGXGmGVlZWXjeUuKoigJj8dr4iemISJlIlJoH2cBVwK7gaeBQDbTWuAp+/hpYI3NiKrGCXhvsi6sLhFZYeMVNw0bE5jreuBFG/d4HrhaRIpsAPxqK1MURVEsU5ly64rgmHLgIZsBlQI8boz5vYhsAB4XkZuBw8ANAMaYHSLyOLAT8AK3GWN8dq5bgQeBLOBZewO4H3hERGpxLIw1dq5WEbkT2GyP+5YxpvVk3rCiKEqyMZWb+8ZUGsaYd4GzQ8hbgCtGGXMXcFcIeQ0wIh5ijOnHKp0Qz60D1o21TkVRlOmKx+fXgoWKoihKZMTb5j5FURQlTvH5DT6/ia99GoqiKEp84vH5AbTKraIoijI2AaWh7ilFURRlTDw+Z7+zuqcURVGUMRl0T6nSUBRFUcbC7Q0oDY1pKIqiKGPgDsQ0dJ+GoiiKEo661l4Ot/QCU+eeiqSMiKIoihKHfPmxrWw70gFoTENRFEUZg31N3RrTUBRFUcams99De6+H8oJMAHIypsZxpO4pRRkHO4928sDrB/jOR88iNWVqruwUJRR1rU4s4/ZrTic7LZVz5hRNyeuqpaEo4+A3b9Xz6y31tPW6Y70UZZoTUBrzSnO4cvHMKbuIUaWhKONgx9FOAAasH1lRYkVdax8AVcXZU/q6qjQUJUKMMew46mSqDHh8YxytKJPL4dZe8jNdFGSlTenrqtJQlAipb+ujs98LqKWhxJ66tl7mlEytlQGR9QivEpE/i8guEdkhIl+y8m+KyBER2Wpv1wSNuV1EakVkj4isCpKfKyLb7HP32F7h2H7ij1n5RhGZGzRmrYjstbe1KEqMCFgZoEpDiT2HW3upKopDpYHT5/vvjTGnAyuA20RksX3ubmPMUnt7BsA+twY4A1gN/Nj2Fwe4F7gFWGhvq638ZqDNGLMAuBv4rp2rGLgDOB9YDtwhIlOTIqAowwjEM0DdU0ps8fsN9W19zJnieAZEoDSMMQ3GmLfs4y5gF1ARZsi1wKPGmAFjzAGgFlguIuVAvjFmgzHGAA8D1wWNecg+fgK4wlohq4D1xphWY0wbsJ4TikZRppTtRzoQm6CiloYSS5q6B3B7/VTGo9IIxrqNzgY2WtEXRORdEVkXZAFUAHVBw+qtrMI+Hi4fMsYY4wU6gJIwcw1f1y0iUiMiNU1NTeN5S4oSMTsbOlk4IxdQpaHElsM23TYuLY0AIpILPAl82RjTieNqmg8sBRqA7wcODTHchJFPdMwJgTH3GWOWGWOWlZWVhX0fijIRjDE0d7upLs0BYMCr7ikldhxtd9JtKwozp/y1I1IaIpKGozD+xxjzGwBjzHFjjM8Y4wd+hhNzAMcaqAoaXgkctfLKEPIhY0TEBRQArWHmUpQpxe3z4/MbCrPSARjwqKWhxI7GzgEAyvLiUGnY2ML9wC5jzA+C5OVBh30Y2G4fPw2ssRlR1TgB703GmAagS0RW2DlvAp4KGhPIjLoeeNHGPZ4HrhaRIuv+utrKFGVK6Xc7SqIw28mJV/eUEksau/rJcKWQnzn1laAiecWLgBuBbSKy1cq+AXxCRJbiuIsOAp8HMMbsEJHHgZ04mVe3GWMCtvytwINAFvCsvYGjlB4RkVocC2ONnatVRO4ENtvjvmWMaZ3YW1WUidPrcfZnFGZbS0PdU0oMaewaYEZ+BiJTX/9sTKVhjHmN0LGFZ8KMuQu4K4S8BlgSQt4P3DDKXOuAdWOtU1Emkz63oyTU0lDigaauAWbEwDUFuiNcUSKiN6A0bMmGft2nocSQxq4BZuRlxOS1VWkoSgQElEROhou0VFFLQ4kpjZ39qjQUJZ4JWBrZ6alkuFI1e0qJGf0eH539Xmbkq3tKUeKWPmtpZKalkuFK0UC4EjOaugLptmppKErcEnBPOZZGirqnJpFfbjzMr2vqxj5wmtLY1Q+g7ilFiWcC7qms9FQy0lJVaUwS9760j2/8dhv3vbI/1kuJWwIb+zR7SlHimEDKbVbAPaXZU1Fnx9EOvvvcbrLSUmno6I/1cuKWRuuempGvloaixC2BmIZaGpPHkTanntJVi2fSPeCls98T4xXFJ41d/bhShGK70XSqUaWhKBHQ5/aRIpCemqKB8Emiy3ZFXDQrD4Bjam2EpLFzgNLcDFJSpn43OKjSUJSI6HX7yE53ISIaCJ8kuqxlsWimozQClVyVoQRKiMQKVRqKEgF9Hh+ZaU4DSt2nMTkELI1TrdLQuMZIdjV0suNoZ8yC4KBKQ1Eios/tJTvdKo00dU9NBl0DXjLTUphdmEmKQINaGkPYfqSDv/yv1wDD37x/XszWMfV1dRUlAenz+MgatDTUPTUZdPV7yMtMw5Wawoy8TI6qpTGEd+s78PgMj3/+AuaV5cZsHWppKEoE9Lp9ZKUHuadUaUSdzn4vebY/RHlhJg0damkE0+t23HclubGLZ4AqDUWJiP7hlobu04g6Xf1e8jKdKsKzC7JoaFdLI5i+oPpnsUSVhqJEwBBLI03dU5NBV79nsBNdeUEmDR39OA08FYAet4/01BTSUmP7sx1Ju9cqEfmziOwSkR0i8iUrLxaR9SKy194XBY25XURqRWSPiKwKkp8rItvsc/fYtq/Y1rCPWflGEZkbNGatfY29IrIWRYkBfZ6R7in9QYsuXUPcU1n0eXx09OkGvwB9bu/gZzCWRKKyvMDfG2NOB1YAt4nIYuDrwAvGmIXAC/Zv7HNrgDOA1cCPRSTwTu8FbsHpG77QPg9wM9BmjFkA3A18185VDNwBnA8sB+4IVk6KMlX0u4e6pwDcPrU2oklnn4e8jIB7ykkpPaouqkGcvUIJoDSMMQ3GmLfs4y5gF1ABXAs8ZA97CLjOPr4WeNQYM2CMOQDUAstFpBzIN8ZsMM4l2sPDxgTmegK4wlohq4D1xphWY0wbsJ4TikZRpoxez4kvbEBpqIsqugRbGrOs0jjWqcHwAMGfwVgyLueYdRudDWwEZhpjGsBRLMAMe1gFEFzXuN7KKuzj4fIhY4wxXqADKAkzlxJnvPJeE3f+fmeslzFp9AVbGvZeN/hFD4/PT5/HNxgIL7R1lTr7vLFcVlzRO+AlOz32uyQiVhoikgs8CXzZGNMZ7tAQMhNGPtExwWu7RURqRKSmqakpzNKUyeJ37xxl3esH8CShy8bnNwx4/UExjYCloRlU0aLb7gYPWBq5Gc59lxYtHCQ4GSOWRKQ0RCQNR2H8jzHmN1Z83LqcsPeNVl4PVAUNrwSOWnllCPmQMSLiAgqA1jBzDcEYc58xZpkxZllZWVkkb0mJMse7BjDmRNnmZCLQgGl4TEPdU9Gja5jSCNx3DailEaAvUdxTNrZwP7DLGPODoKeeBgLZTGuBp4Lka2xGVDVOwHuTdWF1icgKO+dNw8YE5roeeNHGPZ4HrhaRIhsAv9rKlDjjuN29eywJN2T1DsuPz3CpeyraBMqgB9xTmWmppKemDCoTxfkc5sSBeyqSFVwE3AhsE5GtVvYN4DvA4yJyM3AYuAHAGLNDRB4HduJkXt1mjAnY8bcCDwJZwLP2Bo5SekREanEsjDV2rlYRuRPYbI/7ljGmdYLvVZlEjnUGlEbyWhqBgoWZac61Vr+6p6JGQDkE9mkA5Ga61D0VRO9AfKTcjqk0jDGvETq2AHDFKGPuAu4KIa8BloSQ92OVTojn1gHrxlqnEjv6g/LpA8ojmQhu9QpqaUwGXcMsDeexazDWoSRo9pSihCK4WU4yuqcCXfuCq9yCBsKjyfCYBjjBcHVPnSChAuGKEo7jQdbFsc7kc08FCsVlaiB80jhhaZxQGnmZLg2EW7w+P26vPy5iGqo0lJMm4JIqyUkfDIgnE/2DlobzhR10T6nSiBonLI0T7qncjDS1NCy9nvgoVgiqNJQoELA0llYV0pCEO3gHYxrDLQ2tdBs1uga8ZLhSSHed+EnKz3TRPaCBcDhR4VbdU0pScKxjgOz0VBbMyOV4x0DSFfIbXpL6RExDLY1oEWjAFIyTPaWWBpy4cFH3lJIUHO/sZ1Z+JrMKMnH7/LT2uGO9pKgyPOVW3VPRp7PfOyTdFk5kTyXbRchE6LGxHbU0lKTgeGc/M/IzmJUfKDKXXHGNkZv7NHsq2nT1e8nLGmZpZKTh9Rv6NbV5RAZfLFGloZw0x6ylMdNWJj2eZEqjxz3c0gjENPTHLFp09nlCWhoAXRrXGHHhEktUaSgnhTGGxs4BZhZkUm6VRkOSZVB19nnIy3SRmuLscRUR0l3avS+atPW6Kc5JHyIbVBoa16DPpn0nVJVbRQlFe68Ht8/PzLxMymzD++au5IpptPe6Kcwe6jrJcKWoeyqKtHS7KcnJGCJTpXGCngG1NJQkIVA+pDA7DVdqCllpqUmXJtne56Ewa+hVcGZa6mCAXDk5+j0+uge8lOQOPce5touflhI5sU9DA+FKwhOoTppv0yVzM110J9ku3o4+zwhLozArjbae5FKOsaLFZtuV5o7mntLzrO4pJWkIdFbLt5kveUlYL6ij1zP4/gKU5KYnXWpxrGjpdkrPFA9zTw02Ykqyi5CJEHBPBTaYxhJVGspJMWhpZNmOa0loaTjuqWFKIyeDlp7kq7M12XT0eUbEglq6HeU73D0VsF6T7SJkIvR5fGSmpQwmY8QSVRrKSdHZN8w9lZFc5ayNMSHdU8U56YNuFSU8Hp+f2sYuvv/HPZz37T9x9/q9Q55vtpZG6TBLIyfDuapOps/TROl1x0d/cIisCZOijMoJS+OE0jjc0xvLJUWV7gEvPr8ZEQgvzkmnvdeD1+fHlarXXuFY9cNX2N/UA0B6agr7mrqHPB9QvsMtDVdqCtnpqRrTwJZFjwPXFETW7nWdiDSKyPYg2TdF5IiIbLW3a4Keu11EakVkj4isCpKfKyLb7HP32Jav2Lawj1n5RhGZGzRmrYjstbdAO1gljujs85IikGOzOvIyk6syaXuv84NVMMw9FQjatvXqD1o4Ovo87G/q4WPLKln/lUtYXl08aFkEaOkeIDMtJWQ6aW5G8rk7J0LvgG/Q8oo1kVwiPQisDiG/2xiz1N6eARCRxTitWs+wY34sIoF3ei9wC07P8IVBc94MtBljFgB3A9+1cxUDdwDnA8uBO2yfcCWO6Ox3gsT2GsCpF5REX/JASnHBCPeU40rRuEZ46lodq/Py02awcGYepbnpI5VGj7NHI/AZCiZPixYCTsptVpy4p8ZUGsaYV3D6dkfCtcCjxpgBY8wBoBZYLiLlQL4xZoNxqo89DFwXNOYh+/gJ4AprhawC1htjWo0xbcB6QisvJYY45R+CeyA4SiNZiswFLI3hgfDA7uXWbo1rhKO+zSmVX1mUDUBJbsZg4DtAS7d7RLptgNzMNM2ewkm5zU4U91QYviAi71r3VcACqADqgo6pt7IK+3i4fMgYY4wX6ABKwsylxBGd/d7BzClwsqd8fjNYYC3RObF5ceiPWuBHToPh4alvcyyNKqs0SnMz6HX7BrshgmOtleRmhByfn+nSmAZOTCMedoPDxJXGvcB8YCnQAHzfykPlg5kw8omOGYKI3CIiNSJS09TUFG7dSpQJZWlA8mS8tPc5SmF4TCNgabR0q3sqHPVtfeRluAYvLALKNrjUjFNCJLSlkZfpGszQm870un1kZySIeyoUxpjjxhifMcYP/Awn5gCONVAVdGglcNTKK0PIh4wRERdQgOMOG22uUOu5zxizzBizrKysbCJvSZkgnf1DlcaJyqRJojR6T5RJCaYwOx0RdIPfGNS19lJZnD0YryjNcyyKJqtsjTGO0hjF0ijOSddkA5x+GjmJbGnYGEWADwOBzKqngTU2I6oaJ+C9yRjTAHSJyAobr7gJeCpoTCAz6nrgRRv3eB64WkSKrPvraitT4ojOvmHuqSSzNDr6PGS4UgbLogdITRGKs3WvxljUtfVSWZQ1+HdgL0YgGN414MXt848a0yjJyaCt143XN30rCvv8hpYeN6WjKNapZkx7R0R+BVwKlIpIPU5G06UishTHXXQQ+DyAMWaHiDwO7AS8wG3GmIBz+1acTKws4Fl7A7gfeEREanEsjDV2rlYRuRPYbI/7ljEm0oC8MkV09Y/inkoSS6Ojd+TGvgDFOekjgrrKCYwx1Lf1sXLBCeu/NM+6p6zSCJy/4WXRB4/PTccYJ7W5LC8+fjSnmpbuAXx+w8z8+Hj/YyoNY8wnQojvD3P8XcBdIeQ1wJIQ8n7ghlHmWgesG2uNSmzw+vz0uH1DejvnJlk56/Y+94h4RoDiHK0/FY7WHje9bt8QSyNQ/jygLAIxodHcUwF5c/fAtFUaxzudczTTdsaMNbqVVZkwAcUQ7J7KC5SzThJLo713ZFn0AKW5Wn8qHIF026ri7EFZuiuFgqy0QUtjb6OzO3zWKD+IJYMJB9NXOQfaJ6vSUBKe4WXR4YSl0Z0kaZIdfZ4RG/sCaP2p8NTZdNtgSwMYssHv0U2HWTgjl1Nn5oacI2BpTGflHGifPKtAlYaS4Awviw5JGNMIUeE2QHD9KWUkh1tDK42S3Ayau9xsq+/gnfoOPnn+nJC7wSEoRXcaWxqNnf2kCKOmJU81qjSUCXPC0jjhnkp3pZDhSkmqlNvRYhqBAnutvdP3By0c2490UFmUNSTmBVCWm0Fz9wC/ePMQWWmpfOTcylFmcKxYV4pM6/0wxzr7KcvLiJvCmPGxW0RJSAbLog/7Uc3LTI7y6P0eH30eH0WjXOEV2V3iHb0eZuTFh+sgnnj7cDvL5haPkJfmplPf1sfh1nrWLK8a4t4cTkqKTPssteOdA3ETzwC1NJSTYHhZ9ADJUpn0aLsTyC0fxZcceN8dumN5BA0dfTR09HN2VeGI50pzM3D7/ORmuvjqVYvGnGu6Jxwc7+xXpaEkB4MxjcyhBmtuklQmPdruBCDLC7JCPl+gSmNUth5uB+CcU0YWpg78AP7T6tNG3Z8RTElu+rSOaThKI37SjdU9pUyYzn6P7aUxTGkkSfe+ox2OpVFRGF5pdCZJplg0eetwG+muFBaX54947gNnziIjLYW/OGt2RHOV5mZwsKUn2ktMCPo9Ptp6PaOmJMcCtTSUCdPZ5yEvM42UYX2LczOSo5x1wD01s2D0CqzgxDSUobx9uJ0ls/NJd438icnLTOPapRUjPjejUZKTPqTA4XSiqctxy81QpaEkA22jZBY5jZgS/4e0od3JWslwhS4UdyKmkfgKMpr4/IZtRzpYWhWdnmkluRn0eYaWU58uBDb2qaWhJAUtPQMhC80lk3tq9iiuKYC01BRy0lM1pjGMpq4BBrx+qstyojJfILV5OmZQHY+z3eCgSkM5CZq7QlfezM1Mju59R9r7mD3GLtyCrDSNaQwj2lfHJzb4Tb8MqoZ2tTSUJGK0jmu5GS48PsOAN3F3ShtjaGjvD2tpgOOiUktjKMc6ovtDN7zI4XTiUGsPBVlpo5ayiQWqNJQJ4fMbWntC93YONGJK5L0a7b0e+jw+VRoTYNClMkoCwXgZdE9Nw70ah1p6OaUke+wDpxBVGsqEaOt14zeEdk8lQSOmQLptRO4pVRpDONbZjytFBhsunSwlg42bpp+lcbi1lznFqjSUJCDgKigZJRAOiW1pBDb2jWlpZKrSGM7xjn5m5GVEnFI7FlnpqeSkp04795TH56e+rY+5JdFJKIgWqjSUCREISoayNAIF6hJ5V/hgCZHCsS2NUO6pfo+P//vUdn6w/r1JWV88c6yzP+plvEvzMqZdIPxoex8+v2FOormnRGSdiDSKyPYgWbGIrBeRvfa+KOi520WkVkT2iMiqIPm5IrLNPneP7RWO7Sf+mJVvFJG5QWPW2tfYKyKBPuJKHHBCaSRnTONoRx/pqSljulgKstLocfvwBJVH7xnwcsNPNvDwhkP8+M+1065C62QojZKc9GkX0zjU4pSWPyUB3VMPAquHyb4OvGCMWQi8YP9GRBbj9Pg+w475sYgEdkbdC9ws0vusAAAgAElEQVQCLLS3wJw3A23GmAXA3cB37VzFOP3IzweWA3cEKycltgy6p0L8qJ5wTyWu26axc4AZ+WO7WAqyRra3fa22mW1HOvji5Qvw+g2/ffvIpK413jjeEf0CeyW5GdPOPXXIlk45JdHcU8aYV4DWYeJrgYfs44eA64LkjxpjBowxB4BaYLmIlAP5xpgNxknef3jYmMBcTwBXWCtkFbDeGNNqjGkD1jNSeSkxorl7AFeKhNwRngx9wo93On75sQhV6TbwZf/synksrSrksc11Cb9nJVK6+j30uH1R31dQmoBFC/vcPr73/G5+9Ke97DnWNe7xh1p6yUxLiehzOJVMNKYx0xjTAGDvZ1h5BVAXdFy9lVXYx8PlQ8YYY7xAB1ASZi4lDmjpdlOckx7ySjxgaSSy0mjsiqyHQahKt4daeinMdnLrP35eFXsbu3m3vmPS1hpPTFZr0pKcDFp7BvD7E0f5bjrYyn//eR93/+k9PnX/Rtzj3Ld0yGZORSuhIFpEOxAe6t2ZMPKJjhn6oiK3iEiNiNQ0NTVFtFDl5GjuHggZBAfIcKWQlioJHdOI1NIIpTQOt/YO+qGvWjwTgE0HhhvrycmxDifuEH33VDp+A+0JlKkWiGV98y8W09Q1wLPbG8Y1/lBLD3OK48s1BRNXGsetywl732jl9UBV0HGVwFErrwwhHzJGRFxAAY47bLS5RmCMuc8Ys8wYs6ysrGyCb0kZD8097pDptgAiktD1p/rcPrr6vRFVFg24p4LTbg+29DDH+qFLczOYXZDJu0emh6UxWQX2ApUHEimpoLXHcaddd3YF88pyeOD1gxGPHfD6ONjSS3VpfAXBYeJK42kgkM20FngqSL7GZkRV4wS8N1kXVpeIrLDxipuGjQnMdT3woo17PA9cLSJFNgB+tZUpcUBLGEsDTtSfSkQau5wfvolYGm6vnyNtfcwNSpNcUlHA9mmiNCbLPVWaE6g/lThxjdYe92Dc79MXzmVrXTtbDrVFNHbLoTbcXj/nV5dM8irHTyQpt78CNgCLRKReRG4GvgNcJSJ7gavs3xhjdgCPAzuB54DbjDE+O9WtwM9xguP7gGet/H6gRERqga9iM7GMMa3AncBme/uWlSkxxhhj3VOjd13LzUhL2JhGY1fkLpbhSuNIex9+w5BdvGdVFnCguWdaFDbce7yLsrwMMtNCl5OfKIOWRgKl3bb2uCnKSUdE+Og5lRTnpPPDP0W2b+fVvc24UoQV8+NPaYzZuc8Y84lRnrpilOPvAu4KIa8BloSQ9wM3jDLXOmDdWGtUppZet49+jz9kscIAeRmJ21MjcLU8I4IWm5lpqaS7UgYVQiBzam7pCV/0kooCALYf6eDC+aXRXm7cYIxhw/4WllcXR33ugCu0uStxlEZLj5sSayHlZLj4m/fP49+e2c3mg62cNzf8OXptbzNnzykcTCqJJ3RHuDJuTuzRCGNpJLB76nintTTyInOxBJcSCbUh68wgpZHMHGju4XjnABfMi/7VcVF2OiLOD3Gi0NrjHtID/cYVcynNzeCeF/aGHdfW42b70Q5WLojP+KwqDWXcBFwEowXCIbEbMTV29ZOemkJhhOWoy/IyONjsKItDLb1kpaVSFhQPKcnNoKIwazDttrl7gHfq2qO/8BizYX8LABdOgkslNUUozk6svRrDlUZWeio3LKtkw74WesJcUL2+rxljYOXC+LRKVWko46at1/niFmWPrjTyEtjSaOwcoCwvA1vpZkwuW1TGpoOttPW4Odzawykl2SPGnhkUDP+3Z3Zx7X+/zs0PbuZAc0/U1x8rNuxrYWZ+BtWlk5MmWpqbkXDZU8XDrPEL5pXg9RtqwgTE363vIN2VwvsqCyZ7iRNClYYyblp7HFfM8C9EMLmZrgQOhPczM4J4RoBrzizH5zf8ctNhXq9tGXRHBXNmZQEHW3rp6POwta6dyqIsNh5o5eq7X+Y/x3BXxBpjDJsOtOL1jb45zRjDm/tbuGBeScTKdryU5KYnjHvK4/PT0ecZ8R0595QiXCnCm9YqC8WB5h5OKc7GlRqfP8/xuSolrmmzX9yiMEojL8PFgNc/7l2w8cDxzgFmRBjPADhjdj5VxVn8xx/34PH5+dvLFow4JqBINu5vYX9TDx9bVsWL//B+Lls0g++vf28wgB6PPL/jGB/76QZu/Z+36Pf4Qh5ztKOf5m43544R4D0ZSnITp9JtwBofHvfLyXDxvqpCNuwbXWkcaumJu3pTwajSUMZNa6+Tf54XJrMjkXtqNHaOz9IQEa45sxxj4OPnVYV0zwSUxqOb6wb/npGXyb9eewYi8ORb8VvU8A/bjpGZlsL6ncf5xm+2hTymvnXyK7LOK82hrrU3ITolBjb2FYco6HnBvBK2HekI+d3w+w2H4nRTXwBVGsogda29HLbZP+FoC8o/H41c21Mj0YLh/R4fnRHuBg/mE+fN4dJFZXzpyoUhny/KSaeyKIuX9jjFEwJpuOUFWaxcUMpv3qqPy7pK/R4fL+46zofPruATy+fw3I5jQ8rAB6hrc/qPVE2i0rhgfgl+kxglWVoHrfGRyRQXzC/B5zdsPjjyfRzr7GfA61dLQ0kM1q7bxCXf+zM33r8x7NVca4+b4jBBcAgqWphgezWO2OZL4y2DMbc0hwc/szysW+vMigL8xpk7OLvqo+dUUt/Wx6YQPyKx5vXaZnrcPladMYuLF5bS6/axLUTqcH1bLyIwe4ymVSfD2XMKyXClhHXtxAsBpRGqdUDggmHv8ZGVbw9aN+VkJRNEA1UaCuDsaN7f3MPyucW8VtvMfa/sG/XYtl53yCuoYAYbMSWYpVE/iVfMZ9psmCUV+UPkq86YRVqq8Oc9jaGGxZRntx8jL9PFhfNLBzfthQri1rX2MTMvkwxXdHeCB5PhSmXZ3CLe2Nc8aa8RLU64p0ZeXBVkpVGYnTa4pyeYQOr2KXHWrS8YVRoKALsbOgG49bL5fOis2Tzw+sFRg46hUgmHk6gxjTrrm68qDt8bfCIE4hpLhmVXZaWnMr8sl/cm0HNhsnlzfwsXLywl3ZVCaW4Gp87M5c39Iy2i+rZeKouif86Gc+H8UnYf6xr8UY5XAhtgi0bZ6zOnOJvDrSOVxqGWHtJdKcwumPxzOVFUaSgA7LRK44zyfL585UL6PT5++nJoa6Ot1xN2jwacaMSUaEqjvq2PtFQZV/ZUpJx7ShFXnj6DD55ZPuK5RbPyeO94d9Rf82Ro63FT39bHWZWFg7IV80qoOdg6Iq5R39Y3qfGMABfYjYPx7qJq7XFTmJ02atrsaErjYEtPXPbQCEaVhgLAroZOSnLSKcvLYH5ZLhctKOWNEF9Mn9/Q3usOW0IEGMysSrS9GnVtvVQUZpE6CV/a7HQXP197Hgtn5o147tSZeRxp76Mrjooabj/qxC6C952smFdCr9vH9//43uDVvsfnp6Gjb0osjbMqCsjLdPHKe/HdN6e1N3zcb05xNkfa+kbsfTnY3MvcOA6CgyoNxbKzoZPFs/MHM6IWzshjX1P3iIyezj4PfhN+jwYktqVRWTT1/uRFVpHEk7URKHuyZPYJpXHpojKuOG0GP3l5H595YBMAxzr68RuomoLz5kpN4ZKFZbz0XuOUtNBt7h6IuJx5MK3d4V24p5Rk4/UbGjr6B2U+v+FQa8+QsvrxiCqNac679e0cbunlvePdLC4/EaBdMCOXfo+fox19Q45vCRPgCyYrLZXUFImrK+dIqG/tnZR4xlgsmhVQGvET19h+pIM5xdkUBPnls9Nd3P/p8/j7q07lnfoOWroHBuNAU2FpgKO4jncOsKth8s/Vnb/fyV/97M1xb1I93tkftkpywJUX7KJ6+3Ab/R4/S+cUjjYsLlClMY1p7Orn+p9s4Oofvozb6+f0IKUxv8wxkWsbh175RlJ3CpwNb7PyMzna3h/2uHii1+2lpccdE0ujojCL7PRU9sRRMHzbkY6QJVHgRGxh88G2Sc04C8X7FznVXyc726x7wMvzO44x4PWP+B6Ew+831Lf3hbW8AvswgjOo1u86TlqqcMmp8VndNoAqjWnM/a8dwOvzD+5JCE4FXTAjF4B9TUPLW4RLJRxOdWkO+xOoIF/gx2+qrpiDSUkRTp2ZFzdKIxAEH57pFeDMygLSXSlsPthKXVsvKRL9bn2jMSMvkyUV+YMbJSeLP+44Rr/HsTB22USRSGjuHsDt9Yf9HM3KzyQtVYZYGi/sauT86hLyMyOrrhwrTkppiMhBEdkmIltFpMbKikVkvYjstfdFQcffLiK1IrJHRFYFyc+189SKyD22JSy2bexjVr5RROaezHqVE3T0evjFhkN88KzZPPWFlfzys+ezYMaJAG1xTjqF2WkjLY0I6k4FqC7N4UBT95T4nsdDU9cA2490hMgACqTbxsanvGhmHnvixD0V2MA3mqWR4UplaVUhb+5vYf3O4yyckUfaFBbYu2zRDLYcaqOjd/Lcn799+wgVhVlkuFLGpTTqBi8+Rv8cpaYIVUXZHG51LqoONPdQ29jNlafPOLlFTwHR+C9fZoxZaoxZZv/+OvCCMWYh8IL9GxFZDKwBzgBWAz8WkcBOoHuBW3B6ii+0zwPcDLQZYxYAdwPfjcJ6FeA3b9fT4/Zx6/vnU5CVxoULhtbuFxEWlOWyr2mo0mi17qmxdoSDozQ6+71xlVNvjOGvH9zMh/7zNc785vP8y/9uH+zUV9caO0sDHEuvtccdF8ULNx1oJTVFeF/V6OW5l88tZsfRTnYf6+LLo5RPmSwuXTQDv4FX9kYvi6qxq58P/eerPPLmIV7YdZzXa5v58NkVnDozj13HIlcagYuPsT5HVUFpty/sOg7AFafPnODqp47JuDS4FnjIPn4IuC5I/qgxZsAYcwCnV/hyESkH8o0xG4xzSfrwsDGBuZ4ArpBwBY+UiNl8sJWKwiwWz84f9Zj5ZbnsC2FpZKalkJU+9s7fahsXiScX1ZZDbWw70sGNK07hL86aza82HeYzD2wGnC97hiuFsjBtbCeTi6zifnVv7Hc8b9jvlHjPC+MqOc/uEF9eXczqJbOmamkALK0qpDA7jZf2RE9prHvtINuPdPIv/7udzz1cw5KKAj53yTwWl+ezq6ErYos54OasGENpLJiRy97j3fR7fLxW28z8spyYWbnj4WSVhgH+KCJbROQWK5tpjGkAsPcBe6sCqAsaW29lFfbxcPmQMcYYL9ABxF+n9QTkrUPtnHtKUdhjFszIpaXHPeiSAqeXRiRWBsD8UicucqApfpTGA28cJD/Txe3XnMb3bngf/7hqETsbOmns7GdrXTuLZuVNWj+IsaguzWF2QSav18ZWafQMeHmnrn0w2D0a51cX89FzKrnruiVTfs5SU4T3n1rGy+81RqXQY2e/h/958xCrz5jF5y6u5uKFZTzy1+dTkJXG6eV5tPa4aYywP3l9Wx/FOelkp4fv733BvBIGvH42H2xl84HWMc93vHCyXcsvMsYcFZEZwHoR2R3m2FCfKhNGHm7M0IkdhXULwJw5c8KvWOFoex/HOvs5Z4zUvkAw/L3jXZxv+z7Xt/VGHPCsKMoiLVXixtJ4p66d57Yf4+aV1YNf6BX2fb24u5G3D7dzyyXzYrY+EWHlwlKe33Ecn99MygbDSKg51IbXb8bs9Z2Zlsr3P/a+KVrVSC5bNIOnth5l+9GOIbvWJ8IvNx6ma8DLbZctGKwRFiCQVbizoZOZERSyjLSkyor5JaSmCD95eR89bh8XzIvP9q7DOSlLwxhz1N43Ar8FlgPHrcsJex9IcagHqoKGVwJHrbwyhHzIGBFxAQXAiMI3xpj7jDHLjDHLysriO10tHghsVjr3lPANc5ZWFSJyohS1MYbdx7o4rXx0l1YwqSnCKSU5HGiO/Ya1X206zEfvfYOy3Aw+c9HcQfkZs/PJzXDxX3+uxes3Me/LvHJhGR19nsHWsLFgw74W0lKFZXPDW6Kx5pJTy0gR+P27DSc1z4DXx7rXDnDRgpIRCgPgtPJ8UgTWvXYgol4eR9oi2x2fm+Hi7KpCXq91Ki+cP2/yGlhFkwkrDRHJEZG8wGPgamA78DSw1h62FnjKPn4aWGMzoqpxAt6brAurS0RW2HjFTcPGBOa6HnjRxFsqTgLy1uE2stJSOa18ZDmLYIpy0llcnj9YTuRYZz8dfR5OnxV+XDDVpTkx74NtjOH7f3yPpVWFPPfliykPKgbnSk3hvLlF1Lf1kZWWOqbLbrK50LooXouhi+q12ibeV1k4pnsl1hTnpPOhs2bzizcPnVSyxW/fOkJj1wB/8/75IZ8vyErjX69dwoZ9LVx/7xv4wrjDjDEcaY+8qkAgjnXqzFxKYxRLGy8nY2nMBF4TkXeATcAfjDHPAd8BrhKRvcBV9m+MMTuAx4GdwHPAbcaYQO/IW4Gf4wTH9wHPWvn9QImI1AJfxWZiKRPHGEPNwTbOqiyIKEXywvklbDncRr/Hx267AzdSSwNgXlkOB5t7w37RRqOxq5+rfvDyhMo4BFPb2E1z9wA3LKukMEQ8JuB6W15dPKmlvSOhNDeDxeX5vBrFrKDx8PbhNrYf6eSDZ40sqhiPfOHyBfR5HEthInh8fu57ZT9nzM5n5YLRrcwbV5zCndctYW9jd9j026buAQbG2KMRzMXWsh3LFRhPTPhSwhizHxjh0DTGtABXjDLmLuCuEPIaYEkIeT9ww0TXqMAbtc3879YjnHtKERmuVJ5+5yjbjnTwj6sWRTT+wvml/OzVA7x1qG0w7XDROCyNxeX5uH1+tta1jekOG86va+rZ29jNH3ceOykLIGApjeYzDnxhL46xayrAxQtLeeD1g/S6vVN+tf/A6wfJy3Bxw7KqsQ+OA06dmcc1S8p54PUDXLt0dshikKOxq6GTrzy2lf3NPdz7yXPGDOZfaneibzzQOuqmx/FuEF1aVcinVszhr84/JeJ1xxrdEZ7EdA94+crjW/n1lnr+6cltfPmxrby5v4X/+6HFo5riwzmvupjUFOGNfS3sbuiiojBrXDtWLzttBumpKfzh3WPjWrvfb3h082EA3j7UPq6xw9mwr4WKwqxRa0qdVVnAvZ88h0/GyRf3ogWluH3+KW9reqyjn2e2NfDx86oG+6EkAt/44OlkZ7j49AObOdreN/YAyz//73aaugb4yafO5QMhytUPp7wgiznF2Ww6MHpZ9tdsuvTCGZEpL1dqCt++7sxxXYjFmsT5ZCjj5kd/eo/GrgGevPVC8jPTEHHKF+SM4wchN8PF0qpCnnrnCCkinD5GHGQ4+ZlpXHJqKc9ub+CfP3h6xH0CXt/XTF1rH1XFWbxT347H55/QjmO/3/DmgRauPH3mqFeSIhLRj8ZUsby6mHRXCq/tbebSRVO3Q/iHf3oPgLUXzp2y14wGFYVZ3L92GR//6Ztc+r2X+Muls/nri6rD7kHqc/t4t76dm1fOG9cek+XVxbyw6zjGmBGfp36Pj4c3HOTSRWUJsd9ioqilkaTUtfay7vWDfHxZFefMKWLBjFzml+WOS2EE+NqqRRxp6+NQSy+nzYo8nhHgmjPLaejoZ2t95BbDrzYdpig7ja9ceSoDXj87j0a+IzeYXcc6ae/1JJTPODMtlWWnFPHq3uYJxYImwrv17TxWU8enL5ybkD94Z1UW8uyXLmbN8ir+8G4D19zzKp99aDMHR0nCcC5EDOeNM0NseXUxbb0e9g7b9GqM4cm36mnudnPLxbFL254KVGkkKQ+9cRABvhSF8g7nzyvh7692YiBnhLl6G40rF88kPTWF57ZH5qJq6hrgjzuO89FzKgf3Ubx1eGLB8Oe2HyNFiHkq7Xi5/LQZ7Dnexdnf+iNPbT0yqa9ljOFbv9tJSU5GVD4vsWJuaQ7funYJb95+Bf+4ahEb9rWw+kevsL9pZMp3zUHH9TfeWNn5dhd88K79TQdaOefO9fyf327njNn5CbNJb6Ko0khCuge8PLa5jmvOLB+SXnoy3Pr++Txy83KuWjz+2jj5mWmcV10UcXmMJ9+qx+s3rFlexezCLGblZ/LW4fHHNfx+w5Nb6lm5sCyiTVnxxGcuquZHa5ZSXpDF957fE5Vdz6Oxta6dmkNtfPHyBWHLhiQKBdlp3HbZAp7/yiWkivC95/eMOKbmUBunzswNmU0XjjnF2ZxVWcC/P7d7sHvgfzy/h3RXCv/nmtO5f+15MasoMFWo0ggi0baAdA946QzR5OjXNXV0DXi5eWV11F4rJUW4eGHZqD2Px+LC+aXsaugcM5/eGMOjmw6zfG7xYNXdc+cW8cp7TePe77FhfwtHO/q5/tzKsQ+OM1JThGuXVnDb5Quob+sL2Xo3Wjy84RC5GS4+moDnKRyVRdl8/v3zeXb7sSFp2z6/Ycuh8WfzgRP/euDT51FdmsNnH67hnhf2sulgK5+/ZD6fu2TelJWHjyWqNCxH2vv4yL1v8Ma+2BeLi4Q+t4/r/vt1rv7BKxzrGNro6LdvH+GsygLeVxU/HcACJvub+8P/+D22uY6DLb184vwTKZ9fvmIhqSnCJ+57c7BLXCQ8saWevEwXV0/AOooXrl48k4KsNB6rqRv74AnQ1DXAH95t4PpzKxMqYypSPntxNWV5Gfzohb2Dst+8VU9Xv3fc8YwAJbkZ/OpzK1g4I5cfrH+Pgqw0Pn5eYqQoRwNVGpaSnHQaOwe48/e7piz4eDL82zO7qG3spqPPw2ce3EyP7cVd19rLu/UdfCjONmedVVFAboYrrFLeebSTO57ewcoFpfzl+yoG5Qtn5vHLz51PZ7+HH6x/L6LX6+r38Oz2Bv7ifbPJTIvthr2TITMtlQ+fXcHz24+F9M2frHX8yJuHcPv83HhBfKQbR5vsdBefWD6HV/c2Ud/Wyzef3sE/PvEu76ss4MqTuJgoyknnl59dwZWnz+RrqxdNKMEkUVGlYclMS+X2a05jV0Mnv56kq7po8HptMzfev5FH3jzEZ1dW85Mbz2X3sU6+/0fnx/TZ7U4dng8siS+l4UpNYXl1Ma/XtlDb6JSDDubVvU186v6NFGSl8cM1S0cU6zttVj6fWD6Hp985OtivIBzPbGug3+NPSNfUcG5eWU1epotP/XzjoIvO7fXz/T/uYem31k94P0dnv4cHXj/AqjNmMr8sN5pLjis+tsz5DPzTk+/y4BsHuemCUwbT0E+Gguw0fr52Wdzs75kqVGkE8cEzy1l2ShF3/WEXj9fUxV2M48+7G1m7bhP7Grv5ypWn8o+rF/H+U8v4q+VzePCNA+w42sEfth3jzIqCuEybvHB+CQeae7jyBy/zhV++NSh/ausRblq3idLcdH51y4pRa/DcvLIawWlTOxZPbKlnXlkOZ8eRi26iVBVn89BfL6er38tl//ESF//7i5xz53r+88VaPD4/t//mXQa8vrEnsuxq6OQnL+/jO8/upqvfyxcvT9yMqUioLMrm4oVlvF7bQnVpDt+45vQJx+YU3dw3BBHhh2uW8tXH3uFrT7zLO3XtfDsGvQJC8W59O7f+zxZOK8/jV59bMSTL5WurTuO57cf44D2vOX+vjqxEyFSzZvkccjNcbDnUxq+31LOtvoO2Xjf/8Ot3OL+6mHWfPi9s2YzZhVlcd3YFD7x+kLYeN3+9spolswtGbBg82NzD5oNtfG31orj430WDJRUFPPOli3lmWwPv1LdTlpvBpac5G/8+88Bm/vvFWr569dj/9/99+wj/9OS7DHidVrdXnDZj1JIYycRNK07htb1NfPu6JQntrowHJN6upk+WZcuWmZqampOaw+83fPe53fz0lf383RUL+epVp0ZpdROje8DLh+55FbfXz+++uJKSEFfi24908PyOY4NBuXhOnezs97DyOy9SXpDFgeYe5s/I5bHPr4jIXdAz4OW//1zL/a8dYMDr57RZefz2by8a0knwG7/dxq9r6nj1a5dPi2yWrz62ld+8fYRv/sViPn1R6Iw5r8/Pvz2zm3WvH+D86mL+30fOpLaxm7PnFFGWlxjVVU+Wjl4PBdnx+72INSKyJaht96iopRGClBTh6x84jdYeN/e8sJeVC0pZXh29WvfGGH780j42H2zlOx85K+wPW/eAl394/B0Ot/by6C0XhFQY4FyJJsoVY35mGp++qJp7XtjL8upi7rvx3Ij9yzkZLr62+jQ+d/E8ntp6hG/+bie/ePMQn7PNkw409/DY5jo+df6caaEwAL7z0bPoHvDyzd/t5NW9zfztZQuGbFpr6R7gtl++xZv7W/nMRXP5xjWnk5aawrwkjmOEQhVGdFBLIwx9bh9X/uBlcjJS+f0XLybddXJ+0OOd/by4u5E39rXwu3eOkpoilOSk87OblvG+qkK2H+kgw5XCghm5iAiv7m3i609u42hHH19ffRqfj7DIYCLQ7/Hx/I5jrF4y66TKkX/q5xvZ1dDJq/90GYLwhV++xYb9Lbz8j5dNmytocEp8//Tlfdz/2gHaej2cN7eIWQVZtPYMsONoJ31uH//vI2fykXMSPzFAmRwitTRUaYzBC7uOc/NDNVx/biXfvm4J6akpvHukg7rWXlYvmRVxEb29x7v45M830tg1QGqK8LeXzueDZ5Xz2YdqaOoaYOWCUl7Y7TQ5LMvLYHZBJu/UdzCvNId/v/4sls1NjK5eU82WQ6189N4NzCvLod/t42hHP9+45jRuuSR5FOx46HV7+dWmOh7ddBiv31CQlUZ1aQ43r6xOGEtUiQ2qNKLI957fzX//eR/FOem4vX667Z6IpVWF/NuHz+T08rxRA65/2nmc3759hFfeayIrPZX7blrG4vL8QaulpXuAv/nFFt463M7fXjqfisIsNh9so661l/Oqi/ji5Qs1cDcGD284yJ93N+L2+fm7yxcONlVSFCVyVGlEmVfea+LJt+opyk7nzIoCUlLg/z61g65+L/NKc1i9ZBYfWFLOkop8etw+Nh9o5fGaOp7dfoxZ+ZmsmOclUFkAAAbeSURBVFfMV646lVNKckbM7fX5ae11MyNvevjgFUWJP5JKaYjIauBHQCrwc2PMd0Y7drKURihaugd4dvsxntt+jA37W/D5DYXZaXT0eTAGMtNS+OLlC7nlknkT6gWhKIoyVSSN0hCRVOA9nH7j9cBm4BPGmJ2hjp9KpRFMW4+b9TuPs+lgK3OKs1laVcjy6mJ1LSmKkhAkU8rtcqDW9iRHRB4FrgVCKo1YUZSTzsfOq+Jj06hwmaIo049E8JlUAMHFoOqtbBARuUVEakSkpqmpaUoXpyiKMp1IBKURKi1piE/NGHOfMWaZMWZZWVnZFC1LURRl+pEISqMeCPb5VAJHY7QWRVGUaU0iKI3NwEIRqRaRdGAN8HSM16QoijItiftAuDHGKyJfAJ7HSbldZ4zZEeNlKYqiTEviXmkAGGOeAZ6J9ToURVGmO4ngnlIURVHiBFUaiqIoSsTE/Y7w8SIiXcCek5iiAOiI0nKiPV+011YKNEdxvng+d5Mx33Q6f9FeW4DpdA6jPV80z10pkGOMGXvPgjEmqW5AzUmOvy/K64nafJOwtpM6V4l07vT8xc9c0/UcTsL/JGrnbjxzqXtqJL+L4/mivbZoE8/nbjLmizbx/H7j/dwFiOdzOBnzTTnJ6J6qMREU3VL0XJ0sev5OHj2HEyea5248cyWjpXFfrBeQQOi5Ojn0/J08eg4nTjTPXcRzJZ2loSiKokweyWhpKIqiKJOEKo0kQkSqROTPIrJLRHaIyJesvFhE1ovIXntfZOVXicgWEdlm7y+38mwR+YOI7LbzjNopMZmI1vmzzz0nIu/YeX5im4klPdE8h0FzPi0i26f6vUw1Uf78vSQie0Rkq73NiNpCo5lOprfY3oBy4Bz7OA+n4+Fi4N+Br1v514Hv2sdnA7Pt4yXAEfs4G7jMPk4HXgU+EOv3lyjnz/6db+8FeBJYE+v3l2jn0Mo+AvwS2B7r95ZI5w54CVg2KeuM9YnS2+TdgKdw2uTuAcqtrBzYE+JYAVqAjBDP/Qj4XKzfTyKePyANJ83y47F+P4l2DoFc4DX7w5n0SiPK527SlIa6p5IUEZmLcyWyEZhpjGkAsPehTNWPAm8bYwaGzVMI/AXwwmSuN96IxvkTkeeBRqALeGKSlxx3ROEc3gl8H+id9MXGGVH6/j5gXVP/IiKhmtlNCFUaSYiI5OK4RL5sjOmM4PgzgO8Cnx8mdwG/Au4xtkf7dCBa588YswrnyjADGOGrT2ZO9hyKyFJggTHmt5O60DgkSp+/TxpjzgQutrcbo7U+VRpJhoik4Xzg/scY8xsrPi4i5fb5cpyr38DxlcBvgZuMMfuGTXcfsNcY88PJX3l8EOXzhzGmH6dp2LWTvfZ4IUrn8ALgXBE5iOOiOlVEXpqadxA7ovX5M8YcsfddODGh5dFaoyqNJMKaoPcDu4wxPwh66mlgrX28FsdXGnA9/QG43Rjz+rC5vo1TXO3Lk73ueCFa509EcoO+5C7gGmD35L+D2BOtc2iMudcYM9sYMxdYCbxnjLl08t9B7Iji588lIqX2cRrwISBq2We6uS+JEJGVOJlO2wC/FX8Dxy/6ODAHOAzcYIxpFZF/Bm4H9gZNczVOxlQdzg9dwEf6X8aYn0/6m4ghUTx/Avwexy2VCrwIfMUY452K9xFLonUOjTHBV9Nzgd8bY5ZM+huIIVH8/PUAr+AkYaQCfwK+aozxRWWdqjQURVGUSFH3lKIoihIxqjQURVGUiFGloSiKokSMKg1FURQlYlRpKIqiKBGjSkNRphgR+RsRuWkcx8+dDlVelcTAFesFKMp0QkRcxpifxHodijJRVGkoyjixm82ew9l0dTZOCeubgNOBH+BUZ20GPm2MabDlL94ALgKeFpE8oNsY8x+2xtJPcMrR7wP+2hjTJiLnAutwivW9NnXvTlHCo+4pRZkYi4D7jDFnAZ3AbcB/AtcbYwI/+HcFHV9ojHm/Meb7w+Z5GPgnO8824A4rfwD4O2PMBZP5JhRlvKiloSgToy6o3s8vcMo9LAHW2yrUqUBD0PGPDZ9ARApwlMnLVvQQ8OsQ8keAD0T/LSjK+FGloSgTY3j9nS5gRxjLoGccc0uI+RUlLlD3lKJMjDkiElAQnwDeBMoCMhFJs30ORsUY0wG0icjFVnQj8LIxph3osAXsAD4Z/eUrysRQS0NRJsYuYK2I/BSnyuh/As8D91j3kgv4IfD/27lDHACBGIqCv5ZLkr0VilthOQYagyShOBJm5Iral67o9jBnTrJU1ZRkTzKu95Fkrarjmguf4MotvPSXU91wx/cUAG02DQDabBoAtIkGAG2iAUCbaADQJhoAtIkGAG0naqvqOdXBl6YAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sorted_data['inc_up'][-200:].plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Etude de l'incidence annuelle"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Etant donné que le pic de l'épidémie se situe en hiver, à cheval\n",
+ "entre deux années civiles, nous définissons la période de référence\n",
+ "entre deux minima de l'incidence, du 1er août de l'année $N$ au\n",
+ "1er août de l'année $N+1$.\n",
+ "\n",
+ "Notre tâche est un peu compliquée par le fait que l'année ne comporte\n",
+ "pas un nombre entier de semaines. Nous modifions donc un peu nos périodes\n",
+ "de référence: à la place du 1er août de chaque année, nous utilisons le\n",
+ "premier jour de la semaine qui contient le 1er août.\n",
+ "\n",
+ "Comme l'incidence de syndrome grippal est très faible en été, cette\n",
+ "modification ne risque pas de fausser nos conclusions.\n",
+ "\n",
+ "Encore un petit détail: les données commencent an octobre 1984, ce qui\n",
+ "rend la première année incomplète. Nous commençons donc l'analyse en 1985."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ " first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n",
+ " for y in range(1985,\n",
+ " sorted_data.index[-1].year)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "En partant de cette liste des semaines qui contiennent un 1er août, nous obtenons nos intervalles d'environ un an comme les périodes entre deux semaines adjacentes dans cette liste. Nous calculons les sommes des incidences hebdomadaires pour toutes ces périodes.\n",
+ "\n",
+ "Nous vérifions également que ces périodes contiennent entre 51 et 52 semaines, pour nous protéger contre des éventuelles erreurs dans notre code."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ " year = []\n",
+ "yearly_incidence = []\n",
+ "for week1, week2 in zip(first_august_week[:-1],\n",
+ " first_august_week[1:]):\n",
+ " one_year = sorted_data['inc_up'][week1:week2-1]\n",
+ " assert abs(len(one_year)-52) < 2\n",
+ " yearly_incidence.append(one_year.sum())\n",
+ " year.append(week2.year)\n",
+ "yearly_incidence = pd.Series(data=yearly_incidence, index=year)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Voici les incidences annuelles."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 33,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAD8CAYAAABU4IIeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHnhJREFUeJzt3X+Q1PWd5/HnCwfBJKBAwPBDHFLhuKC51TAFbmVvL+oFyGUrkDo1RKPchSqyxuya261TWLniKpK7cHUV9zgvrlY0Yogi58aSXSWEoKl19wgIITmDhB024UZWdDCDgqkCHXjfH/2Ztacz09PT/e3pb8+8HlVd/e1Pfz6f/sxH+b778/18vp9WRGBmZpaVUY1ugJmZDS8OLGZmlikHFjMzy5QDi5mZZcqBxczMMuXAYmZmmXJgMTOzTDmwmJlZphxYzMwsUy2VZJJ0EfAt4HIggC8Ah4DHgVbgCHBDRJxI+VcDK4CzwB9HxPaUPg94GLgAeAa4PSJC0hjgEWAe8GvgsxFxJJVZDqxJTVkXERtT+ixgMzAR+Alwc0S8Xe7veP/73x+tra2V/MlmZpbs27fv9YiYXGl+VbKli6SNwPMR8S1J5wPvAf4M6IqIr0taBUyIiDslzQUeA+YD04AfAv8sIs5K2gPcDvyYQmDZEBHbJH0J+BcR8YeSlgGfiYjPSpoI7AXaKAS0fcC8iDghaQvwvYjYLOkvgJ9FxH3l/o62trbYu3dvpX1jZmaApH0R0VZp/gEvhUkaD/w+8CBARLwdEW8AS4CNKdtGYGk6XgJsjogzEfEr4DAwX9JUYHxE7IpCNHukpExPXU8A10oSsAjYERFdaTS0A1ic3rsm5S39fDMza6BK5lg+CBwHvi1pv6RvSXovcHFEHANIz1NS/unAy0Xlj6a06em4NL1XmYjoBt4EJpWpaxLwRspbWpeZmTVQJYGlBfgocF9EXAn8BlhVJr/6SIsy6dWUKVdX78ZIKyXtlbT3+PHjfWUxM7MMVRJYjgJHI2J3ev0EhUDzWrq8RXruLMp/SVH5GcArKX1GH+m9ykhqAS4EusrU9TpwUcpbWlcvEfFARLRFRNvkyRXPPZmZWZUGDCwR8SrwsqQ5Kela4CVgK7A8pS0HnkrHW4FlksaklVuzgT3pctkpSVelOZJbSsr01HUd8Gyah9kOLJQ0QdIEYCGwPb33XMpb+vlmZtZAFS03Bv4I+G5aEfZL4N9TCEpbJK0AOoDrASLiQFqx9RLQDdwWEWdTPbfy7nLjbekBhYUB35F0mMJIZVmqq0vS3cALKd9XI6IrHd8JbJa0Dtif6mhKnSdP8+XH9nPvjVcyZdzYRjfHzKwmFS03Hi7yutx4zZMv8t09Hdw0fybrPvORRjfHzKyXwS43rnTEYnUwZ802znSf+6fXm3Z3sGl3B2NaRnFo3Scb2DIzs+p5S5cGev6Oq/n0FdMYO7rwn2Hs6FEsuWIaz995dYNbZmZWPQeWCnSePM0N9++i89TpTOudMn4s48a0cKb7HGNaRnGm+xzjxrR4nsXMmpoDSwU27GznhSNdbPhhe+Z1v/7WGW5acClPfulj3LTgUo6/dSbzzzAzG0qevC+jdA6kh+dAzGwkyXyvsJEsL3Mg9boUZ2ZWDw4sZeRlDqSel+LMzLLm5cYD6JkDuXH+TB7d08HxIRw1eDmymTUjz7HkWOfJ06x75iA/OPAqp985x9jRo1h02Qe461Mf9soxMxsynmMZRvJyKc7MbDB8KSznGnkpzsysGr4UZmZmZflSmJmZNZQDi5mZZcqBxczMMuXAYmZmmXJgMTOzTDmwmJlZphxYzMwsUw4sZmaWKQcWMzPLlAOLmZllyoHFzMwy5cBiZmaZcmAxM7NMObCYmVmmHFjMzCxTDixmZpYpBxYzM8uUA4uZmWXKgcXMzDJVUWCRdETSi5J+KmlvSpsoaYek9vQ8oSj/akmHJR2StKgofV6q57CkDZKU0sdIejyl75bUWlRmefqMdknLi9Jnpbztqez5tXeHmZnVajAjlqsj4oqIaEuvVwE7I2I2sDO9RtJcYBlwGbAY+Kak81KZ+4CVwOz0WJzSVwAnIuJDwD3A+lTXRGAtsACYD6wtCmDrgXvS559IdZiZWYPVcilsCbAxHW8Elhalb46IMxHxK+AwMF/SVGB8ROyKiAAeKSnTU9cTwLVpNLMI2BERXRFxAtgBLE7vXZPyln6+mZk1UKWBJYAfSNonaWVKuzgijgGk5ykpfTrwclHZoyltejouTe9VJiK6gTeBSWXqmgS8kfKW1mVmZg3UUmG+j0XEK5KmADsk/aJMXvWRFmXSqylTrq7ejSkEwpUAM2fO7CuLmZllqKIRS0S8kp47gScpzHe8li5vkZ47U/ajwCVFxWcAr6T0GX2k9yojqQW4EOgqU9frwEUpb2ldpW1/ICLaIqJt8uTJlfy5ZmZWgwEDi6T3ShrXcwwsBH4ObAV6VmktB55Kx1uBZWml1ywKk/R70uWyU5KuSnMkt5SU6anrOuDZNA+zHVgoaUKatF8IbE/vPZfyln6+mZk1UCWXwi4Gnkwrg1uARyPi+5JeALZIWgF0ANcDRMQBSVuAl4Bu4LaIOJvquhV4GLgA2JYeAA8C35F0mMJIZVmqq0vS3cALKd9XI6IrHd8JbJa0Dtif6jAzswZT4cv/yNDW1hZ79+5tdDPMzJqKpH1Ft5oMyHfem5lZphxYzMwsUw4sZmaWKQcWMzPLlAOLmZllyoHFzMwy5cBiZg3VefI0N9y/i85TpxvdFMuIA4uZNdSGne28cKSLDT9sb3RTLCOVbkJpZiNU58nTfPmx/dx745VMGTc2s3rnrNnGme5z//R60+4ONu3uYEzLKA6t+2Rmn2NDzyMWMyurXiOK5++4mk9fMY2xowunobGjR7Hkimk8f+fVmX6ODT2PWMysT/UeUUwZP5ZxY1o4032OMS2jONN9jnFjWjIdFVljeMRiZn0aihHF62+d4aYFl/Lklz7GTQsu5fhbZzKr2xrHIxYz69NQjCjuv/ndfQ3XLb08s3qtsRxYzKxfPSOKG+fP5NE9HRz3kmCrgLfNNzOzsrxtvpmZNZQDi5mZZcqBxczMMuXAYk3Pe02Z5YsDizW9Zt9ryoHRhhsHFmtac9Zso3XV02za3UFE4c7w1lVPM2fNtl758n7ibvbAaFbKgcWaVqV3huf1xF1pYDRrNr5B0prWQHeG53333OfvuJp1zxzkBwde5fQ75xg7ehSLLvsAd33qw41umllNPGKxplZur6m8757rTRhtuPKIxZpaub2mmuHE7S1TbDhyYLFhLe8nbm/CaMOR9wozM7OyvFeYWc7kfbmzWdYcWMzqLK/Lnc3qxXMsZnWS9+XONjJ0njzNlx/bz703XjlkC1c8YjGrk7wvd7aRoREj5ooDi6TzJO2X9Nfp9URJOyS1p+cJRXlXSzos6ZCkRUXp8yS9mN7bIEkpfYykx1P6bkmtRWWWp89ol7S8KH1Wytueyp5fW1eYZasZljvb8NXInR0GM2K5HThY9HoVsDMiZgM702skzQWWAZcBi4FvSjovlbkPWAnMTo/FKX0FcCIiPgTcA6xPdU0E1gILgPnA2qIAth64J33+iVSHWa6Uu4HTsuHFEX1r5Ii5osAiaQbwKeBbRclLgI3peCOwtCh9c0SciYhfAYeB+ZKmAuMjYlcU1jg/UlKmp64ngGvTaGYRsCMiuiLiBLADWJzeuyblLf18s9y4/+Y21i29nLnTxrNu6eW97lvJi2Y/MXtxRN8aOWKudPL+z4E7gHFFaRdHxDGAiDgmaUpKnw78uCjf0ZT2TjouTe8p83Kqq1vSm8Ck4vSSMpOANyKiu4+6zGwQik/M6z7zkUY3p2JeHDGwRt0gPGBgkfQHQGdE7JP08QrqVB9pUSa9mjLl6urdGGklhctvzJw5s68s1mCNWLVizX9i9iaeA2vUzg6VXAr7GPBpSUeAzcA1kjYBr6XLW6TnzpT/KHBJUfkZwCspfUYf6b3KSGoBLgS6ytT1OnBRyltaVy8R8UBEtEVE2+TJkyv4c22o+VJGYzT7qjUvjsivAQNLRKyOiBkR0UphUv7ZiPg8sBXoWaW1HHgqHW8FlqWVXrMoTNLvSZfNTkm6Ks2R3FJSpqeu69JnBLAdWChpQpq0XwhsT+89l/KWfr41Cf8eSWMNhxOzF0fkUy03SH4d2CJpBdABXA8QEQckbQFeArqB2yLibCpzK/AwcAGwLT0AHgS+I+kwhZHKslRXl6S7gRdSvq9GRFc6vhPYLGkdsD/VYU3ElzIaL++bdA7Em3jmkzehtLorN4dy15Mv8uieDs4/bxRvnz3HTfNnNtUEstlI4E0oLXfKzaH4UobZ8OMRiw2o2lVbpauOejTLqiMzK/CIxTJX7aqtZl91ZGbV8e7G1q9a73MYDquOzGzwPGKxfmUx4vAcitnI4xGL9SuLEcdwWA7qnQHMBscjFivLIw7vDGA2WF4VZtYPr2ozK/CqMLOMeFWbWXUcWMz64VVtZtXx5L1ZGc2+l5ZZI3iOxczMyvIci5mZNZQDi5mZZcqBxczMMuXAYmZmmXJgsdzrPHmaG+7fRadXZFXF/WdDzYHFcs9bqtTG/WdDzcuNLbe8pUpt3H+WFS83tmHDW6rUxv1njeLAYrnlLVVq4/6zRvGWLpZr3lKlNu4/awTPsWTAPwRlZsOZ51gawKtuzKxR8ric3IGlBnPWbKN11dNs2t1BBGza3UHrqqeZs2Zbo5tmNmTyeGIbSfL4xdaBpQZedWN50OgTex5PbMUa3T/1kucvtg4sNfCqG8uDRp3Y83xiK5b3wFetPH+x9aqwGlWy6saT+1YPpTdAbtrdwabdHUN2A+Tzd1zNumcO8oMDr3L6nXOMHT2KRZd9gLs+9eG6f3YlGt0/9ZbnL7YesdTo/pvbWLf0cuZOG8+6pZdz/82/vXBiuH5jssZq9DfWPJ/YoPH9MxR6vtg++aWPcdOCSzn+1plGNwnwiKWuhvs3JmusPJzY83yfTB76p96Kv8iuW3p5A1vSmwNLHeX9UoE1v0af2PN6YuvR6P4ZqQYMLJLGAn8DjEn5n4iItZImAo8DrcAR4IaIOJHKrAZWAGeBP46I7Sl9HvAwcAHwDHB7RISkMcAjwDzg18BnI+JIKrMcWJOasy4iNqb0WcBmYCLwE+DmiHi7hr7I3Ej4xjQcNPMcWN5P7I3m/mmMSuZYzgDXRMTvAFcAiyVdBawCdkbEbGBneo2kucAy4DJgMfBNSeeluu4DVgKz02NxSl8BnIiIDwH3AOtTXROBtcACYD6wVtKEVGY9cE/6/BOpjtzJ6zVQe5fnwKyc4bpcuZ4GtaWLpPcAfwvcSmGE8fGIOCZpKvCjiJiTRitExH9NZbYD/5nCqOa5iPjnKf1zqfwXe/JExC5JLcCrwGQKAerjEfHFVOZ+4EcURirHgQ9ERLek303lF5Vrv7fN71szf2OvhbeVt0qsefJFvrung5vmz2TdZz7S6OY0RF22dJF0nqSfAp3AjojYDVwcEccA0vOUlH068HJR8aMpbXo6Lk3vVSYiuoE3gUll6poEvJHyltZlgzRSv7GPhFVDVr1muU8njyoKLBFxNiKuAGYA8yWVu1ipvqook15NmXJ19W6MtFLSXkl7jx8/3leWYa+/ofxI/4fjOTArx188qjeo+1gi4g0Kl6IWA6+lS2Ck586U7ShwSVGxGcArKX1GH+m9yqRLYRcCXWXqeh24KOUtrau0zQ9ERFtEtE2ePHkwf+6w0d+IxP9wPAdm/fMXj+pVsipsMvBORLwh6QLgX1OYON8KLAe+np6fSkW2Ao9K+gYwjcIk/Z6IOCvpVJr43w3cAvzPojLLgV3AdcCzabXYduC/FE3YLwRWp/eeS3k3l3y+JQPdR+N/OF41ZOV5uXJ1KrmPZSqwMa3sGgVsiYi/lrQL2CJpBdABXA8QEQckbQFeArqB2yLibKrrVt5dbrwtPQAeBL4j6TCFkcqyVFeXpLuBF1K+r0ZEVzq+E9gsaR2wP9VhRSq5j8b/cMz65y8e1fEPfQ1zdz35Io/u6eD880bx9tlzI3pli5lVZ7Crwnzn/TDnEYmZDTWPWMzMrCz/NLGZmTWUA4tZjeq95Ye3FLFm48BiVqN671wwUndGsOblORazKtV7rzHvZWZ54TkWsyFS750LvDOCNSsHFrMq1XvnAu+MYM3KgcWsBvXea8x7mdWfF0dkz3MsZjai+fdWBuY7783MKjDQJq1WPV8KM7O6yuulJi+OqB8HFjOrq7zeh+PFEfXjS2FmVhfNcKkpi01aO0+e5suP7efeG690UEo8eW9mddF58nS/vwc0nE7AI2Hy35P3ZpYLw/1SUzOMyBrFcyxmVjfD+T4cT/73zyMWM6ub4fzTvsN9RFYLBxYzsyr5F1r75sl7M7Mcy8OqM+9ubGY2jOT1PqByfCnMzCyHmnnVmUcsZmY51MyrzhxYzMzqqNq90pp51ZkDi5lZHdUyR9Ks9wF5VZiZWR2UzpH0aIY5klJeFWZmlgPNPEdSKwcWM7M6aOY5klp5ubGZWZ2M1DvzPcdiNcvDncFmVj+eY7Eh14x3BptZ/fhSmFWtme8MNrP6GXDEIukSSc9JOijpgKTbU/pESTsktafnCUVlVks6LOmQpEVF6fMkvZje2yBJKX2MpMdT+m5JrUVllqfPaJe0vCh9Vsrbnsqen02XWKVG8qoXM+tfJZfCuoE/jYgPA1cBt0maC6wCdkbEbGBnek16bxlwGbAY+Kak81Jd9wErgdnpsTilrwBORMSHgHuA9amuicBaYAEwH1hbFMDWA/ekzz+R6hiRqr2zt1YjedWLmfVvwMASEcci4ifp+BRwEJgOLAE2pmwbgaXpeAmwOSLORMSvgMPAfElTgfERsSsKKwYeKSnTU9cTwLVpNLMI2BERXRFxAtgBLE7vXZPyln7+iNPIOY5mvTPYzOpnUHMs6RLVlcBu4OKIOAaF4CNpSso2HfhxUbGjKe2ddFya3lPm5VRXt6Q3gUnF6SVlJgFvRER3H3WVtnklhVESM2fOHMyfm3t5mOMYzr8QaGbVqXhVmKT3AX8JfCUiTpbL2kdalEmvpky5unonRjwQEW0R0TZ58uS+sjQtz3HYSNCoS71WvYoCi6TRFILKdyPieyn5tXR5i/TcmdKPApcUFZ8BvJLSZ/SR3quMpBbgQqCrTF2vAxelvKV1jRie47CRwMvZm08lq8IEPAgcjIhvFL21FehZpbUceKoofVla6TWLwiT9nnTZ7JSkq1Kdt5SU6anrOuDZNA+zHVgoaUKatF8IbE/vPZfyln7+iOI5Dhuu5qzZRuuqp9m0u4OIwqXe1lVPM2fNtkY3zQYw4J33kn4PeB54Eei5oP9nFOZZtgAzgQ7g+ojoSmXuAr5AYUXZVyJiW0pvAx4GLgC2AX8UESFpLPAdCvM3XcCyiPhlKvOF9HkAX4uIb6f0DwKbgYnAfuDzEVH2rOo7782aR+fJ06x75iA/OPAqp985x9jRo1h02Qe461Mf9qh8iA32zvsBJ+8j4m/pe04D4Np+ynwN+Fof6XuB35rhjYjTwPX91PUQ8FAf6b+ksATZzIYhX+ptXr7z3sxya6Ru4tjsvAmlmZmV5U0ozcysoRxYzMwsUw4sZmaWKQcWMzPLlAOLmZllyoHFzMwy5cBiZmaZcmAxM7NMObCYmVmmHFjMzCxTDixmZpYpBxYzM8uUA4uZmWXKgcXMzDLlwGJmZplyYDEzs0w5sJiZWaYcWMzMLFMOLGZmlikHFjMzy5QDi5mZZcqBxczMMuXAYmZmmXJgMTOzTDmwmJlZphxYzMwsUw4sZmaWKQcWMzPLlAOLmZllasDAIukhSZ2Sfl6UNlHSDknt6XlC0XurJR2WdEjSoqL0eZJeTO9tkKSUPkbS4yl9t6TWojLL02e0S1pelD4r5W1PZc+vvSvMzCwLlYxYHgYWl6StAnZGxGxgZ3qNpLnAMuCyVOabks5LZe4DVgKz06OnzhXAiYj4EHAPsD7VNRFYCywA5gNriwLYeuCe9PknUh1mZpYDAwaWiPgboKskeQmwMR1vBJYWpW+OiDMR8SvgMDBf0lRgfETsiogAHikp01PXE8C1aTSzCNgREV0RcQLYASxO712T8pZ+vpmZNVi1cywXR8QxgPQ8JaVPB14uync0pU1Px6XpvcpERDfwJjCpTF2TgDdS3tK6fouklZL2Stp7/PjxQf6ZZmY2WFlP3quPtCiTXk2ZcnX99hsRD0REW0S0TZ48ub9sZmYN0XnyNDfcv4vOU6cb3ZTMVBtYXkuXt0jPnSn9KHBJUb4ZwCspfUYf6b3KSGoBLqRw6a2/ul4HLkp5S+syM2sqG3a288KRLjb8sL3RTclMtYFlK9CzSms58FRR+rK00msWhUn6Pely2SlJV6U5kltKyvTUdR3wbJqH2Q4slDQhTdovBLan955LeUs/38ysKcxZs43WVU+zaXcHEbBpdwetq55mzpptjW5azSpZbvwYsAuYI+mopBXA14FPSGoHPpFeExEHgC3AS8D3gdsi4myq6lbgWxQm9P8B6Om9B4FJkg4Df0JaYRYRXcDdwAvp8dWUBnAn8CepzKRUh5lZ03j+jqv59BXTGDu6cBoeO3oUS66YxvN3Xt3gltWuZaAMEfG5ft66tp/8XwO+1kf6XuDyPtJPA9f3U9dDwEN9pP+SwhJkM7OmNGX8WMaNaeFM9znGtIziTPc5xo1pYcq4sY1uWs0GDCxmZlYfr791hpsWXMqN82fy6J4Ojg+TCXwVpixGhra2tti7d2+jm2Fm1lQk7YuItkrze68wMzPLlAOLmZllyoHFzMwy5cBiZmaZcmAxM7NMObCYmVmmRtRyY0nHgf/Xz9vvp7APWV65fbVx+2rj9tWm2dt3aURUvIvviAos5UjaO5h12kPN7auN21cbt682I619vhRmZmaZcmAxM7NMObC864FGN2AAbl9t3L7auH21GVHt8xyLmZllyiMWMzPL1LANLJIektQp6edFab8jaZekFyX9laTxKX20pI0p/aCk1UVlfiTpkKSfpseUBrTvfEnfTuk/k/TxojLzUvphSRvSL3RmIsM2Zt6Hki6R9Fz673VA0u0pfaKkHZLa0/OEojKrUz8dkrSoKD3zPsy4fQ3vP0mTUv63JN1bUlfD+2+A9uWh/z4haV/qp32SrimqKw/9V659g++/iBiWD+D3gY8CPy9KewH4V+n4C8Dd6fhGYHM6fg9wBGhNr38EtDW4fbcB307HU4B9wKj0eg/wu4Ao/CrnJ3PYxsz7EJgKfDQdjwP+HpgL/DdgVUpfBaxPx3OBnwFjgFkUfsX0vHr1Ycbty0P/vRf4PeAPgXtL6spD/5VrXx7670pgWjq+HPjHnPVfufYNuv8y6+g8PoBWep8UT/LuvNIlwEvp+HPAX1H44bNJ6T/CxHr9T1lF+/4X8PmifDsp/ILmVOAXRemfA+7PUxvr3YdFn/cUhZ/JPgRMTWlTgUPpeDWwuij/9vSPue59WEv78tJ/Rfn+HUUn7rz0X3/ty1v/pXQBv6bwJSJX/Vfavmr7b9heCuvHz4FPp+PrKZwYAZ4AfgMcAzqA/x4RXUXlvp2GgP8pi2FqFe37GbBEUoukWcC89N504GhR+aMprZ4G28YedetDSa0UvnHtBi6OiGMA6bln2D4deLmoWE9f1b0Pa2xfj0b3X3/y0n8DyVP//Vtgf0ScIZ/9V9y+HoPqv5EWWL4A3CZpH4Xh4dspfT5wFphG4TLEn0r6YHrvpoj4CPAv0+PmBrTvIQr/w+0F/hz4P0A3hW8Wpeq9zG+wbYQ69qGk9wF/CXwlIk6Wy9pHWpRJz0QG7YN89F+/VfSR1oj+Kyc3/SfpMmA98MWepD6yNaz/+mgfVNF/IyqwRMQvImJhRMwDHqNwHRsKcyzfj4h3IqIT+DugLZX5x/R8CniUQhAa0vZFRHdE/IeIuCIilgAXAe0UTuQziqqYAbxSr/ZV2ca69aGk0RT+0Xw3Ir6Xkl+TNDW9PxXoTOlH6T2C6umruvVhRu3LS//1Jy/916+89J+kGcCTwC0R0XPuyU3/9dO+qvpvRAWWntUMkkYBa4C/SG91ANeo4L3AVcAv0mWd96cyo4E/oHApaEjbJ+k9qV1I+gTQHREvpaHsKUlXpeHpLRSupdbNYNtYrz5Mf++DwMGI+EbRW1uB5el4Oe/2x1ZgmaQx6VLdbGBPvfowq/blqP/6lKP+66+eXPSfpIuApynMo/1dT+a89F9/7au6/7KeJMrLg8K36WPAOxS+FawAbqcwMf/3wNd5dxL6fcD/Bg4ALwH/MaW/l8Lqpv+b3vsfpJU6Q9y+VgqTbgeBH1LYabSnnrb0H/ofgHt7yuSljfXqQworgCLV+9P0+DcUFl/spDBa2klahJHK3JX66RBFK2/q0YdZtS9n/XcE6ALeSv8/zM1Z//1W+/LSfxS+hP2mKO9PgSl56b/+2ldt//nOezMzy9SIuhRmZmb158BiZmaZcmAxM7NMObCYmVmmHFjMzCxTDixmZpYpBxYzM8uUA4uZmWXq/wNH+xFUiPPs/AAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_incidence.plot(style='*')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Une liste triée permet de plus facilement répérer les valeurs les plus élevées (à la fin)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "2021 910589.0\n",
+ "2014 1911251.0\n",
+ "1991 1980417.0\n",
+ "1995 2090418.0\n",
+ "2020 2226761.0\n",
+ "2022 2338967.0\n",
+ "2019 2481665.0\n",
+ "2012 2536425.0\n",
+ "2017 2593378.0\n",
+ "2006 2719258.0\n",
+ "2003 2734405.0\n",
+ "1992 2921510.0\n",
+ "1993 2986279.0\n",
+ "2018 2991551.0\n",
+ "2001 3040167.0\n",
+ "1988 3131459.0\n",
+ "2016 3177327.0\n",
+ "2007 3181219.0\n",
+ "2011 3205326.0\n",
+ "2023 3217613.0\n",
+ "1987 3253239.0\n",
+ "2008 3403787.0\n",
+ "1998 3410332.0\n",
+ "2002 3688034.0\n",
+ "1994 3765327.0\n",
+ "1996 3837601.0\n",
+ "1997 3923810.0\n",
+ "2009 3965230.0\n",
+ "2015 4002562.0\n",
+ "2024 4075202.0\n",
+ "2004 4133721.0\n",
+ "2000 4288499.0\n",
+ "2005 4326419.0\n",
+ "1999 4350757.0\n",
+ "2010 4601495.0\n",
+ "2013 4657613.0\n",
+ "1990 5675038.0\n",
+ "1986 5758913.0\n",
+ "1989 5840764.0\n",
+ "dtype: float64"
+ ]
+ },
+ "execution_count": 34,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "yearly_incidence.sort_values()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Enfin, un histogramme montre bien que les épidémies fortes, qui touchent environ 10% de la population\n",
+ " française, sont assez rares: il y en eu trois au cours des 35 dernières années."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 35,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFWtJREFUeJzt3Xu0XGV5x/HvY4IQOIBo9KABjReqIhGQgxapeAJeEFCrUlFRwarxLtW4upClUrVUvGCrLVajIixUjop2ecF6KfbgHUlAjYCi1SgEARFFAyhEnv7x7tOcRTNJPLPncub9ftZiMbP3nr3f58xMfvO++xaZiSSpXncadAMkSYNlEEhS5QwCSaqcQSBJlTMIJKlyBoEkVc4gkKTKGQSSVDmDQJIqt7CfG1u8eHEuXbq01XXedNNN7LTTTq2uc9jVWDNYd21qrLtTzWvWrLk+M+/eq+32NQiWLl3K6tWrW13n9PQ0k5OTra5z2NVYM1h3bWqsu1PNEfHzXm7XoSFJqpxBIEmVMwgkqXIGgSRVziCQpMptNQgi4oyIuC4ifjBr2l0j4ssR8ePm/7v1tpmSpF7Zlh7BmcDhd5h2InB+Zu4FnN88lyTNQ1sNgsz8KnDDHSY/GTireXwW8Nctt0uS1CexLfcsjoilwOcyc5/m+W8z8y6z5v8mMzc7PBQRK4AVAOPj4wdMTU210OxNNmzYwNjYWKvrHHajXPPa9Td2nDe+CK69pTfbXbZk196suAWj/H5vSY11d6p5+fLlazJzolfb7fmZxZm5ClgFMDExkW2fKejZh6Pl+BPP6zhv5bKNnLa2Nx/ZdcdO9mS9bRjl93tLaqx7UDXP9aihayPingDN/69rr0mSpH6aaxB8BjiueXwc8Ol2miNJ6rdtOXz0HOBbwAMj4qqIeD5wKvDYiPgx8NjmuSRpHtrqgGtmPrPDrMNaboskaQA8s1iSKmcQSFLlDAJJqpxBIEmVMwgkqXIGgSRVziCQpMoZBJJUOYNAkipnEEhS5QwCSaqcQSBJlTMIJKlyBoEkVc4gkKTKGQSSVDmDQJIqZxBIUuUMAkmqnEEgSZUzCCSpcgaBJFXOIJCkyhkEklQ5g0CSKmcQSFLlDAJJqpxBIEmVMwgkqXIGgSRVziCQpMoZBJJUua6CICJeFRGXRsQPIuKciNihrYZJkvpjzkEQEUuAVwITmbkPsAB4RlsNkyT1R7dDQwuBRRGxENgRuLr7JkmS+ikyc+4vjjgBOAW4BfhSZh67mWVWACsAxsfHD5iamprz9jZnw4YNjI2NtbrOYTfKNa9df2PHeeOL4NpberPdZUt27c2Kt8GWaobe1T3ImrfFKH/OO+lU8/Lly9dk5kSvtjvnIIiI3YBPAscAvwU+AZybmR/u9JqJiYlcvXr1nLbXyfT0NJOTk62uc9iNcs1LTzyv47yVyzZy2tqFPdnuulOP7Ml6t8WWaobe1T3ImrfFKH/OO+lUc0T0NAi6GRp6DPCzzPxVZt4GfAp4ZDvNkiT1SzdB8AvgLyNix4gI4DDg8naaJUnqlzkHQWZeCJwLXAysbda1qqV2SZL6pKuBx8w8GTi5pbZIkgbAM4slqXIGgSRVziCQpMoZBJJUOYNAkipnEEhS5QwCSaqcQSBJlTMIJKlyBoEkVc4gkKTKGQSSVDmDQJIqZxBIUuUMAkmqnEEgSZUzCCSpcgaBJFXOIJCkyhkEklQ5g0CSKmcQSFLlDAJJqpxBIEmVMwgkqXIGgSRVziCQpMoZBJJUOYNAkipnEEhS5QwCSaqcQSBJlTMIJKlyXQVBRNwlIs6NiB9GxOURcVBbDZMk9cfCLl//LuALmXl0RNwZ2LGFNkmS+mjOQRARuwCHAMcDZOatwK3tNEuS1C+RmXN7YcR+wCrgMmBfYA1wQmbedIflVgArAMbHxw+YmprqqsF3tGHDBsbGxlpd57Ab5ZrXrr+x47zxRXDtLb3Z7rIlu/ZmxdtgSzVD7+oeZM3bYpQ/5510qnn58uVrMnOiV9vtJggmgG8DB2fmhRHxLuB3mfn6Tq+ZmJjI1atXz62lHUxPTzM5OdnqOofdKNe89MTzOs5buWwjp63tdjRz89ademRP1rsttlQz9K7uQda8LUb5c95Jp5ojoqdB0M3O4quAqzLzwub5ucDDum+SJKmf5hwEmXkNcGVEPLCZdBhlmEiSNI902998BfCR5oihnwLP675JkqR+6ioIMvO7QM/GrSRJveeZxZJUOYNAkipnEEhS5QwCSaqcQSBJlTMIJKlyBoEkVc4gkKTKGQSSVDmDQJIqZxBIUuUMAkmqnEEgSZUzCCSpcgaBJFWuNzeAVSs63ct25bKNHL+V+9zqz7O1+wZLo8wegSRVziCQpMoZBJJUOYNAkipnEEhS5QwCSaqcQSBJlTMIJKlyBoEkVc4gkKTKGQSSVDmDQJIqZxBIUuUMAkmqnEEgSZUzCCSpcl0HQUQsiIhLIuJzbTRIktRfbfQITgAub2E9kqQB6CoIImIP4EjgA+00R5LUb5GZc39xxLnAW4Cdgddk5lGbWWYFsAJgfHz8gKmpqTlvb3M2bNjA2NhYq+scFmvX37jZ6eOL4Npb+tyYIWDd7Vq2ZNf2V9qiUf5ud9Kp5uXLl6/JzIlebXfON6+PiKOA6zJzTURMdlouM1cBqwAmJiZycrLjonMyPT1N2+scFp1uUL9y2UZOWzvnt27esu52rTt2svV1tmmUv9udDKrmboaGDgaeFBHrgCng0Ij4cCutkiT1zZyDIDNfm5l7ZOZS4BnAVzLz2a21TJLUF55HIEmVa2XgMTOngek21iVJ6i97BJJUOYNAkipnEEhS5QwCSaqcQSBJlTMIJKlyBoEkVc4gkKTKGQSSVDmDQJIqZxBIUuUMAkmqnEEgSZUzCCSpcgaBJFWuvhvASqrW0g73Ae+HdaceObBtb409AkmqnEEgSZUzCCSpcgaBJFXOIJCkyhkEklQ5g0CSKmcQSFLlDAJJqpxBIEmVMwgkqXIGgSRVziCQpMoZBJJUOYNAkipnEEhS5QwCSarcnIMgIvaMiP+OiMsj4tKIOKHNhkmS+qObW1VuBFZm5sURsTOwJiK+nJmXtdQ2SVIfzLlHkJm/zMyLm8e/By4HlrTVMElSf0Rmdr+SiKXAV4F9MvN3d5i3AlgBMD4+fsDU1FTX25ttw4YNjI2NtbrOYbF2/Y2bnT6+CK69pc+NGQLWPTqWLdl1q8v04rvd6TvVD93UvHz58jWZOdGLdkELQRARY8AFwCmZ+aktLTsxMZGrV6/uant3ND09zeTkZKvrHBZLTzxvs9NXLtvIaWu7GdWbn6x7dKw79citLtOL73an71Q/dFNzRPQ0CLo6aigitgM+CXxkayEgSRpO3Rw1FMAHgcsz853tNUmS1E/d9AgOBp4DHBoR323+O6KldkmS+mTOA4+Z+XUgWmyLJGkAPLNYkipnEEhS5QwCSaqcQSBJlTMIJKlyBoEkVc4gkKTKGQSSVDmDQJIqZxBIUuUMAkmqnEEgSZUzCCSpcgaBJFVu3tz/bku3bTy+x7ef25ZbzEnSfGWPQJIqZxBIUuUMAkmqnEEgSZUzCCSpcgaBJFXOIJCkyhkEklQ5g0CSKmcQSFLlDAJJqpxBIEmVMwgkqXIGgSRVziCQpMoZBJJUOYNAkirXVRBExOER8aOI+ElEnNhWoyRJ/TPnIIiIBcDpwBOAvYFnRsTebTVMktQf3fQIHg78JDN/mpm3AlPAk9tpliSpXyIz5/bCiKOBwzPzBc3z5wCPyMyX32G5FcCK5ukDgR/NvbmbtRi4vuV1Drsaawbrrk2NdXeq+T6ZefdebXRhF6+NzUz7f6mSmauAVV1sZ8uNiFidmRO9Wv8wqrFmsO5Bt6Pfaqx7UDV3MzR0FbDnrOd7AFd31xxJUr91EwQXAXtFxH0j4s7AM4DPtNMsSVK/zHloKDM3RsTLgS8CC4AzMvPS1lq27Xo27DTEaqwZrLs2NdY9kJrnvLNYkjQaPLNYkipnEEhS5QwCSapc1UEQEUsiYsmg29FPEXG/iHhVRBw66Lb0U41111gzWPdc6q4yCCJiaURcAHwBeHtEPGrQbeqHiPgr4MuUa0O9OCJeMuAm9UWNdddYM1g3c6y7miCIiB1mPX0YcFFmLqMc/vrKiFjWLLe5M6bnpYg4NCLu2zwO4FDg5Mx8IXAacERETM6aPxJqrLvGmsG6m8dd1z3SQRARu0TEeyPiCuAdEXGfZtZTgF80j6eAnwAvmHlZn5vZuojYOyK+D/wD8KGIODTLccJ7A7sDZOaFwDeB5828bBBtbVONdddYM1g3Ldc90kEAHA7sQPkj3Qq8ISIWUbpQTwTIzD8C5wKPap7fPpimzl1E7BERu8yadAzwycw8hBJ0z4qIvYCP0tTd+A9gn4jY3rrnhxprBuueNakndc/7IIhiYUQ8PyK+FhEnRMT9m9kPAG7NzI3APwO/AZ4NfAm4Z0TctVnuCuDKiDio7wV0ISIeHBGfB74OvCkiZi4D/gdgx+bxx4FrgCMpvxLuNqtndAPlarD79q/V3aux7hprBuumT3XP+yBoukWPBp4LvA3YHnh/M/sa4LomFa+k/GHuT/ljXsamy2NvB/y6mT7UImKnWU/3A67KzKXAV4B3NNNvAP4YETtn5g3Aj4F7Uer7JvDqZrk7A38C1vW+5d2pse4aawbrbvS17nkXBBFxUES8NSKOb54H8GDgC5n52cx8G3CfiHgksJ6Sng9uXn45MNZM+zfKDpUnUkJkHPheX4vZRhGxW0ScGREXAadGxN2bupcB34iIyMzPAL+NiCMpPZydm/k0z+8B3E7pGd0jIt4PnANszMzr+l3Ttqix7hprBusedN3zKggi4iHAvwO/B54eEa+m1LAE+H3zBwQ4E3gW5R/2jcAjm+kXU/au35yZXwVOBI4HDgbenJm3z1rHMDmEUscRlB0/JwG7UC72t3tuumDUWZS6v0P5Gz0BIDO/1axjYWZeDrwIuBT4p8x8HsOrxrprrBmse7B1Z+ZQ/kf55f4CShdpYTPtncAJzeMJ4N3A0cBjgC/Oeu2elG4VlH/4L6HcHW1/4NPAPWctG4OudVZbFjRv5AWUYavFzfSPA69sHt8XOLWZfyBlDHHBrL/Zr5r1LKH0gF4OfAh4D7DToGu07nprtu7hrXsoewQRsS9lh+6TgZOB1zWz1lPulQwl9b4BPA04H9g9Ih4aEdtl2R+wPiIelZlfoVza9a3Ap4BzMvOXM9vK5q88JI4CngS8ETiIss8DylFOM72aK4GvAU/IzIsovyKWA2TmBuBC4MDMXA88hzLkdQ3wusy8qU91/LlqrLvGmsG6h7Lubm5V2ZqI2B+4KTOvaCY9HLgiM4+PiIcBp0TEBDANPD4idszMmyPie8DTKcfPfhR4IfDuiLgFWAv8rFnfe4GPZuaN/atq85oxv4yIAyldva8B52U5jPUvgJ9m5lci4meUs54fB6wBnhIRizPz+oj4MXBTRNwb+Ffg2RFxD8pd4n5N6T6SmauB1X0vcjNqrLvGmqHeumfMx7oH2iOIiAdExNcpY/pviIjnNrNuB9Y1v+4vpnSDDgJuZtPhUgC3UbpLu1N+9f+gWdcFwPWZeRWUX/1DFgKHAGdQ9vQ/BnhLs8jtwBURsSgzf0ap+6GUMcGrKccQQzkaYAHl/fskpfZjgQOAVTlkx0tHxIKm7kdTurIjX3dTS0Y5u7Om93qXSuu+W/P/R1L+DZpfdfd5nGwn4KBZz48C3tU8fgQl4e4DHEfpQi1p5h1N2R8wM++CZvoOlGGhxbPWuT9w537WtZWadwRezKYey3bA3wEva+bvBny/afcxlDHCpbP+PquAxc3jtcCulP0en59dJ3CnQde6mff6BZQP80rKDrAa6t4ZOI9yxz6AV1VQ847N9/J8yslOI183m27q9TeUsfxpyn7IefkZ71uPICJOAn4KfD4ixpvJj6cc20+W06K/A7yCctzsnpRj/qHsC9iPcrTPWcBvIuJsyk7gHwH/Nz6WmZdk5q29r2jrImJ34HPAJHA2ZSfQUym9m40Amfkbyg7sV1LGC+/BpsNdv0o5R+LWzPwc8EHKWdCnU44iuG1mWzlEv5CiHA99PuVD/X7gcZR9OQdSfhmNZN2NRZRzWe4fEYspn+EFMJo1R8R2lP11RwNvz8ynNbP2n1lmFOvOzIyIXSlD0/+SmZOZ+SPKL/eZZeZP3X1M0ElKV+gDwMpm2qspY2gzy+wNXNk8PgV406x5FwH7N4+3pxxudeCgfxlspeZFwCNmPT+espPoOOA7s6bfC7i6efwyyqnjuzWv/yxw71nLLu5H21uo/S6zHv895ctwbAV1Hwe8HXg98HzKaf8XjXjNnwKOvcO0Y4ALR7zul1IOO4dNPYSnzse6+7mP4GuZ+X1KMj6pmXYGcHA0VwbNzMuAa5qdx28HHhwRqyLiPylnAl/WLPfHzPx8lj3rw+wPwHdmnZvwfUownEX5xThzkairgUsj4hGZeTrlIngfA64Cvp6ZMxfIIzOv72sFc5SZv41y0b8zKUNDiykf/PvP9AhHqe5Z7/GdgP+h/Eo+NDM/C9x3FGue5Qzg5Ig4LSKmI+INwLeBvZodnaNa9/XAoyLiWGBNRJxFGeN/UNMbnD91DyBF70Y5sWvf5vl/0Zwb0Dx/H3BI83h34CWU42+3H2T6d1nzzK+Fs9h0HsTZwFubx3el9JTu3TzfDtgH2GHQbW+h9pdSjo9eRdln8E3gDZRD40aubuATlKGgXSkHLbyOchDD60f5vaZczv0kypDux4ATgG+N+Hu9V1Pjuym/8p9FOdfpV5Re8J3mS90z/0D1VUS8hzLe/5rmCJqXUnYU70Y5UeyIzPxT3xvWQxGxB2Uc8BWZeUWUC+OtAB5COUHkuzncZ0B2JSL2owT6tyjjpPtQDokbmbojYozSk92eUuODKDsST6JcEngvRqzmGTOHdDeP96V8tr9BuRTCyL3XABGxPeV8p0sz86VRrhL6t5QLvf2c8m/ZvPhuDyoI9qOk6GGUL8zNlMs93AK8NzMv7XujeizKNY0eDbyWMo58FWWY7Bjgh1kOkx1ZEbEnJQifmZm/johnU75Alwy4aa1phjjfR9nRdw5lmOCkzHxcM3/kat6cKFfA/ABwTGbeMMp1R8QTgH/MzAMi4i6U9//UzLxkPtU9qCB4BuVwypuBN1OONhiaIwJ6ISK+AdyPcjXAq4E3ZtlnMrKaoyoOo3SZ96YMD52embdt8YUjojkp6KnAVGZeM+j29FLz6/hwyhmvM9cEe0+WS8CPtIg4hfLd3p/SQzg5yxFD80bfgyAiHkq53MO5wEcyc+gv/dyt5hC7kylnOn84y5mGIy8iFlKGg/5IqXvk32soJ9ABt+cgfmUNUES8iHJ48Nm1vNczIuKBwM/na90D6RFIkobHUF50TpLUPwaBJFXOIJCkyhkEklQ5g0CSKmcQSFLlDAJJqtz/AmfGWFlQ4xIRAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_incidence.hist(xrot=20)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}
--
2.18.1