{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Sujet 2 : le pouvoir d'achat des ouvriers anglais du XVIe au XIXe siècle"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Unnamed: 0 | \n",
" Year | \n",
" Wheat | \n",
" Wages | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1 | \n",
" 1565 | \n",
" 41.0 | \n",
" 5.00 | \n",
"
\n",
" \n",
" 1 | \n",
" 2 | \n",
" 1570 | \n",
" 45.0 | \n",
" 5.05 | \n",
"
\n",
" \n",
" 2 | \n",
" 3 | \n",
" 1575 | \n",
" 42.0 | \n",
" 5.08 | \n",
"
\n",
" \n",
" 3 | \n",
" 4 | \n",
" 1580 | \n",
" 49.0 | \n",
" 5.12 | \n",
"
\n",
" \n",
" 4 | \n",
" 5 | \n",
" 1585 | \n",
" 41.5 | \n",
" 5.15 | \n",
"
\n",
" \n",
" 5 | \n",
" 6 | \n",
" 1590 | \n",
" 47.0 | \n",
" 5.25 | \n",
"
\n",
" \n",
" 6 | \n",
" 7 | \n",
" 1595 | \n",
" 64.0 | \n",
" 5.54 | \n",
"
\n",
" \n",
" 7 | \n",
" 8 | \n",
" 1600 | \n",
" 27.0 | \n",
" 5.61 | \n",
"
\n",
" \n",
" 8 | \n",
" 9 | \n",
" 1605 | \n",
" 33.0 | \n",
" 5.69 | \n",
"
\n",
" \n",
" 9 | \n",
" 10 | \n",
" 1610 | \n",
" 32.0 | \n",
" 5.78 | \n",
"
\n",
" \n",
" 10 | \n",
" 11 | \n",
" 1615 | \n",
" 33.0 | \n",
" 5.94 | \n",
"
\n",
" \n",
" 11 | \n",
" 12 | \n",
" 1620 | \n",
" 35.0 | \n",
" 6.01 | \n",
"
\n",
" \n",
" 12 | \n",
" 13 | \n",
" 1625 | \n",
" 33.0 | \n",
" 6.12 | \n",
"
\n",
" \n",
" 13 | \n",
" 14 | \n",
" 1630 | \n",
" 45.0 | \n",
" 6.22 | \n",
"
\n",
" \n",
" 14 | \n",
" 15 | \n",
" 1635 | \n",
" 33.0 | \n",
" 6.30 | \n",
"
\n",
" \n",
" 15 | \n",
" 16 | \n",
" 1640 | \n",
" 39.0 | \n",
" 6.37 | \n",
"
\n",
" \n",
" 16 | \n",
" 17 | \n",
" 1645 | \n",
" 53.0 | \n",
" 6.45 | \n",
"
\n",
" \n",
" 17 | \n",
" 18 | \n",
" 1650 | \n",
" 42.0 | \n",
" 6.50 | \n",
"
\n",
" \n",
" 18 | \n",
" 19 | \n",
" 1655 | \n",
" 40.5 | \n",
" 6.60 | \n",
"
\n",
" \n",
" 19 | \n",
" 20 | \n",
" 1660 | \n",
" 46.5 | \n",
" 6.75 | \n",
"
\n",
" \n",
" 20 | \n",
" 21 | \n",
" 1665 | \n",
" 32.0 | \n",
" 6.80 | \n",
"
\n",
" \n",
" 21 | \n",
" 22 | \n",
" 1670 | \n",
" 37.0 | \n",
" 6.90 | \n",
"
\n",
" \n",
" 22 | \n",
" 23 | \n",
" 1675 | \n",
" 43.0 | \n",
" 7.00 | \n",
"
\n",
" \n",
" 23 | \n",
" 24 | \n",
" 1680 | \n",
" 35.0 | \n",
" 7.30 | \n",
"
\n",
" \n",
" 24 | \n",
" 25 | \n",
" 1685 | \n",
" 27.0 | \n",
" 7.60 | \n",
"
\n",
" \n",
" 25 | \n",
" 26 | \n",
" 1690 | \n",
" 40.0 | \n",
" 8.00 | \n",
"
\n",
" \n",
" 26 | \n",
" 27 | \n",
" 1695 | \n",
" 50.0 | \n",
" 8.50 | \n",
"
\n",
" \n",
" 27 | \n",
" 28 | \n",
" 1700 | \n",
" 30.0 | \n",
" 9.00 | \n",
"
\n",
" \n",
" 28 | \n",
" 29 | \n",
" 1705 | \n",
" 32.0 | \n",
" 10.00 | \n",
"
\n",
" \n",
" 29 | \n",
" 30 | \n",
" 1710 | \n",
" 44.0 | \n",
" 11.00 | \n",
"
\n",
" \n",
" 30 | \n",
" 31 | \n",
" 1715 | \n",
" 33.0 | \n",
" 11.75 | \n",
"
\n",
" \n",
" 31 | \n",
" 32 | \n",
" 1720 | \n",
" 29.0 | \n",
" 12.50 | \n",
"
\n",
" \n",
" 32 | \n",
" 33 | \n",
" 1725 | \n",
" 39.0 | \n",
" 13.00 | \n",
"
\n",
" \n",
" 33 | \n",
" 34 | \n",
" 1730 | \n",
" 26.0 | \n",
" 13.30 | \n",
"
\n",
" \n",
" 34 | \n",
" 35 | \n",
" 1735 | \n",
" 32.0 | \n",
" 13.60 | \n",
"
\n",
" \n",
" 35 | \n",
" 36 | \n",
" 1740 | \n",
" 27.0 | \n",
" 14.00 | \n",
"
\n",
" \n",
" 36 | \n",
" 37 | \n",
" 1745 | \n",
" 27.5 | \n",
" 14.50 | \n",
"
\n",
" \n",
" 37 | \n",
" 38 | \n",
" 1750 | \n",
" 31.0 | \n",
" 15.00 | \n",
"
\n",
" \n",
" 38 | \n",
" 39 | \n",
" 1755 | \n",
" 35.5 | \n",
" 15.70 | \n",
"
\n",
" \n",
" 39 | \n",
" 40 | \n",
" 1760 | \n",
" 31.0 | \n",
" 16.50 | \n",
"
\n",
" \n",
" 40 | \n",
" 41 | \n",
" 1765 | \n",
" 43.0 | \n",
" 17.60 | \n",
"
\n",
" \n",
" 41 | \n",
" 42 | \n",
" 1770 | \n",
" 47.0 | \n",
" 18.50 | \n",
"
\n",
" \n",
" 42 | \n",
" 43 | \n",
" 1775 | \n",
" 44.0 | \n",
" 19.50 | \n",
"
\n",
" \n",
" 43 | \n",
" 44 | \n",
" 1780 | \n",
" 46.0 | \n",
" 21.00 | \n",
"
\n",
" \n",
" 44 | \n",
" 45 | \n",
" 1785 | \n",
" 42.0 | \n",
" 23.00 | \n",
"
\n",
" \n",
" 45 | \n",
" 46 | \n",
" 1790 | \n",
" 47.5 | \n",
" 25.50 | \n",
"
\n",
" \n",
" 46 | \n",
" 47 | \n",
" 1795 | \n",
" 76.0 | \n",
" 27.50 | \n",
"
\n",
" \n",
" 47 | \n",
" 48 | \n",
" 1800 | \n",
" 79.0 | \n",
" 28.50 | \n",
"
\n",
" \n",
" 48 | \n",
" 49 | \n",
" 1805 | \n",
" 81.0 | \n",
" 29.50 | \n",
"
\n",
" \n",
" 49 | \n",
" 50 | \n",
" 1810 | \n",
" 99.0 | \n",
" 30.00 | \n",
"
\n",
" \n",
" 50 | \n",
" 51 | \n",
" 1815 | \n",
" 78.0 | \n",
" NaN | \n",
"
\n",
" \n",
" 51 | \n",
" 52 | \n",
" 1820 | \n",
" 54.0 | \n",
" NaN | \n",
"
\n",
" \n",
" 52 | \n",
" 53 | \n",
" 1821 | \n",
" 54.0 | \n",
" NaN | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Unnamed: 0 Year Wheat Wages\n",
"0 1 1565 41.0 5.00\n",
"1 2 1570 45.0 5.05\n",
"2 3 1575 42.0 5.08\n",
"3 4 1580 49.0 5.12\n",
"4 5 1585 41.5 5.15\n",
"5 6 1590 47.0 5.25\n",
"6 7 1595 64.0 5.54\n",
"7 8 1600 27.0 5.61\n",
"8 9 1605 33.0 5.69\n",
"9 10 1610 32.0 5.78\n",
"10 11 1615 33.0 5.94\n",
"11 12 1620 35.0 6.01\n",
"12 13 1625 33.0 6.12\n",
"13 14 1630 45.0 6.22\n",
"14 15 1635 33.0 6.30\n",
"15 16 1640 39.0 6.37\n",
"16 17 1645 53.0 6.45\n",
"17 18 1650 42.0 6.50\n",
"18 19 1655 40.5 6.60\n",
"19 20 1660 46.5 6.75\n",
"20 21 1665 32.0 6.80\n",
"21 22 1670 37.0 6.90\n",
"22 23 1675 43.0 7.00\n",
"23 24 1680 35.0 7.30\n",
"24 25 1685 27.0 7.60\n",
"25 26 1690 40.0 8.00\n",
"26 27 1695 50.0 8.50\n",
"27 28 1700 30.0 9.00\n",
"28 29 1705 32.0 10.00\n",
"29 30 1710 44.0 11.00\n",
"30 31 1715 33.0 11.75\n",
"31 32 1720 29.0 12.50\n",
"32 33 1725 39.0 13.00\n",
"33 34 1730 26.0 13.30\n",
"34 35 1735 32.0 13.60\n",
"35 36 1740 27.0 14.00\n",
"36 37 1745 27.5 14.50\n",
"37 38 1750 31.0 15.00\n",
"38 39 1755 35.5 15.70\n",
"39 40 1760 31.0 16.50\n",
"40 41 1765 43.0 17.60\n",
"41 42 1770 47.0 18.50\n",
"42 43 1775 44.0 19.50\n",
"43 44 1780 46.0 21.00\n",
"44 45 1785 42.0 23.00\n",
"45 46 1790 47.5 25.50\n",
"46 47 1795 76.0 27.50\n",
"47 48 1800 79.0 28.50\n",
"48 49 1805 81.0 29.50\n",
"49 50 1810 99.0 30.00\n",
"50 51 1815 78.0 NaN\n",
"51 52 1820 54.0 NaN\n",
"52 53 1821 54.0 NaN"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = pd.read_csv('https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/master/csv/HistData/Wheat.csv')\n",
"data"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Unnamed: 0 | \n",
" Year | \n",
" Wheat | \n",
" Wages | \n",
"
\n",
" \n",
" \n",
" \n",
" 50 | \n",
" 51 | \n",
" 1815 | \n",
" 78.0 | \n",
" NaN | \n",
"
\n",
" \n",
" 51 | \n",
" 52 | \n",
" 1820 | \n",
" 54.0 | \n",
" NaN | \n",
"
\n",
" \n",
" 52 | \n",
" 53 | \n",
" 1821 | \n",
" 54.0 | \n",
" NaN | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Unnamed: 0 Year Wheat Wages\n",
"50 51 1815 78.0 NaN\n",
"51 52 1820 54.0 NaN\n",
"52 53 1821 54.0 NaN"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Voir les lignes avec des données manquantes\n",
"\n",
"data[data.isnull().any(axis = 1)]"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Unnamed: 0 | \n",
" Year | \n",
" Wheat | \n",
" Wages | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1 | \n",
" 1565 | \n",
" 41.0 | \n",
" 5.00 | \n",
"
\n",
" \n",
" 1 | \n",
" 2 | \n",
" 1570 | \n",
" 45.0 | \n",
" 5.05 | \n",
"
\n",
" \n",
" 2 | \n",
" 3 | \n",
" 1575 | \n",
" 42.0 | \n",
" 5.08 | \n",
"
\n",
" \n",
" 3 | \n",
" 4 | \n",
" 1580 | \n",
" 49.0 | \n",
" 5.12 | \n",
"
\n",
" \n",
" 4 | \n",
" 5 | \n",
" 1585 | \n",
" 41.5 | \n",
" 5.15 | \n",
"
\n",
" \n",
" 5 | \n",
" 6 | \n",
" 1590 | \n",
" 47.0 | \n",
" 5.25 | \n",
"
\n",
" \n",
" 6 | \n",
" 7 | \n",
" 1595 | \n",
" 64.0 | \n",
" 5.54 | \n",
"
\n",
" \n",
" 7 | \n",
" 8 | \n",
" 1600 | \n",
" 27.0 | \n",
" 5.61 | \n",
"
\n",
" \n",
" 8 | \n",
" 9 | \n",
" 1605 | \n",
" 33.0 | \n",
" 5.69 | \n",
"
\n",
" \n",
" 9 | \n",
" 10 | \n",
" 1610 | \n",
" 32.0 | \n",
" 5.78 | \n",
"
\n",
" \n",
" 10 | \n",
" 11 | \n",
" 1615 | \n",
" 33.0 | \n",
" 5.94 | \n",
"
\n",
" \n",
" 11 | \n",
" 12 | \n",
" 1620 | \n",
" 35.0 | \n",
" 6.01 | \n",
"
\n",
" \n",
" 12 | \n",
" 13 | \n",
" 1625 | \n",
" 33.0 | \n",
" 6.12 | \n",
"
\n",
" \n",
" 13 | \n",
" 14 | \n",
" 1630 | \n",
" 45.0 | \n",
" 6.22 | \n",
"
\n",
" \n",
" 14 | \n",
" 15 | \n",
" 1635 | \n",
" 33.0 | \n",
" 6.30 | \n",
"
\n",
" \n",
" 15 | \n",
" 16 | \n",
" 1640 | \n",
" 39.0 | \n",
" 6.37 | \n",
"
\n",
" \n",
" 16 | \n",
" 17 | \n",
" 1645 | \n",
" 53.0 | \n",
" 6.45 | \n",
"
\n",
" \n",
" 17 | \n",
" 18 | \n",
" 1650 | \n",
" 42.0 | \n",
" 6.50 | \n",
"
\n",
" \n",
" 18 | \n",
" 19 | \n",
" 1655 | \n",
" 40.5 | \n",
" 6.60 | \n",
"
\n",
" \n",
" 19 | \n",
" 20 | \n",
" 1660 | \n",
" 46.5 | \n",
" 6.75 | \n",
"
\n",
" \n",
" 20 | \n",
" 21 | \n",
" 1665 | \n",
" 32.0 | \n",
" 6.80 | \n",
"
\n",
" \n",
" 21 | \n",
" 22 | \n",
" 1670 | \n",
" 37.0 | \n",
" 6.90 | \n",
"
\n",
" \n",
" 22 | \n",
" 23 | \n",
" 1675 | \n",
" 43.0 | \n",
" 7.00 | \n",
"
\n",
" \n",
" 23 | \n",
" 24 | \n",
" 1680 | \n",
" 35.0 | \n",
" 7.30 | \n",
"
\n",
" \n",
" 24 | \n",
" 25 | \n",
" 1685 | \n",
" 27.0 | \n",
" 7.60 | \n",
"
\n",
" \n",
" 25 | \n",
" 26 | \n",
" 1690 | \n",
" 40.0 | \n",
" 8.00 | \n",
"
\n",
" \n",
" 26 | \n",
" 27 | \n",
" 1695 | \n",
" 50.0 | \n",
" 8.50 | \n",
"
\n",
" \n",
" 27 | \n",
" 28 | \n",
" 1700 | \n",
" 30.0 | \n",
" 9.00 | \n",
"
\n",
" \n",
" 28 | \n",
" 29 | \n",
" 1705 | \n",
" 32.0 | \n",
" 10.00 | \n",
"
\n",
" \n",
" 29 | \n",
" 30 | \n",
" 1710 | \n",
" 44.0 | \n",
" 11.00 | \n",
"
\n",
" \n",
" 30 | \n",
" 31 | \n",
" 1715 | \n",
" 33.0 | \n",
" 11.75 | \n",
"
\n",
" \n",
" 31 | \n",
" 32 | \n",
" 1720 | \n",
" 29.0 | \n",
" 12.50 | \n",
"
\n",
" \n",
" 32 | \n",
" 33 | \n",
" 1725 | \n",
" 39.0 | \n",
" 13.00 | \n",
"
\n",
" \n",
" 33 | \n",
" 34 | \n",
" 1730 | \n",
" 26.0 | \n",
" 13.30 | \n",
"
\n",
" \n",
" 34 | \n",
" 35 | \n",
" 1735 | \n",
" 32.0 | \n",
" 13.60 | \n",
"
\n",
" \n",
" 35 | \n",
" 36 | \n",
" 1740 | \n",
" 27.0 | \n",
" 14.00 | \n",
"
\n",
" \n",
" 36 | \n",
" 37 | \n",
" 1745 | \n",
" 27.5 | \n",
" 14.50 | \n",
"
\n",
" \n",
" 37 | \n",
" 38 | \n",
" 1750 | \n",
" 31.0 | \n",
" 15.00 | \n",
"
\n",
" \n",
" 38 | \n",
" 39 | \n",
" 1755 | \n",
" 35.5 | \n",
" 15.70 | \n",
"
\n",
" \n",
" 39 | \n",
" 40 | \n",
" 1760 | \n",
" 31.0 | \n",
" 16.50 | \n",
"
\n",
" \n",
" 40 | \n",
" 41 | \n",
" 1765 | \n",
" 43.0 | \n",
" 17.60 | \n",
"
\n",
" \n",
" 41 | \n",
" 42 | \n",
" 1770 | \n",
" 47.0 | \n",
" 18.50 | \n",
"
\n",
" \n",
" 42 | \n",
" 43 | \n",
" 1775 | \n",
" 44.0 | \n",
" 19.50 | \n",
"
\n",
" \n",
" 43 | \n",
" 44 | \n",
" 1780 | \n",
" 46.0 | \n",
" 21.00 | \n",
"
\n",
" \n",
" 44 | \n",
" 45 | \n",
" 1785 | \n",
" 42.0 | \n",
" 23.00 | \n",
"
\n",
" \n",
" 45 | \n",
" 46 | \n",
" 1790 | \n",
" 47.5 | \n",
" 25.50 | \n",
"
\n",
" \n",
" 46 | \n",
" 47 | \n",
" 1795 | \n",
" 76.0 | \n",
" 27.50 | \n",
"
\n",
" \n",
" 47 | \n",
" 48 | \n",
" 1800 | \n",
" 79.0 | \n",
" 28.50 | \n",
"
\n",
" \n",
" 48 | \n",
" 49 | \n",
" 1805 | \n",
" 81.0 | \n",
" 29.50 | \n",
"
\n",
" \n",
" 49 | \n",
" 50 | \n",
" 1810 | \n",
" 99.0 | \n",
" 30.00 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Unnamed: 0 Year Wheat Wages\n",
"0 1 1565 41.0 5.00\n",
"1 2 1570 45.0 5.05\n",
"2 3 1575 42.0 5.08\n",
"3 4 1580 49.0 5.12\n",
"4 5 1585 41.5 5.15\n",
"5 6 1590 47.0 5.25\n",
"6 7 1595 64.0 5.54\n",
"7 8 1600 27.0 5.61\n",
"8 9 1605 33.0 5.69\n",
"9 10 1610 32.0 5.78\n",
"10 11 1615 33.0 5.94\n",
"11 12 1620 35.0 6.01\n",
"12 13 1625 33.0 6.12\n",
"13 14 1630 45.0 6.22\n",
"14 15 1635 33.0 6.30\n",
"15 16 1640 39.0 6.37\n",
"16 17 1645 53.0 6.45\n",
"17 18 1650 42.0 6.50\n",
"18 19 1655 40.5 6.60\n",
"19 20 1660 46.5 6.75\n",
"20 21 1665 32.0 6.80\n",
"21 22 1670 37.0 6.90\n",
"22 23 1675 43.0 7.00\n",
"23 24 1680 35.0 7.30\n",
"24 25 1685 27.0 7.60\n",
"25 26 1690 40.0 8.00\n",
"26 27 1695 50.0 8.50\n",
"27 28 1700 30.0 9.00\n",
"28 29 1705 32.0 10.00\n",
"29 30 1710 44.0 11.00\n",
"30 31 1715 33.0 11.75\n",
"31 32 1720 29.0 12.50\n",
"32 33 1725 39.0 13.00\n",
"33 34 1730 26.0 13.30\n",
"34 35 1735 32.0 13.60\n",
"35 36 1740 27.0 14.00\n",
"36 37 1745 27.5 14.50\n",
"37 38 1750 31.0 15.00\n",
"38 39 1755 35.5 15.70\n",
"39 40 1760 31.0 16.50\n",
"40 41 1765 43.0 17.60\n",
"41 42 1770 47.0 18.50\n",
"42 43 1775 44.0 19.50\n",
"43 44 1780 46.0 21.00\n",
"44 45 1785 42.0 23.00\n",
"45 46 1790 47.5 25.50\n",
"46 47 1795 76.0 27.50\n",
"47 48 1800 79.0 28.50\n",
"48 49 1805 81.0 29.50\n",
"49 50 1810 99.0 30.00"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Supprimer la ligne qui ne contient pas de données valables\n",
"# Copier les données\n",
"my_data = data.dropna().copy()\n",
"my_data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Représentation graphique du prix du blé "
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(array([18., 8., 16., 3., 0., 1., 1., 2., 0., 1.]),\n",
" array([26. , 33.3, 40.6, 47.9, 55.2, 62.5, 69.8, 77.1, 84.4, 91.7, 99. ]),\n",
" )"
]
},
"execution_count": 41,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAD8CAYAAABw1c+bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAEUpJREFUeJzt3X+QXWV9x/H3p6C2UFpEFuSnoZ0MHWQk0p0oZcrgzyaRkdaxbTK1Uus06sBUO51pQ53a+p9Oa39YLEyqFG0tWq0oIxFhbDtox18bDBCElIhRYihZdAQpTjX67R/3ZNyud7PLPTfemz7v18yde85znnue795sPnv2ueecTVUhSWrHj026AEnSj5bBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWrM0ZMuYJgTTzyxVq1aNekyJOmIsX379oeramYlfacy+FetWsXc3Nyky5CkI0aSr6y0r1M9ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUmKm8crePVVtumsi4e97ykomMK0lPlEf8ktSYZY/4k1wLXALsr6pzu7b3A2d3XY4HvllVa4a8dg/wLeB7wIGqmh1T3ZKkEa1kquc64CrgPQcbqurXDy4neRvwyCFe/7yqenjUAiVJ47Vs8FfVbUlWDduWJMCvAc8fb1mSpMOl7xz/LwIPVdV9S2wv4JYk25NsPtSOkmxOMpdkbn5+vmdZkqSl9A3+TcD1h9h+YVWdD6wHLk9y0VIdq2prVc1W1ezMzIr+loAkaQQjB3+So4GXAe9fqk9V7eue9wM3AGtHHU+SNB59jvhfCNxbVXuHbUxybJLjDi4DLwZ29hhPkjQGywZ/kuuBTwNnJ9mb5NXdpo0smuZJcmqSbd3qycCnktwBfA64qapuHl/pkqRRrOSsnk1LtP/WkLZ9wIZu+X7gvJ71SZLGzCt3JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktSYlfzNXU25VVtumsi4e97ykomMK6kfj/glqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWrMssGf5Nok+5PsXND2p0m+lmRH99iwxGvXJdmVZHeSLeMsXJI0mpUc8V8HrBvS/pdVtaZ7bFu8MclRwDuA9cA5wKYk5/QpVpLU37LBX1W3Ad8YYd9rgd1VdX9VfQd4H3DpCPuRJI1Rnzn+K5Lc2U0FPXXI9tOABxas7+3ahkqyOclckrn5+fkeZUmSDmXU4L8a+FlgDfAg8LYhfTKkrZbaYVVtrarZqpqdmZkZsSxJ0nJGCv6qeqiqvldV3wf+jsG0zmJ7gTMWrJ8O7BtlPEnS+IwU/ElOWbD6K8DOId0+D6xOclaSJwMbgRtHGU+SND7L3pY5yfXAxcCJSfYCfwJcnGQNg6mbPcBrur6nAu+sqg1VdSDJFcDHgaOAa6vq7sPyVUiSVmzZ4K+qTUOa37VE333AhgXr24AfOtVTkjQ5XrkrSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNWbZ4E9ybZL9SXYuaPuzJPcmuTPJDUmOX+K1e5LclWRHkrlxFi5JGs1KjvivA9YtarsVOLeqngX8J3DlIV7/vKpaU1Wzo5UoSRqnZYO/qm4DvrGo7ZaqOtCtfgY4/TDUJkk6DMYxx//bwMeW2FbALUm2J9k8hrEkST0d3efFSd4IHADeu0SXC6tqX5KTgFuT3Nv9BjFsX5uBzQBnnnlmn7IkSYcw8hF/ksuAS4DfqKoa1qeq9nXP+4EbgLVL7a+qtlbVbFXNzszMjFqWJGkZIwV/knXAHwIvrarHl+hzbJLjDi4DLwZ2DusrSfrRWcnpnNcDnwbOTrI3yauBq4DjGEzf7EhyTdf31CTbupeeDHwqyR3A54Cbqurmw/JVSJJWbNk5/qraNKT5XUv03Qds6JbvB87rVZ0kaey8cleSGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY1ZNviTXJtkf5KdC9pOSHJrkvu656cu8dp1SXYl2Z1kyzgLlySNZiVH/NcB6xa1bQE+UVWrgU906/9HkqOAdwDrgXOATUnO6VWtJKm3ZYO/qm4DvrGo+VLg3d3yu4FfHvLStcDuqrq/qr4DvK97nSRpgkad4z+5qh4E6J5PGtLnNOCBBet7uzZJ0gQdzg93M6StluycbE4yl2Rufn7+MJYlSW0bNfgfSnIKQPe8f0ifvcAZC9ZPB/YttcOq2lpVs1U1OzMzM2JZkqTljBr8NwKXdcuXAR8Z0ufzwOokZyV5MrCxe50kaYJWcjrn9cCngbOT7E3yauAtwIuS3Ae8qFsnyalJtgFU1QHgCuDjwD3AP1fV3Yfny5AkrdTRy3Woqk1LbHrBkL77gA0L1rcB20auTpI0dl65K0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMcv+6UWtzKotN026BElaEY/4JakxIwd/krOT7FjweDTJGxb1uTjJIwv6vKl/yZKkPkae6qmqXcAagCRHAV8DbhjS9ZNVdcmo40iSxmtcUz0vAL5UVV8Z0/4kSYfJuIJ/I3D9EtsuSHJHko8leeaYxpMkjah38Cd5MvBS4ANDNt8OPKOqzgP+BvjwIfazOclckrn5+fm+ZUmSljCOI/71wO1V9dDiDVX1aFU91i1vA56U5MRhO6mqrVU1W1WzMzMzYyhLkjTMOIJ/E0tM8yR5epJ0y2u78b4+hjElSSPqdQFXkmOAFwGvWdD2WoCqugZ4OfC6JAeAbwMbq6r6jClJ6qdX8FfV48DTFrVds2D5KuCqPmNIksbLK3clqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktSYXsGfZE+Su5LsSDI3ZHuSvD3J7iR3Jjm/z3iSpP6OHsM+nldVDy+xbT2wuns8B7i6e5YkTcjhnuq5FHhPDXwGOD7JKYd5TEnSIfQN/gJuSbI9yeYh208DHliwvrdr+yFJNieZSzI3Pz/fsyxJ0lL6Bv+FVXU+gymdy5NctGh7hrymhu2oqrZW1WxVzc7MzPQsS5K0lF7BX1X7uuf9wA3A2kVd9gJnLFg/HdjXZ0xJUj8jB3+SY5Mcd3AZeDGwc1G3G4FXdmf3PBd4pKoeHLlaSVJvfc7qORm4IcnB/fxTVd2c5LUAVXUNsA3YAOwGHgde1a9cSVJfIwd/Vd0PnDek/ZoFywVcPuoYkqTx88pdSWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JakyfP72oxq3actPExt7zlpdMbGzpSOcRvyQ1ZuTgT3JGkn9Lck+Su5O8fkifi5M8kmRH93hTv3IlSX31meo5APx+Vd2e5Dhge5Jbq+qLi/p9sqou6TGOJGmMRj7ir6oHq+r2bvlbwD3AaeMqTJJ0eIxljj/JKuDZwGeHbL4gyR1JPpbkmeMYT5I0ut5n9ST5SeBfgDdU1aOLNt8OPKOqHkuyAfgwsHqJ/WwGNgOceeaZfcuSJC2h1xF/kicxCP33VtWHFm+vqker6rFueRvwpCQnDttXVW2tqtmqmp2ZmelTliTpEPqc1RPgXcA9VfUXS/R5etePJGu78b4+6piSpP76TPVcCPwmcFeSHV3bHwFnAlTVNcDLgdclOQB8G9hYVdVjTElSTyMHf1V9Csgyfa4Crhp1DEnS+HnlriQ1xnv1SDqkSd2TyfsxHT4e8UtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjLdskJ6ASd2+QD9a/99vU+ERvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjekV/EnWJdmVZHeSLUO2J8nbu+13Jjm/z3iSpP5GDv4kRwHvANYD5wCbkpyzqNt6YHX32AxcPep4kqTx6HPEvxbYXVX3V9V3gPcBly7qcynwnhr4DHB8klN6jClJ6qlP8J8GPLBgfW/X9kT7SJJ+hPrcqydD2mqEPoOOyWYG00EAjyXZ1aO2Pk4EHp7Q2E9E03XmrePe4xHxfh4JNcKY6jwM/8aLTd37OeRrfiI1PmOl4/QJ/r3AGQvWTwf2jdAHgKraCmztUc9YJJmrqtlJ17Ec6xyvI6HOI6FGsM5xOlw19pnq+TywOslZSZ4MbARuXNTnRuCV3dk9zwUeqaoHe4wpSepp5CP+qjqQ5Arg48BRwLVVdXeS13bbrwG2ARuA3cDjwKv6lyxJ6qPX/firahuDcF/Yds2C5QIu7zPGBEx8ummFrHO8joQ6j4QawTrH6bDUmEE2S5Ja4S0bJKkxTQd/kh9P8rkkdyS5O8mbu/YTktya5L7u+alTUOtRSb6Q5KNTXOOeJHcl2ZFkborrPD7JB5Pcm+SeJBdMW51Jzu7ex4OPR5O8YQrr/L3u/87OJNd3/6emqsauztd3Nd6d5A1d28TrTHJtkv1Jdi5oW7KuJFd2t8DZleSXRh236eAH/gd4flWdB6wB1nVnH20BPlFVq4FPdOuT9nrgngXr01gjwPOqas2CU9Cmsc6/Bm6uqp8DzmPwvk5VnVW1q3sf1wA/z+DkiBuYojqTnAb8LjBbVecyOMlj4zTVCJDkXOB3GNxt4DzgkiSrmY46rwPWLWobWld3S5yNwDO71/xtd+ucJ66qfAw+5zgGuB14DrALOKVrPwXYNeHaTu++AZ4PfLRrm6oauzr2ACcuapuqOoGfAr5M9/nWtNa5qLYXA/8xbXXygyvzT2BwoshHu1qnpsauhl8F3rlg/Y+BP5iWOoFVwM4F60PrAq4ErlzQ7+PABaOM2foR/8EplB3AfuDWqvoscHJ11xt0zydNskbgrxh8o35/Qdu01QiDq7JvSbK9uxIbpq/OnwHmgb/vps7emeRYpq/OhTYC13fLU1NnVX0N+HPgq8CDDK7TuWWaauzsBC5K8rQkxzA4xfwMpq/Og5aqa2y3wGk++KvqezX4dfp0YG33a+HUSHIJsL+qtk+6lhW4sKrOZ3BX1suTXDTpgoY4GjgfuLqqng38N9Mx/TRUd3HkS4EPTLqWxbq550uBs4BTgWOTvGKyVf2wqroHeCtwK3AzcAdwYKJFjWbFt8BZTvPBf1BVfRP4dwZzZw8dvIto97x/gqVdCLw0yR4Gd0B9fpJ/ZLpqBKCq9nXP+xnMR69l+urcC+ztfrMD+CCDHwTTVudB64Hbq+qhbn2a6nwh8OWqmq+q7wIfAn5hymoEoKreVVXnV9VFwDeA+5jCOjtL1bXiW+Asp+ngTzKT5Phu+ScYfCPfy+BWE5d13S4DPjKZCqGqrqyq06tqFYNf+f+1ql7BFNUIkOTYJMcdXGYw17uTKauzqv4LeCDJ2V3TC4AvMmV1LrCJH0zzwHTV+VXguUmOSRIG7+U9TFeNACQ5qXs+E3gZg/d06ursLFXXjcDGJE9JchaDv3PyuZFGmOSHLpN+AM8CvgDcySCk3tS1P43Bh6n3dc8nTLrWrq6L+cGHu1NVI4O58zu6x93AG6exzq6mNcBc9+/+YeCpU1rnMcDXgZ9e0DZVdQJvZnCwtBP4B+Ap01ZjV+cnGfyAvwN4wbS8lwx+AD0IfJfBEf2rD1UX8EbgSww+AF4/6rheuStJjWl6qkeSWmTwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUmP8FpQBesMRtXakAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.hist(my_data[\"Wheat\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Représentation grahique des salaires"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 65,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHltJREFUeJzt3Xl4VPXd/vH3JyEhyFICBAggOwioLBJxoSqCgoq/oi1qS1W0ttif2mqpVfGx7lZqbau21BatlSr1kZZWUBC1CCgKkVVAFkF2CCFAwCxknc/zR8YdJJBMziz367q4ZuYwce7T09zXl+/5njPm7oiISOxLCjqAiIjUDhW6iEicUKGLiMQJFbqISJxQoYuIxAkVuohInFChi4jECRW6iEicUKGLiMSJenX5YS1atPCOHTvW5UeKiMS8JUuW7HH3jCO9r04LvWPHjixevLguP1JEJOaZ2ZbqvE9TLiIicUKFLiISJ1ToIiJxQoUuIhInVOgiInGiWqtczGwzUABUAhXunmVmzYAXgY7AZuByd8+PTEwRETmSoxmhn+vufd09K/z6DmC2u3cDZodfi4hIQGoy5TICmBR+Pgm4pOZxRETkWFW30B143cyWmNmY8LZW7p4DEH5seagfNLMxZrbYzBbn5eXVPLGISCxwh23bKK8M8Y8lO1i4OfIz0tUt9IHufgpwIXCjmZ1d3Q9w94nunuXuWRkZR7xyVUQk9u3cCd/+NpW9+3DnX9/iPytzWbe7KOIfW61Cd/ed4cfdwH+AAUCumWUChB93RyqkiEhMcIe//hXv1YuKma/y4rCr2ZJ0HO518/FHXOViZg2BJHcvCD8fCtwPTAdGA+PDj9MiGVREJKq5w/Dh8OqrrOuZxV+uuYttGcfXaYTqLFtsBfzHzD55/z/cfZaZLQKmmNl1wFbgssjFFBGJMgcPwmuvwcqVFN02jsXbDpBenMx719zJa9+8FE+q+8t8jljo7r4R6HOI7XuBIZEIJSISlQoLYcYMmDoVnzkTKyqiqEk6N7QcTOVxDSkZfV+g8er09rkiIjEnPx9SU6FhQ4r/8jTH3fozCpq2YOGAC1l06hDe79qPynopUBEKOqkKXUTkK/LyYNq0qpH4f//L8rt/w3MnD6UgtTft7nyaDzr3JpSUHHTKr1Chi4h84uBBGD4cnzcPC4XY06odC4aO4q16x7M1vwQaNSW/a7+gUx6WCl1EEteWLVWj8P372f6zcbyzKZ9uB1PYevEPWNh/CB+16wZVC0JiggpdRBLLxo0wZQo+dSoW/krMj7r35Z4ul1TdfXDMw8HmqwEVuojEr717YfVqWLMGLruMUNOm5D/xJM0ff5RNXU4i+4qbWXDKuezMOB6CP6dZYyp0EYlt7pCTA40aQZMmsHAh3HEHodWrSfrc/aOe2p3KWx378o0uQ6l8dBB5zTIDDB0ZKnQRiS1798Kzz8Lq1fiaNfjq1SQdOMDyh//I/IHDKVu0g4t37md7z4HsOr8z21p3YlPrTuxt1govD3GwUfOg9yBiVOgiEl1CIVi/vmqaZPXqT4u78LLv8eH3f8SeD7cx7NZb+bhpc7a17sSOrKHsatuFZdaObRv2QXon3h33TNB7EQgVuojUvdJS2LwZNm367E/XrlT88Efk7ism8+STSSovB2Bf89ZszezEO1vKWThvE2UVlbzwxGwKGzUNdh+ikApdRGpfKAQ7dnyxsBs3xseOpbC0krQePUjZsvnTt1fUSyF74IU8kZpFSnISWTeMJ7dJBttad6SkQcPP/rvlIcBU5oehQheRo+cO+/Z9sbBLSuDuuymtCOGDB5P29rzP3m7G+l5Z3NNiMA6cO+xa3IycZm3IadGW/G+0qLqZlUNlRYj5fQYFtmuxTIUuIodWXPzZtMjGjVUj7vHjqQw5ZaOvocHzf//C2/e1yOTmzt+itCLEWb0volGXgeS0aMvO5m3Y06w1FSmpEKq6Mfgbp18cwA7FPxW6SCILhapK+5MTkDfeiDdoQOk995H2wBfvHFiWmsYt3b7FnuQ0BmT0J3NUBrkZbdmZnkluRhsONmgUnhKBef3PC2BnRIUukgjKy2HDBmjXDho3hlmz8HHjYN067ODBT982Pqkz77foTM+KdvQceSN5GW3Z0SyT3BZt2N+kedVl8A4LT/4mnBzg/sghqdBF4tG2bfDUU58u+ePDD7GKCt5+bBLzTzyT1EW7GVx5HDnnfIedbTuxpVUntmZ2oqhhEwg5K7qdwopupwS9F3KUVOgisai8HJYt+8pa7b033MKaEaPYv2QDwx96iLyWx7M1syM5F57OzjadWBZqxd5tH0O7k1jwsz8EvRdSy1ToItFu/3547z3Izobu3Sm+dCQ7t+XR9bTTgKolf7syO7C1dWfeyYH3F2yltLQx/3hyPuUp9QMOL3VJhS4STdw/u13rDTfgc+Zga9dW/ZUZ84aM5MmD3Uitl0TvsU+wtUU7cjPaEkr+3K9yeQiSkihPUpknGhW6SJC2b68aeS9cCNnZlFsyiyf9mzW7Cslaup6ytJZsGjmEDzufxNoOvapWkjgcLA+RfdLAoNNLlFGhi9SVoiJYsQLOOAOAimuupd6kZ6ue10thc4cerDmhH1Pmb6GkPMTM638dYFiJRSp0kUhas6bqG3FeegmWL8cqK3n6pUUsLUujQ9O+tLnyF6zrdCIb2p1QdeENfLqWW+RoqdBFapM7VFZCvXqEnnuepKuvAmBDt96sGn4tH3U5maW7yihLTWJ3n7MCDivxRoUuUlPusGhR1Uh86lR2jPkJ0864hDUfZ3LqVbfzbr9B7G3aMuiUkgBU6CLHqrISbr216rspt22jMrkeH/QawGt5yby3YS9+XDovn3t50CklgajQRarLHZYuhRUrKL1qNO/vKCDzv/PZ3bwTiy76EQtOOqvqSkuRgKjQRY5kyxaYPBl/7jls7VpKGzZiTGVPQmlplNzyZNVtX0WigApd5OtMnAjXXw/Ahyecwvxr72J+v8EUJad+egGPSLRQoYt8oqwMZs6E55+n4MrRzO5yKstL29LzOzfw9ukXsqt5m6ATinwtFboktspKePFFmDEDf/VVLD+fgm805+/N+vDON9tR1iiTVcOvCzqlSLVUu9DNLBlYDOxw94vNrBnwItAR2Axc7u75kQgpUmvc4YMPqubFhw9nZ0EZTX9xO6GiYpacNJDs04exuMeAqnujVHrQaUWOytGM0G8G1gCfnMa/A5jt7uPN7I7w69trOZ9IzZWUwNy58Mor+CuvYFu2UJzegpv/+AZFFU7zn/+Z3G+0JJSUHHRSkRqpVqGbWTtgOPAQMDa8eQQwKPx8EjAXFbpEix07oHVrSE6m9NbbqD/hD5TVb8CKXgNYMfgqsk88k/zSqkvsc9IzAw4rUjuqO0J/DLgNaPy5ba3cPQfA3XPMTJfCSbBKSmDqVPjzn2H+fN54djovN+5Mapuzybj1BJZ3O0X3B5e4dsRCN7OLgd3uvsTMBh3tB5jZGGAMQPv27Y86oMgR7d8PDz2E/+1v2N695LVuz5sjb2JOfgp7QqWQ2ZnNmZ2DTikScdUZoQ8EvmVmFwFpQBMzex7INbPM8Og8E9h9qB9294nARICsrCydZZLaUV5e9W313bqxrcRp9rdJfNCpL7OvG8nS7lm62EcS0hEL3d3HAeMAwiP0W939SjP7DTAaGB9+nBbBnCJVtm6Fp57Cn36akpQ07n78FXYUlGG/eonSlLSg04kEqibr0McDU8zsOmArcFntRBI5hJUr4YEH8KlTwZ1lfc7izcEj2bzvYNVoXGUucnSF7u5zqVrNgrvvBYbUfiSRMPeqqZXUVHYtW03TGa/y2oVX8/qgkeQ218oUkS/TlaISfSoq4J//xB95hN2DhvLYkGvZGupK8m9mUNygUdDpRKKWzhxJ9CguhgkT8O7dYdQocvMOMKUsnfV5xZS6qcxFjkAjdIkaoWt/QNKUF/moWx+m3/w7Fpx8llariBwFFboEKy8P3NmY3Ijnz7oa63Ie73ftB2ZBJxOJORr+SDDc4YUX8F692DzqOu6asY4VDVvzfrdTVOYix0iFLnVv+3b41rdg1Cg2Nc1kwuDRlOnOhiI1pikXqVtvvolfeikVpWX87/fG8vKQ7+ouhyK1RIUudcMdzFjRoiOlPU7j+ZE3saNFu6BTicQVFbpEVmUlPPYYFdNf5olfPsXinYWU/Xh80KlE4pLm0CVyVq3CzzgDbr2VFYXGqg9zNFcuEkEaoUtkTJqEjxlDcYNGPHPDeOb1P0+rV0QiTIUuta+khLKHHmZDt778bsyv2N84PehEIglBhS61Z98+aNCA+TkHeeHGJ8hr2LTqy5ZFpE5oDl1qx6pV+Kmnsv6Ka/nT/C3kNmmhMhepY/qNk5pbsQI/5xwKk1J4vu+FOvEpEhAVutTMRx/hw4bxcb007rrjaXKa6T7lIkFRocuxC4Xw73yHg8WlPDDuKZW5SMBU6HLM3Ix/3fQAK7btZ3OrTkHHEUl4KnQ5ekVF8MorTO7yTV6t347Sjm2DTiQiaJWLHK2yMhg5Eh81ivffWEhphU6AikQLFbpUXygE11wDs2bx9Og72dRa0ywi0USFLtUTCsFPfwovvMALl/+U1866NOhEIvIlKnSpniVLYMIEXrnwKqYOuzroNCJyCDopKodXUQHvvEPBaQP5S0Fziu58mpVd+uomWyJRSiN0ObQVK/AzzsAHD+aBP8xg8bYDrNSXN4tENRW6fFFBAdx9N96/P0UbNvHEDePZ2LwdFSGtZhGJdppykc9UVBDq2ZOkHTuYP3A4z353LAcaNg06lYhUkwo9kbnDm2/Cyy+Tc+/DTPtgN37R9ezM7MSajr2CTiciR0mFnoiKi2HyZPyJJ7BVqyhqks6DHYaxJ70VlWcMDzqdiBwjFXqiWboUP/98bN8+tnc4gVd/eC9zTh1KeUp90DS5SExTocc7d1iwAPLzyTvnPGYWNqZTr4HMO3sE72sJokhcOWKhm1ka8BZQP/z+f7n7PWbWDHgR6AhsBi539/zIRZWjUloKU6bgjz+OLVlCTtcTGfvL5wi5U/mDe4NOJyIRUJ1li6XAYHfvA/QFLjCz04E7gNnu3g2YHX4t0WDyZLxDB7j6anbtyueZa+7k1p//hfJKpzIUdDgRiZQjjtDd3YHC8MuU8B8HRgCDwtsnAXOB22s9oRxZZSW8/Tb07El+42a8n1tO09bdmHX1PSzuMUDTKiIJolpz6GaWDCwBugIT3D3bzFq5ew6Au+eYWcvD/OwYYAxA+/btaye1QHk5zJkD//oX/tJLWF4e879/IxPOvw5v3oeKmx8POqGI1LFqFbq7VwJ9zawp8B8zO6m6H+DuE4GJAFlZWVpHURPuVaPt8nK8fXts1y7K0o5jSe+BLL7iPLJ7nUm5rugUSVhHtcrF3feb2VzgAiDXzDLDo/NMYHckAia8oiKYNQumTqUibw9vTfgHczfso+ugUexp1Y7FPU+jLDUt6JQiEgWqs8olAygPl3kD4Dzg18B0YDQwPvw4LZJBE86cOTBhAj5zJnbwIIVN0snuN4hnF2zhYMhYPfT7QScUkShTnRF6JjApPI+eBExx91fMbAEwxcyuA7YCl0UwZ/zbtw+mT4eLL2ZvgybsnLOIDm/OY8EZF7N4wPm836UPoeR6oFUqInIY1VnlsgLod4jte4EhkQiVMHJz4aWXYOpUfM4crKKCyT/5Fa/0v4B6HQdR8pvBeJJuiCki1aMrRetaeTmkpEBuLt6mDRYKsbt1exYMu4r3Th3CuuN7QMgpt3qg1YYichRU6HWhshKeegqfNIni5i2Zdt+fmPfRPk678jbWduvLxjZdtVZcRGpMhR5pH3wA110H2dls69iDtzqdycsrc6l0mDlIpx1EpPao0CNp5kz8kksoPq4Rf/vxr5h76tCqkbiWiotIBKjQI6GsDE9J4e3WPSg559tM+X8/Yn/j9KBTiUicU6HXpuJiuOceyl9/gwfve44NBZWUjrot6FQikiC0Jq62zJ2L9+4Njz7KW827snHXAUortGhcROqORug1VVQEY8fCxInsbX08f7ljIsu69w86lYgkIBV6DVXUS+Hjtxfy7gVX8cKI6ymt3yDoSCKSoFTox6KgAMaNY/PPxvHo8v18fOtTFJv+pxSRYKmFjtZHH+EjRuBr1/Kvel3Z1edsUJmLSBRQEx2NN97Ar7iCkgrn9z//I0t7DAg6kYjIp1To1fXii/ioUeS068Kvf/JbdjRvG3QiEZEvUKFX0/qe/dk26Nv87bKbOVj/uKDjiIh8hQr967jD88+z6IwL+P3yAsquHBd0IhGRw9KFRV/nl7+Eq69m8SNPUlapG7CISHRToR/O738PDz3EnHMuZfbpw4NOIyJyRCr0Q5k0CcaO5b1Th/DkVeN0r3IRiQmaQ/+y/fsJ3XILa088jd//8EFCSclBJxIRqRYV+pcUpDXisXFPs75xS8pTUoOOIyJSbSr0TyxbRtn8d7i73WB2tuyEzoGKSKxRoQPs2oUPG0YRKRy4vw+V9RsGnUhE5Kip0AGmTMHy8njk/hf4WGUuIjFKq1wApk0jp21n1rfrHnQSEZFjpkLPz8fnzeO9vucEnUREpEZU6Pv2kXvWEBZlDQ46iYhIjWgOvUsXfnvLY2zadzDoJCIiNZLYhV5WRuH2HLbtLwk6iYhIjSX2lMucOTTq0pGTPlwSdBIRkRpL7EJ/+WXK6jdgdfteQScREamxIxa6mR1vZnPMbI2ZfWBmN4e3NzOzN8xsffgxPfJxa5cvXcqGTr0oS00LOoqISI1VZ4ReAfzc3XsCpwM3mlkv4A5gtrt3A2aHX8cOd3ztWnZmdgw6iYhIrThiobt7jrsvDT8vANYAbYERwKTw2yYBl0QqZETs2UNSfj65KnQRiRNHtcrFzDoC/YBsoJW750BV6ZtZy1pPF0lpaawY/0eWeWbQSUREakW1T4qaWSNgKnCLu398FD83xswWm9nivLy8Y8kYGY0bM+OUYWxu1THoJCIitaJahW5mKVSV+WR3/3d4c66ZZYb/PhPYfaifdfeJ7p7l7lkZGRm1kbnmNm6k8K572LBhZ9BJRERqTXVWuRjwV2CNu//uc381HRgdfj4amFb78SLkt7+lwSPjSSnR1aEiEj+qM4c+ELgKWGlmy8Pb7gTGA1PM7DpgK3BZZCLWsvx8/JlneOuMi9jTNEr+xSAiUguOWOjuPh843LckD6ndOHVgxgyspITZgy4NOomISK1KvCtFp0/nQHoG63R1qIjEmYQr9HI33s06D09KuF0XkTiXcHdbfPfhPzF5wTaoCAUdRUSkViXcMHXp9gOUqMxFJA4lVqHfdBMj/v/IoFOIiEREYhX6ypWUV3rQKUREIiJxCt2d0Jo17GzdIegkIiIRkTiFvn49SXl5bOp6ctBJREQiInEKfe5cAN7v1i/YHCIiEZI4hd61KwuGXsaOVppyEZH4lDDr0EvPHsTj29IhpJOiIhKfEqPQCwvZunoTKUm6nkhE4ldiTLm8/jrdTutNh/Urgk4iIhIxiVHo2dlU1kvho3bdg04iIhIxiVHoCxeypX13ylPqB51ERCRi4r/QS0rw7GzWdNdyRRGJb/Ff6NnZWGkp63r0DzqJiEhExf8ql969mXH3H1jeUleIikh8i/9CT0/n3z3OprikIugkIiIRFd9TLvv28fGDD5Oalxt0EhGRiIvvQp8xgya/vJPme3cFnUREJOLiu9CnTQt/IXTPoJOIiERc/Bb6wYP4rFm81+dsfSG0iCSE+G26mTOxoiIWnXZ+0ElEROpE/Bb62rUcaNaS5V11QZGIJIa4XbZ44Oe3cVPLIYSS43YXRUS+IG5H6Nmb9xNKSws6hohInYnPQr//fk644mLKynQxkYgkjvgs9LlzCRUWanWLiCSU+Gu8ykp80SI+7HRS0ElEROpU/BX6nDlYYSEbTugbdBIRkTp1xEI3s2fMbLeZrfrctmZm9oaZrQ8/pkc2ZjW5w/33c6B5K97uc27QaURE6lR1RujPAhd8adsdwGx37wbMDr+OCjtHfp/nL/spFSmpQUcREalTR1yk7e5vmVnHL20eAQwKP58EzAVur8Vcx8aMP3UZxNrGRUEnERGpc8d61U0rd88BcPccM2t5uDea2RhgDED79u2P8eOqYcsW9kz+J3lN+0ODb0Tuc0REolTET4q6+0R3z3L3rIyMjMh90LRptPifX1CvoCBynyEiEsWOtdBzzSwTIPy4u/YiHaPXX2d36/bktmwXdBIRkUAca6FPB0aHn48GptVOnGNUWorPmcOyE08PNIaISJCqs2zxBWABcIKZbTez64DxwPlmth44P/w6OAsXYsXFfHDyGYHGEBEJUnVWuXzvMH81pJazHLs1a6hMrqdb5YpIQouPe8v++Mf8pH5fitHacxFJXHFx6f/eojLyk+sHHUNEJFCxX+iLF5M0bCjH79wUdBIRkUDFfqHPn0/6O/PIT20YdBIRkUDFfqFnZ5PfvBX56RG8aElEJAbEdqG74wsXsk73PhcRifFCf/hhbPNmVvU5M+gkIiKBi+lli7tOO4ulF1zJrDNHBB1FRCRwsVnoW7eyp1lrxuU2oeDynwWdRkQkKsTelMvixXiPHrw29kGKyiqDTiMiEjVir9B//WuKUxsw7+SzCXnQYUREokdsFXppKT5rFu/2O5d9jZoFnUZEJKrEVqG/+SZWWMiy/oOCTiIiEnViq9CnTaMs7TiWde8fdBIRkagTU6tcKv/nLu5sfx7lKboRl4jIl8XUCL2gRSt2tOsSdAwRkagUO4XuTmj8eLpuWRN0EhGRqBQ7hZ6fT7P776bHumVBJxERiUqxU+jbtwOwt6nuqigiciixU+hbtgCQk9464CAiItEpdgp982YAclu0CTaHiEiUiqlCL0tN4+PG6UEnERGJSrGzDv3hh7m963AwCzqJiEhUip0RemoqOcdpdC4icjgxU+jl997HqYv+G3QMEZGoFTOFnvz4Y5y8bknQMUREolZsFPr+/STt38++5lqyKCJyOLFR6OvWAbCzdYeAg4iIRK/YKPS1awHY3FKFLiJyOLFR6Lt3U56SSm5G26CTiIhErRoVupldYGbrzGyDmd1RW6G+4he/4JZnF1JZLyViHyEiEuuOudDNLBmYAFwI9AK+Z2a9aivYl1Ukx841UCIiQajJCH0AsMHdN7p7GfC/wIjaiSUiIkerJoXeFtj2udfbw9sioiLkkfpPi4jEhZrMYxzqpipfaV0zGwOMAWjfvv0xf1hmk/oUlFaQmhwb53FFRD4vo1FqxD+jJoW+HTj+c6/bATu//CZ3nwhMBMjKyjrmYfaDw0841h8VEUkINRnuLgK6mVknM0sFvgtMr51YIiJytI55hO7uFWZ2E/AakAw84+4f1FoyERE5KjVaC+juM4GZtZRFRERqQGcYRUTihApdRCROqNBFROKECl1EJE6o0EVE4oS5190l9WaWB2w5xh9vAeypxTixQPucGLTPiaEm+9zB3TOO9KY6LfSaMLPF7p4VdI66pH1ODNrnxFAX+6wpFxGROKFCFxGJE7FU6BODDhAA7XNi0D4nhojvc8zMoYuIyNeLpRG6iIh8jZgodDPbbGYrzWy5mS0OOk8kmNkzZrbbzFZ9blszM3vDzNaHH9ODzFjbDrPP95rZjvCxXm5mFwWZsTaZ2fFmNsfM1pjZB2Z2c3h73B7nr9nneD7OaWb2npm9H97n+8LbI36cY2LKxcw2A1nuHrfrVs3sbKAQ+Lu7nxTe9giwz93Hm9kdQLq73x5kztp0mH2+Fyh090eDzBYJZpYJZLr7UjNrDCwBLgGuIU6P89fs8+XE73E2oKG7F5pZCjAfuBn4NhE+zjExQk8E7v4WsO9Lm0cAk8LPJ1H1ixA3DrPPccvdc9x9afh5AbCGqu/hjdvj/DX7HLe8SmH4ZUr4j1MHxzlWCt2B181sSfg7ShNFK3fPgapfDKBlwHnqyk1mtiI8JRM30w+fZ2YdgX5ANglynL+0zxDHx9nMks1sObAbeMPd6+Q4x0qhD3T3U4ALgRvD/1SX+PQk0AXoC+QAvw02Tu0zs0bAVOAWd/846Dx14RD7HNfH2d0r3b0vVd+1PMDMTqqLz42JQnf3neHH3cB/gAHBJqozueE5yE/mIncHnCfi3D03/MsQAp4izo51eE51KjDZ3f8d3hzXx/lQ+xzvx/kT7r4fmAtcQB0c56gvdDNrGD6Zgpk1BIYCq77+p+LGdGB0+PloYFqAWerEJ/+HD7uUODrW4ZNlfwXWuPvvPvdXcXucD7fPcX6cM8ysafh5A+A8YC11cJyjfpWLmXWmalQOVd+B+g93fyjASBFhZi8Ag6i6I1sucA/wEjAFaA9sBS5z97g5iXiYfR5E1T/DHdgMXP/JvGOsM7NvAm8DK4FQePOdVM0px+Vx/pp9/h7xe5x7U3XSM5mqQfMUd7/fzJoT4eMc9YUuIiLVE/VTLiIiUj0qdBGROKFCFxGJEyp0EZE4oUIXEYkTKnQRkTihQhcRiRMqdBGROPF/msxUM4yeE9cAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.plot(my_data[\"Wages\"], my_data[\"Unnamed: 0\"], \"r--\")\n",
"\n",
" \n",
"x = my_data[\"Wages\"]\n",
"y1 = my_data[\"Unnamed: 0\"]\n",
" \n",
"plt.fill_between(x, y1, color='#539ecd')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}