Prix du blé et salaire sur 2 axes sans l'axe du temps

parent db7315dd
......@@ -2317,6 +2317,53 @@
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Représentation graphique du prix du blé et du salaire sur deux axes différents, sans l'axe du temps."
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAa8AAAD8CAYAAADABivsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXuYFOWV/z9nuMhNREAQhAExBDHeMMBq0KxKTNQYiLeoIYrGhKyaqKv+DMFsvKxsTKLRbC4aRCMrs26MiaJJTGTRREFXow6KgopcBhHkIqjAgDDM+f1xupmenqrurp6+9/k8Tz3V9XbVW291zdS3znnPe15RVRzHcRynnKgpdgMcx3EcJyouXo7jOE7Z4eLlOI7jlB0uXo7jOE7Z4eLlOI7jlB0uXo7jOE7Z4eLlOI7jlB0uXo7jOE7Z4eLlOI7jlB0di92AXFJTU6Ndu3YtdjMcx3HKisbGRlXVsjJmKkq8unbtyrZt24rdDMdxnLJCRLYXuw1RKSuldRzHcRxw8XIcx3HKkIKJl4jcKyLrReS1hLLeIjJXRJbG1vsmfPc9EXlbRN4UkS8Uqp2O4zhO6VNIy+s+4OSksqnAPFUdDsyLbSMihwDnAp+KHfMrEelQuKY6juM4pUzBxEtVnwY2JRVPBGbFPs8CvpxQ/j+q+rGqrgDeBsYWpKGO4zhOyVPsPq/+qroWILbuFys/AHgnYb/VsTLHcRwngbpL5zO042pqpJmhHVdTd+n8nJ9DRLqIyAsi8oqIvC4iN8bKQ7t+8k2xxSsMCSgLnPJZRKaIyIsi8mJTU1Oem+U4jlM61F06nyl3jqJh9yCUGhp2D2LKnaPyIWAfAyeq6hHAkcDJInI0IV0/haDY4rVORAYAxNbrY+WrgcEJ+w0C1gRVoKozVHW0qo7u2LGihq05juOk5LoZQ2mke6uyRrpz3YyhOT2PGltjm51iixLe9ZN3ii1ejwKTY58nA3MSys8Vkb1E5EBgOPBCEdrnOI5TsqzaPTBSeQo6xj1YsWVK8g4i0kFEFmJGxlxVfZ7wrp+8UzBTRUQeAI4H+orIauB64BbgQRG5GFgFnA2gqq+LyIPAYqAJuExVdxeqrY7jOKVGXR1cdx2sWgWDB8PYsaCBPSxQ22EN5rDKmCZVHZ1qh9gz+EgR6QU8LCKHRjlBrhHVwK6ksqR79+7q6aEcx6k06upgyhRobGxdPmy/j1i7oSPb6banrBvbmHFJPZN+dWzG9YtIo6p2T7/nnv2vB7YB3wSOV9W1sa6fv6nqiIxP3A6K7TZ0HMdx0nDddW2FC2B3t57c/aVHGcJKhGaGdFgdWbgyQUT2i1lciEhX4HPAG4R3/eQdt7wcx3FKnJoaCHpUi0Dzr+82s2zlShgyJKv601leInI4FpDRATN6HlTVm0SkD/AgUEus60dVk8fz5gUPz3Mcxylx+vaFDRvaltfWAitWQMeOMChSH1ckVPVVYFRA+fvA+LydOAXuNnQcxylhli2DrVvNykqkWzeYPh2zuGproUN1ZdBz8XIcxylRGhvhjDOgSxf46U/NKyhi6xkzYNIkzPIaOrTYTS047jZ0HMcpQVStK2vRInj8cfjCF+DKKwN2XLkSvvjFQjev6Ljl5TiOUyLU1ZkRVVMDffrY9k03mXAFsn07vPeeW16O4zhOcUgey7V5s3VjpdSllSttfeCBeW5d6eGWl+M4TgkQNJZr9274/vdTHOTi5TiO4xSTVauilQMWrAFV6TZ08XIcxykBamujlQMmXnvtBfvvn5c2lTIuXo7jOCXAKae0LdszliuMlStbIjyqjOq7YsdxnBLjlVdg1iwYMcIsrTZjucKo0jFe4NGGjuM4RWXzZhuIvO++8Pe/Q//+EQ5euRLGjMlX00oat7wcx3EKTOJ4roEDTYMeeiiicG3ZAu+/X5WRhuDi5TiOU1Di47kaGiyLxo4dlld3+fKIFVVxpCG4eDmO4xSUoPFcO3daeSSqeIwXuHg5juMUlKzGcwXhllfxEZErROQ1EXldRK6MlfUWkbkisjS23rfY7XQcx2kvWY3nCmLFCuje3Sb7qkKKLl4icijwTWAscARwmogMB6YC81R1ODAvtu04jlPWTJ9ufVyJpB3PFcTKleYyTJ7oq0ooungBI4H/U9VGVW0C/g6cDkzEpp0mtv5ykdrnOI6TM845B3r0sDm6Mh7PFUQVj/GC0hCv14DPikgfEekGnAoMBvqr6lqA2LpfEdvoOI6TEx5/HD74AB54AJqbzYCKLFyqLZZXlVL0QcqqukREfgTMBbYCrwBNmR4vIlOAKQCdO3fOSxsdx3FyxcyZNp6rXfNHbt4MH31U1eJVCpYXqnqPqh6lqp8FNgFLgXUiMgAgtl4fcuwMVR2tqqM7JjuSHcdxSog1a+BPf4KLLoJOndpRUZVHGkKJiJeI9Iuta4EzgAeAR4HJsV0mA3OK0zrHcZzc8Jvf2BxdF1/czoqqfIwXlIDbMMbvRaQPsAu4TFU3i8gtwIMicjGwCji7qC10HMdpB83NcM89cMIJ8IlPtLMyt7xKQ7xU9biAsveB8UVojuM4Ts558knTnJtvzkFlK1ZAr162VCkl4TZ0HMepdGbOtMzxZ5yRg8qqPNIQXLwcx3HyzsaN8PDDcP75Nr6r3VT5GC9w8XIcx8k7//Vflnz3G9/IQWU+xgtw8XIcx8kbdXWWQePqq6FzZ3j11RxUun49bN9e9eJVEgEbjuM4lUZ83q749Cc7d9o2ZJFRIxGPNATc8nIcx8kLQfN2NTZmMW9XMj7GC3DxchzHyQs5m7crmSJYXiIyWESeEpElsamrroiV3yAi74rIwthyaqHa5G5Dx3GcPFBbCw0NweXtYsUK2G8/m8urcDQBV6vqyyKyN/CSiMyNfXe7qt5ayMaAW16O4zh5IWfzdiVThEhDVV2rqi/HPm8BlgAHFLQRSbh4OY7j5IGvfhV69oSuXds5b1cyK1YUtb9LRIYCo4DnY0XfFpFXReTeQs547+LlOI6TB15+GTZtgl/+sh3zdiXT3Gy+yNz3d3UUkRcTlilBO4lID+D3wJWq+hFwJ3AQcCSwFrgt1w0LbXChTuQ4jlNNPPII1NTAl76Uw0rXrIFdu/JheTWp6uhUO4hIJ0y46lT1DwCqui7h+7uBP+a6YWG45eU4jpMHHn4YjjsO+vbNYaVFGuMlIgLcAyxR1Z8mlA9I2O104LVCtcktL8dxnByzdCm8/jrccUeOKy7eGK9xwPnAIhFZGCubBpwnIkcCCqwEvlWoBrl4OY7j5JhHHrH1xIk5rjhueQ0ZkuOKU6Oq8wEJ+OrPBW1IAu42dBzHyTGPPAJHHpkH796KFTBwIOy1V44rLj9cvBzHcXLIe+/Bc8/B6afnuOK6OnjgAQvaGDrUtqsYFy/HcZwc8uijNmvJl7+cw0rjWX4//ti2Gxpsu4oFTFS12G1ARP4V+AbW6bcIuAjoBvwWGIp1BH5FVTenqqd79+66bdu2vLbVcRwnFaeeCm++CW+/bYOTc8LQocG5poYMaQniaAci0qiqBc031V6KbnmJyAHA5cBoVT0U6ACcC0wF5qnqcGBebNtxHKdk+egjmDfPrK6cCRfkMctv+VJ08YrREegqIh0xi2sNMBGYFft+FpBLI9xxHCfnPP64zduV0/6up54K/67dWX7Ll6KLl6q+C9wKrMLSi3yoqk8A/VV1bWyftUC/4rXScRwnPQ8/bAnfjzkmywrq6sxFWFNj60sugS98AQYMsCSJieQky2/5UnTxiiVynAgcCAwEuovI1yIcPyWej6upqSlfzXQcx0nJxx/Dn/8MEyZAhw5ZVBAPymhosIiPhga46y74xCdsxPPdd1sfV06z/JYvRQ/YEJGzgZNV9eLY9gXA0cB44HhVXRtLQfI3VR2Rqi4P2HAcpxjU1cFVV8H69WZ53X57FroSFpQRNjFYDvGAjexYBRwtIt1i+bPGY3PFPApMju0zGZhTpPY5juOEEjeY1q+37Q0bsoxiDwu+eOeddrWvUim65QUgIjcC52CzddZjYfM9gAeBWkzgzlbVTanqccvLcZxCk7Mo9jyHw6eiHC2vkhCvXOHi5ThOoampsS6qZERs+q2Muf128z0m0q1bQfq2ylG8SsFt6DiOU7aERatHimLfsQPuv98iCgcO9KCMDHDxchzHaQfJxhJkEcV+xRVQXw+//S28+24Op16uXFy8HMdx2sHmWNK6rA2m+++3A7773RxPu1zZeJ+X4zhOluzeDcOGwYgR8MQTEQ6sq4PrrmuJMPzkJ+G116BjcaZY9D4vx3GcKmLuXNOfb3wjwkHJg5FVrZLf/jZv7axE3PJyHMfJkrPOgr//HVavjjA/ZBFD4sNwy8txHKdKWLcO5syBCy6IOLGxZ4jPCS5ejuM4WTBrFjQ1RXQZQo5i6x0XL8dxnIiowsyZcOyxMHJkxIOnT7dY+kSqPEN8Nrh4OY7jROTpp2Hp0iysLrAY+hkzoFMn2/bByFnhARuO4zgROf98ePRRWLu2rRGVMYMHw/jxcN99uWxaVnjAhuM4TgVTV2eaM3u2JcF4+OEsK1KFjRtt/hQnK4ozIs5xHKfMiA/Pamy07a1bbRuy8Pht22b5DPv2zWkbqwm3vBzHcTLguutahCtOY6OVR2bjRlu75ZU1Ll6O4zgZkNPhWRs22Notr6xx8XIcx8mAwYODy7ManuWWV7tx8XIcx8mAM89sW5b18Ky45eXilTUuXo7jOGnYvduS8O6/v1la7Z4r0t2G7abo0YYiMgJITKc8DPgB8F+x8qHASuArqrq50O1zHMf5n/+xGUt++1v4yldyUOHGjTb9yT775KCy6qTolpeqvqmqR6rqkcCngUbgYWAqME9VhwPzYtuO4zgFZdcu+MEP4MgjLYt8TtiwwawukRxVmF9EZLCIPCUiS0TkdRG5IlbeW0TmisjS2HrfQrWp6OKVxHhgmao2ABOBWbHyWcCXi9Yqx3GqlnvvheXLrW+rJldPzPIboNwEXK2qI4GjgctE5BCKaGRkfitEapGA1wQRQSRX6ZDPBR6Ife6vqmsBYut+OTqH4zhORmzfDjfdBOPGwSmn5LDiDRvKSrxUda2qvhz7vAVYAhxARCNDhENEGJGwfZIIs0X4nggdorQpynvECiDo1+4d+65diEhnYALwu4jHTRGRF0XkxaampvY2w3EcZw+//CWsWQP/8R859vDF3YalQ8f4czS2TAnbUUSGAqOA54luZNwTOxYRBgFzMA25DLg5UoMj7CtAUBbfHsCOKCcN4RTgZVVdF9teJyIDVHWtiAwA1gcdpKozgBlgiXlz0A7HcaqYujrLmrFqlQnWYYfBZz+b45OUntuwSVVHp9tJRHoAvweuVNWPgpxxaRgJvBz7fDbwvCqninAC8Bvge5lWlF68RP4z9kmBHyKSmCClAzAWWJjpCVNwHi0uQ4BHgcnALbH1nBycw3EcJ5Tk/IWqNvVJXV0OZyzZtQs2by418UqLiHTChKtOVf8QK87IyEigA7Az9nk88OfY52VA/yjtycRteFhsEUw1D0tYPoGp6IVRTpqMiHQDTgL+kFB8C3CSiCyNfXdLe87hOI6TjqD8hTt2ZJm/MIxNm2xdWm7DlIiZWPcAS1T1pwlfxY0MyMzIeA24RITjMPH6S6z8AGBjlDalt7xUTwBA5DfAFah+FOUEmaCqjUCfpLL3sYtzHMcpCDnNXxhGeWbXGAecDywSkbinbRpmVDwoIhcDqzBXYCq+CzwCXAPMUmVRrHwC8EKUBmXe56V6UZSKHcdxyo3aWmhoCC7PGWWYXUNV52PetyAyNjJUeVqE/YCeqiQmnfg1NsY3Y6Jl2BA5AeubqgU6J7XqxEh1OY7jlBhnnQW33da6LOv8hWFUeVJeVXaL0EGEfwIWqvKxKiuj1hNlnNeFwOPA3sDxwAZgX+AoYHHUEzuO45QSb78NM2dazsLBg3OQvzCM8nQb5gQR9hbhd1hgx7NYXxci3CXCDVHqijLO6xrg26ieB+wCvofqKGA2sDXKSR3HcUqJbdvgjDMsg8ZTT1kfV3MzrFyZY+GCFsurT5/U+1UmPwIGYkbP9oTyPwKnR6koingNA/439vljbHwXwC9oZ7Sh4zhOoamrg6FDTbD69YNFi+CBB+DAA/N84g0boFcv6NQpzycqSSYAV6qykNbjhpdgGpMxUcTrfcxlCPAucGjscx+ga5STOo7jFJP4eK6GBhvL1dhoWrIxUrB2lpRedo1Csi+mJcnsDeyOUlEU8XoG+Hzs84PAf8bC5x8A5kY5qeM4TjEJGs+1a1eOx3OFUXrZNQrJPzDrK07c+voW1geWMVGiDb8NdIl9/iGWZXgcJmSRclI5juMUk4KM5wpjwwbzV1Yn04C/ivApTH+uin0eC0RKwpW55aW6CdU1sc/NqP4I1QmoXoPqB1FO6mRAokN+6FDbdhwnJxxwQHB5TsdzhbFxY9W6DVV5FvgMNtRqGTZGbA1wjOqenIcZEXWcV39slPVBwL+huhGRccAaVNudWd6JkZxgraHBtiEPoU+OU100NsJee7Utz/l4riBUy246lFwTy6oxOe2OaYgyzuvTwJvAJOBioGfsm5OAfN/y6iLIId/YWCCHvONULrt3w9e+ZpNLXnmljePK23iuID76yDrXqtTyEqE2ZBkcy7yRMVEsr1uBn6F6PSJbEsr/CnjqqFxSVIe841QWiVOc9OgBW7bAHXfAFVfA7bcXuDFVnl0DWEnw1FoAiPARNjXKtaqknKAxinh9GrO4kllLxFT2ThoKkmDNcSqfZA/8li3QsWMRDZ8qzq4R4zzgx8Bd2GSWAP8ETAFuAHoB3we2ANenqihKqPx2LEY/mYNJP4eLE4Xp09s65QvikHecyiLIA9/UVEQPfNzyqlK3IXAJ8K+q/FCVJ2PLD4Grga+r8jPgckzkUhJFvOYA1yMSf6oqNh30j7AJypxcMWkSnHtuy3bBHPKOU1mUnAfeLa9/gj3ToCTyGjAm9vk5YFC6iqLmNuyNJeTtBswH3gY+wMw8J5fE854dfHCeEqw5TuUzeHBwedE88GU4HUqOacBchMl8E5sPDGA/YFO6iqLM5/URcCwiJ2JJFWuAl1H939QHOlmxbJmtP/AhdI6TLaNHt7WyiuqB37jRugR69Ei/b2VyNfB7EU7Fsm0oZnEdBJwZ22cMlvwiJdHGeQGoPgk8Gfk4JxrLl9vaxctxsmLBAnjkERg3DlavNhGrrTXhKpojIz7GS8LmdaxsVPmTCMOBS4ER2ASXjwJ3qZrlpcqvMqlLVEOjFgP2ln/CRkT3I9nlqHp55hUlVyu9gJlYsl8Fvo6NKfstMBQLr/yKqm4OqQKA7t2767Zt27JtRumgCnvvbT3NqrB9O3Tpkv44x3EA+PBDOOII6NAB6uuhZ8/0xxSEL33JlLS+vtgtaYWINKpq92K3IwqZW14i12Ahjm9j6TwSVS+CAgbyM+AvqnqWiHTG+tSmAfNU9RYRmQpMBb7bzvOUB+vX2wRDI0fCkiX2n+ji5TgZc+mlphHz55eQcEHVZ9eII8JAoBZLE7UHVZ7OtI4obsMrgMtR/UWEY9IiIj2xhIwXAqjqTmCniEzEZmwGmAX8jWoRr3h/11FHmXh98AH096F0jpOK+GDk+BDJM8+Eo48ubpvasGEDHHRQsVtRNGKi9d/YM18xt2Gi8dMh07qiRBv2BP4cYf9MGYZFMP5GROpFZKaIdAf6q+pagNi6Xx7OXZrE+7uOOsrW3u/lOClJnJ8rzuOPl2A+6ypOyhvjDmzerkOARuA44GxsMsqTo1QURbweiFp5hnTEohfvVNVRwDbMRZgRIjJFRF4UkRebmlJmEykfli2zDt0jj7TtDz8sbnscp8Qpi3SgH39suQ2r2234z8B3VXkDs7g2qPIHzKv271EqSu02FLkqYesd4MZYFvlXgV2t9lX9aZQTJ7AaWK2q8VQhD2HitU5EBqjqWhEZQEgWD1WdAcwAC9jIsg2lxfLlMGhQi6vQLS/HSUnJDUYO4v3YBMLVbXl1BeLzVW/CPGpvAYuBw6NUlK7P6ztJ21uxuVg+k1SuQFbiparvicg7IjJCVd/EohkXx5bJwC2x9Zxs6i9Lli2DYcOgVy/bdvFynFB27LChUzt2tP2upNKBenYNgDewlIIrgYXAv4jwDnAZ8G6UilKLl+qBiBwPPIsFUuSL7wB1sUjD5ViW+hrgQRG5GBt5fXYez19aLFsGp57q4uU4afj4YwvM2LEDOneGnQlPqZJLB+riBRZZvn/s803AX7A8hh8TcY6vTKINnwR2IPJc7POTwAuo7o5yolSo6kJgdMBX43N1jrKhsRHee88sr27dLAW2i5fj7CFxipMuXWwY5K9/Dd27t5QXfTByEFWclFeE44FnVdkTQqPKyyIMxSyxVap73IkZkYl4fRI4AQtbvxTrVNuGyHxMyJ4CXiLSaGcnlHik4UEHWdDGPvu4eDlOjOQpTrZvh06dTLgmTSoxsUqmui2vJ4EdIjyHacaTwPOqNAIvZ1Nh+mhD1bdRvRvVSagegIU4Xgt8iOWpeh54P5uTOwEkiheY69DFy3GA4KjCXbtKLKowjI0b7YW0d+9it6QYfBIbK/weNi3KfOADER4X4f+JMFqESDmzsslt+AYim7BIkQ+Bc4GqzTKZc+IDlIcNs7WLl+PsoSyiCsPYsMGEq0PG43ArBlXexrIz3Q0gwsGYR++fMSPoFkxPMlb2zMRLpA/mNjwBOBEbWPwS8HfgK5iKOrlg+XJzFcbfznr18nFejgOsW2cuwp0BoWMlFVUYhqeG2oMqb4jQLiMovdtQ5BVsLNaV2NxdVwC9UR2H6jRU/4pqBWTDLRHiYfLxrNNueTkOS5fCMcdYnuqynWS8jLNriMi9IrJeRF5LKLtBRN4VkYWx5dTUddBHhDNF+IUIi7Eo8suxbqevAPtGaVMmGTaGA5uxEPZlwNuoNqY+xMma5ctb5z5z8XKqkLo6GDoUampgwADLlLZliyXavecem1xcpMwmGS9vy+s+gjMs3a6qR8aW0PSBIgQaQaqMU2WaKn9VJZIRlInbcB9s6uYTgPOBXyKyAUuUa4vqiigndULYvRtWrICJE1vKXLycKiM5ovC990yobrgBxo61pSzEKpmNG+EzyfkdygNVfVpEhrajijZGUCzSMGsyiTbchep8VP8d1RMx024ysALLBL8YkZXtaYQTY80ac+gnW16NjcGOfsepQIIiClXh5z8vTntyQnOziVf5Wl5hfFtEXo25FVO5/fbBXINvY0bQ6yI0iDBLhItEODDqiaMk5o3TnLDEU9oPzqIeJ5nkSEOw4A3woA2naijriMIwPvzQPCulK14d4wnOY8uUDI65EzgIOBJYC9wWtqMqu1SZr8q/qxJoBImwMlKD0+4h0hEYi7kNTwCOAbpgnW1PAffE1k57iYtXsuUF5jos3T98x8mKxGwZgwbBJz9pVlYQZRFRGEZ8gHLpBmw0qWpQlqNQVHVd/LOI3A38McLh7TaCMunz+gDLBLwWE6nvAE95P1ceWL7c0kENTriHcfFyy8upMJL7tt55x5bDD7fowu3bW/Ytm4jCMCowu0Z81o/Y5unAa+H7knMjKBO34dXAwagOQvV8VO914coTy5ZZ+FTHhHeKakvOmxhmNnRoCc4m6OSKoL4tsPe0u+8u04jCMOJ5DctUvETkAeA5YISIrI4lTP+xiCwSkVcxQfrXFFV8ADyDZddYixlBn1DlQFW+rsr9qqyO0qb0lpfqr6NU6LSD5DB5qC7xSn4Vb2iwbSjzJ5eTTHNz61mPE1m1qgzyFEal9N2GKVHV8wKK74lQxdXAk6oszVGTsgrYcPJFfIByItUkXmUxHa6TDYkG9QEHwCGHhO9b1n1bYVRxRnkAVX6dS+GCbHIbOvnhgw9g06bqtrwqMszMSTao16yx9QknwPPPt35fKfu+rTA2bLCL69at2C2pGNzyKhXi2eSTLa8ePex1tRrEK+yVuyJfxauHadOC+7aWL7e+rIrq2wqjvLNrlCQuXqVC8lQocappTq/p08s4cZ0Drd2DQ4bAd76T2qCeNAlWrrQ+sJUrK1S4oFIHKBcVF69SIWiAcpxqSRE1aRKcdVbLdq9eFfwqXnnE3YMNDTZWa9Uq+MUvwmcAqSqDesOGqu3vyhclIV4isjIWcrlQRF6MlfUWkbkisjS2jpRxuOxYvtzezPbeu+131TQtSteu9jsMGwbjx7twlShBIxqmTg12D+6zT9uunqozqN3yyjklIV4xTohlJo6P8p4KzFPV4cC82HblEhRpGKdaLC+AJUtg5EjLvvqPfxS7NYWjjMa3JVtYDQ0weTKsDhmls3lzFfVtheGWV84pJfFKZiIwK/Z5FvDlIrYl/yxb1ra/K061iJcqLF5scdRjxpjfad269MeVO0FqMGVKyQpY0IiG3btbpqBLpra2ivq2gti+HbZtc8srx5SKeCnwhIi8lJAQsn889Uhs3a9orcs3u3bZg7raLa916+w1PS5eUB3WV4mOb0s2Bn/zG7j//vDBxaruHgykzLNrlCqlIl7jVPUo4BTgMhH5bKYHisiUeCbkpqam/LUwE7J1/TQ02CtptVteixfb+pBDbPbBmprqEK8SHN8WZAx+/etwwQWts5clEncHVrV7MIgyz65RqpSEeKnqmth6PfAwlsBxnYgMAEsACawPOXaGqo5W1dEdw/6rCkF7XD9hY7zi7LMPbN0KxRbnfJMoXt27w6c+BS+8UNw2FYISHN8Wlnewf3+4775wC6uq3YNhuOWVF4ouXiLSXUT2jn8GPo9lJ34Um++F2HpOcVqYIe1x/QRNhZJItWSWX7zYrnX//W07HrQRNkdGpVBi49uamsJdg+vXmyC5hRUBt7zyQtHFC+gPzBeRV4AXgD+p6l+AW4CTRGQpcFJsu3Rpj+tn+XLo0gUGDAj+vlpSRMWDNeI9/2PGwPvv2yt8JTNpEpx4Ysv2/vsXVA0Svd0DB8Lw4eH7xo1Bt7AiUIHToZQCRRcvVV2uqkfElk+p6vRY+fuqOl5Vh8fWm4rd1pS0x/WzbBkceKA9PYKoJssrMWNrPGijGlyHmze33Odf/rKgwpXo7V5LNTTfAAAgAElEQVS71sTopJM8+CIn1NXB9dfb51GjSjaCtBwpunhVDNOnt+3JzuS/va4O/vhHG98UFuRRDZbXhg22JIrXYYeZO63Sgza2b4eXXoIzz7TtAgZqhPVtvfVWFbgG8z22Lv5m8NFHtr1qVUkPgSg7VLVilm7dumnRaG5W7d1btWtXVXuJVb311tTHzJ6t2q1by/5g27Nnt95v4UL77ve/z1/7i83f/27X+Je/tC4/+mjV447Lrs7Zs1WHDFEVsXXy71oqPP20XfucOfb3c9VVBTu1SOs/v/giUrAmFIdM//faw5AhwT/ukCG5O0eOALZpCTzDoyxueeWKF1+0KU3uvBNWZDjRdKZBHtVgeSVGGiYydiy8/LKNgo1COQ38XbDA1p/5DAweXDDLa9WqKs47WIixdSU4BKKScPHKFQ89ZG7DCRPMBXH44fDoo6mPyfSPe599bF3p4tWjBwwa1Lp8zBjLTrBkSbT6SnTgbyDPPguf/KRFo9XWwjvv5P2Ub78Nxx0HnTqVVKBj4chWWKK4GktwCEQl4eKVC1RNvD73Odg3lj94wgSYP9+i5cIYPDi4PPmPu2dP63iodPFKjDSMk23QRrm89aqaeI0bZ9uDB+dNvBKfuyNG2J/m/Plwzz0V3rcVRDbCEtWav/HGtmVV8WZQGFy8UpHpW9bChRbunjidx8SJFkf85z+H1z95ctuyoD/umhoTsFIVr1x0fCdHGsYZPtwsz6hBG+Xy1vvmm6YiieK1di3s3JnT0yQ/d5ubzRO7ZEmVhr1fc01w+VVXhR8T1Zrv0sXW++1XZW8GBaLYnW65XHIasBGlQ3faNNUOHVQ3bGgp271bdeBA1TPPDD/HuedaB/3gwemDCoYMUb3ggvZcUX7IRcf3pk123I9/HPz9+PGqn/50tHbdeWfbjvJcd8jngpkzrW1LlrTeXrEip6cpo9iBwnD++fY/O3Cg/e8NHKi6116qxxyj+vHHwccE/YCpoluOO0512DB7FpQ4lGHARtEbkMslp+KV6X97c7Pq8OH2gE3mW99S7d5ddfv2tt+tXavaqZPqlVdm1p4jjlCdMCHqVeSfXDwVFyywYx57LPj7731PtWPH4N8xjJ/9zOrs0KGlPaUmXKqqX/+6RanGH3B//au19+mnc3qaqo0qDOL55+3ip05tXf7gg1ae/D/Z3Kz6gx+Ei1fQ3/qrr9p3P/lJ3i4jl5SjeLnbMIxM+0xeew2WLm3tMowzcaIFG/ztb22/u/tuyyZ/6aWZtadUk/Pmom8pLNIwzpgxlrPolVcyr/Pee+HTn4bLL7cJLpcvL013zYIFFmUYH6Ae7wdtT99ckhv38WufQkMybJWaFzXvqMKVV1oWk2nTWn939tlwxRVwxx3m6qupMVffZz8LN91k6+SR2127Bvdh/epX5ja86KL8XUuV4+IVRqZ9Jg89ZP7s009vu+8JJ1iC2TlJaRmbmuDXv4bPfz51Lp5ESlW8ctG3tHixPQSGDAn+PmrQRn29Cd3Xvw4HH2yDgEstUAMsYeubb7b0d0GLeGUbtFFXR91F/8vQhr9Ro03s1/ACp/3kOIb03ULXrq13rcrYgQcegOeeg//4j+BZy0eNMtHauNGEbtUqi2o580x7CU0cuQ1w5JFtX4o+/NDmjjn3XOjTJ++XVLUU2/TL5ZJTt+G117Z1D+y1V1vX0yGHqP7zP4fXc8YZ5k9vbm4pe+ghq++RRzJvz+TJqrW1Ua6gMOSiz+vkk1VHjQr/vrlZdcAA66fIhG9/2+7Vpk0tA4Affzzz9hSKOXOsbX//e+vyffdVvfTSrKqc3ec72o2trW5HDU16d+9ry2bMdt7YulV10CDVo44K74eK4gb//vftuwULWpf/539a+T/+kesryBuUoduw6A3I5ZIz8dq5U3XkSNV+/UwwRKzPZe+9VVevbtlv8WL7CX/+8/C67rvP9nnxxZayE06wepuaMm/T5Zer9uwZ/VoKwd13t/yTd+8e/alYW6s6aVLqfSZMUD344PR1bd9uD//zzrPt9eutXT/9abQ2JZKvp/53v2v9no2NrcuPOEL1tNOyqnIIK4Kfvaxof3vLlfj9i/8Y//Zv4ftG6RzcssVeTMeMaRHD5mb7Ox07Ni+Xki/KUbzcbRjEXXdZDPGMGS0TRb76qq3POcf6qgB+/3tbn3FGeF1f/KK5IeIDlpcsgaeegn/5l/D0BkH06mU50qJmmigEcdfn3ntbX0uUvqUtW8w1E9bfFWfsWHjjjfTJiefMsSS38b6G/fYz180bb2TepkTymaljwQKbdDPZn9eOsV6rCHbXhpVXPIn3L85tt4Xfvyhu8B494JZbbBjH7NlW9uST9rd22WXta7eTnmKrZy6XnFheGzfam/v48a1dfaqqDzxgb2HXXGPbRxyhOm5c+jqPO872VTWXVufOquvWRWvXT39q5960KdpxheD2261t3/ymRfclWxKpeOEFO/bhh1PvF4/Cmzcv9X6f/3xbq/bYY7PPj5ivGPMdO8y1GZTH8JJLLAIxCwb22hbc3D5b2tfeciXq/YvqBt+926ysAQPMEjv9dNU+faJFxpYAuOVVAdx4o73d335722wP555rb1S33mqZNF55xYIN0r2FT5hg+77+OsyaZVFN/fpFa1cpT4tSX2/RWyefbJbhokWZH5su0jBOfE6v8ePDB0KvWgVz58KFF7a2ag8+OHvLK1+ZOl5+GT7+2CINk6mttTyZ27ZFqnLrVpDu3YDWoYXdOjcx/Wc92tHYMibq/Ys602ZNjUUnrl1r/wMPP2yembhXxskbLl6JLF5sIa7f+pZNxxHEmDH2BxuP/Nu8Ob0bKS6Chx5qbrJPfCJ620o5OW99vUVpjRrVsp0pixdD584wbFj4PnV18K//2rId5rqbNcvelS+8sHX5yJE23UqqVF1h5CtTx7PP2jox0jBOFhGHqvCNb8DatcrULncwpNMahGaG9N3GjHs7luQogYKQzf2LmnJk+XJ7WYq/bHz0Uekmga4kim365XLJ2m04e7a5muIds3feGb5vvt0QYTz5pB371FPRjss327ebq3DaNHOz9uplg7Mz5bTTVA87LPU+mfzmu3dbNoMTT2x7/J/+ZPvPn595u+LMnt0y0Lk99y+Z00+39gYRnx7miScyru622+yQH079QPcEqHTpUtDpVUqS2bPNPZvr+5dIBaQvoQzdhkVvQC6XrMQrqrhETVWQqz/sl1/WjPqGCs0//mHt+t3vbPv446NFWg0bpnrOOan3yeQ3f+opKwu6b8uX23d33515u+Js2WIPv+7dW857zz3R60mkudkiWcNC/1essPPMnBlaRWIAZP/+tj79dNXmRx/TPUJ99NHW31ftnHtuy99LPsYIVED6knTiBdwLrAdeSyjrDcwFlsbW+6aqI9dLybgNRaSDiNSLyB9j271FZK6ILI2t983LiaMm24zqhshVn0mpTosSdxHGXYZHHmmRmU1N6Y9tbLS5z9L1d4X9tqrw1a9av8QJJ5h7NiihbW2tZTvIpt/roYesb+qvf7X+NLAIxvawbBmsXx/c3wVwwAF2LSFuw+QAyHXrrPzUU0EW1tuxRxzRMhdaJveikhExV2y+Mg+XSxLo9nEfcHJS2VRgnqoOB+bFtgtGyYgXcAWQOGlTYX6YqOIyfXrbFDGpUhXk6g+7VPu86ust4/2BB9r2qFGwY4dljkjHm2/a0zedeAX95vGMHA880HKvVOHb327b19Chg80BEnVOMLA0U5/8pAnNccdZxpTHH49eT5y6Ojj6aPt8003B/SKdOlnnf8jfYND7lircfDN2P4YPtzDuMWNsx2yuu5KI98nmi6jPhDJEVZ8GNiUVTwRmxT7PAr5cyDaVhHiJyCDgi8DMhOLC/DBRxSVqNFKu/rB79rR1qYnXwoVmbcVz88UfEgsXpj8200jDoN/87rvtiZ1MmNWcTcTh0qXwzDM2ZkzEZm0cP96muQk6dzriJlM8cGTt2vCO/RSTUqZ830p8UI8da+uoc6FVEtu22UtSPsUr6jOhNOkoIi8mLFMyOKa/qq4FiK0jhlC3k0L6KFP4Ux8CPg0cD/wxVvZB0j6b09VTkD6vbMhVhoa99848C30haGqy3+ryy1vKdu60PqKrr05//LRplrkkbAqKdETpa7jhBiuPMgZt2jTVmhrVd99tKbvrLjvH4sXR2xul//Oss1RHjIhWzaAm+3DLLbbj7t2q++wTLYCm0nj2WftNoqRiq0LIIGADGErrPq/Iz+hcLkW3vETkNGC9qr6U5fFT4m8LTdn49gvx1pSr2f5KLTnv0qVm6SS+1XbqZMMM0oXL19XZWLqmJnPLZRNWHMVqPvhge8YvXZpZ3bt3w333wSmnwMCBLeWnnGLrbFyHUVzUgwdbeYCF981vtt29WzeYfkHMsozfj5oaGD06e8srF5OMFpvkPlknl6wTkQEAsfX6Qp686OIFjAMmiMhK4H+AE0VkNhn+MKo6Q1VHq+rojh07ZteCcplKttTEK+zBMGqUfRfmWou7z7Zvt+1sUy5FccmOHGnrTPt/nngC1qyxzPSJ1NbCpz6VeobsMKKIbW2t/T6bWnczvP8+zJxpY+QHDUp63+rzV9sp8X6MHWuDxnfsiNbWfKbFKiT19dC7d8vYOSeXPApMjn2eDMxJsW/uKaSZl4FZejwtbsOfAFNjn6cCP053fE6zypcixx1noeilwv/7f5bqaufO1uW/+pW5alauDD4ul+NiMnXJNjbaPjfckFm9Z52l2rdvsEvzmmssoe6WiCmXZs+23ysTF3V85oH6+j1FTU2qX/iCVfH88wH1f+1rqgcc0LrsD3+wep57LlpbK2Dskqqqjh4dPFGs0wrSh8o/AKwFdgGrgYuBPlgw3dLYuneqOnK9lILlFcYtwEkishQ4KbZd3ZSi5XXooeYqTCRdpo1cplzK1Gru2tUiIjOxvDZutAS/559v2T+SOeUUSwE0b170to4fb5/TuahjlkLd/bv3eO769LGI/Z//vCUWoxX19RY8k0i2QRv5SotVSHbtMqsz+TdxIqOq56nqAFXtpKqDVPUeVX1fVcer6vDYOjkaMa+UlHip6t9U9bTY56L+MCXJPvuUjniphocgH364PW3DxKtY42IyjTisq7MHX7LLMM6xx1ooejb9Xk1Nlkk+ndjW1lLHeUz5+eF7PHcffmhR/927B+y/fbtdW/L9OOAAGDDAMp9HoRLGLr3xho3R8/6uiqSkxMtJQylZXqtXWwdM0IOhWzcbVxUmXkHTRRRiXMzIkRY2HTatTF2dWUNXXmkW1yuvBO/XuTN87nMmXmH9emG8+mp43sxE+vXjOn5I467WVu3u3SHj5xctsi+D7seYMdEtr+nT207VUm5jlzxYo6Jx8SonevWy1+/m5mK3JP2DIR60EcTGjeY2axNxkOdAmYMPtsCFINdXPEAh/t3OnakDFE491faNj1XLhA0bLB3G4Yen37emhlUEBxkEeu5S3Y+xY+Gtt6K9+Eya1Dqsca+9ym/sUn29CfCIEcVuiZMHXLzKiV697E1/69Zit8QeDCLhD+JRo8w627ixdfmuXZb9fcIEG4RbyAjPVBGHUdOEZRMyH58qJsDySo5Kv+EG6CjBFmKg566+3v4+hg5t+92YMbZ+KeJolJoae/hfcIFNNPrVr0Y7vtjU19vfZ5RJX52ywcWrnCilFFH19TY+q0fIPFHxTvJk6+svfzHrI6w/KZ8cfLCtg/q9ogYoDBpkwSpRQuZDxCsoKv3GG6Gz7GIvPm61b6jnLh6skTwHHdhYL4juOlywwITvqKPsJSSeRLEcULUsL+4yrFhcvMqJUhOvVA+GsIjDe++F/v1bLJdC0qePJdUNsryyCVA49VSYP9/maMuERYugb1+7/gSCjD6A3t13co9czJBaTe1dbWqyvrSw+9G7t80hFyVoo7HR7t24cS1iG2WS0XySyeDpFSvMxe7iVbG4eJUTpSJe779vFkmqB0OfPhbunShe69bBH/9obqjk8PpCERZxeMMNbcvSBShEDZlftMiEIMk6CjPuVm/Zh0lax8pn16T2rr75pvXlpbofY8ZEE69//MNEsdTEK9PB0x6sUfG4eJUThRKvdG+28aS76R4MyUEbs2fbA/Gii3LZ2miMHBlsecVTi/Xrl3kQyapVtu/pp6dPn9TcDK+9Rl3nC/f8tEOGwMUXhx9Su18sA0m6GZUzeVCPHWt9kGvXpq4rzoIFtj7mGLNW99+/NMQr077J+nrr68okstMpS1y8yolCzOmVyZttFPF66y3L7K1qLsOjj24JnCgGBx9slmNiIElzM9x6q7X3vfcyCyKpq4NLLmkJlU+XPmn5cuoaJzLlqfP2/LSrVtlPMmCATTeWSLduMP2qWBvTDQyur7cK4n16QcSDNjK1vhYssPvUu7dtH3aYuSaLTaZ9k/X11v7kH9apGFy8yolCWF6ZvNnW11vAQt++qesaNcqe0q++ag/NxYuLE6iRSFDE4WOPmevt2muDAx6CiBqduGgR1/EfNO5s6y7t2NHyFbbJDf0vsWlw0lleCxeauKTK7TlqlFkimQRtNDfDc8+ZyzDOYYfZ/QsbI1coBg0KLk/um8z3HF5O0XHxKifilteHH+bvHA0NweWJb7aZPhgSgzbuvdfCrs85p/1tbA9BEYc/+Ym5/c46K/N60lgAyZ7Xe2fV0MCQwEPeeScky9U++1g0ZyrLK1Wmk0S6dbPoyEwsrzfegM2bW8/0fNhh1q/29tvpj88nn/1s27Lkvsl168w96uJV0bh4lROdOlluoHxYXqrw/e+Hfx+3shobg9MQBTF4sLmdnn3WZjw+++yWSTWLRW2tiWjc8nr2WXORXXVVasslqJ6Q8iDP68VzJgDBVl1oQKNIykkpARO2zZszy98XD9pIlxUk3t+VbHlBcfu9tm2DuXNt8tIhCS8CN9/c2sXrwRpVgYtXuRGWIiqbuZcSj+nRw95ejz++7TQjNTWWHeLCC+Ggg8w8uPPO9OcQsY7+ujr46CPLKlvsKTVqaizjQtzy+slPTGCjujODpmPp2hWmTw8JfRd6dtgafVLtwYNTi1eUB7WqCV2HDqn/RhYssCCN4cNbyg45xH67YorXL38J69fbLNorV8K771rmj+Q2xX8TT8hb2RQyhX2+l4qfEkVV9VOfUj3jjNZl2cwGHXRMp05WnjzNyD33qI4a1XZ6jEzO0bFjtGMKwXnnqQ4dqvrGG3aN//ZvWVUz+5JndEiHd1TYrUNYofd/4b903rzgmURAVWiOPqn2N76h2q9f+Pc/+IHN9rxtW5rGzlbt0iWzezF8uOrEiW3LR4xQPf30NA3OEx99pNqnj+rJJ7cuv/JK1Q4dVN96q6Xs7LNVDzywsO0rc8hgJuVSW4regFwuVSFe48apnnhi67Js5l6qrY12TNT9s21XIbjxRlOPSZPsgb5uXeQqgrRfaLa1hFx2363R23rTTXbwjh3B33/pS6ojR6avJ9N7sW6dlf/oR23rOOss1YMOinoFueHmm61dyROZvfeeateuNpdZnOHDiyeyZUo5ipe7DcuNoGlRwjr0GxosjC3RnXjXXdZHEDUdUpjrKlUwQanOCbVxoz266+qsn2vu3JS7B3lkv/e9tq5BRejbV7nnnoAJntnG9O9mEWgTnwF49ergRj32mN3ndO7YTO/Fs8/aOrG/K85hh8Hy5db3FEY27ut0fPCBDWX40pfaTmTWvz98+9vw3/9t/ZhbtsDSpd7fVQ0UWz1zuVSF5fXVr6oOG9a6LOytOtWS7EJKZxVlY0WVouWVwn0W5NILsrCSPaGtrC9p3nOaPXXt/b7O7niBTYUclf/9X6v4ySdbX0NUN3Gm9+Kaa2yq5u3b29YRn5U5cBrnLNuVCddfb3W9/HLw9xs2qPbooXrOOarPPGP7PvZY+85ZZVCGllfRG5DLpSrE69JLVXv3bl0W1re0zz7BD6wBA6I/aHLVr1bAPq/A/qUhQ3Q25+kQVuzpq5rNeTq7z3faNLVLF9W99w7+CUNdg70+aNuQk05SPeqo7C7irbes4lmzWsqyeSkIuhddurS9F5/5jOoxxwTXsXSpHTdzZvD3uXxZSbx5IqqjR6fef9o0O1ePHrY+4IDi962WES5eRV6qQrymTbMO6ubmlrKdO1V79jTff+KTOuwJK2LHRY0eiBxtkOUxEQirPkw3L+EX2o2trco7sUO7sC2y8dqmfmnU2SNubNvI/fdXnTw5uwtsbLTKb765pSzdfc3kx6qpsf6rxL+j7dvN6rrmmuDjd++2i77iiuDvs21XUDszEdpEfv3r4BvkApYRLl7ZNAC6AC8ArwCvAzfGynsDc4GlsfW+6eqqCvH68Y/ttm3Z0lI2Z46VPfpo631L0W2XhlRilIlLr1s31Z//XHW//cJEpzliefhP2KZNE35rLxabN7dc0Pr1dsCtt2b/o/Ttqzplin3+8MPoLt8gfvMbOybx4T5/vpU9/HD4cWPHtg0YipOrv7dKcVGXES5e2TTARm72iH3uBDwPHA38GJgaK58K/ChdXVUhXjNm2G17552WsokT7e1+167W+xbZbZeKKGJ0ySXB5fvum15k2iteffpE+Anj/S2/+11LWTx2/oknsv+hOnWyOg44QHXQIPvROndu333dvVv105+2OrfGoiDjL0apoi8vvtjENNFiixM/vr1/b9lYcLmy+qoUF6/2Nga6AS8D/wS8CQyIlQ8A3kx3fFWI14MP2m1btMi233vP3vavvTZ4/zy77dKdIopI9e4d/vyJKlL9+weXd+gQXJ5KpDL+CXftUu3VS/Wii1rK7rjDKlu7NrsfNrlRoDp1am7ua1xsr7/etidOVP3EJ1Ifk+p6rr3W2hMXWLBxWFFxy6vguHhl2wjoACwEtsYtLOCDpH02p6unKsTriSfstj3zjG3feqttL1mS91NHEaKw7zp3Dn4e53KJty2KFRdJpFLxla9YQEzcMkllqaSjEA/kc86xvtKGBvO1puubC7Mkd+60N4b44OZdu2ygcFjwRypmzmz7xlLiwUHljotXexsDvYCngEMzFS9gCvAi8GLnzp0j3K4y5fnn7bY99pg9EA85xCLEsiAX/UthrrtOnSwmIBdilI21FPX6cka8L6m+3rbHjlU94YTs6iqEK6yhwSJV99rL6u7dO/UPEu/Du+221uWPPmrlc+a0lP3iF1Y2f360Nl12mR3Xv39JBQdVMi5euWgQXA9c427DEN58027b/fer/t//2ee7745cTRTLJFXIeC6XMDHKu7WUS9autQZOn279St27q15+eXZ1FcLySuxTy9Ri2X9/1QsvbF325S+b2Ozc2VK2bZvd1AkTMm/P009bG8IiGp284OKVTQNgP6BX7HNX4BngNOAnSQEbP05XV1WIVzx9zy9+YRFo3bqpfvhhZCsj7LmYTf9S2PM17BzZ9C+VnEil4qijVI89VvXttzXblwtVLYwrLBuBPOkkC/aIs26dWW9BIfbxAcaZuLW3bbM+twMPbAkicQqCi1d24nU4UA+8CrwG/CBW3geYFwuVnwf0TldXNYjX7Pt2xgbYNusQadDZx90ZyYrq1Mm8jPm2ljLpDysbMYrKddeZz/Tee+2i/+//sq8r3z9UNq7Jq64yczyeMeS22+yY119vu+/69bbvxRenb8s111g98+Zldy1O1rh4FXmpJPHKuN9prybt0yf8+RNU3qGD9dGHfZcraynsOiqeBQvsBzr0ULvwxDF5pUY2lle8X++NN1r6XY8+Onz/Sy+1SJ01a9p+l/gHAtn3DzrtwsWryEuliFe+o/REihiNVw00NbX+EUv5x8rGNfnii7bf737XEkA0Y0b4/nH3ac+e6d/GunYt3d+qgnHxKvJSjuKVLAizZqXKDhG2BA+wDbOi4i/VFdG/VIrMnt32xy/lsO2oN7yx0dyiP/iB6re+ZYLz4Yep60/+Pbp2DY8C8rFZBcfFq0rEK+pDP0r+vWxEqo9sjGxFOXmkGgbMjhhhE0P27Kl6wQWp9w37PVK5BpyCkol4ASuBRbExuS+m2z/fS9EFJ5dLtuKVi/FOYUIRVL7XXqrnnx/+4hk2PqoP69skle3GVp3NV92KKiWqIVXR2LEt19W/f+o/rKghrJUk8mVCBPHqm26/Qi1Fb0Aul2zEK0yMJk9um/+0c+eWGReCnkvRXH2pl0CLqc93Aqfz8H/2EqPSLa+oY8OyGTPhFBQXryIv2YhXVI9GrhYR1dra4O8CM5bPVk+BUy5U+n2KKs5VO2aifMhQvFbEcs++BExJt3++l6ILTi6XbMQrVxZTWHBEqqCJrJ5x/s9eHlTyfcrGLVrJv0cFAHwcT7MXW9qIEzAwtu4Xm8Lqs8n7FHKRWGMqgu7du+u2bdsiHTN0KDQ0tC3v0AF2725b3qcPbN8OjY0tZd26weTJMGtW5uUzZsCkSVBXB9ddB6tWQW0tTJ9u5Y5TsoT90wwZAitXFro1Tg4QkUZV7R5h/xuArap6a/5alZqaYp24VJg+3cQkkW7dYMqU4PKf/cyEZ8gQELH1jBnwq19FK48L1KRJ9v/e3GxrFy6n5An7p5k+vTjtcfKOiHQXkb3jn4HPYxmRitemare8INz6cavIcULwf46KIp3lJSLDgIdjmx2B/1bVor6tuHg5juNUOVHdhqVA1bsNHcdxnPLDxctxHMcpO1y8HMdxnLLDxctxHMcpO1y8HMdxnLKjoqINRaQZ2N6OKjoCTTlqTjnh111d+HVXF5lcd1dVLStjpqLEq72IyIuqOrrY7Sg0ft3VhV93dVGp111WSus4juM44OLlOI7jlCEuXq2ZUewGFAm/7urCr7u6qMjr9j4vx3Ecp+xwy8txHMcpO1y8ABE5WUTeFJG3RWRqsduTL0TkXhFZLyKvJZT1FpG5IrI0tt63mG3MByIyWESeEpElIvK6iFwRK6/oaxeRLhJaYUUAAALRSURBVCLygoi8ErvuG2PlFX3dcUSkg4jUi8gfY9vVct0rRWSRiCwUkRdjZRV37VUvXiLSAfglcApwCHCeiBxS3FbljfuAk5PKpgLzVHU4MC+2XWk0AVer6kjgaOCy2D2u9Gv/GDhRVY8AjgROFpGjqfzrjnMFsCRhu1quG+AEVT0yIUS+4q696sULGAu8rarLVXUn8D/AxCK3KS+o6tPApqTiicCs2OdZwJcL2qgCoKprVfXl2Oct2APtACr82mMzvG+NbXaKLUqFXzeAiAwCvgjMTCiu+OtOQcVdu4uXPcTeSdheHSurFvqr6lqwhzzQr8jtySsiMhQYBTxPFVx7zHW2EFgPzFXVqrhu4A7gWqA5oawarhvsBeUJEXlJRKbEyiru2jsWuwElgASUeQhmBSIiPYDfA1eq6kciQbe+slDV3cCRItILeFhEDi12m/KNiJwGrFfVl0Tk+GK3pwiMU9U1ItIPmCsibxS7QfnALS+ztAYnbA8C1hSpLcVgnYgMAIit1xe5PXlBRDphwlWnqn+IFVfFtQOo6gfA37A+z0q/7nHABBFZiXUDnCgis6n86wZAVdfE1uuBh7GukYq7dhcv+AcwXEQOFJHOwLnAo0VuUyF5FJgc+zwZmFPEtuQFMRPrHmCJqv404auKvnYR2S9mcSEiXYHPAW9Q4detqt9T1UGqOhT7f35SVb9GhV83gIh0F5G945+BzwOvUYHX7oOUARE5FfORdwDuVdXpRW5SXhCRB4Djgb7AOuB64BHgQaAWWAWcrarJQR1ljYgcCzwDLKKlD2Qa1u9VsdcuIodjnfMdsBfVB1X1JhHpQwVfdyIxt+E1qnpaNVy3iAzDrC2wbqH/VtXplXjtLl6O4zhO2eFuQ8dxHKfscPFyHMdxyg4XL8dxHKfscPFyHMdxyg4XL8dxHKfscPFyHMdxyg4XL8dxHKfscPFyHMdxyo7/D/fxk/0ZG9DXAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# create figure and axis objects\n",
"fig,ax = plt.subplots()\n",
"\n",
"# make a plot\n",
"ax.plot(my_data[\"Wheat\"], color = \"red\", marker = \"o\")\n",
"\n",
"\n",
"# set y-axis l# set x-axis label\n",
"ax.set_ylabel(\"Wheat\", color = \"red\", fontsize = 14)\n",
"\n",
"# twin object for two different y-axis on the sample plot\n",
"ax2 = ax.twinx()\n",
"\n",
"# make a plot with different y-axis using second axis object\n",
"ax2.plot(my_data[\"Wages\"] ,color = \"blue\",marker = \"o\")\n",
"ax2.set_ylabel(\"Wages\",color = \"blue\", fontsize = 14)\n",
"\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment