{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Sujet 2 : le pouvoir d'achat des ouvriers anglais du XVIe au XIXe siècle" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Unnamed: 0YearWheatWages
01156541.05.00
12157045.05.05
23157542.05.08
34158049.05.12
45158541.55.15
56159047.05.25
67159564.05.54
78160027.05.61
89160533.05.69
910161032.05.78
1011161533.05.94
1112162035.06.01
1213162533.06.12
1314163045.06.22
1415163533.06.30
1516164039.06.37
1617164553.06.45
1718165042.06.50
1819165540.56.60
1920166046.56.75
2021166532.06.80
2122167037.06.90
2223167543.07.00
2324168035.07.30
2425168527.07.60
2526169040.08.00
2627169550.08.50
2728170030.09.00
2829170532.010.00
2930171044.011.00
3031171533.011.75
3132172029.012.50
3233172539.013.00
3334173026.013.30
3435173532.013.60
3536174027.014.00
3637174527.514.50
3738175031.015.00
3839175535.515.70
3940176031.016.50
4041176543.017.60
4142177047.018.50
4243177544.019.50
4344178046.021.00
4445178542.023.00
4546179047.525.50
4647179576.027.50
4748180079.028.50
4849180581.029.50
4950181099.030.00
5051181578.0NaN
5152182054.0NaN
5253182154.0NaN
\n", "
" ], "text/plain": [ " Unnamed: 0 Year Wheat Wages\n", "0 1 1565 41.0 5.00\n", "1 2 1570 45.0 5.05\n", "2 3 1575 42.0 5.08\n", "3 4 1580 49.0 5.12\n", "4 5 1585 41.5 5.15\n", "5 6 1590 47.0 5.25\n", "6 7 1595 64.0 5.54\n", "7 8 1600 27.0 5.61\n", "8 9 1605 33.0 5.69\n", "9 10 1610 32.0 5.78\n", "10 11 1615 33.0 5.94\n", "11 12 1620 35.0 6.01\n", "12 13 1625 33.0 6.12\n", "13 14 1630 45.0 6.22\n", "14 15 1635 33.0 6.30\n", "15 16 1640 39.0 6.37\n", "16 17 1645 53.0 6.45\n", "17 18 1650 42.0 6.50\n", "18 19 1655 40.5 6.60\n", "19 20 1660 46.5 6.75\n", "20 21 1665 32.0 6.80\n", "21 22 1670 37.0 6.90\n", "22 23 1675 43.0 7.00\n", "23 24 1680 35.0 7.30\n", "24 25 1685 27.0 7.60\n", "25 26 1690 40.0 8.00\n", "26 27 1695 50.0 8.50\n", "27 28 1700 30.0 9.00\n", "28 29 1705 32.0 10.00\n", "29 30 1710 44.0 11.00\n", "30 31 1715 33.0 11.75\n", "31 32 1720 29.0 12.50\n", "32 33 1725 39.0 13.00\n", "33 34 1730 26.0 13.30\n", "34 35 1735 32.0 13.60\n", "35 36 1740 27.0 14.00\n", "36 37 1745 27.5 14.50\n", "37 38 1750 31.0 15.00\n", "38 39 1755 35.5 15.70\n", "39 40 1760 31.0 16.50\n", "40 41 1765 43.0 17.60\n", "41 42 1770 47.0 18.50\n", "42 43 1775 44.0 19.50\n", "43 44 1780 46.0 21.00\n", "44 45 1785 42.0 23.00\n", "45 46 1790 47.5 25.50\n", "46 47 1795 76.0 27.50\n", "47 48 1800 79.0 28.50\n", "48 49 1805 81.0 29.50\n", "49 50 1810 99.0 30.00\n", "50 51 1815 78.0 NaN\n", "51 52 1820 54.0 NaN\n", "52 53 1821 54.0 NaN" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = pd.read_csv('https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/master/csv/HistData/Wheat.csv')\n", "data" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Unnamed: 0YearWheatWages
5051181578.0NaN
5152182054.0NaN
5253182154.0NaN
\n", "
" ], "text/plain": [ " Unnamed: 0 Year Wheat Wages\n", "50 51 1815 78.0 NaN\n", "51 52 1820 54.0 NaN\n", "52 53 1821 54.0 NaN" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Voir les lignes avec des données manquantes\n", "\n", "data[data.isnull().any(axis = 1)]" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Unnamed: 0YearWheatWages
01156541.05.00
12157045.05.05
23157542.05.08
34158049.05.12
45158541.55.15
56159047.05.25
67159564.05.54
78160027.05.61
89160533.05.69
910161032.05.78
1011161533.05.94
1112162035.06.01
1213162533.06.12
1314163045.06.22
1415163533.06.30
1516164039.06.37
1617164553.06.45
1718165042.06.50
1819165540.56.60
1920166046.56.75
2021166532.06.80
2122167037.06.90
2223167543.07.00
2324168035.07.30
2425168527.07.60
2526169040.08.00
2627169550.08.50
2728170030.09.00
2829170532.010.00
2930171044.011.00
3031171533.011.75
3132172029.012.50
3233172539.013.00
3334173026.013.30
3435173532.013.60
3536174027.014.00
3637174527.514.50
3738175031.015.00
3839175535.515.70
3940176031.016.50
4041176543.017.60
4142177047.018.50
4243177544.019.50
4344178046.021.00
4445178542.023.00
4546179047.525.50
4647179576.027.50
4748180079.028.50
4849180581.029.50
4950181099.030.00
\n", "
" ], "text/plain": [ " Unnamed: 0 Year Wheat Wages\n", "0 1 1565 41.0 5.00\n", "1 2 1570 45.0 5.05\n", "2 3 1575 42.0 5.08\n", "3 4 1580 49.0 5.12\n", "4 5 1585 41.5 5.15\n", "5 6 1590 47.0 5.25\n", "6 7 1595 64.0 5.54\n", "7 8 1600 27.0 5.61\n", "8 9 1605 33.0 5.69\n", "9 10 1610 32.0 5.78\n", "10 11 1615 33.0 5.94\n", "11 12 1620 35.0 6.01\n", "12 13 1625 33.0 6.12\n", "13 14 1630 45.0 6.22\n", "14 15 1635 33.0 6.30\n", "15 16 1640 39.0 6.37\n", "16 17 1645 53.0 6.45\n", "17 18 1650 42.0 6.50\n", "18 19 1655 40.5 6.60\n", "19 20 1660 46.5 6.75\n", "20 21 1665 32.0 6.80\n", "21 22 1670 37.0 6.90\n", "22 23 1675 43.0 7.00\n", "23 24 1680 35.0 7.30\n", "24 25 1685 27.0 7.60\n", "25 26 1690 40.0 8.00\n", "26 27 1695 50.0 8.50\n", "27 28 1700 30.0 9.00\n", "28 29 1705 32.0 10.00\n", "29 30 1710 44.0 11.00\n", "30 31 1715 33.0 11.75\n", "31 32 1720 29.0 12.50\n", "32 33 1725 39.0 13.00\n", "33 34 1730 26.0 13.30\n", "34 35 1735 32.0 13.60\n", "35 36 1740 27.0 14.00\n", "36 37 1745 27.5 14.50\n", "37 38 1750 31.0 15.00\n", "38 39 1755 35.5 15.70\n", "39 40 1760 31.0 16.50\n", "40 41 1765 43.0 17.60\n", "41 42 1770 47.0 18.50\n", "42 43 1775 44.0 19.50\n", "43 44 1780 46.0 21.00\n", "44 45 1785 42.0 23.00\n", "45 46 1790 47.5 25.50\n", "46 47 1795 76.0 27.50\n", "47 48 1800 79.0 28.50\n", "48 49 1805 81.0 29.50\n", "49 50 1810 99.0 30.00" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Supprimer la ligne qui ne contient pas de données valables\n", "# Copier les données\n", "my_data = data.dropna().copy()\n", "my_data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Représentation graphique du prix du blé " ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAADblJREFUeJzt3X2MZXddx/H3x65UgaDbdNqsLTolWdBiotChKSKoLQTwaRtNSZuAG1OzkSACMTFbTeQvkkbRqPEpG0DWQCgVCN1YVOpqJSbaOn0wtCzNlgfbtWt3gKjEmELl6x9zNg7b2Ye5596dO995v5LJvfd3z537+82Zfc+ZM3NnU1VIkvr6ls2egCRptgy9JDVn6CWpOUMvSc0ZeklqztBLUnOGXpKaM/SS1Jyhl6Tmdmz2BAAuvvjiWlxc3OxpSNKWct99932pqhbOtt1chH5xcZHl5eXNnoYkbSlJ/vVctvPUjSQ1Z+glqTlDL0nNnTX0Sd6X5ESSh9aMXZTkriRHh8uda+67JcmjSR5J8tpZTVySdG7O5Yj+/cDrThnbDxyuqt3A4eE2Sa4EbgRePDzmj5JcMLXZSpI27Kyhr6pPAV85ZXgPcHC4fhC4fs34bVX1VFV9AXgUuHpKc5UkTWDSc/SXVtVxgOHykmH8MuDxNdsdG8YkSZtk2j+MzTpj6/5fhUn2JVlOsryysjLlaUiSTpo09E8m2QUwXJ4Yxo8Bz1+z3eXAE+u9g6o6UFVLVbW0sHDWF3ZJkiY0aegPAXuH63uBO9aM35jkwiRXALuBe8dNUZJ6Wtx/53l5nrP+CYQkHwJ+FLg4yTHgncCtwO1JbgYeA24AqKqHk9wOfAZ4GnhLVf3vjOYuSToHZw19Vd10mruuO8327wLeNWZSkqTp8ZWxktScoZek5gy9JDVn6CWpOUMvSc0ZeklqztBLUnOGXpKaM/SS1Jyhl6TmDL0kNWfoJak5Qy9JzRl6SWrO0EtSc4Zekpoz9JLUnKGXpOYMvSQ1Z+glqTlDL0nNGXpJas7QS1Jzhl6SmjP0ktScoZek5gy9JDVn6CWpOUMvSc0ZeklqztBLUnOGXpKaM/SS1Nyo0Cd5R5KHkzyU5ENJvi3JRUnuSnJ0uNw5rclKkjZu4tAnuQz4ZWCpqr4fuAC4EdgPHK6q3cDh4bYkbVuL++/c1Ocfe+pmB/DtSXYAzwaeAPYAB4f7DwLXj3wOSdIIE4e+qv4NeDfwGHAc+M+q+iRwaVUdH7Y5Dlyy3uOT7EuynGR5ZWVl0mlIks5izKmbnawevV8BfBfwnCRvPNfHV9WBqlqqqqWFhYVJpyFJOosxp25eDXyhqlaq6uvAx4AfAp5MsgtguDwxfpqSpEmNCf1jwDVJnp0kwHXAEeAQsHfYZi9wx7gpStLWsNk/dD2dHZM+sKruSfIR4H7gaeAB4ADwXOD2JDez+sXghmlMVJI0mYlDD1BV7wTeecrwU6we3UuS5oCvjJWk5gy9JDVn6CWpOUMvSRswr79ZcyaGXpKaM/SS1Jyhl6TmDL0kNWfoJak5Qy9JzRl6SWrO0EtSc4Zekpoz9JLUnKGXpOYMvSQ1Z+glqTlDL0nNGXpJas7QS1Jzhl6SmjP0ktScoZek5gy9JDVn6CWpOUMvSc0ZeklqztBLUnOGfkYW99+52VOQJMDQS1J7hl6SmjP0ktScoZek5kaFPsl3JvlIks8mOZLk5UkuSnJXkqPD5c5pTVaStHFjj+h/D/irqvpe4AeAI8B+4HBV7QYOD7clSZtk4tAneR7wKuC9AFX1tar6D2APcHDY7CBw/dhJSpImN+aI/gXACvCnSR5I8p4kzwEurarjAMPlJes9OMm+JMtJlldWVkZMQ5J0JmNCvwN4KfDHVfUS4L/ZwGmaqjpQVUtVtbSwsDBiGpKkMxkT+mPAsaq6Z7j9EVbD/2SSXQDD5YlxU5QkjTFx6Kvq34HHk7xoGLoO+AxwCNg7jO0F7hg1Q0nSKDtGPv6twAeTPAv4PPDzrH7xuD3JzcBjwA0jn0OSNMKo0FfVg8DSOnddN+b9SpKmx1fGSlJzhl6SmjP0ktScoZek5gy9JDVn6CWpOUMvSc0ZeklqztBLUnOGXlO1uP/OzZ6CpFMYeklqztBLUnOGXpKaM/SS1Jyhl6TmDL00Bf62keaZoZek5gz9Gh6VSerI0EtSc4Zekpoz9JK0jk6ncg39CJ0+EaStxH97G2PoJak5Q6+55BGbND2GXtK2sJ0PHgy9JDXXOvTb+Sv4RvhxknprHXpJkqGX5orfXY3nx/CZDL0kNWfo1Z5HeFuX+246DL0kNTc69EkuSPJAkr8Ybl+U5K4kR4fLneOnOV0eJZx/fsw1r7bD5+Y0jujfBhxZc3s/cLiqdgOHh9tb2nb4RJDU16jQJ7kc+AngPWuG9wAHh+sHgevHPMe5MMSSdHpjj+h/F/hV4Btrxi6tquMAw+UlI59DjflFWpq9iUOf5CeBE1V134SP35dkOcnyysrKpNOQzhu/KGmrGnNE/wrgp5N8EbgNuDbJB4Ank+wCGC5PrPfgqjpQVUtVtbSwsDBiGpKkM5k49FV1S1VdXlWLwI3A31bVG4FDwN5hs73AHaNnqbnike3W4H7SSbP4PfpbgdckOQq8ZrgtSdokO6bxTqrqbuDu4fqXgeum8X4lSeP5ylhJas7Qqw3PSUvrM/SS1Jyhl6TmDL0kNWfoJZ03/hxlcxj6hvzHdG78OGm7MPSS1Jyhl6TmDL0kNWfo58RGzxdPcn75fDyHZsN9oTEMvSQ1Z+jnnEdy36zLx2Me1zGPc9J0GHpJas7QS5o6fx40Xwy9JDVn6KUZ8khV88DQS1Jzhl7awvyOQefC0EtSc4Zekpoz9JIm4mmjrcPQn2f+45h/7qNv5sdj6zP0ktScoZe2GY/Qtx9DL0nNGXpJas7QS1Jzhl6SmjP0ktScoZek5gy9JDVn6CWpuYlDn+T5Sf4uyZEkDyd52zB+UZK7khwdLndOb7qSpI0ac0T/NPArVfV9wDXAW5JcCewHDlfVbuDwcFuStEkmDn1VHa+q+4frXwWOAJcBe4CDw2YHgevHTlKSNLmpnKNPsgi8BLgHuLSqjsPqFwPgkmk8hyRpMqNDn+S5wEeBt1fVf23gcfuSLCdZXllZGTsNSdJpjAp9km9lNfIfrKqPDcNPJtk13L8LOLHeY6vqQFUtVdXSwsLCmGlIks5gzG/dBHgvcKSqfmfNXYeAvcP1vcAdk09PkjTWjhGPfQXwJuDTSR4cxn4NuBW4PcnNwGPADeOmKEkaY+LQV9U/ADnN3ddN+n4lSdPlK2MlqTlDL0nNGXpJas7QS1Jzhl6SmjP0ktScoZek5gy9JDVn6CWpOUMvSc0ZeklqztBLUnOGXpKaM/SS1Jyhl6TmDL0kNWfoJak5Qy9JzRl6SWrO0EtSc4Zekpoz9JLUnKGXpOYMvSQ1Z+glqTlDL0nNGXpJas7QS1Jzhl6SmjP0ktScoZek5gy9JDVn6CWpuZmFPsnrkjyS5NEk+2f1PJKkM5tJ6JNcAPwh8HrgSuCmJFfO4rkkSWc2qyP6q4FHq+rzVfU14DZgz4yeS5J0BrMK/WXA42tuHxvGJEnnWapq+u80uQF4bVX9wnD7TcDVVfXWNdvsA/YNN18EPDL1icyni4EvbfYkNoHr3l5c9/nxPVW1cLaNdszoyY8Bz19z+3LgibUbVNUB4MCMnn9uJVmuqqXNnsf55rq3F9c9X2Z16uafgd1JrkjyLOBG4NCMnkuSdAYzOaKvqqeT/BLw18AFwPuq6uFZPJck6cxmdeqGqvoE8IlZvf8tbNudrhq47u3Fdc+RmfwwVpI0P/wTCJLUnKGfgiTvS3IiyUOnjL91+DMQDyf5zTXjtwx/GuKRJK9dM35Vkk8P9/1+kpzPdWzURtadZDHJ/yR5cHj7kzXbb/l1J/nwmrV9McmDa+7b8vt7I2veBvv6B5P807C25SRXr7lvPvd1Vfk28g14FfBS4KE1Yz8G/A1w4XD7kuHySuBfgAuBK4DPARcM990LvBwI8JfA6zd7bVNc9+La7U55P1t+3afc/9vAb3Ta3xtcc+t9DXzy5LyBHwfunvd97RH9FFTVp4CvnDL8ZuDWqnpq2ObEML4HuK2qnqqqLwCPAlcn2QU8r6r+sVY/M/4MuP78rGAyG1z3uhqtG4DhSO0NwIeGoRb7e4NrXtdWWzOcdt0FPG+4/h38/2uE5nZfG/rZeSHwyiT3JPn7JC8bxk/35yEuG66fOr7VnG7dAFckeWAYf+Uw1mXdJ70SeLKqjg63u+9veOaaofe+fjvwW0keB94N3DKMz+2+ntmvV4odwE7gGuBlwO1JXsDqt26nqjOMbzWnW/dx4Lur6stJrgI+nuTF9Fn3STfxzUe23fc3PHPN3ff1m4F3VNVHk7wBeC/wauZ4Xxv62TkGfGz4Vu3eJN9g9e9gnO7PQxwbrp86vtWsu+6qWgFOns65L8nnWD3677JukuwAfga4as1w6/293pqH03ad9/Ve4G3D9T8H3jNcn9t97amb2fk4cC1AkhcCz2L1jx0dAm5McmGSK4DdwL1VdRz4apJrhnOePwfcsTlTH2XddSdZyOr/U8BwhL8b+HyjdcPqUd1nq2rtt+nd9/cz1rwN9vUTwI8M168FTp6ymt99vdk/1e7wxuq3rceBr7P61ftmVgP3AeAh4H7g2jXb/zqrP5F/hDU/fQeWhu0/B/wBwwva5vVtI+sGfhZ4mNXfSrgf+KlO6x7G3w/84jrbb/n9vZE1d9/XwA8D9w3ruwe4at73ta+MlaTmPHUjSc0ZeklqztBLUnOGXpKaM/SS1Jyhl6TmDL0kNWfoJam5/wNOmtuZZ4OLpgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.bar(my_data[\"Year\"], my_data[\"Wheat\"])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Représentation grahique des salaires" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHO9JREFUeJzt3Xl4VPXd9/H3lz0hQEACRdEiitZ9i9QNFwQFsaLFDaxoa4vcrXXleQrKXVSeKkrR2/W2tIqpt7eUsghyiRQRxQXZxIVFRSzKEkhICISQhWS+zx8ztBETsk1yJief13XNNTNnzjCf33X0w+E358wxd0dERBq/ZkEHEBGR+FChi4iEhApdRCQkVOgiIiGhQhcRCQkVuohISKjQRURCQoUuIhISKnQRkZBo0ZAf1rlzZ+/Ro0dDfqSISKO3cuXKHe6eVtV6DVroPXr0YMWKFQ35kSIijZ6ZfVOd9TTlIiISEip0EZGQUKGLiISECl1EJCRU6CIiIVFloZtZGzNbZmafmNkaM3sgtryTmS0ws/Wx+471H1dERCpTnT30YqCvu58CnAoMMLOzgNHAQnfvBSyMPRcRkYBUWegetSf2tGXs5sBgICO2PAO4sl4Siog0Zlu3wp13Ql5evX9UtebQzay5mX0MZAEL3H0p0NXdMwFi910qee8IM1thZiuys7PjlVtEJLHt3AmjR+NHH03k6Wf4fPq8ev/IahW6u5e5+6lAd6C3mZ1Y3Q9w98nunu7u6WlpVZ65KiLSuO3dCxMm4D174o8+yvun9eW3D81g6cl96v2ja3Tqv7vnmdnbwABgu5l1c/dMM+tGdO9dRKRpKi2FP/8Zf/BBbNs2Pj71fKYO+TUbDuvVYBGqLHQzSwP2xco8CegHPALMAW4CJsTuZ9dnUBGRhFVaCkOHwvTprD/2NF655SE+O+qUBo9RnT30bkCGmTUnOkUzzd3nmtkSYJqZ3QJ8C1xTjzlFRBJTJAIjRsD06fzvdXcw85IbwSyQKFUWurt/CpxWwfIc4OL6CCUi0ii4w113wZQpzBj8K2ZeOjzQODpTVESktsaNgyef5PVLhvHKFbcGnUaFLiJSK5MmwfjxvH3+YF647u7AplnKU6GLiNTU5MkwahRLe/fn2eH3JUSZQwNfsUhEpNGbOhUfOZJPTzmXx385nkiz5kEn+hftoYuIVNfcufiNN/Llsafz6MhHKG3RMuhE36FCFxGpjkWL8Kuv5psfHstDtz9GceukoBN9jwpdRKQqS5fiV1zBti6HM/7OJylokxJ0ogqp0EVEDubTT/GBA8lN6ciD9zzDrrapQSeqlApdRKQy69fjl1zC7mateGDUs2S37xx0ooPSUS4iIhXZtAnv14/CohLGj/4LWzsdGnSiKmkPXUTkQJEIPngwJTk7GX/PM2zs2iPoRNWiQhcROdDcudiqVTz/s9+xvvuxQaepNhW6iEh57vDww+R2OYy30/sHnaZGVOgiIuUtXgwffsjsAcOJNG9cXzOq0EVEynv4YfakHsKCcy4POkmNqdBFRPZbtQrmz2duv6GUtGoTdJoaU6GLiOw3YQJFySnMu/DqoJPUigpdRASiJxFNn878i66hILld0GlqRYUuIgIwcSJlLVowt//1QSepNRW6iMjWrXhGBovOG8zOBD+9/2BU6CIijz2Gl5by2oAbg05SJyp0EWnacnPxP/2JJT++lK2dDws6TZ2o0EWkaXvmGWzPHuYMujnoJHXWuE6DEhGJp8JC/Ikn+PjUPmw49Oig09RZlXvoZna4mS0ys3VmtsbM7ogtv9/MtpjZx7HbZfUfV0Qkjl59FcvJYd6lNwSdJC6qs4deCtzj7h+ZWTtgpZktiL32uLv/sf7iiYjUoxdfJDftUFb1OiPoJHFR5R66u2e6+0exx/nAOqBxf3MgIrJpE75gAYvOGYQ3C8fXiTUahZn1AE4DlsYW3WZmn5rZC2bWsZL3jDCzFWa2Ijs7u05hRUTi5qWXMHfeboQ/wlWZahe6maUAM4A73X038N/AUcCpQCYwqaL3uftkd0939/S0tLQ4RBYRqSN3fMoU1v3oDDLTugedJm6qVehm1pJomb/s7jMB3H27u5e5ewT4M9C7/mKKiMTRBx9gX33F4j5XBJ0krqpzlIsBzwPr3P2xcsu7lVvtKmB1/OOJiNSDKVMoaZPMu6f1DTpJXFXnKJdzgRuBz8zs49iye4GhZnYq4MBG4NZ6SSgiEk8FBfjf/sYH6RdT1CY56DRxVWWhu/t7gFXw0uvxjyMiUs9mzsT27OHd8wcHnSTuwnGsjohIdU2Zwo6u3fnkqFODThJ3KnQRaTo2boRFi1h07k/AKpp4aNxU6CLSdGRk4GYsOmdQ0EnqhQpdRJqGSAR/8UXWHn8mWZ26Vb1+I6RCF5GmYfFibONG3ukTvi9D91Ohi0jTMGUKRckpvHfKBUEnqTcqdBEJv/x8fPp03j+zPyWtk4JOU29U6CISfhkZ2N69LA7hsefl6YpFIhJu+/bhEyfy1TGnsubIk4JOU6+0hy4i4TZ1Kvbtt8we9POgk9Q77aGLSHhFIviECWw9/Gg+PPHcoNPUO+2hi0h4vfYatnZtdO88hGeGHkiFLiLh5A4PP0xO1+68fUa/oNM0CBW6iITTO+/A0qXMHnAjkeZNY3ZZhS4i4TRhAntSD+HNs8NzzdCqqNBFJHw++gjmz+e1/sMoadUm6DQNRoUuIuEzYQJFySm8ccGQoJM0KBW6iITL+vX49OnMv+gaCpLbBZ2mQanQRSRcHn2UspatmNt/aNBJGpwKXUTCY8sWPCODt/pcwc72hwSdpsGp0EUkPB58EI9EeG3A8KCTBEKFLiLh8N57MHky8/oPJfOQQ4NOE4imcbS9iIRbSQl+663kpXVj6hW3Bp0mMFXuoZvZ4Wa2yMzWmdkaM7sjtryTmS0ws/Wx+471H1dEpAITJ2Jr1/KXG8dQ2CY56DSBqc6USylwj7sfB5wF/MbMjgdGAwvdvRewMPZcRKRhrV+Pjx/P0t79WdoEflHxYKosdHfPdPePYo/zgXXAYcBgICO2WgZwZX2FFBGpkDuMHElxi1ZMGXZP0GkCV6MvRc2sB3AasBTo6u6ZEC19oEu8w4mIHNRLL8Fbb/Hy1b9lR/u0oNMErtqFbmYpwAzgTnffXYP3jTCzFWa2Ijs7uzYZRUS+b8cO/O67+arXKbzR56qg0ySEahW6mbUkWuYvu/vM2OLtZtYt9no3IKui97r7ZHdPd/f0tDT9DSoicTJqFJ63i8k334c30xHYUL2jXAx4Hljn7o+Ve2kOcFPs8U3A7PjHExGpwFtvQUYGrw28ka+7HRV0moRRnePQzwVuBD4zs49jy+4FJgDTzOwW4FvgmvqJKCJSzvr1+LBh5PzgcKZd/sug0ySUKgvd3d8DKrsY38XxjSMichCbNuH9+lFYVMKE0c9S3IR+67w6NPEkIo3D9u14v34U5+xk/D3PsLFrj6ATJRyd+i8iiW/nTvzSSyn9dhOPjHqW9d2PDTpRQtIeuogktj174LLLiKxdxx9vf4zPep4cdKKEpT10EUlcRUVw5ZVEli/nyV8/ysof9Q46UULTHrqIJKbiYrj2Wli4kD/9Yhzvn3Zh0IkSnvbQRSTx7N0LP/0pzJ/PC8PHsPDsQUEnahRU6CKSWPLz4fLL8XffZfItv2fBuYODTtRoqNBFJHHs3AkDBhBZuZJnRj7EO2deEnSiRkWFLiKJISsLv+QSImvX8cRtE/nglAuCTtToqNBFJHhbtuD9+lH2z41MvOsJHc1SSyp0EQlWZibepw/7tmcz4Z6n+fTo04JO1Gip0EUkOAUF+E9+Qum27Yz/P8+xrscJQSdq1FToIhKMsjL42c9g1SqeuONxlXkc6MQiEQnG734Hr75KxrBRfHjSeUGnCQUVuog0vOeeg0mTmN//eub2vS7oNKGhKRcRaVjz5+O33cYnp53P89fdHXSaUNEeuog0nM8+w6+5hs2H92LSiD8QadY86EShokIXkYaxaRM+aBD5rZKYcPvjFLZODjpR6KjQRaT+LV+O9+5NSe5OJtzxX2xP7RJ0olBSoYtI/ZoxA7/gAnZGmjP23il8qasN1RsVuojUD3eYMAGuvpqvux/D6LEv8s9uPYNOFWo6ykVE4q+kBEaOhClTWHLWpTz183GUtGwddKrQU6GLSHzl5MCQIfDOO8wY/CteueJWMAs6VZOgQheR+FmyBL/+eiKZ23ju1v/Hoh8PDDpRk1LlHLqZvWBmWWa2utyy+81si5l9HLtdVr8xRSShRSLw6KN4nz7kFke4/97nVeYBqM4e+ovA08BfD1j+uLv/Me6JRKRxyc6G4cPhjTdYfmY/nr15LHuS2gWdqkmqstDdfbGZ9aj/KCLS6LzzDj5sGGU7cvjr8DG8fsEQzZcHqC6HLd5mZp/GpmQ6xi2RiCS+XbtgzBi8b1+yacXvx2bw+oVXq8wDVttC/2/gKOBUIBOYVNmKZjbCzFaY2Yrs7OxafpyIJITCQpg0Ce/ZEyZMYPG5lzNq7F/5snuvoJMJtTzKxd23739sZn8G5h5k3cnAZID09HSvzeeJSMBKS+HFF/EHHsA2b+azk85h6h2/4cvDfxR0MimnVoVuZt3cPTP29Cpg9cHWF5FGyj166v7YsdgXX/D10ScxdfTvWXXMGUEnkwpUWehm9gpwIdDZzDYD44ALzexUwIGNwK31mFFEgvDmm/jo0djKlWzrfhSv3PEYH5x8vubJE1h1jnIZWsHi5+shi4gkgmXLYMwYeOst8tK6Me1XD7DwxwP12+WNgM4UFZGodetg7FiYOZOC9h2ZccMoXj9/CKUtWwWdTKpJhS7SlLnDm2/CU0/hc+dSktSWOVeNZE6/YRQmtQ06ndSQCl2kKcrPh4wM/OmnsS++YE+HTiy4/BfM7TeUXe10WkljpUIXaSoiEVixAl56Cc/IwPLz2XjUCbxx63jeOb2fplZCQIUuEmalpbB4Mcyahc+ahW3ZQlmLlnzQuz//6Hc963qcEHRCiSMVukjYFBbCggXREp8zB8vNZV/rNnx8wtmsvHwkS048j4K27YNOKfVAhS4SBrt2weuvw8yZ+Lx5WEEBhW3bseLkPnx0Zl+WHXcWxa2Tgk4p9UyFLtJYlZXBtGnROfE338T27WN3x84s7T2Qlel9+bjX6ZS2aBl0SmlAKnSRxsYdXnsNv+8+bPVqdnTpzocXX8/y9L6s7XEi3kzXfm+qVOgijcnixTB6NCxZQna3HzL1N4/w7ml9VeICqNBFGodPPomejj9vHrs7dWHaz/+TBWcPokxTKlKOCl0kkbnDE0/go0ZRlJzCrOvuYO5F11LSqk3QySQBqdBFEtXevTBiBLz8MivPuIhnfv578pN1uKFUToUukog2bsSvugo++YS///TX/P2yn2ueXKqkQhdJNAsW4NdfT3HxPp68+wmWnXBu0ImkkdBf+SKJwh0mTsQHDCCzbSfGjHtJZS41oj10kURQUAC/+AVMm8byM/vx1C/GUdg6OehU0sio0EWC9tVX0fnytWuZeu3tzLh0uC7zJrWiQhcJ0rx5+LBhFJXBf416mpU/+nHQiaQR0xy6SBAiEfjDH/BBg9jSoSu/G/eSylzqTHvoIg0tPx9uuglmzWLJ2QN5Zvh9+iVEiQsVukhD2rsXLr+cyPvv8/LQu5ndb5jmyyVuVOgiDaWkBIYMwd99l6f/4yEWp18SdCIJGc2hizSE0lK44QZ44w3+fPNYlbnUiyoL3cxeMLMsM1tdblknM1tgZutj97pMuEhlIpHob7JMn87/DL2bf/S5MuhEElLV2UN/ERhwwLLRwEJ37wUsjD0XkQO5w113wZQpzLhyBK/2vyHoRBJiVRa6uy8Gcg9YPBjIiD3OALTLIVKRcePgySeZd+kNvPKTEUGnkZCr7Rx6V3fPBIjdd4lfJJGQmDQJxo/n7fMH8/y1d+loFql39f6lqJmNMLMVZrYiOzu7vj9OJDFMngyjRrG0d3+eHX6fylwaRG0LfbuZdQOI3WdVtqK7T3b3dHdPT0tLq+XHiTQir7yCjxzJJ6ecy+O/HE+kWfOgE0kTUdtCnwPcFHt8EzA7PnFEGrm5c/Hhw/ny2NN5dOQjlOqan9KAqnPY4ivAEuBYM9tsZrcAE4D+ZrYe6B97LtK0LVqEX3013/zwWB66/TGdzi8NrsozRd19aCUvXRznLCKN19Kl+BVXsK3L4Yy/80kK2qQEnUiaIJ0pKlJXn32GDxxIbkpHHrznGXa1TQ06kTRRKnSR2tq9G8aNw88+m93NWvHAqGfJbt856FTShOnHuURqqqgInn0Wf+ghLCeHZb378/K1t7O106FBJ5MmToUuUl2lpZCRgd9/P7Z5M6tPOpupv/0NXxxxXNDJRAAVukjV3GHmTHzsWOzzz/nnUSfyyuj/ZNUx6UEnE/kOFbrIwSxciI8Zgy1fzrbuPZl6+yTeP+UCnfkpCUmFLlKR5cvh3nvhzTfJS+vGtF89wMIfD9RZn5LQVOgi5S1fDo88AjNmUNChIzNuGMXr5w+htGWroJOJVEmFLlJcDH//O/7UU9iyZRQnt+W1K29ldv8bKExqG3Q6kWpToUvTtWULPPccPnkylpVF1qE9eONn/5eFZw9ib5LO9JTGR4UuTcv27TBnDsyahS9YAGVlrDqlD/+46X5WHnsm3kzn2knjpUKX8Nu4EWbNipb4e+9h7mR37c6SS27gzQuHsLXzYUEnFIkLFbqEjzusXRs9dnzWLGzVKgA2HXEMywb/imVn9GXDoUfr0EMJHRW6hEMkEj1CZdYsfOZMbP16ADb0Opnl193JB6dfSGba4QGHFKlfKnRJfO6wY0f0S8zyt82bYcsWfMsWfNMmmu3aRVnzFqw9Lp0VN1/DByefz85UXSVLmg4VugRj1y74/HPYtCn6q4W7d0N+/r/vd+7Et27FN23GMrdiJSXfeXvEjN2pnclNTWNHahq70o9nw9EnseTE8yho2z6gQYkES4Uu9cMd8vL+vSe9YQOsWwfr1hH5/HOabd1a4dtKWrWhKCmZvUkp5HRIY2e348g78UJ2dkwjp2MXstqnkdMxjbz2h1Cmy7uJfIcKXapWVga5uZCdDVlZ0fuK9qp37YJt24jEpkSaFRZ+548pSmrLlm5HsunIM9h+3hC2dDuSLZ0OpSAphcKkthS1TlJJi9SBCr0pKij4dznvL+icnO/dIjt2QFY2lrMDi0Qq/eOKWydR1CaZojbJ7Gx/CLmdepJ39FnkdepKTmoaWR06s73zYeSmpunIEpF6pEIPk6Ki6PRG7MvC8jffsgXP3AbZWTTbu7fCt5c1b8GelA7sSenA7rYdyE9JI//EH7GnfUd2t+9EXrtO7Gzbgbx2HdmblMLepBSKWicRaa7/jEQSgf5PTHSRSHQu+sA96B07ol8ofvstvmkT/s23NMva/r23FyankJvahZzUNPIOO4E9x59HfvtO7GrfibyUjuS2TWV3u47kp3SgsE1b7UGLNGIq9ERRXAxffglr1sDq1bBmDb5mDWzYUOl0R3GbJHIO6UZWx67kHncOuX26kXNIV7JSu5DdIY3c1C4U6celRJoMFXp9co/OV5efq962LXrLzIRt2/DMTDxzG7Z5E1ZWBkCkWXO2/+AIvjm0J1mD+pDfriO726WyO7kDecntyU9JJT+lAwXJ7bRHLSL/okKvrcxMePfdaFEfMB3iOTl4VnZ0vvqAIz32K0jpwM7UzuS2P4Rdhx5P7ikXs7n7UXzdtSdbfvBD/f62iNRYnQrdzDYC+UAZUOru4b3Ionv0OOrZs/HZs7GlS7/z8t7kduxJ6UB+29gXioefxJ4Tol8m7m7fiby2qeSmpJLX4RDy2h+iwhaRuIvHHvpF7r4jDn9O4ti797tHiaxaFS3xr74CYGPPE1gx5NesOvEctnXsSkFyOx0/LSKBa7xTLqWl0ZNZ8vOjh+tVdCsoqPi2//XCwn899qIiPCcnekJMXt53P6plS9YcdyYf3XwtH57ch5zULgENWkSkcnUtdAf+YWYO/MndJ8ch0/dNnIhPnYrv2o3n52P5uyudmz6YsmbNKWndhpJWbdjXsjUlLVuxr2UrimOP9yankZd+Inkd08jt2IUdqWlkdUhjR6cfUNI6qR4GJiISP3Ut9HPdfauZdQEWmNnn7r64/ApmNgIYAXDEEUfU7lOSklhn7diZ1oWiI9pSlNSWojbR+8I2SRS3bB29tWhFSYtWlMQKurhVEsWt21DcKomi1kmUtmipo0JEJLTqVOjuvjV2n2Vms4DewOID1pkMTAZIT0/3Wn3QbbfxRNoF5OzdV5e4IiKhVusLKJpZWzNrt/8xcAmwOl7BRESkZuqyh94VmGXRKYwWwP+6+xtxSSUiIjVW60J396+BU+KYRURE6qDWUy4iIpJYVOgiIiGhQhcRCQkVuohISKjQRURCQoUuIhISKnQRkZBQoYuIhIQKXUQkJFToIiIhoUIXEQkJFbqISEio0EVEQkKFLiISEip0EZGQUKGLiISECl1EJCRU6CIiIaFCFxEJCRW6iEhIqNBFREJChS4iEhIqdBGRkFChi4iERJ0K3cwGmNkXZvaVmY2OVygREam5Whe6mTUHngEGAscDQ83s+HgFExGRmqnLHnpv4Ct3/9rdS4CpwOD4xBIRkZqqS6EfBmwq93xzbJmIiASgRR3eaxUs8++tZDYCGAFwxBFH1PrDDu3QmoKSslq/X0QkSGkprer9M+pS6JuBw8s97w5sPXAld58MTAZIT0//XuFX17gBx9T2rSIiTUJdplyWA73M7EgzawVcD8yJTywREampWu+hu3upmd0GzAeaAy+4+5q4JRMRkRqpy5QL7v468HqcsoiISB3oTFERkZBQoYuIhIQKXUQkJFToIiIhoUIXEQkJc6/1uT41/zCzbOCbBvvAYHUGdgQdIgAad9OicTeMH7p7WlUrNWihNyVmtsLd04PO0dA07qZF404smnIREQkJFbqISEio0OvP5KADBETjblo07gSiOXQRkZDQHrqISEio0KvJzF4wsywzW33A8t/GLpS9xsweLbd8TOzi2V+Y2aXllp9hZp/FXnvSzCq6UEjCqMm4zayHmRWa2cex23Pl1m/04zazv5Ub20Yz+7jca6Hd3pWNuwls71PN7MPY2FaYWe9yryXm9nZ33apxA84HTgdWl1t2EfAm0Dr2vEvs/njgE6A1cCSwAWgee20ZcDbRKz7NAwYGPbY4jrtH+fUO+HMa/bgPeH0S8PumsL0PMu5Qb2/gH/tzA5cBbyf69tYeejW5+2Ig94DF/wFMcPfi2DpZseWDganuXuzu/wS+AnqbWTegvbsv8ejW/ytwZcOMoHZqOO4KhWjcAMT2uq4FXoktCvv2Biocd4VCNG4H2sced+DfV2RL2O2tQq+bY4A+ZrbUzN4xszNjyyu7gPZhsccHLm9sKhs3wJFmtiq2vE9sWVjGvV8fYLu7r489D/v23u/AcUO4t/edwEQz2wT8ERgTW56w27tOF7gQWgAdgbOAM4FpZtaTyi+gXa0LazcClY07EzjC3XPM7AzgVTM7gfCMe7+hfHcvNezbe78Dxx327f0fwF3uPsPMrgWeB/qRwNtbhV43m4GZsX9eLTOzCNHfeKjsAtqbY48PXN7YVDhud88G9k/DrDSzDUT35sMybsysBfBT4Ixyi8O+vSscd2zKLczb+ybgjtjjvwN/iT1O2O2tKZe6eRXoC2BmxwCtiP5gzxzgejNrbWZHAr2AZe6eCeSb2Vmx+cjhwOxgotdJheM2szQzax5b3pPouL8O0bghuof2ubuX/6d12Lc3VDDuJrC9twIXxB73BfZPNSXu9g762+XGciP6T81MYB/Rv4lvIVpk/wOsBj4C+pZb/z6i335/QblvuoH02PobgKeJndyVqLeajBsYAqwhegTAR8BPwjTu2PIXgZEVrB/a7V3ZuMO+vYHzgJWx8S0Fzkj07a0zRUVEQkJTLiIiIaFCFxEJCRW6iEhIqNBFREJChS4iEhIqdBGRkFChi4iEhApdRCQk/j95Ntx6rdoTjgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(my_data[\"Year\"], my_data[\"Wages\"], \"r\")\n", "\n", " \n", "y1 = my_data[\"Wages\"]\n", "x = my_data[\"Year\"]\n", " \n", "plt.fill_between(x, y1, color='#539ecd')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Superposition des deux graphiques" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGVhJREFUeJzt3XmYVPWd7/H3t1cWEYFuoNnSoIi4BaXFJS65kMRkEsRkxoxOkiH3ksuYG72ZPPHmYpxMkidPJk40Xs2Yq8PEBaM3gsookcERESWgAo2SSLPIIkLTBTT71t1V1f29f9ShbaDZurqpql9/Xs9Tz6nzq1N1vr8+8Olf/+rUKXN3REQkXHmZLkBERDqWgl5EJHAKehGRwCnoRUQCp6AXEQmcgl5EJHAKehGRwCnoRUQCp6AXEQlcQaYLACgpKfHy8vJMlyEiklOWLVu2w91LT7ZdVgR9eXk5lZWVmS5DRCSnmNlHp7Kdpm5ERAKnoBcRCZyCXkQkcCcNejN73My2m9mKFm29zWyuma2Nlr1aPHa3ma0zszVmdmNHFS4iIqfmVEb0TwKfP6ptCjDP3YcD86J1zOxC4Fbgoug5/9fM8tutWhEROW0nDXp3XwDsOqp5AjAtuj8NuLlF+7Pu3uDuHwLrgDHtVKuIiLRBW+fo+7l7DCBa9o3aBwKbW2xXHbWJiEiGtPebsdZKW6vfVWhmk82s0swqa2tr27kMERE5rK1Bv83MygCi5faovRoY3GK7QUBNay/g7lPdvcLdK0pLT/rBLhERaaO2Bv0sYGJ0fyLwUov2W82s2MyGAsOBJemVKCISpvIps8/Ifk56CQQz+z3waaDEzKqBHwP3AjPMbBKwCbgFwN2rzGwGsBJIAt9x98YOql1ERE7BSYPe3W87zkPjjrP9z4Gfp1OUiIi0H30yVkQkcAp6EZHAKehFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAKnoBcRCZyCXkQkcGkFvZl9z8yqzGyFmf3ezLqYWW8zm2tma6Nlr/YqVkRETl+bg97MBgL/E6hw94uBfOBWYAowz92HA/OidRGRTqt8yuyM7j/dqZsCoKuZFQDdgBpgAjAtenwacHOa+xARkTS0OejdfQtwP7AJiAF73f1VoJ+7x6JtYkDf1p5vZpPNrNLMKmtra9tahoiInEQ6Uze9SI3ehwIDgO5m9vVTfb67T3X3CnevKC0tbWsZIiJyEulM3XwG+NDda909AcwErgG2mVkZQLTcnn6ZIiLSVukE/SbgKjPrZmYGjANWAbOAidE2E4GX0itRRCQ3ZPpN1+MpaOsT3X2xmT0PvAskgfeAqcBZwAwzm0Tql8Et7VGoiIi0TZuDHsDdfwz8+KjmBlKjexERyQL6ZKyISOAU9CIigVPQi4gETkEvInIasvXMmhNR0IuIBE5BLyISOAW9iEjgFPQiIoFT0IuIBE5BLyISOAW9iEjgFPQiIoFT0IuIBE5BLyISOAW9iEjgFPQiIoFT0IuIBE5BLyISOAW9iEjgFPQiIoFT0IuIBE5BLyISOAW9iEjgFPQiIoFT0IuIBE5BLyISOAW9iEjgFPQiIoFT0HeQ8imzM12CiAigoBcRCZ6CXkQkcAp6EZHAKehFRAKXVtCb2Tlm9ryZrTazVWZ2tZn1NrO5ZrY2WvZqr2JFROT0pTuifwh4xd0vAD4JrAKmAPPcfTgwL1oXEZEMaXPQm9nZwPXAYwDuHnf3PcAEYFq02TTg5nSLFBGRtktnRD8MqAWeMLP3zOy3ZtYd6OfuMYBo2be1J5vZZDOrNLPK2traNMoQEZETSSfoC4DLgUfc/TLgIKcxTePuU929wt0rSktL0yhDREROJJ2grwaq3X1xtP48qeDfZmZlANFye3oliohIOtoc9O6+FdhsZiOipnHASmAWMDFqmwi8lFaFIiKSloI0n38n8IyZFQEbgP9K6pfHDDObBGwCbklzHyIikoa0gt7dlwMVrTw0Lp3XFRGR9qNPxoqIBE5BLyISOAW9iEjgFPQiIoFT0IuIBE5BLyISOAW9iEjgFPQiIoFT0IuIBE5BL+2qfMrsTJcgIkdR0IuIBE5BLyISOAW9iEjgFPQiIoFT0IuIBE5BL9IOdLaRZDMFvYhI4BT0LWhUJiIhUtCLiAROQS8iEjgFvYhIK0KaylXQpyGkfwgiuUT/906Pgl5EJHAKeslKGrGJtB8FvYh0Cp158KCgFxEJXNBB35l/g58O/ZxEwhZ00IuIiIJeJKvor6v06Wd4LAW9iEjgFPQSPI3wcpeOXftQ0IuIBC7toDezfDN7z8xejtZ7m9lcM1sbLXulX2b70ijhzNPPXLJVZ/i32R4j+u8Cq1qsTwHmuftwYF60ntM6wz8EEQlXWkFvZoOALwK/bdE8AZgW3Z8G3JzOPk6FglhE5PjSHdE/CPwAaGrR1s/dYwDRsm+a+5CA6Ze0SMdrc9Cb2ZeA7e6+rI3Pn2xmlWZWWVtb29YyRM4Y/VKSXJXOiP5TwE1mthF4FhhrZk8D28ysDCBabm/tye4+1d0r3L2itLQ0jTJERORE2hz07n63uw9y93LgVuB1d/86MAuYGG02EXgp7Solq2hkmxt0nOSwjjiP/l7gs2a2FvhstC4iIhlS0B4v4u5vAG9E93cC49rjdUVEJH36ZKyISOAU9BIMzUmLtE5BLyISOAW9iEjgFPQiIoFT0IvIGaP3UTJDQR8g/Wc6Nfo5SWehoBcRCZyCXkQkcAp6EZHAKeizxOnOF7dlfvlM7EM6ho6FpENBLyISOAV9ltNI7kih/DyysR/ZWJO0DwW9iEjgFPQi0u70flB2aZfr0YuIyCnYuxeqqppvv3vxTbjrSigp6dDdKuhFOlD5lNlsvPeLmS5DMmXjRnjuOabNeJamp/+OvC1bmh+KF3elR+9BLP/TBkaNU9CLiOSOzZvhuefw6dOxJUsA6FtazsLho6i59i+pHnAuG/oPpbZPGUvXbuNfBw7t8JIU9CI5TH8xZImaGnjuOZ5/+l/hn1cBsGnoSN766++yaPQ4Xt6ZR8WIsoyVp6AXEWmLrVvhhRdg+nR84ULMne6l5Uz/qzt4a/Q4tvQb8vG2O2OZqxMFvYjIqXPn5qr5MPZX+JtvYk1N1Aw6j0Vfvp23K8Yxc2+XjI7cj0dBLyJt0ummjTZvhkmTeHDuXLYOKGfR+Em8PeZzbCwb9vE2ezM7cj8enUd/hul84eynY3SkTv/zcIcnn8Qvvpj4wkXc87n/wR0/e57fT7j9yJDPYhrRi4gcTywGkyfDyy+zZmQFj/y3f+SlHXlUmGW6stOiEb1IJ9PpR+inaPzKN/GLLiI59zWe+tpd/Oj7j7Clz8BMl9UmGtGLiLTU2Ah33cW//OFB1g+/lN9866dsKh1y8udlMQW9iMhh+/fDbbfB7Nk8PvomXrn9Hprycz8mc78HIiLt4aOP8PHj8ZUreWLiD/lZ/2uoCCDkQUEvIgKLF+MTJtBw4BD/5/sPs+yCMbAmO0+VbAu9GSsindqXVi3Ab7iBXVbEP/zDE6mQD4xG9CLSOR08CFOm8PCsh1k74jL++Tv3seesXpmuqkMo6EWk81m4EP/mN7H163li9HhenfxDEoVFma6qw2jqRkQ6j7o6uOsu/Prr2XWggZ/98N/46Wf+LuiQhzRG9GY2GHgK6A80AVPd/SEz6w1MB8qBjcBX3X13+qWKiLTdJ2vW4Jffha1ezbyxf8W0W75LXXG3oN50PZ50pm6SwPfd/V0z6wEsM7O5wDeBee5+r5lNAaYA/zv9UkVE2qC6Gn7xC2Y+/Sh7+/TlkR88EuQbrifS5qB39xgQi+7vN7NVwEBgAvDpaLNpwBso6EXkTKupgXvvxadOxZON/L9Rn+e1b/2Ag117ZLqyM65d3ow1s3LgMmAx0C/6JYC7x8ysb3vsQ0TkVJQe2A3f+x7+6KN4IsEb197Ev39pEn/YARWdMOShHYLezM4CXgD+3t332Sle1c3MJgOTAYYMye3rSIhIhjU2woIFMH06Cx57kiZPsuCaLzJz/LeoKYkuRLYj/Ln440kr6M2skFTIP+PuM6PmbWZWFo3my4DtrT3X3acCUwEqKio8nTpEpBNqaoKFC2HGDPz557Ft24gXd2X2Bdey6Ot3srnv4ExXmDXSOevGgMeAVe7+QIuHZgETgXuj5UtpVSgiclg8DgsW8JO5j+K/m4zV1JAoKubdS69lyS3f552LrmHRxj1U9M2+r/PLpHRG9J8CvgG8b2bLo7Yfkgr4GWY2CdgE3JJeiSLSqe3eDXPmwKxZ+Jw52L593FpQxLJLr2HxzXfw9sXXUd+lW4sn7MlYqdkqnbNuFgLHm5Af19bXFRFh/354/nmeefZB/P4qrLGR/ef0YemosSy//Aam5g3m4ouHZrrKnKFLIIhIdmhqgvnzU9/POnMmdugQA3qV8dJfTKTyshtYM+RCPC/1Yf76TvAhp/akoBeRzEkmYckS/teb0/Dyb2ObN1PfvQcLx3yehdeO58l4CRUXDMh0lTlPQS8iZ447rF0Lc+fCq6/i8+dj+/Zxu+Xx50uu4o83fYe3LrmOeFGX1PYaubcLBb2IdBx3+OCD1GmQf/wjC/99Dvwydcb1zr4DWX7ZOFZecjWP5Q3ivFEjMlxsuBT0ItJ+du2CqiomLX0RvvIYvnAhVlsLwIGze7Gi/wW89uVJLBt5JbHSQRB9wHKPRu4dSkEvIqdv3z4u37IKfhuDqipYsYKmqiryYqnA/hGwo+9Aqs6/knXjL+P98z5Jdb9yKj/YSsUIneN+pinoRaR17rBzJ6Nq1sAT21OBXlVF04oV5FVXMxPgaYgXd6V6wFA2Datg6w3nsmnAMF6oP5vBFZdkugcSUdCLdFaNjbB9e+oqjzU1fO29V+AHb8KGDfj69fiGDeTt28eLAL+DRGERNQOG8tHgS4ld82VebTyH4isqqC0Z0Hza42Hb1sTQBQiyh4JeJET79zNy+4bUJ0qjID98e3HpKpqemoxt34Y1NjY/5edA8vVCavsOJNZnILVjvsCOfoOZX9eVLldczvbSgTTl5TdvX7kmpksN5AgFvUgOK040QGVl87RK89TKpk3MAXji4233n92LPT1L2Fd8FgsGj2TvFX3Z06uUnT1L2H52CW/sdIaMvvCIMIco0Psp0HOZgl4klzQ0wDvvpD5BOn8+f170FjyQBCBZUEhswFA+KhtJbMx45id60OuiEew8p5Q9PfuQjL4XtXJNrNU3RLcmYgw6KuQlDAp6kWwWj8PSpdzx1rMw7gH8rbew+nrcjI/KR/Kfo2+i/sqrWd9/GFv7DqIp/+P/0pVrYlScp5G4KOhFskp+U+MRI3ZftAg7dIi7gE2fGMGK67/C6guvYPl5l3GoW4/jjs5FWlLQi2RaQwO8+irMmMF7M2bCfYcA2DL4PN6/5iZWj6zgSRugT45KmynoRTKgsDGROiNm+nT8xRexvXs5dFZP5oz4FNtu+CzLz7uMfWf3bt5enxyVdCjoRc6UZBJefx1mzGDJMzPg/v3Ud+/B4lGfZvFVn+PdEVfwzvodmoqRdqegF+lAeU2NqXCfPj11jfUdO2jo1p03hl3BhhtvZukFVzafDSPSURT0Iu0lkUhdgrfFOe2L57wG9+0h3qUbS0ddz5KvfY4lF17F2xt2aeQuZ4yCXuR0JZOwfv0Rgf7KvHfwB2qwRAIAN2N7v8EsHnIpH352PItHXk28uGuGC5fOSkEv0pqmptQlA9avT902bODXs/6Iv3IPrF6NNTQ0b1rbbxCbzxnAB1eNZcugc9nQbyhbysqJF3XR6Y+SFRT00vnU10MsxujqlfDcoWOuBTNv+Qf4g7VHhHljXj6jepSwfMh5bBn712wZfC4f9h/G5rKhNBR3VaBLVlPQS/ZJJjm7/kDqyoqJRGqqJJmERILzazfCsmVQV5e61dc3L/9m+RJ4aN0xj90/fyW892u8pgbfUkPe7l0AvADwTLTLgsLoui+lrC8Zwuorx7K93yBiJQPZUjKQHb37s1hnxEiOUtBLinsqTBsamm+D9m5LfQ1cPH7E7VMbl8Nsjtj28O2/L/4T3Pt+czAfDukfvb4Gvv3ykeFcV8eMVVtomnMPvn8/7N+PHdhPXn09fwZ46NgyXwV4vPUu/BPAf368Hi8qJllYxNV5XVhX159dPUvYe/mF7OlVyu5epSzaY/S5ZAS7zinlQPeezd92pNG5hEZBn82amlJXJ6ythX37jrhNqHoz9e0+R4Uw8ThT3lgJd76SCtNDh5qXM1ZW0zTvJ3CoDm8RuKsOHMJ/Gcfcj9j9QoBHjy3rGYDprZd8D8AbH6835uXTWFDAV8lj39quJAqLaSgsJl5YTLywiGReAcvyzqGh/wDqh3anoUt36rt2Z+XuOIMHl6aen19AY34+SctnVWwf5eX9aCgsoqGgOPV6RcUkCouo3LSHkRcMIV5UTKKgqPka6ccL7so1MSoGKdAlfAr6dDU1wY4dEIulbjU1EItxz+uVqbA9HMCJBMTj/Nt7m2D5v0BDA97QgNenRsLzY7tofKYA6uux+nos3oDF46wBeODY3T4E8HIr5ZjxzfxCDlR1JV7UhXhRMQ1FXWgoLCaZV8DyeDGJbj1J9CwiUdSFRFERH+5N0L+sN4mCIpKFRSQKCkkWFLJy20HKP9GXREEhifxCEvkFJPILWLFlL+cOKyNRUESisJBkQVHz/coNO7n0goEk8wtSl7s9ySi5vdoBtu0uYPBZPU9wsEQ6p9wP+tmz+ca7L6fmZo+az71rwWq4e2Hqm3SampqXP124Hvb8IbWeTDYvH36vGtY9ccz2T63aCu/ch9fV4XX1eN0hqG9g2c69+K8OYcnkMWV9rbCYgyuLSUahmSwoJJlfwMAkrFt7kHhBYRSs3Wjs2pOt/fvwUUkvkoVR2BYWkSgsZu2uOvp/ooxDXbtzsEt3DhZ15VCXs1gaO8h5Fww54rWTBYU05eUf93s52y1s82L4sNbD9kBxHfGiLqdy5ETkDMn9oP/Nb/jZ3Dkw99iHbrc8kkvzacrLw/PyaLLU/fFNsHd9IU15eTTmF9BkeTTl5TEy4VTv30JTXn6qzYymvHx6NCRZGTMaiopJFvYm0aeMeFEXNpcm6DmoP7t7lbK7Zwm1Pfqwu2cJe3r24a0Pd3do2G6Ix+jdu1/bfmYi0qnkftA//TSX/+QVLjl/QPN8cGNe/pkZ2epNOxHJAbkf9L17s6tbTw52PzvTlYiIZKW8k28iIiK5TEEvIhI4Bb2ISOAU9CIigeuwoDezz5vZGjNbZ2ZTOmo/IiJyYh0S9GaWD/wG+AJwIXCbmV3YEfsSEZET66gR/RhgnbtvcPc48CwwoYP2JSIiJ9BRQT8Q2NxivTpqExGRM8z8qCsWtsuLmt0C3Oju34rWvwGMcfc7W2wzGZgcrY6A1PW72qJHWfn5ll+QE9+wHD+wN7/orJ6Nma7jTFO/Oxf1+9TV7dz6UaLuwP427vIT7l56so06KuivBn7i7jdG63cDuPsv2n1nOcbMKt29ItN1nGnqd+eifmeXjpq6WQoMN7OhZlYE3ArM6qB9iYjICXTItW7cPWlmd5D6vp984HF3r+qIfYmIyIl12EXN3P0/gP/oqNfPYVMzXUCGqN+di/qdRTpkjl5ERLKHLoEgIhI4BX07MLPHzWy7ma04qv3O6DIQVWb2yxbtd0eXhlhjZje2aB9tZu9Hj/3aLPrC1Sx1Ov02s3IzqzOz5dHt0Rbb53y/zWx6i75tNLPlLR7L+eN9On3uBMd6lJm9E/Wt0szGtHgsO4+1u+uW5g24HrgcWNGi7b8ArwHF0XrfaHkh8CegGBgKrAfyo8eWAFcDBswBvpDpvrVjv8tbbnfU6+R8v496/FfAP4Z0vE+zz0Efa+DVw3UDfwG8ke3HWiP6duDuC4BdRzV/G7jX3RuibbZH7ROAZ929wd0/BNYBY8ysDDjb3d/21L+Mp4Cbz0wP2uY0+92qgPoNQDRS+yrw+6gpiON9mn1uVa71GY7bbwcOf6VdT6Amup+1x1pB33HOB64zs8Vm9qaZXRG1H+/yEAOj+0e355rj9RtgqJm9F7VfF7WF0u/DrgO2ufvaaD304w3H9hnCPtZ/D9xnZpuB+4G7o/asPda5/52x2asA6AVcBVwBzDCzYaT+dDuan6A91xyv3zFgiLvvNLPRwItmdhHh9Puw2zhyZBv68YZj+xz6sf428D13f8HMvgo8BnyGLD7WCvqOUw3MjP5UW2JmTUBJ1D64xXaDSP3pVx3dP7o917Tab3evBQ5P5ywzs/WkRv+h9BszKwC+Aoxu0Rz08W6tz9G0XcjHeiLw3ej+c8Bvo/tZe6w1ddNxXgTGApjZ+UARsIPUpSBuNbNiMxsKDAeWuHsM2G9mV0Vznn8LvJSZ0tPSar/NrNRS31NANMIfDmwIqN+QGtWtdveWf6aHfryP6XMnONY1wA3R/bHA4Smr7D3WmX5XO4QbqT9bY0CC1G/vSaQC7mlgBfAuMLbF9veQekd+DS3efQcqou3XAw8TfaAtW2+n02/gL4EqUmclvAuMD6nfUfuTwO2tbJ/zx/t0+hz6sQauBZZF/VsMjM72Y61PxoqIBE5TNyIigVPQi4gETkEvIhI4Bb2ISOAU9CIigVPQi4gETkEvIhI4Bb2ISOD+P/RyPEQ4qpDHAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "\n", "\n", "p = plt.bar(my_data[\"Year\"], my_data[\"Wheat\"]), plt.plot(my_data[\"Year\"], my_data[\"Wages\"], \"r\")\n", "\n", "\n", "x = my_data[\"Year\"]\n", "y2 = my_data[\"Wages\"]\n", "\n", "\n", "plt.fill_between(x, y2, color='#539ecd')\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Utlisaion de 2 axes d'ordonnées" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa8AAAEOCAYAAAA+K5hKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXu8FXXV/9/rcJGbiIAiAgfE8JY3FEhTe1Sy1Kcg7xqPolmUVmrmz0x78vJEWWrWk6UimiTnscxStLI0NBU1TTkoihfkKoFcBBE4IBzO+v2xZnv22Wdm7z377Pte79drXrPnu2e+850958xn1vqu7/qKquI4juM4lURdqRvgOI7jOHFx8XIcx3EqDhcvx3Ecp+Jw8XIcx3EqDhcvx3Ecp+Jw8XIcx3EqDhcvx3Ecp+Jw8XIcx3EqDhcvx3Ecp+LoXOoG5JO6ujrt3r17qZvhOI5TUTQ1NamqVpQxU1Xi1b17dzZt2lTqZjiO41QUIrK51G2IS0UpreM4juOAi5fjOI5TgRRNvETkLhFZJSKvJpX1FZHHRGR+sN456bvvisjbIvKmiHy2WO10HMdxyp9iWl53A8enlF0BzFTVEcDMYBsR2Q84E/h4cMyvRKRT8ZrqOI7jlDNFEy9VfQpYm1I8HpgWfJ4GfCGp/Leq+qGqLgLeBsYUpaGO4zhO2VPqPq8BqroCIFjvGpQPAt5J2m9ZUOY4juMk0XDhLIZ1XkadtDCs8zIaLpyV93OISDcReUFEXhaR10Tk2qA8suun0JRavKKQkLLQKZ9FZJKIvCgiLzY3Nxe4WY7jOOVDw4WzmHTrSJZsH4xSx5Ltg5l068hCCNiHwLGqehBwMHC8iBxGRNdPMSi1eK0UkYEAwXpVUL4MGJK032BgeVgFqjpFVUep6qjOnatq2JrjOE5arpoyjCZ6tilroidXTRmW1/OosTHY7BIsSnTXT8EptXg9BEwMPk8EZiSVnykiO4jIHsAI4IUStM9xHKdsWbp991jlaeic8GAFy6TUHUSkk4jMwYyMx1T1eaK7fgpO0UwVEbkXOBroLyLLgKuB64H7ROR8YClwGoCqviYi9wHzgGbg66q6vVhtdRzHKTcaGuCqq2DpUhgyBMaMAQ3tYYH6Tssxh1XWNKvqqHQ7BM/gg0WkD/CAiOwf5wT5RlRDu5Iqkp49e6qnh3Icp9poaIBJk6CpqW358F0+YMXqzmymx0dlPdjElAsamfCrI7OuX0SaVLVn5j0/2v9qYBPwFeBoVV0RdP38Q1X3zvrEHaDUbkPHcRwnA1dd1V64ALb36M0dn3+IoSxGaGFop2WxhSsbRGSXwOJCRLoDnwbeILrrp+C45eU4jlPm1NVB2KNaBFpuv8PMssWLYejQnOrPZHmJyIFYQEYnzOi5T1WvE5F+wH1APUHXj6qmjuctCB6e5ziOU+b07w+rV7cvr68HFi2Czp1hcKw+rlio6ivAyJDy94CxBTtxGtxt6DiOU8YsWAAbN5qVlUyPHjB5MmZx1ddDp9rKoOfi5TiOU6Y0NcHJJ0O3bvDTn5pXUMTWU6bAhAmY5TVsWKmbWnTcbeg4jlOGqFpX1ty58Mgj8NnPwiWXhOy4eDH8538Wu3klxy0vx3GcMqGhwYyoujro18+2r7vOhCuUzZvh3Xfd8nIcx3FKQ+pYrnXrrBsrrS4tXmzrPfYocOvKD7e8HMdxyoCwsVzbt8P3vpfmIBcvx3Ecp5QsXRqvHLBgDahJt6GLl+M4ThlQXx+vHDDx2mEH2G23grSpnHHxchzHKQNOOKF92UdjuaJYvLg1wqPGqL0rdhzHKTNefhmmTYO99zZLq91YrihqdIwXeLSh4zhOSVm3zgYi77wzPPkkDBgQ4+DFi2H06EI1raxxy8txHKfIJI/n2n1306D7748pXBs2wHvv1WSkIbh4OY7jFJXEeK4lSyyLxpYtlld34cKYFdVwpCG4eDmO4xSVsPFcW7daeSxqeIwXuHg5juMUlZzGc4XhllfpEZGLReRVEXlNRC4JyvqKyGMiMj9Y71zqdjqO43SUnMZzhbFoEfTsaZN91SAlFy8R2R/4CjAGOAj4nIiMAK4AZqrqCGBmsO04jlPRTJ5sfVzJZBzPFcbixeYyTJ3oq0YouXgB+wL/VNUmVW0GngROAsZj004TrL9QovY5juPkjTPOgF69bI6urMdzhVHDY7ygPMTrVeBTItJPRHoAJwJDgAGqugIgWO9awjY6juPkhUcegfffh3vvhZYWM6BiC5dqq+VVo5R8kLKqvi4iPwYeAzYCLwPN2R4vIpOASQBdu3YtSBsdx3HyxdSpNp6rQ/NHrlsHH3xQ0+JVDpYXqnqnqh6iqp8C1gLzgZUiMhAgWK+KOHaKqo5S1VGdUx3JjuM4ZcTy5fDnP8N550GXLh2oqMYjDaFMxEtEdg3W9cDJwL3AQ8DEYJeJwIzStM5xHCc//PrXNkfX+ed3sKIaH+MFZeA2DPiDiPQDtgFfV9V1InI9cJ+InA8sBU4raQsdx3E6QEsL3HknHHMMfOxjHazMLa/yEC9VPSqk7D1gbAma4ziOk3cef9w05wc/yENlixZBnz621Chl4TZ0HMepdqZOtczxJ5+ch8pqPNIQXLwcx3EKzpo18MADcPbZNr6rw9T4GC9w8XIcxyk4v/mNJd/98pfzUJmP8QJcvBzHcQpGQ4Nl0Pj2t6FrV3jllTxUumoVbN5c8+JVFgEbjuM41UZi3q7E9Cdbt9o25JBRIxmPNATc8nIcxykIYfN2NTXlMG9XKj7GC3DxchzHKQh5m7crlRJYXiIyRESeEJHXg6mrLg7KrxGRf4vInGA5sVhtcreh4zhOAaivhyVLwss7xKJFsMsuNpdX8WgGvq2qs0VkR+AlEXks+O5mVb2xmI0Bt7wcx3EKQt7m7UqlBJGGqrpCVWcHnzcArwODitqIFFy8HMdxCsAXvwi9e0P37h2ctyuVRYtK2t8lIsOAkcDzQdE3ROQVEbmrmDPeu3g5juMUgNmzYe1a+OUvOzBvVyotLeaLzH9/V2cReTFpmRS2k4j0Av4AXKKqHwC3AnsCBwMrgJvy3bDIBhfrRI7jOLXEgw9CXR18/vN5rHT5cti2rRCWV7Oqjkq3g4h0wYSrQVX/CKCqK5O+vwP4U74bFoVbXo7jOAXggQfgqKOgf/88VlqiMV4iIsCdwOuq+tOk8oFJu50EvFqsNrnl5TiOk2fmz4fXXoOf/SzPFZdujNcRwNnAXBGZE5RdCZwlIgcDCiwGvlqsBrl4OY7j5JkHH7T1+PF5rjhheQ0dmueK06OqswAJ+eovRW1IEu42dBzHyTMPPggHH1wA796iRbD77rDDDnmuuPJw8XIcx8kj774Lzz0HJ52U54obGuDeey1oY9gw265hXLwcx3HyyEMP2awlX/hCHitNZPn98EPbXrLEtmtYwERVS90GRORbwJexTr+5wHlAD+B3wDCsI/B0VV2Xrp6ePXvqpk2bCtpWx3GcdJx4Irz5Jrz9tg1OzgvDhoXnmho6tDWIowOISJOqFjXfVEcpueUlIoOAi4BRqro/0Ak4E7gCmKmqI4CZwbbjOE7Z8sEHMHOmWV15Ey4oYJbfyqXk4hXQGeguIp0xi2s5MB6YFnw/DcinEe44jpN3HnnE5u3Ka3/XE09Ef9fhLL+VS8nFS1X/DdwILMXSi6xX1UeBAaq6IthnBbBr6VrpOI6TmQcesITvhx+eYwUNDeYirKuz9QUXwGc/CwMHWpLEZPKS5bdyKbl4BYkcxwN7ALsDPUXkv2IcPymRj6u5ublQzXQcx0nLhx/CX/4C48ZBp045VJAIyliyxCI+liyB226Dj33MRjzfcYf1ceU1y2/lUvKADRE5DTheVc8Pts8BDgPGAker6oogBck/VHXvdHV5wIbjOKWgoQEuvRRWrTLL6+abc9CVqKCMqInB8ogHbOTGUuAwEekR5M8ai80V8xAwMdhnIjCjRO1zHMeJJGEwrVpl26tX5xjFHhV88c47HWpftVJyywtARK4FzsBm62zEwuZ7AfcB9ZjAnaaqa9PV45aX4zjFJm9R7AUOh09HJVpeZSFe+cLFy3GcYlNXZ11UqYjY9FtZc/PN5ntMpkePovRtVaJ4lYPb0HEcp2KJilaPFcW+ZQvcc49FFO6+uwdlZIGLl+M4TgdINZYghyj2iy+Gxkb43e/g3//O49TL1YuLl+M4TgdYFySty9lguuceO+A738nztMvVjfd5OY7j5Mj27TB8OOy9Nzz6aIwDGxrgqqtaIwz32gtefRU6l2aKRe/zchzHqSEee8z058tfjnFQ6mBkVavkd78rWDurEbe8HMdxcuTUU+HJJ2HZshjzQ5YwJD4Kt7wcx3FqhJUrYcYMOOecmBMbe4b4vODi5TiOkwPTpkFzc0yXIeQptt5x8XIcx4mJKkydCkceCfvuG/PgyZMtlj6ZGs8QnwsuXo7jODF56imYPz8Hqwsshn7KFOjSxbZ9MHJOeMCG4zhOTM4+Gx56CFasaG9EZc2QITB2LNx9dz6blhMesOE4jlPFNDSY5kyfbkkwHnggx4pUYc0amz/FyYnSjIhzHMepMBLDs5qabHvjRtuGHDx+mzZZPsP+/fPaxlrCLS/HcZwsuOqqVuFK0NRk5bFZs8bWbnnljIuX4zhOFuR1eNbq1bZ2yytnXLwcx3GyYMiQ8PKchme55dVhXLwcx3Gy4JRT2pflPDwrYXm5eOWMi5fjOE4Gtm+3JLy77WaWVofninS3YYcpebShiOwNJKdTHg58H/hNUD4MWAycrqrrit0+x3Gc3/7WZiz53e/g9NPzUOGaNTb9yU475aGy2qTklpeqvqmqB6vqwcChQBPwAHAFMFNVRwAzg23HcZyism0bfP/7cPDBlkU+L6xebVaXSJ4qLCwiMkREnhCR10XkNRG5OCjvKyKPicj8YL1zsdpUcvFKYSywQFWXAOOBaUH5NOALJWuV4zg1y113wcKF1rdVl68nZuUNUG4Gvq2q+wKHAV8Xkf0ooZGR/a0QqUdCXhNEBJF8pUM+E7g3+DxAVVcABOtd83QOx3GcrNi8Ga67Do44Ak44IY8Vr15dUeKlqitUdXbweQPwOjCImEaGCPuJsHfS9nEiTBfhuyJ0itOmOO8Ri4CwX7tv8F2HEJGuwDjg9zGPmyQiL4rIi83NzR1thuM4zkf88pewfDn88Id59vAl3IblQ+fEczRYJkXtKCLDgJHA88Q3Mu4MjkWEwcAMTEO+DvwgVoNj7CtAWBbfXsCWOCeN4ARgtqquDLZXishAVV0hIgOBVWEHqeoUYApYYt48tMNxnBqmocGyZixdaoJ1wAHwqU/l+STl5zZsVtVRmXYSkV7AH4BLVPWDMGdcBvYFZgefTwOeV+VEEY4Bfg18N9uKMouXyP8GnxT4ESLJCVI6AWOAOdmeMA1n0eoyBHgImAhcH6xn5OEcjuM4kaTmL1S1qU8aGvI4Y8m2bbBuXbmJV0ZEpAsmXA2q+segOCsjI4lOwNbg81jgL8HnBcCAOO3Jxm14QLAIppoHJC0fw1T03DgnTUVEegDHAX9MKr4eOE5E5gffXd+RcziO42QiLH/hli055i+MYu1aW5eX2zAtYibWncDrqvrTpK8SRgZkZ2S8ClwgwlGYeP01KB8ErInTpsyWl+oxAIj8GrgY1Q/inCAbVLUJ6JdS9h52cY7jOEUhr/kLo6jM7BpHAGcDc0Uk4Wm7EjMq7hOR84GlmCswHd8BHgQuA6apMjcoHwe8EKdB2fd5qZ4Xp2LHcZxKo74eliwJL88bFZhdQ1VnYd63MLI2MlR5SoRdgN6qJCeduB0b45s18TJsiByD9U3VA11TWnVsrLocx3HKjFNPhZtualuWc/7CKGo8Ka8q20XoJMIngDmqfKjK4rj1xBnndS7wCLAjcDSwGtgZOASYF/fEjuM45cTbb8PUqZazcMiQPOQvjKIy3YZ5QYQdRfg9FtjxLNbXhQi3iXBNnLrijPO6DPgGqmcB24DvojoSmA5sjHNSx3GccmLTJjj5ZMug8cQT1sfV0gKLF+dZuKDV8urXL/1+1cmPgd0xo2dzUvmfgJPiVBRHvIYDfw8+f4iN7wK4hQ5GGzqO4xSbhgYYNswEa9ddYe5cuPde2GOPAp949Wro0we6dCnwicqSccAlqsyh7bjh1zGNyZo44vUe5jIE+Dewf/C5H9A9zkkdx3FKSWI815IlNparqcm0ZE2sYO0cKb/sGsVkZ0xLUtkR2B6nojji9TTwmeDzfcD/BuHz9wKPxTmp4zhOKQkbz7VtW57Hc0VRftk1ism/MOsrQcL6+irWB5Y1caINvwF0Cz7/CMsyfAQmZLFyUjmO45SSooznimL1avNX1iZXAn8T4eOY/lwafB4DxErClb3lpboW1eXB5xZUf4zqOFQvQ/X9OCd1siDZIT9smG07jpMXBg0KL8/reK4o1qypWbehKs8Cn8SGWi3AxogtBw5X/SjnYVbEHec1ABtlvSfw36iuQeQIYDmqHc4s7wSkJlhbssS2oQChT45TWzQ1wQ47tC/P+3iuMFQrbjqUfBNk1ZiYcccMxBnndSjwJjABOB/oHXxzHFDoW15bhDnkm5qK5JB3nOpl+3b4r/+yySUvucTGcRVsPFcYH3xgnWs1anmJUB+xDAkyb2RNHMvrRuDnqF6NyIak8r8Bnjoqn5TUIe841UXyFCe9esGGDfCzn8HFF8PNNxe5MTWeXQNYTPjUWgCI8AE2NcrlqqSdoDGOeB2KWVyprCBmKnsnA0VJsOY41U+qB37DBujcuYSGTw1n1wg4C/gJcBs2mSXAJ4BJwDVAH+B7wAbg6nQVxQmV34zF6KeyD5nncHHiMHlye6d8URzyjlNdhHngm5tL6IFPWF416jYELgC+pcqPVHk8WH4EfBv4kio/By7CRC4tccRrBnA1IomnqmLTQf8Ym6DMyRcTJsCZZ7ZuF80h7zjVRdl54N3y+gR8NA1KMq8Co4PPzwGDM1UUN7dhXywhbw9gFvA28D5m5jn5JJH3bJ99CpRgzXGqnyFDwstL5oGvwOlQ8swSzEWYylew+cAAdgHWZqooznxeHwBHInIsllSxDpiN6t/TH+jkxIIFtn7fh9A5Tq6MGtXeyiqpB37NGusS6NUr877VybeBP4hwIpZtQzGLa0/glGCf0Vjyi7TEG+cFoPo48Hjs45x4LFxoaxcvx8mJZ56BBx+EI46AZctMxOrrTbhK5shIjPGSqHkdqxtV/izCCOBCYG9sgsuHgNtUzfJS5VfZ1CWqkVGLIXvLJ7AR0buS6nJUvSj7ilKrlT7AVCzZrwJfwsaU/Q4YhoVXnq6q6yKqAKBnz566adOmXJtRPqjCjjtaT7MqbN4M3bplPs5xHADWr4eDDoJOnaCxEXr3znxMUfj8501JGxtL3ZI2iEiTqvYsdTvikL3lJXIZFuL4NpbOI1n1YihgKD8H/qqqp4pIV6xP7UpgpqpeLyJXAFcA3+ngeSqDVatsgqF994XXX7f/RBcvx8maCy80jZg1q4yEC2o+u0YCEXYH6rE0UR+hylPZ1hHHbXgxcBGqt8Q4JiMi0htLyHgugKpuBbaKyHhsxmaAacA/qBXxSvR3HXKIidf778MAH0rnOOlIDEZODJE85RQ47LDStqkdq1fDnnuWuhUlIxCt/8Oe+Yq5DZONn07Z1hUn2rA38JcY+2fLcCyC8dci0igiU0WkJzBAVVcABOtdC3Du8iTR33XIIbb2fi/HSUvy/FwJHnmkDPNZ13BS3oCfYfN27Qc0AUcBp2GTUR4fp6I44nVv3MqzpDMWvXirqo4ENmEuwqwQkUki8qKIvNjcnDabSOWwYIF16B58sG2vX1/a9jhOmVMR6UA//NByG9a22/A/gO+o8gZmca1W5Y+YV+1/4lSU3m0ocmnS1jvAtUEW+VeAbW32Vf1pnBMnsQxYpqqJVCH3Y+K1UkQGquoKERlIRBYPVZ0CTAEL2MixDeXFwoUweHCrq9AtL8dJS9kNRg7jvWAC4dq2vLoDifmq12IetbeAecCBcSrK1Of1zZTtjdhcLJ9MKVcgJ/FS1XdF5B0R2VtV38SiGecFy0Tg+mA9I5f6K5IFC2D4cOjTx7ZdvBwnki1bbOjUli3tvyurdKCeXQPgDSyl4GJgDvA1Ed4Bvg78O05F6cVLdQ9EjgaexQIpCsU3gYYg0nAhlqW+DrhPRM7HRl6fVsDzlxcLFsCJJ7p4OU4GPvzQAjO2bIGuXWFr0lOq7NKBuniBRZbvFny+DvgrlsfwQ2LO8ZVNtOHjwBZEngs+Pw68gOr2OCdKh6rOAUaFfDU2X+eoGJqa4N13zfLq0cNSYLt4Oc5HJE9x0q2bDYO8/Xbo2bO1vOSDkcOo4aS8IhwNPKvKRyE0qswWYRhmiS1V/cidmBXZiNdewDFY2PqFWKfaJkRmYUL2BPASsUY7O5EkIg333NOCNnbaycXLcQJSpzjZvBm6dDHhmjChzMQqldq2vB4HtojwHKYZjwPPq9IEzM6lwszRhqpvo3oHqhNQHYSFOF4OrMfyVD0PvJfLyZ0QksULzHXo4uU4QHhU4bZtZRZVGMWaNfZC2rdvqVtSCvbCxgq/i02LMgt4X4RHRPh/IowSIVbOrFxyG76ByFosUmQ9cCZQs1km805igPLw4bZ28XKcj6iIqMIoVq824eqU9TjcqkGVt7HsTHcAiLAP5tH7D8wIuh7Tk6yVPTvxEumHuQ2PAY7FBha/BDwJnI6pqJMPFi40V2Hi7axPHx/n5TjAypXmItwaEjpWVlGFUXhqqI9Q5Q0ROmQEZXYbiryMjcW6BJu762KgL6pHoHolqn9DtQqy4ZYJiTD5RNZpt7wch/nz4fDDLU91xU4yXsHZNUTkLhFZJSKvJpVdIyL/FpE5wXJi+jroJ8IpItwiwjwsivwirNvpdGDnOG3KJsPGCGAdFsK+AHgb1ab0hzg5s3Bh29xnLl5ODdLQAMOGQV0dDBxomdI2bLBEu3feaZOLi1TYJOOVbXndTXiGpZtV9eBgiUwfKEKoEaTKEapcqcrfVIllBGXjNtwJm7r5GOBs4JeIrMYS5dqiuijOSZ0Itm+HRYtg/PjWMhcvp8ZIjSh8910TqmuugTFjbKkIsUplzRr4ZGp+h8pAVZ8SkWEdqKKdERREGuZMNtGG21Cdher/oHosZtpNBBZhmeDnIbK4I41wApYvN4d+quXV1BTu6HecKiQsolAVfvGL0rQnL7S0mHhVruUVxTdE5JXArZjO7bcT5hp8GzOCXhNhiQjTRDhPhD3injhOYt4ELUlLIqX9kBzqcVJJjTQEC94AD9pwaoaKjiiMYv1686yUr3h1TiQ4D5ZJWRxzK7AncDCwArgpakdVtqkyS5X/USXUCBJhcawGZ9xDpDMwBnMbHgMcDnTDOtueAO4M1k5HSYhXquUF5jos3z98x8mJ5GwZgwfDXnuZlRVGRUQURpEYoFy+ARvNqhqW5SgSVV2Z+CwidwB/inF4h42gbPq83scyAa/AROqbwBPez1UAFi60dFBDku5hQrzc8nKqjNS+rXfeseXAAy26cPPm1n0rJqIwiirMrpGY9SPYPAl4NXpf8m4EZeM2/DawD6qDUT0b1btcuArEggUWPtU56Z2i1pLzJoeZDRtWhrMJOvkirG8L7D3tjjsqNKIwikRewwoVLxG5F3gO2FtElgUJ038iInNF5BVMkL6Vpor3gaex7BorMCPoY6rsocqXVLlHlWVx2pTZ8lK9PU6FTgdIDZOH2hKv1FfxJUtsGyr8yeWk0tLSdtbjZJYurYA8hXEpf7dhWlT1rJDiO2NU8W3gcVXm56lJOQVsOIUiMUA5mVoSr4qYDtfJhWSDetAg2G+/6H0rum8rihrOKA+gyu35FC7IJbehUxjefx/Wrq1ty6sqw8ycVIN6+XJbH3MMPP982/eViu/bimL1aru4Hj1K3ZKqwS2vciGRTT7V8urVy15Xa0G8ol65q/JVvHa48srwvq2FC60vq6r6tqKo7OwaZYmLV7mQOhVKglqa02vy5ApOXOdAW/fg0KHwzW+mN6gnTIDFi60PbPHiKhUuqNYByiXFxatcCBugnKBWUkRNmACnntq63adPFb+KVx8J9+CSJTZWa+lSuOWW6BlAasqgXr26Zvu7CkVZiJeILA5CLueIyItBWV8ReUxE5gfrWBmHK46FC+3NbMcd239XS9OidO9uv8Pw4TB2rAtXmRI2ouGKK8Ldgzvt1L6rp+YMare88k5ZiFfAMUFm4sQo7yuAmao6ApgZbFcvYZGGCWrF8gJ4/XXYd1/Lvvqvf5W6NcWjgsa3pVpYS5bAxImwLGKUzrp1NdS3FYVbXnmnnMQrlfHAtODzNOALJWxL4VmwoH1/V4JaES9VmDfP4qhHjza/08qVmY+rdMLUYNKkshWwsBEN27e3TkGXSn19DfVthbF5M2za5JZXnikX8VLgURF5KSkh5IBE6pFgvWvJWldotm2zB3WtW14rV9prekK8oDasrzId35ZqDP7613DPPdGDi1XdPRhKhWfXKFfKRbyOUNVDgBOAr4vIp7I9UEQmJTIhNzc3F66F2ZCr62fJEnslrXXLa948W++3n80+WFdXG+JVhuPbwozBL30JzjmnbfayZBLuwJp2D4ZR4dk1ypWyEC9VXR6sVwEPYAkcV4rIQLAEkMCqiGOnqOooVR3VOeq/qhh0xPUTNcYrwU47wcaNUGpxLjTJ4tWzJ3z84/DCC6VtUzEow/FtUXkHBwyAu++OtrBq2j0YhVteBaHk4iUiPUVkx8Rn4DNYduKHsPleCNYzStPCLOmI6ydsKpRkaiWz/Lx5dq277WbbiaCNqDkyqoUyG9/W3BztGly1ygTJLawYuOVVEEouXsAAYJaIvAy8APxZVf8KXA8cJyLzgeOC7fKlI66fhQuhWzcYODD8+1pJEZUI1kj0/I8eDe+9Z6/w1cyECXDssa3bu+1WVDVI9nbvvjuMGBG9b8IYdAsrBlU4HUo5UHLxUtWFqnpQsHxcVScH5e+p6lhVHRGs15a6rWnpiOtnwQLYYw97eoRRS5ZXcsbWRNBGLbgO161rvc+//GVRhSvZ271ihYnRccetNKcsAAAgAElEQVR58EVeaGiAq6+2zyNHlm0EaSVScvGqGiZPbt+Tnc1/e0MD/OlPNr4pKsijFiyv1attSRavAw4wd1q1B21s3gwvvQSnnGLbRQzUiOrbeuutGnANFnpsXeLN4IMPbHvp0rIeAlFxqGrVLD169NCS0dKi2revavfuqvYSq3rjjemPmT5dtUeP1v3BtqdPb7vfnDn23R/+ULj2l5onn7Rr/Otf25YfdpjqUUflVuf06apDh6qK2Dr1dy0XnnrKrn3GDPv7ufTSop1apO2fX2IRKVoTSkO2/3sdYejQ8B936ND8nSNPAJu0DJ7hcRa3vPLFiy/alCa33gqLspxoOtsgj1qwvJIjDZMZMwZmz7ZRsHGopIG/zzxj609+EoYMKZrltXRpDecdLMbYujIcAlFNuHjli/vvN7fhuHHmgjjwQHjoofTHZPvHvdNOtq528erVCwYPbls+erRlJ3j99Xj1lenA31CefRb22sui0err4Z13Cn7Kt9+Go46CLl3KKtCxeOQqLHFcjWU4BKKacPHKB6omXp/+NOwc5A8eNw5mzbJouSiGDAkvT/3j7t3bOh6qXbySIw0T5Bq0USlvvaomXkccYdtDhhRMvJKfu3vvbX+as2bBnXdWed9WGLkIS1xr/tpr25fVxJtBcXDxSke2b1lz5li4e/J0HuPHWxzxX/4SXf/Eie3Lwv646+pMwMpVvPLR8Z0aaZhgxAizPOMGbVTKW++bb5qKJIvXihWwdWteT5P63G1pMU/s66/XaNj7ZZeFl196afQxca35bt1svcsuNfZmUCRK3emWzyWvARtxOnSvvFK1UyfV1atby7ZvV919d9VTTok+x5lnWgf9kCGZgwqGDlU955yOXFFhyEfH99q1dtxPfhL+/dixqoceGq9dt97avqM83x3y+WDqVGvb66+33V60KK+nqaDYgeJw9tn2P7v77va/t/vuqjvsoHr44aoffhh+TNgPmC665aijVIcPt2dBmUMFBmyUvAH5XPIqXtn+t7e0qI4YYQ/YVL76VdWePVU3b27/3YoVql26qF5ySXbtOegg1XHj4l5F4cnHU/GZZ+yYhx8O//6731Xt3Dn8d4zi5z+3Ojt1am1PuQmXquqXvmRRqokH3N/+Zu196qm8nqZmowrDeP55u/grrmhbft99Vp76P9nSovr970eLV9jf+iuv2Hc33FCwy8gnlShe7jaMIts+k1dfhfnz27oME4wfb8EG//hH++/uuMOyyV94YXbtKdfkvPnoW4qKNEwwerTlLHr55ezrvOsuOPRQuOgim+By4cLydNc884xFGSYGqCf6QTvSN5fixn3k8ifQiAxb5eZFLTiqcMkllsXkyivbfnfaaXDxxfCzn5mrr67OXH2f+hRcd52tU0dud+8e3of1q1+Z2/C88wp3LTWOi1cU2faZ3H+/+bNPOqn9vsccYwlmZ6SkZWxuhttvh898Jn0unmTKVbzy0bc0b549BIYODf8+btBGY6MJ3Ze+BPvsY4OAyy1QAyxh65tvtvZ3Qat45Rq00dBAw3l/Z9iSf1Cnzeyy5AU+d8NRDO2/ge7d2+5ak7ED994Lzz0HP/xh+KzlI0eaaK1ZY0K3dKlFtZxyir2EJo/cBjj44PYvRevX29wxZ54J/foV/JJqllKbfvlc8uo2vPzy9u6BHXZo73rabz/V//iP6HpOPtn86S0trWX332/1Pfhg9u2ZOFG1vj7OFRSHfPR5HX+86siR0d+3tKgOHGj9FNnwjW/YvVq7tnUA8COPZN+eYjFjhrXtySfblu+8s+qFF+ZU5fR+39QebGxzO+po1jv6Xl4xY7YLxsaNqoMHqx5ySHQ/VBw3+Pe+Z98980zb8v/9Xyv/17/yfQUFgwp0G5a8Aflc8iZeW7eq7ruv6q67mmCIWJ/LjjuqLlvWut+8efYT/uIX0XXdfbft8+KLrWXHHGP1Njdn36aLLlLt3Tv+tRSDO+5o/Sfv2TP+U7G+XnXChPT7jBunus8+mevavNke/medZdurVlm7fvrTeG1KplBP/e98x/o9m5ralh90kOrnPpdTlUNZFP7sZVHH21upJO5f4sf47/+O3jdO5+CGDfZiOnp0qxi2tNjf6ZgxBbmUQlGJ4uVuwzBuu81iiKdMaZ0o8pVXbH3GGdZXBfCHP9j65JOj6/rP/zQ3RGLA8uuvwxNPwNe+Fp3eIIw+fSxHWtxME8Ug4frccUfra4nTt7Rhg7lmovq7EowZA2+8kTk58YwZluQ20dewyy7munnjjezblEwhM3U884xNupnqz+vAWK+lhLtro8qrnuT7l+Cmm6LvXxw3eK9ecP31Noxj+nQre/xx+1v7+tc71m4nM6VWz3wuebG81qyxN/exY9u6+lRV773X3sIuu8y2DzpI9YgjMtd51FG2r6q5tLp2VV25Ml67fvpTO/fatfGOKwY332xt+8pXLLov1ZJIxwsv2LEPPJB+v0QU3syZ6ff7zGfaW7VHHpl7fsRCxZhv2WKuzbA8hhdcYBGIObB7n03hze23oWPtrVTi3r+4bvDt283KGjjQLLGTTlLt1y9eZGwZgFteVcC119rb/c03t8/2cOaZ9kZ1442WSePlly3YINNb+Lhxtu9rr8G0aRbVtOuu8dpVztOiNDZa9Nbxx5tlOHdu9sdmijRMkJjTa+zY6IHQS5fCY4/Buee2tWr32Sd3y6tQmTpmz4YPP7RIw1Tq6y1P5qZNsarcuBGkZw+gbWhhj67NTP55rw40toKJe//izrRZV2fRiStW2P/AAw+YZybhlXEKhotXMvPmWYjrV79q03GEMXq0/cEmIv/WrcvsRkqI4P77m5vsYx+L37ZyTs7b2GhRWiNHtm5ny7x50LUrDB8evU9DA3zrW63bUa67adPsXfncc9uW77uvTbeSLlVXFIXK1PHss7ZOjjRMkEPEoSp8+cuwYoVyRbefMbTLcoQWhvbfxJS7OpflKIGikMv9i5tyZOFCe1lKvGx88EH5JoGuJkpt+uVzydltOH26uZoSHbO33hq9b6HdEFE8/rgd+8QT8Y4rNJs3m6vwyivNzdqnjw3OzpbPfU71gAPS75PNb759u2UzOPbY9sf/+c+2/6xZ2bcrwfTprQOdO3L/UjnpJGtvGInpYR59NOvqbrrJDvnRFe/rRwEq3boVdXqVsmT6dHPP5vv+JVMF6UuoQLdhyRuQzyUn8YorLnFTFeTrD3v2bM2qb6jY/Otf1q7f/962jz46XqTV8OGqZ5yRfp9sfvMnnrCysPu2cKF9d8cd2bcrwYYN9vDr2bP1vHfeGb+eZFpaLJI1KvR/0SI7z9SpkVUkB0AOGGDrk05SbXnoYf1IqA87zPr7ap0zz2z9eynEGIEqSF+SSbyAu4BVwKtJZX2Bx4D5wXrndHXkeykbt6GIdBKRRhH5U7DdV0QeE5H5wXrngpw4brLNuG6IfPWZlOu0KAkXYcJlePDBFpnZ3Jz52KYmm/ssU39X1G+rCl/8ovVLHHOMuWfDEtrW11u2g1z6ve6/3/qm/vY3608Di2DsCAsWwKpV4f1dAIMG2bVEuA1TAyBXrrTyE08EmdNoxx50UOtcaNnci2pGxFyxhco8XClJoDvG3cDxKWVXADNVdQQwM9guGmUjXsDFQPKkTcX5YeKKy+TJ7VPEpEtVkK8/7HLt82pstIz3e+xh2yNHwpYtljkiE2++aU/fTOIV9psnMnLce2/rvVKFb3yjfV9Dp042B0jcOcHA0kzttZcJzVFHWcaURx6JX0+ChgY47DD7fN114f0iXbpY53/E32DY+5Yq/OAH2P0YMcLCuEePth1zue5qItEnWyjiPhMqEFV9ClibUjwemBZ8ngZ8oZhtKgvxEpHBwH8CU5OKi/PDxBWXuNFI+frD7t3b1uUmXnPmmLWVyM2XeEjMmZP52GwjDcN+8zvusCd2KlFWcy4Rh/Pnw9NP25gxEZu1cexYm+Ym7NyZSJhMicCRFSuiO/bTTEqZ9n0r+UE9Zoyt486FVk1s2mQvSYUUr7jPhPKks4i8mLRMyuKYAaq6AiBYxwyh7iDF9FGm8afeDxwKHA38KSh7P2WfdZnqKUqfVy7kK0PDjjtmn4W+GDQ322910UWtZVu3Wh/Rt7+d+fgrr7TMJVFTUGQiTl/DNddYeZwxaFdeqVpXp/rvf7eW3XabnWPevPjtjdP/eeqpqnvvHa+awc324frrbcft21V32ileAE218eyz9pvEScVWg5BFwAYwjLZ9XrGf0flcSm55icjngFWq+lKOx09KvC005+LbL8ZbU75m+yu35Lzz55ulk/xW26WLDTPIFC7f0GBj6ZqbzS2XS1hxHKt5n33sGT9/fnZ1b98Od98NJ5wAu+/eWn7CCbbOxXUYx0U9ZIiVh1h4X/lK+9179IDJ5wSWZeJ+1NXBqFG5W175mGS01KT2yTr5ZKWIDAQI1quKefKSixdwBDBORBYDvwWOFZHpZPnDqOoUVR2lqqM6d+6cWwsqZSrZchOvqAfDyJH2XZRrLeE+27zZtnNNuRTHJbvvvrbOtv/n0Udh+XLLTJ9MfT18/OPpZ8iOIo7Y1tfb77O2bTfDe+/B1Kk2Rn7w4JT3rX5/s52S78eYMTZofMuWeG0tZFqsYtLYCH37to6dc/LJQ8DE4PNEYEaaffNPMc28LMzSo2l1G94AXBF8vgL4Sabj85pVvhw56igLRS8X/t//s1RXW7e2Lf/Vr8xVs3hx+HH5HBeTrUu2qcn2ueaa7Oo99VTV/v3DXZqXXWYJdTfETLk0fbr9Xtm4qBMzDzQ2flTU3Kz62c9aFc8/H1L/f/2X6qBBbcv++Eer57nn4rW1CsYuqarqqFHhE8U6bSBzqPy9wApgG7AMOB/ohwXTzQ/WfdPVke+lHCyvKK4HjhOR+cBxwXZtU46W1/77m6swmUyZNvKZcilbq7l7d4uIzMbyWrPGEvyefbZl/0jlhBMsBdDMmfHbOnasfc7kog4shYZ7tn/kuevXzyL2f/GL1liMNjQ2WvBMMrkGbRQqLVYx2bbNrM7U38SJjaqepaoDVbWLqg5W1TtV9T1VHauqI4J1ajRiQSkr8VLVf6jq54LPJf1hypKddiof8VKNDkE+8EB72kaJV6nGxWQbcdjQYA++VJdhgiOPtFD0XPq9mpstk3wmsa2vp4GzmPSLAz/y3K1fb1H/PXuG7L95s11b6v0YNAgGDrTM53GohrFLb7xhY/S8v6sqKSvxcjJQTpbXsmXWARP2YOjRw8ZVRYlX2HQRxRgXs+++FjYdNa1MQ4NZQ5dcYhbXyy+H79e1K3z60yZeUf16UbzySnTezGR23ZWr+BFN29patdu3R4yfnzvXvgy7H6NHx7e8Jk9uP1VLpY1d8mCNqsbFq5Lo08dev1taSt2SzA+GRNBGGGvWmNusXcRBgQNl9tnHAhfCXF+JAIXEd1u3pg9QOPFE2zcxVi0bVq+2dBgHHph537o6lhIeZBDquUt3P8aMgbfeivfiM2FC27DGHXaovLFLjY0mwHvvXeqWOAXAxauS6NPH3vQ3bix1S+zBIBL9IB450qyzNWvalm/bZtnfx42zQbjFjPBMF3EYN01YLiHzialiQiyv1Kj0a66BzhJuIYZ67hob7e9j2LD2340ebeuXYo5Gqauzh/8559hEo1/8YrzjS01jo/19xpn01akYXLwqiXJKEdXYaOOzekXME5XoJE+1vv76V7M+ovqTCsk++9g6rN8rboDC4MEWrBInZD5CvMKi0q+9FrrKNnbgwzb7RnruEsEaqXPQgY31gviuw2eeMeE75BB7CUkkUawEVC3Li7sMqxYXr0qi3MQr3YMhKuLwrrtgwIBWy6WY9OtnSXXDLK9cAhROPBFmzbI52rJh7lzo39+uP4kwow+gb8+t3CnnM7Re03tXm5utLy3qfvTta3PIxQnaaGqye3fEEa1iG2eS0UKSzeDpRYvMxe7iVbW4eFUS5SJe771nFkm6B0O/fhbunSxeK1fCn/5kbqjU8PpiERVxeM017csyBSjEDZmfO9eEIMU6ijLulm3YiQnawOJnl6f3rr75pvXlpbsfo0fHE69//ctEsdzEK9vB0x6sUfW4eFUSxRKvTG+2iaS7mR4MqUEb06fbA/G88/LZ2njsu2+45ZVILbbrrtkHkSxdavuedFLm9EktLfDqqzR0Pfejn3boUDj//OhD6ncJMpBkmlE5mwf1mDHWB7liRfq6EjzzjK0PP9ys1d12Kw/xyrZvsrHR+rqyiex0KhIXr0qiGHN6ZfNmG0e83nrLMnurmsvwsMNaAydKwT77mOWYHEjS0gI33mjtfffd7IJIGhrgggtaQ+UzpU9auJCGpvFMeuKsj37apUvtJxk40KYbS6ZHD5h8adDGTAODGxutgkSfXhiJoI1sra9nnrH71LevbR9wgLkmS022fZONjdb+1B/WqRpcvCqJYlhe2bzZNjZawEL//unrGjnSntKvvGIPzXnzShOokUxYxOHDD5vr7fLLwwMewogbnTh3LlfxQ5q2tneXdu5s+Qrb5Yb+WjANTibLa84cE5d0uT1HjjRLJJugjZYWeO45cxkmOOAAu39RY+SKxeDB4eWpfZOFnsPLKTkuXpVEwvJav75w51iyJLw8+c022wdDctDGXXdZ2PUZZ3S8jR0hLOLwhhvM7XfqqdnXk8ECSPW83jWtjiUMDT3knXcislzttJNFc6azvNJlOkmmRw+LjszG8nrjDVi3ru1MzwccYP1qb7+d+fhC8qlPtS9L7ZtcudLcoy5eVY2LVyXRpYvlBiqE5aUK3/te9PcJK6upKTwNURhDhpjb6dlnbcbj005rnVSzVNTXm4gmLK9nnzUX2aWXprdcwuqJKA/zvJ4/YxwQbtVFBjSKpJ2UEjBhW7cuu/x9iaCNTFlBEv1dqZYXlLbfa9MmeOwxm7x0aNKLwA9+0NbF68EaNYGLV6URlSIql7mXko/p1cveXo8+uv00I3V1lh3i3HNhzz3NPLj11sznELGO/oYG+OADyypb6ik16uos40LC8rrhBhPYuO7MsOlYuneHyZMjQt+F3p02xp9Ue8iQ9OIV50GtakLXqVP6v5FnnrEgjREjWsv2289+u1KK1y9/CatW2SzaixfDv/9tmT9S25T4TTwhb3VTzBT2hV6qfkoUVdWPf1z15JPbluUyG3TYMV26WHnqNCN33qk6cmT76TGyOUfnzvGOKQZnnaU6bJjqG2/YNf73f+dUzfQLntahnd5RYbsOZZHe89nf6MyZ4TOJgKrQEn9S7S9/WXXXXaO///73bbbnTZsyNHa6ardu2d2LESNUx49vX7733qonnZShwQXigw9U+/VTPf74tuWXXKLaqZPqW2+1lp12muoeexS3fRUOWcykXG5LyRuQz6UmxOuII1SPPbZtWS5zL9XXxzsm7v65tqsYXHutqceECfZAX7kydhVh2i+02FoiLrv/xvhtve46O3jLlvDvP/951X33zVxPtvdi5Uor//GP29dx6qmqe+4Z9wryww9+YO1Kncjs3XdVu3e3ucwSjBhROpGtUCpRvNxtWGmETYsS1aG/ZImFsSW7E2+7zfoI4qZDinJdpQsmKNc5odassUd3Q4P1cz32WNrdwzyy3/1ue9egIvTvr9x5Z8gEz2xi8ndyCLRJzAC8bFl4ox5+2O5zJndstvfi2WdtndzfleCAA2DhQut7iiIX93Um3n/fhjJ8/vPtJzIbMAC+8Q34v/+zfswNG2D+fO/vqgVKrZ75XGrC8vriF1WHD29bFvVWnW5JdSFlsopysaLK0fJK4z4Lc+mFWVipntA21pe0fHSaj+ra8T2d3vkcmwo5Ln//u1X8+ONtryGumzjbe3HZZTZV8+bN7etIzMocOo1zju3Khquvtrpmzw7/fvVq1V69VM84Q/Xpp23fhx/u2DlrDCrQ8ip5A/K51IR4XXihat++bcui+pZ22in8gTVwYPwHTb761YrY5xXavzR0qE7nLB3Koo/6qqZzlk7v9812Te3WTXXHHcN/wkjXYJ/32zfkuONUDzkkt4t46y2reNq01rJcXgrC7kW3bu3vxSc/qXr44eF1zJ9vx02dGv59Pl9Wkm+eiOqoUen3v/JKO1evXrYeNKj0fasVhItXiZeaEK8rr7QO6paW1rKtW1V79zbff/KTOuoJK2LHxY0eiB1tkOMxMYiqPko3L+AW7cHGNuVd2KLd2BTbeG1XvzTp9L2vbd/I3XZTnTgxtwtsarLKf/CD1rJM9zWbH6uuzvqvkv+ONm82q+uyy8KP377dLvrii8O/z7VdYe3MRmiTuf328BvkApYVLl65NAC6AS8ALwOvAdcG5X2Bx4D5wXrnTHXVhHj95Cd22zZsaC2bMcPKHnqo7b7l6LbLQDoxysal16OH6i9+obrLLlGi0xKzPPonbNemcb+zF4t161ovaNUqO+DGG3P/Ufr3V500yT6vXx/f5RvGr39txyQ/3GfNsrIHHog+bsyY9gFDCfL191YtLuoKwsUrlwbYyM1ewecuwPPAYcBPgCuC8iuAH2eqqybEa8oUu23vvNNaNn68vd1v29Z23xK77dIRR4wuuCC8fOedM4tMR8WrX78YP2Giv+X3v28tS8TOP/po7j9Uly5Wx6BBqoMH24/WtWvH7uv27aqHHmp1bgyiIBMvRumiL88/38Q02WJLkDi+o39vuVhw+bL6ahQXr442BnoAs4FPAG8CA4PygcCbmY6vCfG67z67bXPn2va779rb/uWXh+9fYLddplPEEam+faOfP3FFasCA8PJOncLL04lU1j/htm2qffqonndea9nPfmaVrViR2w+b2ihQveKK/NzXhNhefbVtjx+v+rGPpT8m3fVcfrm1JyGwYOOw4uKWV9Fx8cq1EdAJmANsTFhYwPsp+6zLVE9NiNejj9pte/pp277xRtt+/fWCnzqOEEV917Vr+PM4n0uibXGsuFgilY7TT7eAmIRlks5SyUQxHshnnGF9pUuWmK81U99clCW5dau9MSQGN2/bZgOFo4I/0jF1avs3ljIPDqp0XLw62hjoAzwB7J+teAGTgBeBF7t27RrjdlUozz9vt+3hh+2BuN9+FiGWA/noX4py3XXpYjEB+RCjXKyluNeXNxJ9SY2Ntj1mjOoxx+RWVzFcYUuWWKTqDjtY3X37pv9BEn14N93Utvyhh6x8xozWsltusbJZs+K16etft+MGDCir4KBqxsUrHw2Cq4HL3G0YwZtv2m275x7Vf/7TPt9xR+xq4lgm6ULG87lEiVHBraV8smKFNXDyZOtX6tlT9aKLcqurGJZXcp9athbLbrupnntu27IvfMHEZuvW1rJNm+ymjhuXfXueesraEBXR6BQEF69cGgC7AH2Cz92Bp4HPATekBGz8JFNdNSFeifQ9t9xiEWg9eqiuXx/byoh6LubSvxT1fI06Ry79S2UnUuk45BDVI49UffttzfXlQlWL4wrLRSCPO86CPRKsXGnWW1iIfWKAcTZu7U2brM9tjz1ag0icouDilZt4HQg0Aq8ArwLfD8r7ATODUPmZQN9MddWCeE2/e2swwLZFh8oSnX7UrbGsqC5dzMtYaGspm/6wihGjuFx1lflM77rLLvqf/8y9rkL/ULm4Ji+91MzxRMaQm26yY157rf2+q1bZvuefn7ktl11m9cycmdu1ODnj4lXipZrEK+t+px2atV+/6OdPWHmnTtZHH/VdvqylqOuoep55xn6g/fe3C08ek1du5GJ5Jfr13nijtd/1sMOi97/wQovUWb68/XfJfyCQe/+g0yFcvEq8VIt4FTpKT6SE0Xi1QHNz2x+xnH+sXFyTL75o+/3+960BRFOmRO+fcJ/27p35bax79/L9raoYF68SL5UoXqmCMG1auuwQUUv4ANsoKyrxUl0V/UvlyPTp7X/8cg7bjnvDm5rMLfr976t+9asmOOvXp68/9ffo3j06CsjHZhUdF68aEa+4D/04+fdyEal+sia2FeUUkFoYMLv33jYxZO/equeck37fqN8jnWvAKSrZiBewGJgbjMl9MdP+hV5KLjj5XHIVr3yMd4oSirDyHXZQPfvs6BfPqPFR/VjVLqlsDzbqdL7oVlQ5UQupisaMab2uAQPS/2HFDWGtJpGvEGKIV/9M+xVrKXkD8rnkIl5RYjRxYvv8p127ts64EPZciufqS7+EWkz9vhk6nYf/s5cZ1W55xR0blsuYCaeouHiVeMlFvOJ6NPK1iKjW14d/F5qxfLp6CpxKodrvU1xxrtkxE5VDluK1KMg9+xIwKdP+hV5KLjj5XHIRr3xZTFHBEemCJnJ6xvk/e2VQzfcpF7doNf8eVQDwYSLNXrC0Eydg92C9azCF1adS9ynmIkFjqoKePXvqpk2bYh0zbBgsWdK+vFMn2L69fXm/frB5MzQ1tZb16AETJ8K0admXT5kCEyZAQwNcdRUsXQr19TB5spU7TtkS9U8zdCgsXlzs1jh5QESaVLVnjP2vATaq6o2Fa1V66kp14nJh8mQTk2R69IBJk8LLf/5zE56hQ0HE1lOmwK9+Fa88IVATJtj/e0uLrV24nLIn6p9m8uTStMcpOCLSU0R2THwGPoNlRCpdm2rd8oJo68etIseJwP85qopMlpeIDAceCDY7A/+nqiV9W3HxchzHqXHiug3LgZp3GzqO4ziVh4uX4ziOU3G4eDmO4zgVh4uX4ziOU3G4eDmO4zgVR1VFG4pIC7C51O0oEp2B5lI3ogT4ddcWft3FobuqVpQxU1XiVUuIyIuqOqrU7Sg2ft21hV+3E0VFKa3jOI7jgIuX4ziOU4G4eFUuU0rdgBLh111b+HU7oXifl+M4jlNxuOXlOI7jVBwuXmWCiNwlIqtE5NWU8m+KyJsi8pqI/CSp/Lsi8nbw3WeTyg8VkbnBd/8rIlLM68iFONcuIsNEZLOIzAmW25L2r6hrDyPdH28AAATwSURBVLtuEfld0rUtFpE5Sd9VxT2Pc901cL8PFpF/Btf2ooiMSfquKu53wSjlTJi+tJml9FPAIcCrSWXHAH8Hdgi2dw3W+2Ezme4A7AEsADoF370AHA4I8AhwQqmvLc/XPix5v5R6Kuraw6475fubgO9X2z2Ped1Vfb+BRxPtBk4E/lFt97tQi1teZYKqPgWsTSm+ALheVT8M9lkVlI8HfquqH6rqIuBtYIyIDAR6q+pzan/lvwG+UJwryJ2Y1x5KJV57xHUDELxNnw7cGxRVzT2Ped2hVNF1K9A7+LwTsDz4XDX3u1C4eJU3ewFHicjzIvKkiIwOygcB7yTttywoGxR8Ti2vRKKuHWAPEWkMyo8Kyqrp2gGOAlaq6vxguxbuObS/bqju+30JcIOIvAPcCHw3KK+V+50znUvdACctnYGdgcOA0cB9wYymYT5uTVNeiURd+wqgXlXfE5FDgQdF5ONU17UDnEVb66MW7jm0v+5qv98XAN9S1T+IyOnAncCnqZ37nTMuXuXNMuCPgXvgBbHcjf2D8iFJ+w3G3A3Lgs+p5ZVI6LWr6mog4Up8SUQWYFZa1Vy7iHQGTgYOTSqu+nsedt2B27ia7/dE4OLg8++BqcHnqr/fHcXdhuXNg8CxACKyF9AVWAM8BJwpIjuIyB7ACOAFVV0BbBCRw4K+g3OAGaVpeocJvXYR2UVEOgXlw7FrX1hl1/5p4A1VTXYP1cI9b3fdNXC/lwP/EXw+Fki4S2vhfneMUkeM+GIL5ipZAWzD3q7Oxx7Y04FXgdnAsUn7X4VFIL1JUrQRMCrYfwFwC8FA9HJe4lw7cArwGhaJNRv4fKVee9h1B+V3A18L2b8q7nmc6672+w0cCbwUXN/zwKHVdr8LtXiGDcdxHKficLeh4ziOU3G4eDmO4zgVh4uX4ziOU3G4eDmO4zgVh4uX4ziOU3G4eDmO4zgVh4uX42SJiEwPpq7omlI+VkS2icgnS9U2x6k1XLwcJ3u+AfQDrk4UiEhv4C7gBlV9thAnTRVLx3FcvBwna1T1feA84PKkSQNvBtYB1wCIyP4i8oiIbAgmHmwQkQGJOkTkEyLymIisEZH1IvJ0ygSEnUVEReRrIjJDRDYB1xXtIh2nQnDxcpwYqOrfgVuB34jIqcAE4GxV3Soig4AngUYsE/5xQB/ggaTZbncEpmFTfxwGzAUeEZGdU051LZaz7gDgNhzHaYOnh3KcmIhId0ygRgBXqOoNQfkPsdx0yVO29wdWB+WzQ+oSYBXwTVX9bZBZfRvwM1X9VuGvxnEqE7e8HCcmqroZmzjwQ2zK+gSHAseIyMbEAiwOvtsTQEQGiMgUEXlLRNYDG7B+tPqU07xYyGtwnErH5/NynNxoBlpUtSWprA54GPhOyP7vBuvpmCvxEmAJJoD/wLLoJ7Mpn411nGrDxctx8sdsYDywWFWbI/Y5Epikqn8BEJGBwG5Fap/jVA3uNnSc/PELbKbre0VkjIgMF5HjRGRq0E8G8BZwtojsG0QZ/pZgpmDHcbLHxctx8oTaDMBHAJ2Av2GTKN4CNGFBGADnYm7DRuD/gNuBd4rdVsepdDza0HEcx6k43PJyHMdxKg4XL8dxHKficPFyHMdxKg4XL8dxHKficPFyHMdxKg4XL8dxHKficPFyHMdxKg4XL8dxHKficPFyHMdxKo7/D9mllZJimBJfAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# create figure and axis objects\n", "fig,ax = plt.subplots()\n", "\n", "# make a plot\n", "ax.plot(my_data[\"Year\"], my_data[\"Wheat\"], color = \"red\", marker = \"o\")\n", "\n", "# set x-axis l# set x-axis label\n", "ax.set_xlabel(\"Year\",fontsize = 14)\n", "# set y-axis l# set x-axis label\n", "ax.set_ylabel(\"Wheat\", color = \"red\", fontsize = 14)\n", "\n", "# twin object for two different y-axis on the sample plot\n", "ax2 = ax.twinx()\n", "\n", "# make a plot with different y-axis using second axis object\n", "ax2.plot(my_data[\"Year\"],my_data[\"Wages\"] ,color = \"blue\",marker = \"o\")\n", "ax2.set_ylabel(\"Wages\",color = \"blue\", fontsize = 14)\n", "\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Pouvoir d'achat** : la quantité de blé qu’un ouvrier peut acheter avec son salaire hebdomadaire" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- Avec un salaire donné, combien puis-je acheter de quantité de blé ?\n", "- Quelle est la quantité de travail nécessaire pour acheter une unité de blé donnée ?" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Unnamed: 0YearWheatWagespurchase_powerPurchase_Power
01156541.05.000.1219510.121951
12157045.05.050.1122220.112222
23157542.05.080.1209520.120952
34158049.05.120.1044900.104490
45158541.55.150.1240960.124096
56159047.05.250.1117020.111702
67159564.05.540.0865630.086563
78160027.05.610.2077780.207778
89160533.05.690.1724240.172424
910161032.05.780.1806250.180625
1011161533.05.940.1800000.180000
1112162035.06.010.1717140.171714
1213162533.06.120.1854550.185455
1314163045.06.220.1382220.138222
1415163533.06.300.1909090.190909
1516164039.06.370.1633330.163333
1617164553.06.450.1216980.121698
1718165042.06.500.1547620.154762
1819165540.56.600.1629630.162963
1920166046.56.750.1451610.145161
2021166532.06.800.2125000.212500
2122167037.06.900.1864860.186486
2223167543.07.000.1627910.162791
2324168035.07.300.2085710.208571
2425168527.07.600.2814810.281481
2526169040.08.000.2000000.200000
2627169550.08.500.1700000.170000
2728170030.09.000.3000000.300000
2829170532.010.000.3125000.312500
2930171044.011.000.2500000.250000
3031171533.011.750.3560610.356061
3132172029.012.500.4310340.431034
3233172539.013.000.3333330.333333
3334173026.013.300.5115380.511538
3435173532.013.600.4250000.425000
3536174027.014.000.5185190.518519
3637174527.514.500.5272730.527273
3738175031.015.000.4838710.483871
3839175535.515.700.4422540.442254
3940176031.016.500.5322580.532258
4041176543.017.600.4093020.409302
4142177047.018.500.3936170.393617
4243177544.019.500.4431820.443182
4344178046.021.000.4565220.456522
4445178542.023.000.5476190.547619
4546179047.525.500.5368420.536842
4647179576.027.500.3618420.361842
4748180079.028.500.3607590.360759
4849180581.029.500.3641980.364198
4950181099.030.000.3030300.303030
\n", "
" ], "text/plain": [ " Unnamed: 0 Year Wheat Wages purchase_power Purchase_Power\n", "0 1 1565 41.0 5.00 0.121951 0.121951\n", "1 2 1570 45.0 5.05 0.112222 0.112222\n", "2 3 1575 42.0 5.08 0.120952 0.120952\n", "3 4 1580 49.0 5.12 0.104490 0.104490\n", "4 5 1585 41.5 5.15 0.124096 0.124096\n", "5 6 1590 47.0 5.25 0.111702 0.111702\n", "6 7 1595 64.0 5.54 0.086563 0.086563\n", "7 8 1600 27.0 5.61 0.207778 0.207778\n", "8 9 1605 33.0 5.69 0.172424 0.172424\n", "9 10 1610 32.0 5.78 0.180625 0.180625\n", "10 11 1615 33.0 5.94 0.180000 0.180000\n", "11 12 1620 35.0 6.01 0.171714 0.171714\n", "12 13 1625 33.0 6.12 0.185455 0.185455\n", "13 14 1630 45.0 6.22 0.138222 0.138222\n", "14 15 1635 33.0 6.30 0.190909 0.190909\n", "15 16 1640 39.0 6.37 0.163333 0.163333\n", "16 17 1645 53.0 6.45 0.121698 0.121698\n", "17 18 1650 42.0 6.50 0.154762 0.154762\n", "18 19 1655 40.5 6.60 0.162963 0.162963\n", "19 20 1660 46.5 6.75 0.145161 0.145161\n", "20 21 1665 32.0 6.80 0.212500 0.212500\n", "21 22 1670 37.0 6.90 0.186486 0.186486\n", "22 23 1675 43.0 7.00 0.162791 0.162791\n", "23 24 1680 35.0 7.30 0.208571 0.208571\n", "24 25 1685 27.0 7.60 0.281481 0.281481\n", "25 26 1690 40.0 8.00 0.200000 0.200000\n", "26 27 1695 50.0 8.50 0.170000 0.170000\n", "27 28 1700 30.0 9.00 0.300000 0.300000\n", "28 29 1705 32.0 10.00 0.312500 0.312500\n", "29 30 1710 44.0 11.00 0.250000 0.250000\n", "30 31 1715 33.0 11.75 0.356061 0.356061\n", "31 32 1720 29.0 12.50 0.431034 0.431034\n", "32 33 1725 39.0 13.00 0.333333 0.333333\n", "33 34 1730 26.0 13.30 0.511538 0.511538\n", "34 35 1735 32.0 13.60 0.425000 0.425000\n", "35 36 1740 27.0 14.00 0.518519 0.518519\n", "36 37 1745 27.5 14.50 0.527273 0.527273\n", "37 38 1750 31.0 15.00 0.483871 0.483871\n", "38 39 1755 35.5 15.70 0.442254 0.442254\n", "39 40 1760 31.0 16.50 0.532258 0.532258\n", "40 41 1765 43.0 17.60 0.409302 0.409302\n", "41 42 1770 47.0 18.50 0.393617 0.393617\n", "42 43 1775 44.0 19.50 0.443182 0.443182\n", "43 44 1780 46.0 21.00 0.456522 0.456522\n", "44 45 1785 42.0 23.00 0.547619 0.547619\n", "45 46 1790 47.5 25.50 0.536842 0.536842\n", "46 47 1795 76.0 27.50 0.361842 0.361842\n", "47 48 1800 79.0 28.50 0.360759 0.360759\n", "48 49 1805 81.0 29.50 0.364198 0.364198\n", "49 50 1810 99.0 30.00 0.303030 0.303030" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# purchase_power = wages / wheat\n", "my_data[\"Purchase_Power\"] = my_data[\"Wages\"] / my_data[\"Wheat\"]\n", "\n", "my_data" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Unnamed: 0YearWheatWagesPurchase_Power
01156541.05.000.121951
12157045.05.050.112222
23157542.05.080.120952
34158049.05.120.104490
45158541.55.150.124096
56159047.05.250.111702
67159564.05.540.086563
78160027.05.610.207778
89160533.05.690.172424
910161032.05.780.180625
1011161533.05.940.180000
1112162035.06.010.171714
1213162533.06.120.185455
1314163045.06.220.138222
1415163533.06.300.190909
1516164039.06.370.163333
1617164553.06.450.121698
1718165042.06.500.154762
1819165540.56.600.162963
1920166046.56.750.145161
2021166532.06.800.212500
2122167037.06.900.186486
2223167543.07.000.162791
2324168035.07.300.208571
2425168527.07.600.281481
2526169040.08.000.200000
2627169550.08.500.170000
2728170030.09.000.300000
2829170532.010.000.312500
2930171044.011.000.250000
3031171533.011.750.356061
3132172029.012.500.431034
3233172539.013.000.333333
3334173026.013.300.511538
3435173532.013.600.425000
3536174027.014.000.518519
3637174527.514.500.527273
3738175031.015.000.483871
3839175535.515.700.442254
3940176031.016.500.532258
4041176543.017.600.409302
4142177047.018.500.393617
4243177544.019.500.443182
4344178046.021.000.456522
4445178542.023.000.547619
4546179047.525.500.536842
4647179576.027.500.361842
4748180079.028.500.360759
4849180581.029.500.364198
4950181099.030.000.303030
\n", "
" ], "text/plain": [ " Unnamed: 0 Year Wheat Wages Purchase_Power\n", "0 1 1565 41.0 5.00 0.121951\n", "1 2 1570 45.0 5.05 0.112222\n", "2 3 1575 42.0 5.08 0.120952\n", "3 4 1580 49.0 5.12 0.104490\n", "4 5 1585 41.5 5.15 0.124096\n", "5 6 1590 47.0 5.25 0.111702\n", "6 7 1595 64.0 5.54 0.086563\n", "7 8 1600 27.0 5.61 0.207778\n", "8 9 1605 33.0 5.69 0.172424\n", "9 10 1610 32.0 5.78 0.180625\n", "10 11 1615 33.0 5.94 0.180000\n", "11 12 1620 35.0 6.01 0.171714\n", "12 13 1625 33.0 6.12 0.185455\n", "13 14 1630 45.0 6.22 0.138222\n", "14 15 1635 33.0 6.30 0.190909\n", "15 16 1640 39.0 6.37 0.163333\n", "16 17 1645 53.0 6.45 0.121698\n", "17 18 1650 42.0 6.50 0.154762\n", "18 19 1655 40.5 6.60 0.162963\n", "19 20 1660 46.5 6.75 0.145161\n", "20 21 1665 32.0 6.80 0.212500\n", "21 22 1670 37.0 6.90 0.186486\n", "22 23 1675 43.0 7.00 0.162791\n", "23 24 1680 35.0 7.30 0.208571\n", "24 25 1685 27.0 7.60 0.281481\n", "25 26 1690 40.0 8.00 0.200000\n", "26 27 1695 50.0 8.50 0.170000\n", "27 28 1700 30.0 9.00 0.300000\n", "28 29 1705 32.0 10.00 0.312500\n", "29 30 1710 44.0 11.00 0.250000\n", "30 31 1715 33.0 11.75 0.356061\n", "31 32 1720 29.0 12.50 0.431034\n", "32 33 1725 39.0 13.00 0.333333\n", "33 34 1730 26.0 13.30 0.511538\n", "34 35 1735 32.0 13.60 0.425000\n", "35 36 1740 27.0 14.00 0.518519\n", "36 37 1745 27.5 14.50 0.527273\n", "37 38 1750 31.0 15.00 0.483871\n", "38 39 1755 35.5 15.70 0.442254\n", "39 40 1760 31.0 16.50 0.532258\n", "40 41 1765 43.0 17.60 0.409302\n", "41 42 1770 47.0 18.50 0.393617\n", "42 43 1775 44.0 19.50 0.443182\n", "43 44 1780 46.0 21.00 0.456522\n", "44 45 1785 42.0 23.00 0.547619\n", "45 46 1790 47.5 25.50 0.536842\n", "46 47 1795 76.0 27.50 0.361842\n", "47 48 1800 79.0 28.50 0.360759\n", "48 49 1805 81.0 29.50 0.364198\n", "49 50 1810 99.0 30.00 0.303030" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Effacer une colonne en double\n", "# del my_data[\"purchase_power\"]\n", "my_data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Représentation graphique du pouvoir d'achat au cours du temps" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEOCAYAAAB8aOvdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl8XHW9+P/XO2ubpWmbpOmapCulbQqUtiBtFSgIgmxeUWq++sWFggpa0ItKvcSg9V4vXkUvSOn151fUWAS1FgRlvUDZSjdo2qalTdssXZO0Sdrsy+f3x5kZJpM5kznJzGQmeT995EFy5syZz3Fg3vNZ3u+PGGNQSiml/Ikb7AYopZSKXhoklFJK2dIgoZRSypYGCaWUUrY0SCillLKlQUIppZQtDRJKKaVsaZBQSillS4OEUkopWwmD3YCBysrKMvn5+YPdDKWUiinbtm2rNcZk93VezAeJ/Px8tm7dOtjNUEqpmCIiFcGcp8NNSimlbGmQUEopZUuDhFJKKVsaJJRSStnSIKGUUsqWBgmllOqHktIS8h/KJ644jvyH8ikpLRnsJoVFzC+BVUqpSCspLWHlMytp7mgGoKKhgpXPrASgsKBwMJsWctqTUEoph1a/vNoTINyaO5pZ/fLqQWpR+GiQUEophyobKh0dj2UaJJRSyqHcjFy/xyelT4pwS8JPg4RSSjm0ZvkakuOTex1vbG/kvpfvG1IT2hoklFLKocKCQm6ZdwsAgpCXkcePl/+YlIQU/v2Nf6eioQKD8Uxox3Kg0CChlIpZg7kMNT0pnfSkdLru7+LwqsN8b+n3SIxP7HVerE9o6xJYpVRMGuxlqGW1ZczOmo2IeI5VN1b7PTeWJ7S1J6GUiqhQffsf7GWoe2v3cm72uT2O2U1o2x2PBRoklFIR4/72H4ox+8FchtrY1siRM0c4N6tnkFizfA0piSk9jqUkprBm+ZqwtylcNEgopSImlN/+B/Nb+97avQC9gkRhQSHrrltH5shMACamT2TddetiOgtbg4RSKmJC+e1/zfI1JMUn9TgWqW/tZTVlAMzOmt3rscKCQn57428B+Otn/hrTAQI0SCilwsR77mHSzyax4LEFGIzfc/vz7b+woJArpl7R4xqR+ta+t3YviXGJTB873e/j2SnW1tE1zTVhb0u46eompVTI+a48OnrmKEfPHOXiSRez8+TOHkNOA/r2/+HCIt780ptMHjV5IM0OWlltGTMzZ5IQ5/8jNDvVFSSaYj9IaE9CKRVy/uYeAI6dPca669aRl5HnOfbDy37Y72//ZTVljB05FojsMlP38lc7Q6knoUFCKRUUJ0tXA809FBYUcnjVYSpXWee0dbb1qz3NHc0crj/MldOuDPiaodbe1U75qfJek9be0pLSGJEwQnsSSqnhwenS1WBWHk3JmMJHJn+EJ/c82a827avdh8Fw1fSrAKior+jXdZw6cOoAXaYrYJAQEbJTsjnZfDIibQonDRJKqT45XbrqrwCev7mHm+fczHvH32N/3X7HbSqrtVYYLZ60mDEjxkSsJ+Fe2eSbSOcrOzVbexJKqeHB6dLVwoJCPj//88CHBfD8rTz69JxPA/DUnqcct6mspox4iWdm5kxyM3KpbIxQkHAFp3Myzwl4XnZKts5JOCUiV4vIPhE5ICLf9fP4pSLSICLvuX7uj2T7lFL+9SdxbfSI0STHJ9Pxbx0cXnXY7+S0e8ipX0GitozpY6eTFJ9kBYkI9ST21u4lNyOX1KTUgOdpT8IhEYkHHgE+AcwBVojIHD+nbjLGnO/6eSBS7VNK2VuzfA2JcT0rnPa1dHVf3T5mZs4kPi4+4LU/M/cz/Rpy2lOzxzMvkJeRF7nhptqygPMRbuNSxmlPwqHFwAFjzEFjTDvwBHBDBF9fKdVPhQWFXD39as/fwSSu7a3dG3CZqFt/hpw6ujrYf2q/58M6NyOX+tZ6Gtsag75Gf3Sb7qDvKzs1m+aOZpram8LapnCLZJCYBFR5/V3tOubrIyLyvoj8Q0TmRqZpSqm+jEsb5/n9nS+/EzBAtHe1c/D0QWZn9v1hOnnUZC6ZcglP7g5+lVP56XI6uzuZk20NRriHvcLdm6hqqKK5ozmonsRQyZWIZJAQP8d8c/S3A3nGmPOA/wb+5vdCIitFZKuIbK2pie03QKlY4f1ht7tmd8Bzy0+V02W6OCcr8OSu281zbub9E+/zQd0HQZ3vu8IoUkHCU9ivj5VNMHSyriMZJKqBKV5/TwaOep9gjGk0xpx1/f4ckCgiWb4XMsasM8YsNMYszM7ODmeblVIutc21zBs3D4DdJwMHCfeHaTDDMuA15LQ7uCEn9woj9/UjFSR8XzcQ7Uk4twWYKSJTRSQJuAV42vsEERkvrm2eRGSxq311EWyjUspGTVMNc7LnkDkys8+ehDtI9LVM1M095BTsvMSemj1MGTWFtKQ0AManjSchLiH8QcJVBsQdAAIZl2oNz2lPIkjGmE7gTuB5oAx40hizW0TuEJE7XKd9GtglIu8DvwRuMcb4LxuplIqomuYaslOymTtubp9BYl/dPiamTyQ9OT3o639mzmeCHnIqqy3rMeQTHxfPlFFTwj/cVLeXc7PO7bFlqR33cNPJptjOuo5onoQx5jljzCxjzHRjzBrXsbXGmLWu3x82xsw1xpxnjLnYGPNWJNunlPKvo6uD+tZ6K0hkz2X3yd0E+v4W7Aogb3FifRyd8/A5AWtDuVcYzcnquYI+ErkSZTXBLX8FSE9KJyk+SYeblFJDX21zLWB9O56bPZeGtgaOnjnq91xjDPvq9gU91ARWbajvvvxhfm2g2lCeFUZ+9peuaAhf/aa65jpqmmuCDn7u+k0aJJRSQ54nSLiGm8B+hdPJppPUt9Y76kk4qQ3lnjz2/Uafm5HLkcYjdHZ3Bv26TnheN4iVTW5DIetag4RSqk/ub8PZqdme3IQ9NXv8nut0ZRM4qw3lfl1/PYku08WxM8eCfl0n7Pa1DmRcauxnXWuQUEr1yf1tOCsli3Gp48hKybJdBruvbh8Q/MomcFYbqqymjKyULLJSsvyeG655ibKaMkYkjHC01Wp2ivYklFLDgKcn4Vr6OTfbfoXT3tq9jEwYyZSMKX4f92fN8jWkJKb0ODYiYYTf2lBltWWe3ow39253YQsStWWck3lOn7WovGWnZOvqJqXU0Of+NpyZkgl8GCT8rXDaW7uXc7LO8axWCkZhQaFnW1NxFWe4PP/yXqU/jDG2BfbcQSlcQWJv7V5H8xFgDc81dTTR0tESljZFggYJpVSfaptrGTtyLAlxCQDMHTeXxrZGjpw50utcpyub3NzbmnYXdfPJWZ9k58mddJvuHufUNNdwquWU3yCRlpTG2JFjw7LCqaWjhcP1hx3NR8DQyLrWIKGU6pM7kc5tbrZrhZPPvERrZyuHTh9ynCPha8W8FVQ3VvNG5Rs9jttNWruFK1diX521VarT+xoK9Zs0SCil+lTTXOP5wANsl8Hur9vfrw9TX9efcz0jE0ayvnR9j+Oewn423+jDFST6el07ntIc2pNQSg1lNU01PVYTuVc5+fYk+rOyyZ+0pDRumH0DT+15io6uDs/xstoy0pLSmDxqst/n5Y4KT5DYW7uXOIljZuZMR89z975iefJag4RSqk++w00Ac7Ln9OpJuHMJZmXOGvBrrpi3grqWOl46+JLnmHvS2q52Ut7oPBraGmhobRjw67uVlJbw07d+SrfpZvbDs23Lhfijw01KqSGv23RT11zXK0jMzZ7Lnpo9PVY47avbF9T+z8G4avpVjB4xmvW7PhxyKqspC7jCyJ3DUNVYZXuOEyWlJax8ZiXNnVY2eKByIf5kJGeQGJeow01KqaGrvrWeLtPVY04CrCBxpv0M1Y3VnmN7a/cOeKjJLTkhmX8591/YsHcDLR0tNLQ2cOTMkYDzAu4gUVEfmhVOTsqF+CMiZKVkaU9CKTV0uT/gevUkfCavjTH9qv4ayIp5KzjbfpZn9z8bVFmMUGddOykXYifWS3NokFBKBeT+gPMtg+G7DPbY2WOcbT8b0iBxaf6ljE8bzx9L/+gpsOcv29ptfNp4EuMSQxIkmtqbSE5I9vuYo9IcqbGdda1BQikVkKcn4TPclJmSSU5qjqcn4XQ3umDEx8XzmTmf4bn9z/FO9TskxScxdcxU2/PjJI7JoyZT2TiwIHGq5RRX/P4KWjtbSYpP6vFYSmKK33IhdmK9XLgGCaVUQL51m7x571LXn+qvwVhRsIK2rjYe2/YY7V3tzPjljIATx3mj8xz3JEpKS8h/KJ+44jgm/2wy8x+dz45jO9jw2Q385obfeMqF5GXkse66db3KhQQS60X+Ega7AUqp6Oa94ZCvOVlz+O37v7U2GqrdR1pSGhPTJ4b09ctPlSMIBmsVlXuFEeD3wzo3I5dXD78a9PU9K5hcE9TuUiP3Lb2PG2ffaPs6wcpOzeZM+xnaOttsh6+imfYklFIB1TTVkJaUxoiEEb0emztuLmfbz1LZUMneOmtlUzD7Pzux+pXVngDhFmiFUe4oZ5sP+VvBBDjKhwgk1rOugw4SUiwJUizXSLFkhrNBSqnoUtNc02vS2s09eb2nZk/IVza5OV1h5N58yG571YFe36lYz7oOOkiYItMJ/BVID19zlFLRxl+2tZt7GeyWo1uobKgM6aS1m5MNibyPB/sh7/T6TsV61rXT4ab3gRnhaIhSKnK8J2rzH8oPOLRS01Tjdz4CYOzIsYxPG8/f9v4NCP2kNfjfkCjQCiOnQWLN8jWMTBgZ9PWdivVy4U4nrn8A/JcUSxGwDWjyftAUmVMhapdSKkx8J2r7mgiuba5lfs582+vNzZ7Ly4deBsITJNxtWv3yaiobKsnNyGXN8jW2k8lOg0RhQSFvVL7B2q1rEaTP6zsV6z0Jp0HiWdc//wo9ZpLE9Xfw+/oppQZFoFIT/naCCzTcBB8GCUGYMTY8Aw2FBYVBf2inJqWSOTLTUWmO+tZ6clJzOPqto4521AvG6BGjSYhLGDY9icvC0gqlVMQ4maht6miitbPVdrgJ4Gz7WQAMhnMfOTek38L7KzcjN+iEus7uTv554J/cOPvGkAcIsBL8slKyYnbi2lGQMEXmtXA1RCkVGbkZuX63+PQ3UeseIrFb3VRSWtJjPqOvoatIyc3Ipfx0eVDnvl31NvWt9Vw789qwtSeWs64dh00plgIploelWP4hxTLBdexGKZYLQt88pVSoOZmoDZRtDdbQVVtXW49jTqqkhouTHeqe2/8cCXEJXDntyrC1Jzs1drOuHQUJKZaPA1uAScDlgPvftOlAUWibppQKh8KCQu5cdKfn78yRmbalJgJlW0P4cwz6Kzcjl8a2xqA2H3p2/7Msy11GxoiMsLVnOPUkfgjcY4rMTUC71/FXgcWhapRSKrxGjxwNWOPlX1/0dduhIbsy4W7hzjHor7yMPKDvYFXZUEnpydKwDjWBq1z4cOhJAHOB5/wcPwWMHXhzlFKRsP3YdqaPmU7+6Hw+OPWB7Xme4SabnoTTHIZI8Ww+5Gfuxdtz+62Ps2tnhTdIZKdk09DWQFtnW98nRxmnQeI01lCTrwVAtZ/jSqkotOP4Di6YcAGzMmfxQV2AINFUQ2JcIulJ/gstFBYUsu66dQOqkhoOweZKPLv/WaaOnhqWTHFv7iDrHr6LJU6DxB+BB6VYJmPlRSRIsXwM+Cnwu1A3TikVevWt9Rw8fZAF4xcwa6wVJLz3qfZW02xlWwcq2ldYUMjhVYfpLurm8KrDgx4gAE9y39ef+7ptRnlLRwsvH3yZa2deG/KihL5iOevaaZD4PnAIqADSgD3AK8AbwOD2L5VSQXnv+HsAnp7E2fazHD973O+5tc21ARPpolFJaQm3//12z9/uZbm+geK1itdo6WwJ+1ATxHbWtdM8iQ6gUIrlfuACrCCzwxSZ/eFonFIq9HYc2wHABeMvIF6sIgkf1H3AhPQJvc519yRiSbAZ5c9+8CwpiSlcmn9p2NsUy+XCnS6BnQBgiky5KTJ/NkXmSScBQkSuFpF9InJARL4b4LxFItIlIp920j6lVN+2H9/OxPSJ5KTlMCtzFoDtvERNU+CSHNEomGW5xhie3f8sy6cu97tPRqjFcrlwp2U5jkix7Mda8voq8KopMseCeaKIxAOPAFdiTXJvEZGnjTF7/Jz3E+B5h21TSgVhx7EdLJiwAIApGVNIjk+2DxJ91G2KRnYZ5ZNHTfb8vrd2L4fqD3Hvknsj0qYxI8cQL/ExOdzkdE5iFvAgkAr8J1bQ2CfF8pgUyy19PHcxcMAYc9AY0w48Adzg57y7gL8AsRdylYpyzR3NlNWWccF4q0BCnMQxM3Om32WwbZ1tNLY12pbkiFb+luUCpCel09rZClirmgCumXlNRNoUJ3FkpmTG5HCT0zmJA8AB4NcAUiznAvcCXwK+gvXBb2cSUOX1dzVwkfcJIjIJuAkrm3uRk7YppfpWeqKUbtPtCRIAszJnsadmT69z61rqAPsciWjlr7T4NTOv4dGtj7LsN8s42XySyoZKEuMS2VS5KWKrsWI169pRkJBiiQMWYlWDvRRYAtQBJcD/9vV0P8d81909BHzHGNMVaEmaiKwEVgLk5g5uZqdSsWT7se0AnuEmgFljZ/HMvmfo7O4kIe7Dj4S+sq2jmb/S4mfbz/L7nb/3/N3R3RHRYoSxmnXtdE6iHmjF2lfiCeAOU2SCLdpeDUzx+nsy4LsJ7ULgCVeAyAKuEZFOY8zfvE8yxqwD1gEsXLjQ/wJvpVQvO47vYMyIMT3KZszKnEVHdwcV9RVMHzvdc7yvbOtY83rF672O2e2jEQ7ZqdmelWWxxOmcRCkwCmt+YRGwUIol2AHLLcBMEZkqIknALcDT3icYY6YaY/KNMfnAn4Gv+QYIpVT/bT+2nQUTFvRIHrNb4RTLPQl/BrsYYawONzkKEqbILAHGAN/E6lXcDVRJseyUYvlFwOca0wncibVqqQx40hizW0TuEJE7+tV6pVTQOro6KD1Z2mM+AgIEiebAe0nEmsEuRpidkk19az0dXR0Reb1QcTrchCkyLcBLUiy7gN3AtcBnsYr/fTPgc415Dp8CgcaYtTbn3uq0bUope3tq9tDe1d5jPgKsIDB6xOheQaK2uRZBGDtyaNTuXLN8TY+9vSGyxQi96zf5S1yMVk4nrm/GmrS+DGs57Angdaxlq31NXCulBtGO465M6wk9exIiYhX6O9V7uCkzJZP4uKGxdb2/VU+R3GrVu37TkA0SwC+B14BfYCXS7Q19k5RS4bD92HZSE1OZOXZmr8dmZc7qNbEbi4l0ffG36ilS3KU5Yi3r2mmeROyEP6VUDzuO7+C88ef57RnMGjuLP+z8Ay0dLYxMtDacjMW6TdEsVov8OZ6TkGJJBgqBOVh5DnuAP5oiE3u7aSg1THSbbt47/h63nner38fdk9cHTh2gIKcAsD7M5mTPiVQTh7xYLRfutMDfHGA/8DOsbOmLgZ8DH7iyr5VSUejAqQOcbT/baz7CzR0k9p/6sF5nbXPtkFnZFA3GjhyLIDHXk3CaJ/ELYAeQa4rMMlNklgG5wPtY2dJKqSjkTuLyXdnkNjPTmqdwr3DqNt3UtdQNuTmJwRQfFx+T9ZucBoklwH2myDS6D7h+Xw0sDWXDlFKhs/3YdhLjEm2Hj9KS0piYPtETJE61nKLbdOucRIiNSx0XcxPXToNEKzDaz/EM12NKqSi04/gOCnIKSIpPsj3He7/roZZtHS2cZl2XlJaQ/1A+ccVxttuwhpvTIPEM8D9SLEukWOJdP0uBx/ApsaGUig7GGLYf294r09qXe79rGHp1m6JBSWkJW45s4Y3KN3p84NsFgpLSElY+s5KKhgoMxnYb1nBzurrpm8DjwCagy3UsDitArAphu5RSIVLdWE1dS53tfITbzMyZ1DTXcLrltKcnoRPXoeH+wG/utLK93R/4b1a+yePvP+7JAncfr2mq4Uev/yiobVjDzWmeRD1wgxTLDOBcrPLfe1z7TCilokxJaQl3//NuAB547QEyRmTYfsB4r3Cqba4FdLgpVOz23V67dS3GZ8eE5o5m7n7+bttrRaogoVvQQUKKJR1ryWsi8K4pMs+ErVVKqQHzfHt1fTidaDoRcP8E70J/Q62432Cz+2D3DRDeJqRN4NjZ3rtDR6ogoVtQcxJSLPOBvcA/gb8DB6RYrghnw5RSA2P37XX1y6v9nj9tzDTiJM4KEk01jEoeRXJCciSaOuTZfbDHi/+6WHkZeTz48Qd7bcMayYKEbsFOXP8HUAksw9oY6DXg4XA1Sik1cE73T0iKT2Lq6KmenoQONYWOv323UxJTWHnhSttAUFhQyLrr1jE+bTwAWSOzWHfduojXngo2SCwE7jJF5i1TZLZj7Wk9U4olLXxNU0oNRH/2T3Avg61prtGhphByf+DnZeQhCHkZeay7bh2/uvZXfo+7A0FhQSFVd1eRmpjKLfNuGZTihMHOSWRh9SQAMEWmToqlGcgGzoajYUqpgVmzfA1fefortHZ+mMLU13CFuxrsDDODKRlTbM9TztlVoO2rMm1CXAIXT76YTZWbwtk8W07yJMZIsYx1/2AV9/M9ppSKEoUFhdy16C4Av99S/ZmVOYumjib21u7V4aYosix3GTtP7KShtSHir+1kCewen78Fa99q9+8GGBq7kyg1ROSOtoaWjtxzJKiNbtwrnNq62jRIRJFlecswGN6qeotPzPxERF872CBxWVhboZQKi/JT5aQkpngmP/viDhKg2dbR5KJJF5EQl8Cmyk3RGSRMkXnNyUWlWL4LrHUl3ymlBkn56XKmjZmGiAR1/uRRkxmRMILWzlbtSUSR1KRUFkxYwBuVb0T8tZ3WbgrWfYDOUSg1yMpPlzN9zPSgz1+/az1d3VbFnX998V8HpaCc8m9Z7jLePfIubZ2R3d8tXEEiuK8tSqmw6TbdHDx9MOgg4c7Q7ujuAKwif4NRUE75tzR3KW1dbWw5uqXvk0MoXEFCKTXIjp05RmtnK9PHBhcknGZoq8haMmUJQMSHnDRIKDVElZ8uBwi6J+E0Q1tFVnZqNrOzZkc8X0KDhFJDVPkpV5AIsifRnwxtFVnLcpfxZuWbdJvuiL2mBgmlhqjy0+XESzx5GXlBnW9XXyjSBeWUvWW5y2hoa2DXyV0Re81wBYlNQEuYrq2UCkL56XJyM3JJjE8M6ny7+kKDUS9I+bc0dykAmyoiN+TkdGc6pFhygM8D04F/M0WmVoplCXDUFJlDAKbIXBPaZiqlnDp4+mDQQ01ufdURUoMrf3Q+k9In8UbVG3x98dcj8pqOehJSLBcC+4BC4MvAKNdDVwLaJ1UqipSfcpYjoaKfiLAsbxmbKjZhjP2GRaHkdLjpp8AvTJG5APDO6HgeWBKyVimleikpLSH/oXziiuPIfyg/YP5CQ2sDdS11GiSGoKVTlnLkzBEqGioi8npOg8SFwON+jh8DcgbeHKWUP+5Et4qGCgyGioaKgIlunuWvDoebVPRblrcMiNy8hNMg0QKM8XN8NnBy4M1RSvnjNNHNs/xVexJDzrxx88hIzohYvoTTILERKJJicW98a6RY8oGfAH8JYbuUUl6cJrq5exLTxkwLW5vU4IiTOJbkLolY5rXTIPFtrMJ9NUAK8AZwAKgHvh/apiml3MaO9F8v0y7RrfxUOeNSx5GenB7OZqlBkpaYRlltWVDzUwPlaAmsKTKNwFIplsuBBVhBZrspMi8F83wRuRr4BdbmRL82xvyHz+M3AD8EuoFOYJUxJvK1cZUaRCWlJax+eTWVDZVMyZjCgvELqGupI07iemTaBkp0c1r9VcWOktISNu7bCNBjfgoIy/JlidQyKhGJBz7AWi5bjbWr3QpjzB6vc9KAJmOMEZH5wJPGmNmBrrtw4UKzdevWMLZcqchxT1D7zj9cmncpX7zgi9z/v/d7VrWs++Q6brvwNr/XyXsoj4/mfZTf3/T7sLdZRVb+Q/l+VzblZeRxeNXhoK8jItuMMQv7Oq8/yXRjgauBXCDJ+zFTZB4I8NTFwAFjzEFXA58AbsBrW1RjzFmv81OxtkRVatjwN0ENcLD+IF847wt84bwv8MqhV1j+u+VMyZji9xptnW1UNVRpT2KIinQhRkdBQorlYuBZrByJbOAIMMH192EgUJCYBFR5/V0NXNTrNURuAv4dGAdc67cdIiuBlQC5uVp8TA0ddv+hVzV8+J/ORZMuIl7iebPyTa6ecXWvcw/XH8ZgNEgMUbkZuX57EuEqxOh04vpBoATrA78VuByrR7EVa4VTIP42IurVUzDGbHANMd2INT/R+0nGrDPGLDTGLMzO1i0W1dARTCXW1KRUzh9/Pm9U+Z+u0xyJoS3ShRidBon5wMOmyBigC0g2ReYE8B3gB308txrw7h9PBo7anWyMeR2YLiJZDtuoVMwK9gNgyZQlbK7eTEdXR69raI7E0BbpQoxOg0S71+8nAHcN4rPAxD6euwWYKSJTRSQJuAV42vsEEZkhrh3bRWQB1pxHncM2KhWz3B8ACXHWSLDdB8DS3KW0dLbw3vH3el2j/HQ5qYmpjEsdF5E2q8grLCjk8KrDdBd1c3jV4bAWZXQaJLYDi1y/vwr8SIrl/wK/BHYGeqIxphO4E6vOUxnWyqXdInKHiNzhOu1fgF0i8h7wCPBZE6nlV0pFicKCQkYmjOQbi79h+wGwJNd+K8vy0+VMHzsd1/ctpQbEaZBYzYdDRN/HSqr7b6xSHSv7erIx5jljzCxjzHRjzBrXsbXGmLWu339ijJlrjDnfGPMRzZFQscRJAb5AGtsaOdN+xnb1EsDE9Inkj87nzao3ez2m1V9VKDlNptvq9XsN8ImQt0ipGOSb3zCQBCf3SqbJoyYHPG9p7lJeOvgSxhhPr6HbdHPw9EGunel3YaBSjjndTyJOiiXO6+/xUixfkWK5JPRNUyp2OC3AF0h1YzUAU0bZ9yTAmrw+fvY4B08f9Bw7euYobV1turJJhYzT4aZngbsApFjSsJa+Pgi8JsXyhRC3TamYEcoEp6rG4HoSS6ZY8xLeQ066skmFWn/2k3jF9fungEaspLfbsIr/KTUsBZPfEKySrjfmAAAd30lEQVTqxmoEYWJ64AWDc8fNJSM5gzcrvYKE5kioEHMaJNKxKr4CfBzYYIpMB1bg0H8r1bC1Zvkaz7JVt/4mOFU1VDE+bTyJ8YkBz4uTOC6ZckmPpLryU+UkxCWELftWDT9Og0QlsESKJRW4CnjRdXws0LvgjFLDRGFBIdNGf7h3Q25Gbr8TnKoaqwKubPK2ZMoS9tTs4VTLKcDqSeRl5PUKWEr1l9Mg8TPg91jZ00eA113HPwqUhrBdSsWUru4ujpw5wugRowF45Quv9DvBqbqxus/5CLeluUsBeLvqbeDDHAmlQsVRkDBF5jHgYuBLwFJT5CluXw78W4jbplTM+KDuA5o6mlgxbwUApSf7953JGGP1JPpY2eS2aNIiEuISPEl1miOhQs1xn9QUmW3ANp9jz4asRUrFoO3HtgPwhfO+wNqta9l5Yic3zr7R8XUa2xo523426J5ESmIKCyYs4M2qNzndcprTrac1SKiQ6s9+EhcBy7FWNfXoiZgi840QtUupmLLt2DZGJIxg4cSFTBszrd89Cffy12B7EgBLpyzlV1t/RVltGaArm1RoOU2m+zbwNnArcD5Q4PUzL9SNUypWbDu2jfNyziMhLoH5OfPZeSJgKTNb7kS6YHsSYNVxau1s5andTwGaI6FCy2lP4pvAN0yReTgcjVEqFnWbbnYc28Hn538egIJxBWzct5HmjuZeZb/74i7JEezqJvgwqe6Pu/4IwLQx0wKdrpQjTlc3jQKeC0dDlIpV++v2c6b9DBdOvBCA+Tnz6Tbd7KnZ08cze3Mn0k1ImxD0c3LScpgxdgYnm06Sk5pDalKq49dVyo7TILEea39rpZTLtmPWOo4LJ1hBoiCnAIDSE87nJaoaq5iQPqHPRDpfE1KtoHKi6cSAKtAq5avP4SYplnu8/qwCiqVYlmDtH9FjWyxTZH4W2uYpFf22Hd1Gcnwyc7LnANacwMiEkf2al6hurHY0aQ1WBdrNRzd7/h5IBVqlfAUzJ3GXz99ngUtcP94MVrKdUsPKtmPbOG/8eZ5v//Fx8cwdN7dfK5yqGquYmz3X0XNWv7ya9q72HsfcFWg1SKiB6jNImCIzNRINUSoWdZtudhzf0evDeP64+TzzwTOOrmWMoaqhiqunOxvRDWUFWqV8OV0CmyTFMsLP8RFSLEmha5ZSsaH8VDmNbY0smLCgx/H5OfOpaa7hxNkTQV+roa2Bpo4mR8tfIbQVaJXy5XTi+inga36O3wE8OfDmKBVbfCet3dyT107mJTybDTlY/gpWBVrfpbb9rUCrlC+nQWIJ8IKf4y/Se45CqSFv29FtJMUnMXdcz3mEgnGuFU4O5iWC3bbUV2FBIeuuW0deRh6CkJeR1+8KtEr5cppMlwJ0+jnejbXXhFLDyrZj25ifM5+k+J6jrdmp2YxPG9+/noTD1U1gBQoNCiocnPYkdgIr/Bz/HLBr4M1RKnYYY9h+bHuvoSa3+TnznfUkGquIkzgmpAefSKdUuDntSfwQ+JsUyww+3MZ0OXAzcFMoG6ZUtCs/XU5DW4NtkCgYV8DD7z5MZ3dnUJsAVTdWMyFtgm4YpKKK0/0kngWuA/KAX7p+coHrTZH5e+ibp1T0cpcHd5fj8DU/Zz5tXW0cOHUgqOtVNVY5no9QKtyC/soixZKAta/1ZlNkloavSUrFhm1Ht5EYl2ib/OaevN55Yiezs2b3eb3qxmrmjdNiyiq6BN2TMEWmE/grOkGtFGBNWhfkFJCckOz38XOzzyVe4oOq4eROpJucrj0JFV2cTly/D8wIR0OUiiV9TVoDjEgYwazMWew82fcKp/rWepo6mhznSCgVbk5nyH4A/JcUSxHWFqZN3g+aInMqRO1SKqodqj/E6dbTAYMEWPMS7x55t8/r9WezIaUiwWlP4lmsXej+ChwGalw/ta5/KjUsbDvqyrS2mbR2KxhXwKH6Q5xpOxPwvP5sW6pUJDjtSVwWllYoFWYlpSWsfnk1lQ2V5Gbksmb5mgEln207Zk1auyen7czPmQ/ArpO7+MiUj9iepz0JFa0cBQlTZF4LV0OUCpeS0hJWPrOS5o5mIDT7LWw7to154+bZTlq7eddwChQkqho0kU5FJ0dBQoplQaDHTZHZPrDmKH9C/S14uFn98mpPgHDr734LJaUl3PfyfVQ2VJKamEpJaUnAa+Rl5JGelN5n5nX1GU2kU9HJ6b+RW7E2FxKvY8br9/gBt0j1EI5vwcNNqPZb8H0vmjqa+nwvRIT5OfP7rOFU1VClK5tUVHI6cT0VmOb651RgFnALUAp8MrRNUxD4W7AKTqj2W+jve1EwroDSk6UYY2zPqW6s1vkIFZWcluWo8Pk5YIrMU8C9wPf7er6IXC0i+0TkgIh818/jhSKy0/Xzloic56R9Q5HuOjZwa5av6TWMMzJhpOP9Fvr7XrR2tlLfWk/8A/HkP5RPSWlJj8eNMVQ1VunKJhWVnPYk7BwCzg90gojEA48AnwDmACtEZI6f63zMGDMfq5jguhC1L2bprmMDV1hQyPQx00mKT0JcI6UXjL/A8XBdf96LktIS1u9aD4DBeIYLvQNFfWs9zR3N2pNQUcnp9qVjfX4ypVjmAf8O7Ovj6YuBA8aYg8aYduAJ4AbvE4wxbxljTrv+fAcY9v/VrFm+hpQE3XVsIDq7O6lqrOL2C2+nu6ib7y39Hm9Vv8XWo1sdXWfN8jUkx/dczdTXe7H65dW0dbX1OOY7RKU5EiqaOe1JuJPm3D8nsfaYWIT/bU29TQKqvP6udh2z82XgH/4eEJGVIrJVRLbW1AztHL7CgkIeuOyBHsfuuPAOnbR2YPfJ3TR3NHPRpIsA+O7S75Kdks23XvhWwHkCX4UFhVwy+RLE9b9gdoALZohKcyRUNHMaJC4DLvf6uRRr6Gi6KTLv9PFc8XPM73+hInIZVpD4jr/HjTHrjDELjTELs7Ozg2x67DpvvDU18+LnX2Ri+kT21O4Z5BYFVlJaQv5D+cQVx/kdg4+0zUc2A3DRZCtIjEoeRfGlxbxe8Tob920M+jpd3V3srt3NzXNvpruom8OrDvcZrIMZonJvW6qrm1Q0CipISLGkSLE8AvwReAq4HdhtiswmU2T2uirE9qUa8P6vYDJwtNdricwHfg3cYIypC6Z9Q537W+f0MdO5bcFtPH/geQ6ePjjIrfLPvUy0oqHCdgw+0jZXbyZzZCbTx0z3HLvtwtuYnTWbe1+8l46ujqCu83b125xsOslNs4PfX2vN8jWkJAYeLqxurCZO4hifNj7o6yoVKcH2JIqBW7FqN60HrgQedfhaW4CZIjJVRJKwls4+7X2CiORi1YX6vDHmA4fXH7Iq6isQhEmjJnHbgtuIkzge2/rYYDfLr2hcsrv5yGYWT1qMyIed2YS4BB688kH2n9pPzk9zgur1bCjbQFJ8EtfMvCbo1y4sKGTddevIy8jzHPvWR77VowdS1VjFxPSJmkinolKwQeJTwJdNkVlpisw3gWuBG6VYgk6eM8Z0AncCzwNlwJPGmN0icoeI3OE67X4gE/iViLwnIs5mFoeoysZKJqZPJCk+iUmjJnH9Odfzm/d+Q1tnW99PHiCnQ0fRtmS3sa2RPTV7PPMR3hpaG4iTOE63nu6z12OMYcPeDSyfupxRyaMctaGwoJDDqw7TdF8T2SnZbDm6pcfjmiOholmwQWIKsMn9hyky7wKdwEQnL2aMec4YM8sYM90Ys8Z1bK0xZq3r968YY8YYY853/Sx0cv2hqqK+oscY9lcXfpXa5lr+vOfPYX3d/gwdRduS3a1Ht2IwnvkIb6tfWU236e5xzK7Xs/PETg7VH3I01OQrJTGFez5yD/888M8eK6s0R0JFs2CDRDzQ7nOsE+dlPVQ/VDRUkDf6w+GK5dOWM2PsDB7d6n/EL9C3fyc9g/4MHa25vPdy0MFcsru52pq0Xjxpca/HnPR6NuzdgCBcf871A2rP1xZ9jdEjRrNmk/X/hzFGexIqqgX7IS/AH6RYvMc3RgD/I8Xi+RQxRWZg/wWpXrpNN1UNVdw852bPsTiJ444L7+DbL36b0hOlnkqj4L/W021P30Z7ZztJ8Ums/HvwdaD6M3TkXomVOTKTuhZr3cGPLv/RoC3Z3XxkM7MyZzF25Nhej+Vm5FLRUOH3uK8NezewJHcJOWk5A2rPqORRfGPxN3jg9QfYdXIXE9Mn0tzRrD0JFbWC7Uk8jrUSqc7r5w9YeQ/ex1SIHT97nI7ujl4fXLeefyvJ8cms3bq2x3F/3/5bOlv40tNf4v9s+D9B9wx2ntjZY6LXW6Cho+cPPA/Ae3e8x5F7jjAyYSTbjw1OcWBjDJuPbPY7HwH+Vx4lxSf16vUcPH2QnSd2Dmioyds3LvoGaUlp/HjTjzVHQkW9oHoSpsh8MdwNUf65v7V7r44ByEzJZNHERTy69VEe3foouRm53LvkXr/fjIN5De9y5DmpOTS0NZCRnEFLZwutna2ec/saOnrh4AvMyZ7j+dC7a/FdPPjWg3xnyXeYN26e47YNRFVjFcfPHrcNEu7ejfu+E+MTSY5P5poZPVcvbSjbABCyIJGZksnXFn6Nn779U88wmOZIqGgVqtpNKkwq6q0Pfd9v7yWlJZ5JWfek8tef+7rtdfIy8noFGjdB+PLGL3smqI83Hae1s5X7P3Y/v77+1z2e95PlP7EdOmrpaOH1itf5+LSPe47du+Re0pPT+f4rfdZ/DLl3qq38Tn+T1m7ulUfdRd288+V3aOpoYvUrPXtWG/Zu4Lyc85g6ZmrI2nbPR+4hjjjuef4eAD795KcHPelQKX80SEQ5d8/Ae+IarG+/rV2tvc4fnTzaNnnLbngFoVd9IYPhoXce8nyI7v7abgAS4u07n5sqN9Ha2cpVM67yHMtMyeRfL/lXNu7b6JlEjpTN1ZtJjk/2bCHalwsmXMCdi+5k7da1bDliLVM9cfYEb1W9FbJehNtLh14Csf5/Bjhy5sigJx0q5Y8GiShX2VBJRnJGr7X5dpPHDW0NnuQt3/pC3old7sd+c8NvbOsXeb/GuVnnMmPsjIBlLF4of4Gk+CQ+mvfRHsdXXbyK7JRs7nvlvmBvOyQ2H9nMggkLrEAYpB9e/kPGp43nq89+la7uLjbu24jBcNO5oQ0Sq19eTWd3z0IFg510qJQ/GiSinO/yV7dA+QjeQyi+9YX8PRZMboOIcP2s63nl0CucaTvj9/zny59nWe6yXr2VtKQ0Vi9bzSuHXgk6uzmQYJbxdnR1sO3YNtv5CDujkkfxs6t+xrZj28h+MJvb/347CXEJlJ4IvP2oU9GWdKiUHQ0SUa6yodLvXEIwNYGCFey1bph9A+1d7Txf/nyvaxw9c5RdJ3dx1fSrej0GMHrEaAThZNPJAdV0CjbBr/RkKa2drQHnI+x0dXd5MrHBKjW+8u+hHQqKtqRDpexokIhyvtnWbv6GjvoqW20n2GtdMuUSxo4c63fI6YXyFwD4+PSP93oMoOjVIs/4u1t/hleCTfBzz3847UmAs0zs/gplkFcqnDRjOoo1tDbQ0NZguyrJPc8QCsFcKyEugU/O+iTP7HuGzu7OHgXpXih/gZzUHNtJ4lANrwR7nc1HNpOdkk3+6HxH13fyGgPhu/w2NyOXNcvX6D4hKupokIhi7g+laBqCuH7W9fzu/d/xRuUbXJp/KWBlhb948EU+MeMTARPwgs1udvPO3Zg8ajIXjL+gV2/E7jqbj2zmoskX2bYnkP60tT9CGeSVChcdbopidstfB9NVM64iKT6Jp/d9WOV9x7Ed1DbX2g41gfPhFd+5h6rGKp7+4GlmjJnByISRvc73/rCtb61nb+3efg019aetSg1lGiSimF229WBKS0pj+dTl1tJQ19JZ93zEldOutH2ee97D/W08OT454ByKv7kHgI7uDv7n+v/xzJ9MGTWFiekTeWzbYxw6fQjAk+PQ3yARyvkepWKdBokoVlFfQVJ80oCLyoXaDefcwMHTB9lTY22j+nz585w//vw+21lYUEjFqgqKPlZEe1c7l+ZdantuoHkB72W8lXdX8tqtr9FlurjhiRs4237Ws13pokmL+neD+F8qrNRwpEEiilU2VjJl1BTiJLrepuvOuQ6Ajfs2cqbtDG9VvWW79NWfFfNWYDA8uftJ23OcLBGdMXYGf/r0n9hds5vLH7+cH2/6MQDnrz1fM5iVGqDo+vRRPdgtfx1sE9MnsmjiIjbu28hrFa/R0d0RcD7C1zlZ53DB+AtYv2u97TkPXPYAQs9J50DzAh+f/nFumXsLW45uoaWzBSAq9tdWKtZpkIhidtnW0eD6c67n3SPv8tv3fktKYgpLpixx9PwV81aw5egWDpw64Pfx5PhkDIbslOyg5wXeqHqj1zEtdaHUwGiQiFLtXe0cO3MsqiatvblzJP5S9he6TTd/LnO2lepn530WgCd2PeH38Z+/83NmjJ3B8W8fD3peoKqhyu9xLXWhVP9pkIhS1Y3VGExUDjeVlJbww9d/6Pm7tbPV8bBObkYuS3OXsn7X+l4FBt+pfofNRzbzzYu+6Wg+RktdKBV6GiSiVDQuf3Xrz97X/qyYt4I9NXsoPdmzeN5D7zxERnIGt55/q6PraX6DUqGnQSJK2W02FA1CVbbi5jk3Ey/xrC/9cAK7qqGKP+/5M7ctuI20pDRH19P8BqVCT8tyRCl3tnU0bmsZqrIV2anZXDHtCp7Y/QQ/Xv5jRIRHtjyCwXDn4jv71TYtdaFUaGlPIkpVNlQyPm08IxJGDHZTegnlsM7nCj7H4frDvFP9Dk3tTazbto5PnfupqF3VpdRwo0EiTILZGCeQiobozJGA0A7r3Dj7RkYkjGD9rvX87v3fcbr1NHdffHcYWq2U6o9hO9zkXWE0mDLNTs53F6dzT+66k7qAoD9IKxsqOS/nPId3FTmhGtYZlTyKgnEFPLLlEbpNN0nxSRw6fYhLplwSglYqpQZqWPYkgt3drL/nD3T1jzHGE4yGupLSEt4/8b5nk5/2rvaQ7wKnlOq/YRkknH6IOz1/oKt/TjadpLWzNSqXv4ba6pdX097V3uOYZkkrFT2GZZBw+iHu9LjdiqT05PRe22IGuu5w6ElEYhc4pVT/DcsgYffhm56czuPvPe6ZcJ7y8ylc9tvLgt4NzW3B+AW9jsVLPI1tjXzuL5/j/+34fwEntaNxs6Fw0SxppaLbsAwS/pZwuj/Ev7jxi565h+rGal6teJXzc873uxvaqotX9Tr2yqFX2LhvI8tyl/VY/fP4jY/zkyt+wp92/4mvPPOVgPMb0ZxtHWqaJa1UdBuWQcLfEs7Hb3qc7JRsv72G062ne+yGNiFtAiMTRvLYtsc41XLKc96Jsyco/Gsh52Sdwz8K/9Fz05r5hdy75F6yUrJ6DTn5jsFX1FeQlpTG6BGjw/d/QpTQLGmlopv4FleLNQsXLjRbt24NybXiiuP8BglB6C7q+cH+esXrXPn7K5maMZXmzmaqG6tJTkimo6uD7bdvZ37O/H6/xk1/uon9dfvZ9bVdIbgrpZTqTUS2GWMW9nVeRHsSInK1iOwTkQMi8l0/j88WkbdFpE1Evh3JtoGz8fGP5n2UlQtWsu/UPqoaqzAYWjtbiY+L71WwzulrROtmQ0qp4SdiQUJE4oFHgE8Ac4AVIjLH57RTwDeAn0aqXd6cjo8/88EzvY61d7UHXL4ZzGtUNFQMi/kIpVT0i2RPYjFwwBhz0BjTDjwB3OB9gjHmpDFmC9ARwXZ5OB0f78/yTd/XALj53Js9r3G2/SynWk4Ni5VNSqnoF8myHJMA763DqoGLIvj6QXFSbqK/1VDdr2GM4YrfX8Ez+5/hVMspxo4cO6xyJJRS0S+SPQnxc6xfs+YislJEtorI1pqamgE2q/8GunxTRHjoqoeob63nB6/+ABhey1+VUtEvkkGiGvBORZ4MHO3PhYwx64wxC40xC7Ozs0PSuP4IxfLNgpwCbr/wdn615VfsPrk7qjcbUkoNP5EcbtoCzBSRqcAR4BbgcxF8/bAIRTXUBy57gPW71nP383ezcOJCEuISmJg+MUQtVEqp/otYT8IY0wncCTwPlAFPGmN2i8gdInIHgIiMF5Fq4B7g+yJSLSKjItXGwZKVkkXxpcW8ePBF/vPN/6Szu5Ppv5yulVCVUoMuovtJGGOeA57zObbW6/fjWMNQw87oEaMRhC7TBfRvDwqllAq1YVmWIxrd/7/398rE1pLZSqnBpkEiSmjJbKVUNNIgESW0ZLZSKhppkIgSWjJbKRWNNEhECS2ZrZSKRloqXCmlhqGoLBWulFIqtmiQUEopZUuDhFJKKVsaJJRSStnSIKGUUspWzK9uEpEaoPfOP0NTFlA72I0YBHrfw4ved2TkGWP63Gsh5oPEcCIiW4NZsjbU6H0PL3rf0UWHm5RSStnSIKGUUsqWBonYsm6wGzBI9L6HF73vKKJzEkoppWxpT0IppZQtDRKDSER+IyInRWSXz/G7RGSfiOwWkf/0Ov49ETngeuwqr+MXikip67FfiohE8j76w8m9i0i+iLSIyHuun7Ve58fUvfu7bxH5k9e9HRaR97weGxLvuZP7Hgbv9/ki8o7r3raKyGKvx6Lv/TbG6M8g/QAfBRYAu7yOXQa8BCS7/h7n+ucc4H0gGZgKlAPxrsfeBT4CCPAP4BODfW8hvvd87/N8rhNT9+7vvn0e/y/g/qH2nju87yH9fgMvuNsNXAO8Gs3vt/YkBpEx5nXglM/hrwL/YYxpc51z0nX8BuAJY0ybMeYQcABYLCITgFHGmLeN9W/T74AbI3MH/efw3v2KxXu3uW8AXN8OPwOsdx0aMu+5w/v2awjdtwFGuX7PAI66fo/K91uDRPSZBSwTkc0i8pqILHIdnwRUeZ1X7To2yfW77/FYZHfvAFNFZIfr+DLXsaF07wDLgBPGmP2uv4fDew697xuG9vu9CnhQRKqAnwLfcx2Pyvc7IVIvpIKWAIwBLgYWAU+KyDSsbqYvE+B4LLK792NArjGmTkQuBP4mInMZWvcOsIKe36aHw3sOve97qL/fXwXuNsb8RUQ+A/x/wBVE6futQSL6VAN/dXUr3xWRbqyaLtXAFK/zJmN1U6tdv/sej0V+790YUwO4h6C2iUg5Vq9jyNy7iCQAnwIu9Do85N9zf/ftGm4cyu/3/wW+6fr9KeDXrt+j8v3W4abo8zfgcgARmQUkYRX9ehq4RUSSRWQqMBN41xhzDDgjIhe7xna/AGwcnKYPmN97F5FsEYl3HZ+Gde8Hh9i9XwHsNcZ4DysMh/e8130Pg/f7KPAx1++XA+5htuh8vwd79n84/2B1sY8BHVjfFr6M9cH4B2AXsB243Ov81VgrHvbhtboBWOg6vxx4GFeSZDT/OLl34F+A3VgrP7YD18Xqvfu7b9fx3wJ3+Dl/SLznTu57qL/fwFJgm+v+NgMXRvP7rRnXSimlbOlwk1JKKVsaJJRSStnSIKGUUsqWBgmllFK2NEgopZSypUFCKaWULQ0SSgUgIn9wlXRO8jm+XEQ6ROSSwWqbUpGgQUKpwO4EMoEi9wERGQX8BnjQGPNWOF7UNygpNVg0SCgVgDGmHvgicK/X5jA/B04DPwAQkXki8g8ROePaYKZERHLc1xCRi0TkRRGpFZEGEdnks9FMgogYEblDRDaKSBPwQMRuUqkANEgo1QdjzEvAo8DvROTTQCHweWNMu4hMAl4DdmBVrr0SGA1s8No9LB14HKsk9sVAKfAPERnj81LFWDV5CoC1KBUFtCyHUkEQkZFYgWAm8F1jzIOu4z/Gqr3jvdVkFlDjOr7dz7UEOAncZYx5wlUJtQN4yBhzd/jvRqngaU9CqSAYY1qwNohpw9pq0+1C4DIROev+AQ67HpsOICI5IrJORD4QkQbgDNY8R67Py2wN5z0o1R+6n4RSwesEuo0x3V7H4oBngO/4Of+4659/wBqCWgVUYAWaV7Gq3nprCmVjlQoFDRJKDcx2rL2JDxtjOm3OWQqsNMY8B569msdHqH1KDYgONyk1MP+NtXPgehFZLCLTRORKEfm1ax4D4APg8yJyrmtV0xO4dl5TKtppkFBqAIy1o9oSIB54HmuznIeBZqzJaIBbsYabdgB/BB6j54b3SkUtXd2klFLKlvYklFJK2dIgoZRSypYGCaWUUrY0SCillLKlQUIppZQtDRJKKaVsaZBQSillS4OEUkopWxoklFJK2fr/ASWI9B50RiWUAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# create figure and axis objects\n", "fig,ax = plt.subplots()\n", "\n", "# make a plot\n", "ax.plot(my_data[\"Year\"], my_data[\"Purchase_Power\"], color = \"green\", marker = \"o\")\n", "\n", "# set x-axis l# set x-axis label\n", "ax.set_xlabel(\"Year\",fontsize = 14)\n", "# set y-axis l# set x-axis label\n", "ax.set_ylabel(\"Purchsae_Power\", color = \"green\", fontsize = 14)\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Représentation graphique du prix du blé et du salaire sur deux axes différents, sans l'axe du temps." ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa8AAAD8CAYAAADABivsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXuYFOWV/z9nuMhNREAQhAExBDHeMMBq0KxKTNQYiLeoIYrGhKyaqKv+DMFsvKxsTKLRbC4aRCMrs26MiaJJTGTRREFXow6KgopcBhHkIqjAgDDM+f1xupmenqrurp6+9/k8Tz3V9XbVW291zdS3znnPe15RVRzHcRynnKgpdgMcx3EcJyouXo7jOE7Z4eLlOI7jlB0uXo7jOE7Z4eLlOI7jlB0uXo7jOE7Z4eLlOI7jlB0uXo7jOE7Z4eLlOI7jlB0di92AXFJTU6Ndu3YtdjMcx3HKisbGRlXVsjJmKkq8unbtyrZt24rdDMdxnLJCRLYXuw1RKSuldRzHcRxw8XIcx3HKkIKJl4jcKyLrReS1hLLeIjJXRJbG1vsmfPc9EXlbRN4UkS8Uqp2O4zhO6VNIy+s+4OSksqnAPFUdDsyLbSMihwDnAp+KHfMrEelQuKY6juM4pUzBxEtVnwY2JRVPBGbFPs8CvpxQ/j+q+rGqrgDeBsYWpKGO4zhOyVPsPq/+qroWILbuFys/AHgnYb/VsTLHcRwngbpL5zO042pqpJmhHVdTd+n8nJ9DRLqIyAsi8oqIvC4iN8bKQ7t+8k2xxSsMCSgLnPJZRKaIyIsi8mJTU1Oem+U4jlM61F06nyl3jqJh9yCUGhp2D2LKnaPyIWAfAyeq6hHAkcDJInI0IV0/haDY4rVORAYAxNbrY+WrgcEJ+w0C1gRVoKozVHW0qo7u2LGihq05juOk5LoZQ2mke6uyRrpz3YyhOT2PGltjm51iixLe9ZN3ii1ejwKTY58nA3MSys8Vkb1E5EBgOPBCEdrnOI5TsqzaPTBSeQo6xj1YsWVK8g4i0kFEFmJGxlxVfZ7wrp+8UzBTRUQeAI4H+orIauB64BbgQRG5GFgFnA2gqq+LyIPAYqAJuExVdxeqrY7jOKVGXR1cdx2sWgWDB8PYsaCBPSxQ22EN5rDKmCZVHZ1qh9gz+EgR6QU8LCKHRjlBrhHVwK6ksqR79+7q6aEcx6k06upgyhRobGxdPmy/j1i7oSPb6banrBvbmHFJPZN+dWzG9YtIo6p2T7/nnv2vB7YB3wSOV9W1sa6fv6nqiIxP3A6K7TZ0HMdx0nDddW2FC2B3t57c/aVHGcJKhGaGdFgdWbgyQUT2i1lciEhX4HPAG4R3/eQdt7wcx3FKnJoaCHpUi0Dzr+82s2zlShgyJKv601leInI4FpDRATN6HlTVm0SkD/AgUEus60dVk8fz5gUPz3Mcxylx+vaFDRvaltfWAitWQMeOMChSH1ckVPVVYFRA+fvA+LydOAXuNnQcxylhli2DrVvNykqkWzeYPh2zuGproUN1ZdBz8XIcxylRGhvhjDOgSxf46U/NKyhi6xkzYNIkzPIaOrTYTS047jZ0HMcpQVStK2vRInj8cfjCF+DKKwN2XLkSvvjFQjev6Ljl5TiOUyLU1ZkRVVMDffrY9k03mXAFsn07vPeeW16O4zhOcUgey7V5s3VjpdSllSttfeCBeW5d6eGWl+M4TgkQNJZr9274/vdTHOTi5TiO4xSTVauilQMWrAFV6TZ08XIcxykBamujlQMmXnvtBfvvn5c2lTIuXo7jOCXAKae0LdszliuMlStbIjyqjOq7YsdxnBLjlVdg1iwYMcIsrTZjucKo0jFe4NGGjuM4RWXzZhuIvO++8Pe/Q//+EQ5euRLGjMlX00oat7wcx3EKTOJ4roEDTYMeeiiicG3ZAu+/X5WRhuDi5TiOU1Di47kaGiyLxo4dlld3+fKIFVVxpCG4eDmO4xSUoPFcO3daeSSqeIwXuHg5juMUlKzGcwXhllfxEZErROQ1EXldRK6MlfUWkbkisjS23rfY7XQcx2kvWY3nCmLFCuje3Sb7qkKKLl4icijwTWAscARwmogMB6YC81R1ODAvtu04jlPWTJ9ufVyJpB3PFcTKleYyTJ7oq0ooungBI4H/U9VGVW0C/g6cDkzEpp0mtv5ykdrnOI6TM845B3r0sDm6Mh7PFUQVj/GC0hCv14DPikgfEekGnAoMBvqr6lqA2LpfEdvoOI6TEx5/HD74AB54AJqbzYCKLFyqLZZXlVL0QcqqukREfgTMBbYCrwBNmR4vIlOAKQCdO3fOSxsdx3FyxcyZNp6rXfNHbt4MH31U1eJVCpYXqnqPqh6lqp8FNgFLgXUiMgAgtl4fcuwMVR2tqqM7JjuSHcdxSog1a+BPf4KLLoJOndpRUZVHGkKJiJeI9Iuta4EzgAeAR4HJsV0mA3OK0zrHcZzc8Jvf2BxdF1/czoqqfIwXlIDbMMbvRaQPsAu4TFU3i8gtwIMicjGwCji7qC10HMdpB83NcM89cMIJ8IlPtLMyt7xKQ7xU9biAsveB8UVojuM4Ts558knTnJtvzkFlK1ZAr162VCkl4TZ0HMepdGbOtMzxZ5yRg8qqPNIQXLwcx3HyzsaN8PDDcP75Nr6r3VT5GC9w8XIcx8k7//Vflnz3G9/IQWU+xgtw8XIcx8kbdXWWQePqq6FzZ3j11RxUun49bN9e9eJVEgEbjuM4lUZ83q749Cc7d9o2ZJFRIxGPNATc8nIcx8kLQfN2NTZmMW9XMj7GC3DxchzHyQs5m7crmSJYXiIyWESeEpElsamrroiV3yAi74rIwthyaqHa5G5Dx3GcPFBbCw0NweXtYsUK2G8/m8urcDQBV6vqyyKyN/CSiMyNfXe7qt5ayMaAW16O4zh5IWfzdiVThEhDVV2rqi/HPm8BlgAHFLQRSbh4OY7j5IGvfhV69oSuXds5b1cyK1YUtb9LRIYCo4DnY0XfFpFXReTeQs547+LlOI6TB15+GTZtgl/+sh3zdiXT3Gy+yNz3d3UUkRcTlilBO4lID+D3wJWq+hFwJ3AQcCSwFrgt1w0LbXChTuQ4jlNNPPII1NTAl76Uw0rXrIFdu/JheTWp6uhUO4hIJ0y46lT1DwCqui7h+7uBP+a6YWG45eU4jpMHHn4YjjsO+vbNYaVFGuMlIgLcAyxR1Z8mlA9I2O104LVCtcktL8dxnByzdCm8/jrccUeOKy7eGK9xwPnAIhFZGCubBpwnIkcCCqwEvlWoBrl4OY7j5JhHHrH1xIk5rjhueQ0ZkuOKU6Oq8wEJ+OrPBW1IAu42dBzHyTGPPAJHHpkH796KFTBwIOy1V44rLj9cvBzHcXLIe+/Bc8/B6afnuOK6OnjgAQvaGDrUtqsYFy/HcZwc8uijNmvJl7+cw0rjWX4//ti2Gxpsu4oFTFS12G1ARP4V+AbW6bcIuAjoBvwWGIp1BH5FVTenqqd79+66bdu2vLbVcRwnFaeeCm++CW+/bYOTc8LQocG5poYMaQniaAci0qiqBc031V6KbnmJyAHA5cBoVT0U6ACcC0wF5qnqcGBebNtxHKdk+egjmDfPrK6cCRfkMctv+VJ08YrREegqIh0xi2sNMBGYFft+FpBLI9xxHCfnPP64zduV0/6up54K/67dWX7Ll6KLl6q+C9wKrMLSi3yoqk8A/VV1bWyftUC/4rXScRwnPQ8/bAnfjzkmywrq6sxFWFNj60sugS98AQYMsCSJieQky2/5UnTxiiVynAgcCAwEuovI1yIcPyWej6upqSlfzXQcx0nJxx/Dn/8MEyZAhw5ZVBAPymhosIiPhga46y74xCdsxPPdd1sfV06z/JYvRQ/YEJGzgZNV9eLY9gXA0cB44HhVXRtLQfI3VR2Rqi4P2HAcpxjU1cFVV8H69WZ53X57FroSFpQRNjFYDvGAjexYBRwtIt1i+bPGY3PFPApMju0zGZhTpPY5juOEEjeY1q+37Q0bsoxiDwu+eOeddrWvUim65QUgIjcC52CzddZjYfM9gAeBWkzgzlbVTanqccvLcZxCk7Mo9jyHw6eiHC2vkhCvXOHi5ThOoampsS6qZERs+q2Muf128z0m0q1bQfq2ylG8SsFt6DiOU7aERatHimLfsQPuv98iCgcO9KCMDHDxchzHaQfJxhJkEcV+xRVQXw+//S28+24Op16uXFy8HMdx2sHmWNK6rA2m+++3A7773RxPu1zZeJ+X4zhOluzeDcOGwYgR8MQTEQ6sq4PrrmuJMPzkJ+G116BjcaZY9D4vx3GcKmLuXNOfb3wjwkHJg5FVrZLf/jZv7axE3PJyHMfJkrPOgr//HVavjjA/ZBFD4sNwy8txHKdKWLcO5syBCy6IOLGxZ4jPCS5ejuM4WTBrFjQ1RXQZQo5i6x0XL8dxnIiowsyZcOyxMHJkxIOnT7dY+kSqPEN8Nrh4OY7jROTpp2Hp0iysLrAY+hkzoFMn2/bByFnhARuO4zgROf98ePRRWLu2rRGVMYMHw/jxcN99uWxaVnjAhuM4TgVTV2eaM3u2JcF4+OEsK1KFjRtt/hQnK4ozIs5xHKfMiA/Pamy07a1bbRuy8Pht22b5DPv2zWkbqwm3vBzHcTLguutahCtOY6OVR2bjRlu75ZU1Ll6O4zgZkNPhWRs22Notr6xx8XIcx8mAwYODy7ManuWWV7tx8XIcx8mAM89sW5b18Ky45eXilTUuXo7jOGnYvduS8O6/v1la7Z4r0t2G7abo0YYiMgJITKc8DPgB8F+x8qHASuArqrq50O1zHMf5n/+xGUt++1v4yldyUOHGjTb9yT775KCy6qTolpeqvqmqR6rqkcCngUbgYWAqME9VhwPzYtuO4zgFZdcu+MEP4MgjLYt8TtiwwawukRxVmF9EZLCIPCUiS0TkdRG5IlbeW0TmisjS2HrfQrWp6OKVxHhgmao2ABOBWbHyWcCXi9Yqx3GqlnvvheXLrW+rJldPzPIboNwEXK2qI4GjgctE5BCKaGRkfitEapGA1wQRQSRX6ZDPBR6Ife6vqmsBYut+OTqH4zhORmzfDjfdBOPGwSmn5LDiDRvKSrxUda2qvhz7vAVYAhxARCNDhENEGJGwfZIIs0X4nggdorQpynvECiDo1+4d+65diEhnYALwu4jHTRGRF0XkxaampvY2w3EcZw+//CWsWQP/8R859vDF3YalQ8f4czS2TAnbUUSGAqOA54luZNwTOxYRBgFzMA25DLg5UoMj7CtAUBbfHsCOKCcN4RTgZVVdF9teJyIDVHWtiAwA1gcdpKozgBlgiXlz0A7HcaqYujrLmrFqlQnWYYfBZz+b45OUntuwSVVHp9tJRHoAvweuVNWPgpxxaRgJvBz7fDbwvCqninAC8Bvge5lWlF68RP4z9kmBHyKSmCClAzAWWJjpCVNwHi0uQ4BHgcnALbH1nBycw3EcJ5Tk/IWqNvVJXV0OZyzZtQs2by418UqLiHTChKtOVf8QK87IyEigA7Az9nk88OfY52VA/yjtycRteFhsEUw1D0tYPoGp6IVRTpqMiHQDTgL+kFB8C3CSiCyNfXdLe87hOI6TjqD8hTt2ZJm/MIxNm2xdWm7DlIiZWPcAS1T1pwlfxY0MyMzIeA24RITjMPH6S6z8AGBjlDalt7xUTwBA5DfAFah+FOUEmaCqjUCfpLL3sYtzHMcpCDnNXxhGeWbXGAecDywSkbinbRpmVDwoIhcDqzBXYCq+CzwCXAPMUmVRrHwC8EKUBmXe56V6UZSKHcdxyo3aWmhoCC7PGWWYXUNV52PetyAyNjJUeVqE/YCeqiQmnfg1NsY3Y6Jl2BA5AeubqgU6J7XqxEh1OY7jlBhnnQW33da6LOv8hWFUeVJeVXaL0EGEfwIWqvKxKiuj1hNlnNeFwOPA3sDxwAZgX+AoYHHUEzuO45QSb78NM2dazsLBg3OQvzCM8nQb5gQR9hbhd1hgx7NYXxci3CXCDVHqijLO6xrg26ieB+wCvofqKGA2sDXKSR3HcUqJbdvgjDMsg8ZTT1kfV3MzrFyZY+GCFsurT5/U+1UmPwIGYkbP9oTyPwKnR6koingNA/439vljbHwXwC9oZ7Sh4zhOoamrg6FDTbD69YNFi+CBB+DAA/N84g0boFcv6NQpzycqSSYAV6qykNbjhpdgGpMxUcTrfcxlCPAucGjscx+ga5STOo7jFJP4eK6GBhvL1dhoWrIxUrB2lpRedo1Csi+mJcnsDeyOUlEU8XoG+Hzs84PAf8bC5x8A5kY5qeM4TjEJGs+1a1eOx3OFUXrZNQrJPzDrK07c+voW1geWMVGiDb8NdIl9/iGWZXgcJmSRclI5juMUk4KM5wpjwwbzV1Yn04C/ivApTH+uin0eC0RKwpW55aW6CdU1sc/NqP4I1QmoXoPqB1FO6mRAokN+6FDbdhwnJxxwQHB5TsdzhbFxY9W6DVV5FvgMNtRqGTZGbA1wjOqenIcZEXWcV39slPVBwL+huhGRccAaVNudWd6JkZxgraHBtiEPoU+OU100NsJee7Utz/l4riBUy246lFwTy6oxOe2OaYgyzuvTwJvAJOBioGfsm5OAfN/y6iLIId/YWCCHvONULrt3w9e+ZpNLXnmljePK23iuID76yDrXqtTyEqE2ZBkcy7yRMVEsr1uBn6F6PSJbEsr/CnjqqFxSVIe841QWiVOc9OgBW7bAHXfAFVfA7bcXuDFVnl0DWEnw1FoAiPARNjXKtaqknKAxinh9GrO4kllLxFT2ThoKkmDNcSqfZA/8li3QsWMRDZ8qzq4R4zzgx8Bd2GSWAP8ETAFuAHoB3we2ANenqihKqPx2LEY/mYNJP4eLE4Xp09s65QvikHecyiLIA9/UVEQPfNzyqlK3IXAJ8K+q/FCVJ2PLD4Grga+r8jPgckzkUhJFvOYA1yMSf6oqNh30j7AJypxcMWkSnHtuy3bBHPKOU1mUnAfeLa9/gj3ToCTyGjAm9vk5YFC6iqLmNuyNJeTtBswH3gY+wMw8J5fE854dfHCeEqw5TuUzeHBwedE88GU4HUqOacBchMl8E5sPDGA/YFO6iqLM5/URcCwiJ2JJFWuAl1H939QHOlmxbJmtP/AhdI6TLaNHt7WyiuqB37jRugR69Ei/b2VyNfB7EU7Fsm0oZnEdBJwZ22cMlvwiJdHGeQGoPgk8Gfk4JxrLl9vaxctxsmLBAnjkERg3DlavNhGrrTXhKpojIz7GS8LmdaxsVPmTCMOBS4ER2ASXjwJ3qZrlpcqvMqlLVEOjFgP2ln/CRkT3I9nlqHp55hUlVyu9gJlYsl8Fvo6NKfstMBQLr/yKqm4OqQKA7t2767Zt27JtRumgCnvvbT3NqrB9O3Tpkv44x3EA+PBDOOII6NAB6uuhZ8/0xxSEL33JlLS+vtgtaYWINKpq92K3IwqZW14i12Ahjm9j6TwSVS+CAgbyM+AvqnqWiHTG+tSmAfNU9RYRmQpMBb7bzvOUB+vX2wRDI0fCkiX2n+ji5TgZc+mlphHz55eQcEHVZ9eII8JAoBZLE7UHVZ7OtI4obsMrgMtR/UWEY9IiIj2xhIwXAqjqTmCniEzEZmwGmAX8jWoRr3h/11FHmXh98AH096F0jpOK+GDk+BDJM8+Eo48ubpvasGEDHHRQsVtRNGKi9d/YM18xt2Gi8dMh07qiRBv2BP4cYf9MGYZFMP5GROpFZKaIdAf6q+pagNi6Xx7OXZrE+7uOOsrW3u/lOClJnJ8rzuOPl2A+6ypOyhvjDmzerkOARuA44GxsMsqTo1QURbweiFp5hnTEohfvVNVRwDbMRZgRIjJFRF4UkRebmlJmEykfli2zDt0jj7TtDz8sbnscp8Qpi3SgH39suQ2r2234z8B3VXkDs7g2qPIHzKv271EqSu02FLkqYesd4MZYFvlXgV2t9lX9aZQTJ7AaWK2q8VQhD2HitU5EBqjqWhEZQEgWD1WdAcwAC9jIsg2lxfLlMGhQi6vQLS/HSUnJDUYO4v3YBMLVbXl1BeLzVW/CPGpvAYuBw6NUlK7P6ztJ21uxuVg+k1SuQFbiparvicg7IjJCVd/EohkXx5bJwC2x9Zxs6i9Lli2DYcOgVy/bdvFynFB27LChUzt2tP2upNKBenYNgDewlIIrgYXAv4jwDnAZ8G6UilKLl+qBiBwPPIsFUuSL7wB1sUjD5ViW+hrgQRG5GBt5fXYez19aLFsGp57q4uU4afj4YwvM2LEDOneGnQlPqZJLB+riBRZZvn/s803AX7A8hh8TcY6vTKINnwR2IPJc7POTwAuo7o5yolSo6kJgdMBX43N1jrKhsRHee88sr27dLAW2i5fj7CFxipMuXWwY5K9/Dd27t5QXfTByEFWclFeE44FnVdkTQqPKyyIMxSyxVap73IkZkYl4fRI4AQtbvxTrVNuGyHxMyJ4CXiLSaGcnlHik4UEHWdDGPvu4eDlOjOQpTrZvh06dTLgmTSoxsUqmui2vJ4EdIjyHacaTwPOqNAIvZ1Nh+mhD1bdRvRvVSagegIU4Xgt8iOWpeh54P5uTOwEkiheY69DFy3GA4KjCXbtKLKowjI0b7YW0d+9it6QYfBIbK/weNi3KfOADER4X4f+JMFqESDmzsslt+AYim7BIkQ+Bc4GqzTKZc+IDlIcNs7WLl+PsoSyiCsPYsMGEq0PG43ArBlXexrIz3Q0gwsGYR++fMSPoFkxPMlb2zMRLpA/mNjwBOBEbWPwS8HfgK5iKOrlg+XJzFcbfznr18nFejgOsW2cuwp0BoWMlFVUYhqeG2oMqb4jQLiMovdtQ5BVsLNaV2NxdVwC9UR2H6jRU/4pqBWTDLRHiYfLxrNNueTkOS5fCMcdYnuqynWS8jLNriMi9IrJeRF5LKLtBRN4VkYWx5dTUddBHhDNF+IUIi7Eo8suxbqevAPtGaVMmGTaGA5uxEPZlwNuoNqY+xMma5ctb5z5z8XKqkLo6GDoUampgwADLlLZliyXavecem1xcpMwmGS9vy+s+gjMs3a6qR8aW0PSBIgQaQaqMU2WaKn9VJZIRlInbcB9s6uYTgPOBXyKyAUuUa4vqiigndULYvRtWrICJE1vKXLycKiM5ovC990yobrgBxo61pSzEKpmNG+EzyfkdygNVfVpEhrajijZGUCzSMGsyiTbchep8VP8d1RMx024ysALLBL8YkZXtaYQTY80ac+gnW16NjcGOfsepQIIiClXh5z8vTntyQnOziVf5Wl5hfFtEXo25FVO5/fbBXINvY0bQ6yI0iDBLhItEODDqiaMk5o3TnLDEU9oPzqIeJ5nkSEOw4A3woA2naijriMIwPvzQPCulK14d4wnOY8uUDI65EzgIOBJYC9wWtqMqu1SZr8q/qxJoBImwMlKD0+4h0hEYi7kNTwCOAbpgnW1PAffE1k57iYtXsuUF5jos3T98x8mKxGwZgwbBJz9pVlYQZRFRGEZ8gHLpBmw0qWpQlqNQVHVd/LOI3A38McLh7TaCMunz+gDLBLwWE6nvAE95P1ceWL7c0kENTriHcfFyy8upMJL7tt55x5bDD7fowu3bW/Ytm4jCMCowu0Z81o/Y5unAa+H7knMjKBO34dXAwagOQvV8VO914coTy5ZZ+FTHhHeKakvOmxhmNnRoCc4m6OSKoL4tsPe0u+8u04jCMOJ5DctUvETkAeA5YISIrI4lTP+xiCwSkVcxQfrXFFV8ADyDZddYixlBn1DlQFW+rsr9qqyO0qb0lpfqr6NU6LSD5DB5qC7xSn4Vb2iwbSjzJ5eTTHNz61mPE1m1qgzyFEal9N2GKVHV8wKK74lQxdXAk6oszVGTsgrYcPJFfIByItUkXmUxHa6TDYkG9QEHwCGHhO9b1n1bYVRxRnkAVX6dS+GCbHIbOvnhgw9g06bqtrwqMszMSTao16yx9QknwPPPt35fKfu+rTA2bLCL69at2C2pGNzyKhXi2eSTLa8ePex1tRrEK+yVuyJfxauHadOC+7aWL7e+rIrq2wqjvLNrlCQuXqVC8lQocappTq/p08s4cZ0Drd2DQ4bAd76T2qCeNAlWrrQ+sJUrK1S4oFIHKBcVF69SIWiAcpxqSRE1aRKcdVbLdq9eFfwqXnnE3YMNDTZWa9Uq+MUvwmcAqSqDesOGqu3vyhclIV4isjIWcrlQRF6MlfUWkbkisjS2jpRxuOxYvtzezPbeu+131TQtSteu9jsMGwbjx7twlShBIxqmTg12D+6zT9uunqozqN3yyjklIV4xTohlJo6P8p4KzFPV4cC82HblEhRpGKdaLC+AJUtg5EjLvvqPfxS7NYWjjMa3JVtYDQ0weTKsDhmls3lzFfVtheGWV84pJfFKZiIwK/Z5FvDlIrYl/yxb1ra/K061iJcqLF5scdRjxpjfad269MeVO0FqMGVKyQpY0IiG3btbpqBLpra2ivq2gti+HbZtc8srx5SKeCnwhIi8lJAQsn889Uhs3a9orcs3u3bZg7raLa916+w1PS5eUB3WV4mOb0s2Bn/zG7j//vDBxaruHgykzLNrlCqlIl7jVPUo4BTgMhH5bKYHisiUeCbkpqam/LUwE7J1/TQ02CtptVteixfb+pBDbPbBmprqEK8SHN8WZAx+/etwwQWts5clEncHVrV7MIgyz65RqpSEeKnqmth6PfAwlsBxnYgMAEsACawPOXaGqo5W1dEdw/6rCkF7XD9hY7zi7LMPbN0KxRbnfJMoXt27w6c+BS+8UNw2FYISHN8Wlnewf3+4775wC6uq3YNhuOWVF4ouXiLSXUT2jn8GPo9lJ34Um++F2HpOcVqYIe1x/QRNhZJItWSWX7zYrnX//W07HrQRNkdGpVBi49uamsJdg+vXmyC5hRUBt7zyQtHFC+gPzBeRV4AXgD+p6l+AW4CTRGQpcFJsu3Rpj+tn+XLo0gUGDAj+vlpSRMWDNeI9/2PGwPvv2yt8JTNpEpx4Ysv2/vsXVA0Svd0DB8Lw4eH7xo1Bt7AiUIHToZQCRRcvVV2uqkfElk+p6vRY+fuqOl5Vh8fWm4rd1pS0x/WzbBkceKA9PYKoJssrMWNrPGijGlyHmze33Odf/rKgwpXo7V5LNTTfAAAgAElEQVS71sTopJM8+CIn1NXB9dfb51GjSjaCtBwpunhVDNOnt+3JzuS/va4O/vhHG98UFuRRDZbXhg22JIrXYYeZO63Sgza2b4eXXoIzz7TtAgZqhPVtvfVWFbgG8z22Lv5m8NFHtr1qVUkPgSg7VLVilm7dumnRaG5W7d1btWtXVXuJVb311tTHzJ6t2q1by/5g27Nnt95v4UL77ve/z1/7i83f/27X+Je/tC4/+mjV447Lrs7Zs1WHDFEVsXXy71oqPP20XfucOfb3c9VVBTu1SOs/v/giUrAmFIdM//faw5AhwT/ukCG5O0eOALZpCTzDoyxueeWKF1+0KU3uvBNWZDjRdKZBHtVgeSVGGiYydiy8/LKNgo1COQ38XbDA1p/5DAweXDDLa9WqKs47WIixdSU4BKKScPHKFQ89ZG7DCRPMBXH44fDoo6mPyfSPe599bF3p4tWjBwwa1Lp8zBjLTrBkSbT6SnTgbyDPPguf/KRFo9XWwjvv5P2Ub78Nxx0HnTqVVKBj4chWWKK4GktwCEQl4eKVC1RNvD73Odg3lj94wgSYP9+i5cIYPDi4PPmPu2dP63iodPFKjDSMk23QRrm89aqaeI0bZ9uDB+dNvBKfuyNG2J/m/Plwzz0V3rcVRDbCEtWav/HGtmVV8WZQGFy8UpHpW9bChRbunjidx8SJFkf85z+H1z95ctuyoD/umhoTsFIVr1x0fCdHGsYZPtwsz6hBG+Xy1vvmm6YiieK1di3s3JnT0yQ/d5ubzRO7ZEmVhr1fc01w+VVXhR8T1Zrv0sXW++1XZW8GBaLYnW65XHIasBGlQ3faNNUOHVQ3bGgp271bdeBA1TPPDD/HuedaB/3gwemDCoYMUb3ggvZcUX7IRcf3pk123I9/HPz9+PGqn/50tHbdeWfbjvJcd8jngpkzrW1LlrTeXrEip6cpo9iBwnD++fY/O3Cg/e8NHKi6116qxxyj+vHHwccE/YCpoluOO0512DB7FpQ4lGHARtEbkMslp+KV6X97c7Pq8OH2gE3mW99S7d5ddfv2tt+tXavaqZPqlVdm1p4jjlCdMCHqVeSfXDwVFyywYx57LPj7731PtWPH4N8xjJ/9zOrs0KGlPaUmXKqqX/+6RanGH3B//au19+mnc3qaqo0qDOL55+3ip05tXf7gg1ae/D/Z3Kz6gx+Ei1fQ3/qrr9p3P/lJ3i4jl5SjeLnbMIxM+0xeew2WLm3tMowzcaIFG/ztb22/u/tuyyZ/6aWZtadUk/Pmom8pLNIwzpgxlrPolVcyr/Pee+HTn4bLL7cJLpcvL013zYIFFmUYH6Ae7wdtT99ckhv38WufQkMybJWaFzXvqMKVV1oWk2nTWn939tlwxRVwxx3m6qupMVffZz8LN91k6+SR2127Bvdh/epX5ja86KL8XUuV4+IVRqZ9Jg89ZP7s009vu+8JJ1iC2TlJaRmbmuDXv4bPfz51Lp5ESlW8ctG3tHixPQSGDAn+PmrQRn29Cd3Xvw4HH2yDgEstUAMsYeubb7b0d0GLeGUbtFFXR91F/8vQhr9Ro03s1/ACp/3kOIb03ULXrq13rcrYgQcegOeeg//4j+BZy0eNMtHauNGEbtUqi2o580x7CU0cuQ1w5JFtX4o+/NDmjjn3XOjTJ++XVLUU2/TL5ZJTt+G117Z1D+y1V1vX0yGHqP7zP4fXc8YZ5k9vbm4pe+ghq++RRzJvz+TJqrW1Ua6gMOSiz+vkk1VHjQr/vrlZdcAA66fIhG9/2+7Vpk0tA4Affzzz9hSKOXOsbX//e+vyffdVvfTSrKqc3ec72o2trW5HDU16d+9ry2bMdt7YulV10CDVo44K74eK4gb//vftuwULWpf/539a+T/+kesryBuUoduw6A3I5ZIz8dq5U3XkSNV+/UwwRKzPZe+9VVevbtlv8WL7CX/+8/C67rvP9nnxxZayE06wepuaMm/T5Zer9uwZ/VoKwd13t/yTd+8e/alYW6s6aVLqfSZMUD344PR1bd9uD//zzrPt9eutXT/9abQ2JZKvp/53v2v9no2NrcuPOEL1tNOyqnIIK4Kfvaxof3vLlfj9i/8Y//Zv4ftG6RzcssVeTMeMaRHD5mb7Ox07Ni+Xki/KUbzcbRjEXXdZDPGMGS0TRb76qq3POcf6qgB+/3tbn3FGeF1f/KK5IeIDlpcsgaeegn/5l/D0BkH06mU50qJmmigEcdfn3ntbX0uUvqUtW8w1E9bfFWfsWHjjjfTJiefMsSS38b6G/fYz180bb2TepkTymaljwQKbdDPZn9eOsV6rCHbXhpVXPIn3L85tt4Xfvyhu8B494JZbbBjH7NlW9uST9rd22WXta7eTnmKrZy6XnFheGzfam/v48a1dfaqqDzxgb2HXXGPbRxyhOm5c+jqPO872VTWXVufOquvWRWvXT39q5960KdpxheD2261t3/ymRfclWxKpeOEFO/bhh1PvF4/Cmzcv9X6f/3xbq/bYY7PPj5ivGPMdO8y1GZTH8JJLLAIxCwb22hbc3D5b2tfeciXq/YvqBt+926ysAQPMEjv9dNU+faJFxpYAuOVVAdx4o73d335722wP555rb1S33mqZNF55xYIN0r2FT5hg+77+OsyaZVFN/fpFa1cpT4tSX2/RWyefbJbhokWZH5su0jBOfE6v8ePDB0KvWgVz58KFF7a2ag8+OHvLK1+ZOl5+GT7+2CINk6mttTyZ27ZFqnLrVpDu3YDWoYXdOjcx/Wc92tHYMibq/Ys602ZNjUUnrl1r/wMPP2yembhXxskbLl6JLF5sIa7f+pZNxxHEmDH2BxuP/Nu8Ob0bKS6Chx5qbrJPfCJ620o5OW99vUVpjRrVsp0pixdD584wbFj4PnV18K//2rId5rqbNcvelS+8sHX5yJE23UqqVF1h5CtTx7PP2jox0jBOFhGHqvCNb8DatcrULncwpNMahGaG9N3GjHs7luQogYKQzf2LmnJk+XJ7WYq/bHz0Uekmga4kim365XLJ2m04e7a5muIds3feGb5vvt0QYTz5pB371FPRjss327ebq3DaNHOz9uplg7Mz5bTTVA87LPU+mfzmu3dbNoMTT2x7/J/+ZPvPn595u+LMnt0y0Lk99y+Z00+39gYRnx7miScyru622+yQH079QPcEqHTpUtDpVUqS2bPNPZvr+5dIBaQvoQzdhkVvQC6XrMQrqrhETVWQqz/sl1/WjPqGCs0//mHt+t3vbPv446NFWg0bpnrOOan3yeQ3f+opKwu6b8uX23d33515u+Js2WIPv+7dW857zz3R60mkudkiWcNC/1essPPMnBlaRWIAZP/+tj79dNXmRx/TPUJ99NHW31ftnHtuy99LPsYIVED6knTiBdwLrAdeSyjrDcwFlsbW+6aqI9dLybgNRaSDiNSLyB9j271FZK6ILI2t983LiaMm24zqhshVn0mpTosSdxHGXYZHHmmRmU1N6Y9tbLS5z9L1d4X9tqrw1a9av8QJJ5h7NiihbW2tZTvIpt/roYesb+qvf7X+NLAIxvawbBmsXx/c3wVwwAF2LSFuw+QAyHXrrPzUU0EW1tuxRxzRMhdaJveikhExV2y+Mg+XSxLo9nEfcHJS2VRgnqoOB+bFtgtGyYgXcAWQOGlTYX6YqOIyfXrbFDGpUhXk6g+7VPu86ust4/2BB9r2qFGwY4dljkjHm2/a0zedeAX95vGMHA880HKvVOHb327b19Chg80BEnVOMLA0U5/8pAnNccdZxpTHH49eT5y6Ojj6aPt8003B/SKdOlnnf8jfYND7lircfDN2P4YPtzDuMWNsx2yuu5KI98nmi6jPhDJEVZ8GNiUVTwRmxT7PAr5cyDaVhHiJyCDgi8DMhOLC/DBRxSVqNFKu/rB79rR1qYnXwoVmbcVz88UfEgsXpj8200jDoN/87rvtiZ1MmNWcTcTh0qXwzDM2ZkzEZm0cP96muQk6dzriJlM8cGTt2vCO/RSTUqZ830p8UI8da+uoc6FVEtu22UtSPsUr6jOhNOkoIi8mLFMyOKa/qq4FiK0jhlC3k0L6KFP4Ux8CPg0cD/wxVvZB0j6b09VTkD6vbMhVhoa99848C30haGqy3+ryy1vKdu60PqKrr05//LRplrkkbAqKdETpa7jhBiuPMgZt2jTVmhrVd99tKbvrLjvH4sXR2xul//Oss1RHjIhWzaAm+3DLLbbj7t2q++wTLYCm0nj2WftNoqRiq0LIIGADGErrPq/Iz+hcLkW3vETkNGC9qr6U5fFT4m8LTdn49gvx1pSr2f5KLTnv0qVm6SS+1XbqZMMM0oXL19XZWLqmJnPLZRNWHMVqPvhge8YvXZpZ3bt3w333wSmnwMCBLeWnnGLrbFyHUVzUgwdbeYCF981vtt29WzeYfkHMsozfj5oaGD06e8srF5OMFpvkPlknl6wTkQEAsfX6Qp686OIFjAMmiMhK4H+AE0VkNhn+MKo6Q1VHq+rojh07ZteCcplKttTEK+zBMGqUfRfmWou7z7Zvt+1sUy5FccmOHGnrTPt/nngC1qyxzPSJ1NbCpz6VeobsMKKIbW2t/T6bWnczvP8+zJxpY+QHDUp63+rzV9sp8X6MHWuDxnfsiNbWfKbFKiT19dC7d8vYOSeXPApMjn2eDMxJsW/uKaSZl4FZejwtbsOfAFNjn6cCP053fE6zypcixx1noeilwv/7f5bqaufO1uW/+pW5alauDD4ul+NiMnXJNjbaPjfckFm9Z52l2rdvsEvzmmssoe6WiCmXZs+23ysTF3V85oH6+j1FTU2qX/iCVfH88wH1f+1rqgcc0LrsD3+wep57LlpbK2Dskqqqjh4dPFGs0wrSh8o/AKwFdgGrgYuBPlgw3dLYuneqOnK9lILlFcYtwEkishQ4KbZd3ZSi5XXooeYqTCRdpo1cplzK1Gru2tUiIjOxvDZutAS/559v2T+SOeUUSwE0b170to4fb5/TuahjlkLd/bv3eO769LGI/Z//vCUWoxX19RY8k0i2QRv5SotVSHbtMqsz+TdxIqOq56nqAFXtpKqDVPUeVX1fVcer6vDYOjkaMa+UlHip6t9U9bTY56L+MCXJPvuUjniphocgH364PW3DxKtY42IyjTisq7MHX7LLMM6xx1ooejb9Xk1Nlkk+ndjW1lLHeUz5+eF7PHcffmhR/927B+y/fbtdW/L9OOAAGDDAMp9HoRLGLr3xho3R8/6uiqSkxMtJQylZXqtXWwdM0IOhWzcbVxUmXkHTRRRiXMzIkRY2HTatTF2dWUNXXmkW1yuvBO/XuTN87nMmXmH9emG8+mp43sxE+vXjOn5I467WVu3u3SHj5xctsi+D7seYMdEtr+nT207VUm5jlzxYo6Jx8SonevWy1+/m5mK3JP2DIR60EcTGjeY2axNxkOdAmYMPtsCFINdXPEAh/t3OnakDFE491faNj1XLhA0bLB3G4Yen37emhlUEBxkEeu5S3Y+xY+Gtt6K9+Eya1Dqsca+9ym/sUn29CfCIEcVuiZMHXLzKiV697E1/69Zit8QeDCLhD+JRo8w627ixdfmuXZb9fcIEG4RbyAjPVBGHUdOEZRMyH58qJsDySo5Kv+EG6CjBFmKg566+3v4+hg5t+92YMbZ+KeJolJoae/hfcIFNNPrVr0Y7vtjU19vfZ5RJX52ywcWrnCilFFH19TY+q0fIPFHxTvJk6+svfzHrI6w/KZ8cfLCtg/q9ogYoDBpkwSpRQuZDxCsoKv3GG6Gz7GIvPm61b6jnLh6skTwHHdhYL4juOlywwITvqKPsJSSeRLEcULUsL+4yrFhcvMqJUhOvVA+GsIjDe++F/v1bLJdC0qePJdUNsryyCVA49VSYP9/maMuERYugb1+7/gSCjD6A3t13co9czJBaTe1dbWqyvrSw+9G7t80hFyVoo7HR7t24cS1iG2WS0XySyeDpFSvMxe7iVbG4eJUTpSJe779vFkmqB0OfPhbunShe69bBH/9obqjk8PpCERZxeMMNbcvSBShEDZlftMiEIMk6CjPuVm/Zh0lax8pn16T2rr75pvXlpbofY8ZEE69//MNEsdTEK9PB0x6sUfG4eJUThRKvdG+28aS76R4MyUEbs2fbA/Gii3LZ2miMHBlsecVTi/Xrl3kQyapVtu/pp6dPn9TcDK+9Rl3nC/f8tEOGwMUXhx9Su18sA0m6GZUzeVCPHWt9kGvXpq4rzoIFtj7mGLNW99+/NMQr077J+nrr68okstMpS1y8yolCzOmVyZttFPF66y3L7K1qLsOjj24JnCgGBx9slmNiIElzM9x6q7X3vfcyCyKpq4NLLmkJlU+XPmn5cuoaJzLlqfP2/LSrVtlPMmCATTeWSLduMP2qWBvTDQyur7cK4n16QcSDNjK1vhYssPvUu7dtH3aYuSaLTaZ9k/X11v7kH9apGFy8yolCWF6ZvNnW11vAQt++qesaNcqe0q++ag/NxYuLE6iRSFDE4WOPmevt2muDAx6CiBqduGgR1/EfNO5s6y7t2NHyFbbJDf0vsWlw0lleCxeauKTK7TlqlFkimQRtNDfDc8+ZyzDOYYfZ/QsbI1coBg0KLk/um8z3HF5O0XHxKifilteHH+bvHA0NweWJb7aZPhgSgzbuvdfCrs85p/1tbA9BEYc/+Ym5/c46K/N60lgAyZ7Xe2fV0MCQwEPeeScky9U++1g0ZyrLK1Wmk0S6dbPoyEwsrzfegM2bW8/0fNhh1q/29tvpj88nn/1s27Lkvsl168w96uJV0bh4lROdOlluoHxYXqrw/e+Hfx+3shobg9MQBTF4sLmdnn3WZjw+++yWSTWLRW2tiWjc8nr2WXORXXVVasslqJ6Q8iDP68VzJgDBVl1oQKNIykkpARO2zZszy98XD9pIlxUk3t+VbHlBcfu9tm2DuXNt8tIhCS8CN9/c2sXrwRpVgYtXuRGWIiqbuZcSj+nRw95ejz++7TQjNTWWHeLCC+Ggg8w8uPPO9OcQsY7+ujr46CPLKlvsKTVqaizjQtzy+slPTGCjujODpmPp2hWmTw8JfRd6dtgafVLtwYNTi1eUB7WqCV2HDqn/RhYssCCN4cNbyg45xH67YorXL38J69fbLNorV8K771rmj+Q2xX8TT8hb2RQyhX2+l4qfEkVV9VOfUj3jjNZl2cwGHXRMp05WnjzNyD33qI4a1XZ6jEzO0bFjtGMKwXnnqQ4dqvrGG3aN//ZvWVUz+5JndEiHd1TYrUNYofd/4b903rzgmURAVWiOPqn2N76h2q9f+Pc/+IHN9rxtW5rGzlbt0iWzezF8uOrEiW3LR4xQPf30NA3OEx99pNqnj+rJJ7cuv/JK1Q4dVN96q6Xs7LNVDzywsO0rc8hgJuVSW4regFwuVSFe48apnnhi67Js5l6qrY12TNT9s21XIbjxRlOPSZPsgb5uXeQqgrRfaLa1hFx2363R23rTTXbwjh3B33/pS6ojR6avJ9N7sW6dlf/oR23rOOss1YMOinoFueHmm61dyROZvfeeateuNpdZnOHDiyeyZUo5ipe7DcuNoGlRwjr0GxosjC3RnXjXXdZHEDUdUpjrKlUwQanOCbVxoz266+qsn2vu3JS7B3lkv/e9tq5BRejbV7nnnoAJntnG9O9mEWgTnwF49ergRj32mN3ndO7YTO/Fs8/aOrG/K85hh8Hy5db3FEY27ut0fPCBDWX40pfaTmTWvz98+9vw3/9t/ZhbtsDSpd7fVQ0UWz1zuVSF5fXVr6oOG9a6LOytOtWS7EJKZxVlY0WVouWVwn0W5NILsrCSPaGtrC9p3nOaPXXt/b7O7niBTYUclf/9X6v4ySdbX0NUN3Gm9+Kaa2yq5u3b29YRn5U5cBrnLNuVCddfb3W9/HLw9xs2qPbooXrOOarPPGP7PvZY+85ZZVCGllfRG5DLpSrE69JLVXv3bl0W1re0zz7BD6wBA6I/aHLVr1bAPq/A/qUhQ3Q25+kQVuzpq5rNeTq7z3faNLVLF9W99w7+CUNdg70+aNuQk05SPeqo7C7irbes4lmzWsqyeSkIuhddurS9F5/5jOoxxwTXsXSpHTdzZvD3uXxZSbx5IqqjR6fef9o0O1ePHrY+4IDi962WES5eRV6qQrymTbMO6ubmlrKdO1V79jTff+KTOuwJK2LHRY0eiBxtkOUxEQirPkw3L+EX2o2trco7sUO7sC2y8dqmfmnU2SNubNvI/fdXnTw5uwtsbLTKb765pSzdfc3kx6qpsf6rxL+j7dvN6rrmmuDjd++2i77iiuDvs21XUDszEdpEfv3r4BvkApYRLl7ZNAC6AC8ArwCvAzfGynsDc4GlsfW+6eqqCvH68Y/ttm3Z0lI2Z46VPfpo631L0W2XhlRilIlLr1s31Z//XHW//cJEpzliefhP2KZNE35rLxabN7dc0Pr1dsCtt2b/o/Ttqzplin3+8MPoLt8gfvMbOybx4T5/vpU9/HD4cWPHtg0YipOrv7dKcVGXES5e2TTARm72iH3uBDwPHA38GJgaK58K/ChdXVUhXjNm2G17552WsokT7e1+167W+xbZbZeKKGJ0ySXB5fvum15k2iteffpE+Anj/S2/+11LWTx2/oknsv+hOnWyOg44QHXQIPvROndu333dvVv105+2OrfGoiDjL0apoi8vvtjENNFiixM/vr1/b9lYcLmy+qoUF6/2Nga6AS8D/wS8CQyIlQ8A3kx3fFWI14MP2m1btMi233vP3vavvTZ4/zy77dKdIopI9e4d/vyJKlL9+weXd+gQXJ5KpDL+CXftUu3VS/Wii1rK7rjDKlu7NrsfNrlRoDp1am7ua1xsr7/etidOVP3EJ1Ifk+p6rr3W2hMXWLBxWFFxy6vguHhl2wjoACwEtsYtLOCDpH02p6unKsTriSfstj3zjG3feqttL1mS91NHEaKw7zp3Dn4e53KJty2KFRdJpFLxla9YQEzcMkllqaSjEA/kc86xvtKGBvO1puubC7Mkd+60N4b44OZdu2ygcFjwRypmzmz7xlLiwUHljotXexsDvYCngEMzFS9gCvAi8GLnzp0j3K4y5fnn7bY99pg9EA85xCLEsiAX/UthrrtOnSwmIBdilI21FPX6cka8L6m+3rbHjlU94YTs6iqEK6yhwSJV99rL6u7dO/UPEu/Du+221uWPPmrlc+a0lP3iF1Y2f360Nl12mR3Xv39JBQdVMi5euWgQXA9c427DEN58027b/fer/t//2ee7745cTRTLJFXIeC6XMDHKu7WUS9autQZOn279St27q15+eXZ1FcLySuxTy9Ri2X9/1QsvbF325S+b2Ozc2VK2bZvd1AkTMm/P009bG8IiGp284OKVTQNgP6BX7HNX4BngNOAnSQEbP05XV1WIVzx9zy9+YRFo3bqpfvhhZCsj7LmYTf9S2PM17BzZ9C+VnEil4qijVI89VvXttzXblwtVLYwrLBuBPOkkC/aIs26dWW9BIfbxAcaZuLW3bbM+twMPbAkicQqCi1d24nU4UA+8CrwG/CBW3geYFwuVnwf0TldXNYjX7Pt2xgbYNusQadDZx90ZyYrq1Mm8jPm2ljLpDysbMYrKddeZz/Tee+2i/+//sq8r3z9UNq7Jq64yczyeMeS22+yY119vu+/69bbvxRenb8s111g98+Zldy1O1rh4FXmpJPHKuN9prybt0yf8+RNU3qGD9dGHfZcraynsOiqeBQvsBzr0ULvwxDF5pUY2lle8X++NN1r6XY8+Onz/Sy+1SJ01a9p+l/gHAtn3DzrtwsWryEuliFe+o/REihiNVw00NbX+EUv5x8rGNfnii7bf737XEkA0Y0b4/nH3ac+e6d/GunYt3d+qgnHxKvJSjuKVLAizZqXKDhG2BA+wDbOi4i/VFdG/VIrMnt32xy/lsO2oN7yx0dyiP/iB6re+ZYLz4Yep60/+Pbp2DY8C8rFZBcfFq0rEK+pDP0r+vWxEqo9sjGxFOXmkGgbMjhhhE0P27Kl6wQWp9w37PVK5BpyCkol4ASuBRbExuS+m2z/fS9EFJ5dLtuKVi/FOYUIRVL7XXqrnnx/+4hk2PqoP69skle3GVp3NV92KKiWqIVXR2LEt19W/f+o/rKghrJUk8mVCBPHqm26/Qi1Fb0Aul2zEK0yMJk9um/+0c+eWGReCnkvRXH2pl0CLqc93Aqfz8H/2EqPSLa+oY8OyGTPhFBQXryIv2YhXVI9GrhYR1dra4O8CM5bPVk+BUy5U+n2KKs5VO2aifMhQvFbEcs++BExJt3++l6ILTi6XbMQrVxZTWHBEqqCJrJ5x/s9eHlTyfcrGLVrJv0cFAHwcT7MXW9qIEzAwtu4Xm8Lqs8n7FHKRWGMqgu7du+u2bdsiHTN0KDQ0tC3v0AF2725b3qcPbN8OjY0tZd26weTJMGtW5uUzZsCkSVBXB9ddB6tWQW0tTJ9u5Y5TsoT90wwZAitXFro1Tg4QkUZV7R5h/xuArap6a/5alZqaYp24VJg+3cQkkW7dYMqU4PKf/cyEZ8gQELH1jBnwq19FK48L1KRJ9v/e3GxrFy6n5An7p5k+vTjtcfKOiHQXkb3jn4HPYxmRitemare8INz6cavIcULwf46KIp3lJSLDgIdjmx2B/1bVor6tuHg5juNUOVHdhqVA1bsNHcdxnPLDxctxHMcpO1y8HMdxnLLDxctxHMcpO1y8HMdxnLKjoqINRaQZ2N6OKjoCTTlqTjnh111d+HVXF5lcd1dVLStjpqLEq72IyIuqOrrY7Sg0ft3VhV93dVGp111WSus4juM44OLlOI7jlCEuXq2ZUewGFAm/7urCr7u6qMjr9j4vx3Ecp+xwy8txHMcpO1y8ABE5WUTeFJG3RWRqsduTL0TkXhFZLyKvJZT1FpG5IrI0tt63mG3MByIyWESeEpElIvK6iFwRK6/oaxeRLhJaYUUAAALRSURBVCLygoi8ErvuG2PlFX3dcUSkg4jUi8gfY9vVct0rRWSRiCwUkRdjZRV37VUvXiLSAfglcApwCHCeiBxS3FbljfuAk5PKpgLzVHU4MC+2XWk0AVer6kjgaOCy2D2u9Gv/GDhRVY8AjgROFpGjqfzrjnMFsCRhu1quG+AEVT0yIUS+4q696sULGAu8rarLVXUn8D/AxCK3KS+o6tPApqTiicCs2OdZwJcL2qgCoKprVfXl2Oct2APtACr82mMzvG+NbXaKLUqFXzeAiAwCvgjMTCiu+OtOQcVdu4uXPcTeSdheHSurFvqr6lqwhzzQr8jtySsiMhQYBTxPFVx7zHW2EFgPzFXVqrhu4A7gWqA5oawarhvsBeUJEXlJRKbEyiru2jsWuwElgASUeQhmBSIiPYDfA1eq6kciQbe+slDV3cCRItILeFhEDi12m/KNiJwGrFfVl0Tk+GK3pwiMU9U1ItIPmCsibxS7QfnALS+ztAYnbA8C1hSpLcVgnYgMAIit1xe5PXlBRDphwlWnqn+IFVfFtQOo6gfA37A+z0q/7nHABBFZiXUDnCgis6n86wZAVdfE1uuBh7GukYq7dhcv+AcwXEQOFJHOwLnAo0VuUyF5FJgc+zwZmFPEtuQFMRPrHmCJqv404auKvnYR2S9mcSEiXYHPAW9Q4detqt9T1UGqOhT7f35SVb9GhV83gIh0F5G945+BzwOvUYHX7oOUARE5FfORdwDuVdXpRW5SXhCRB4Djgb7AOuB64BHgQaAWWAWcrarJQR1ljYgcCzwDLKKlD2Qa1u9VsdcuIodjnfMdsBfVB1X1JhHpQwVfdyIxt+E1qnpaNVy3iAzDrC2wbqH/VtXplXjtLl6O4zhO2eFuQ8dxHKfscPFyHMdxyg4XL8dxHKfscPFyHMdxyg4XL8dxHKfscPFyHMdxyg4XL8dxHKfscPFyHMdxyo7/D/fxk/0ZG9DXAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# create figure and axis objects\n", "fig,ax = plt.subplots()\n", "\n", "# make a plot\n", "ax.plot(my_data[\"Wheat\"], color = \"red\", marker = \"o\")\n", "\n", "\n", "# set y-axis l# set x-axis label\n", "ax.set_ylabel(\"Wheat\", color = \"red\", fontsize = 14)\n", "\n", "# twin object for two different y-axis on the sample plot\n", "ax2 = ax.twinx()\n", "\n", "# make a plot with different y-axis using second axis object\n", "ax2.plot(my_data[\"Wages\"] ,color = \"blue\",marker = \"o\")\n", "ax2.set_ylabel(\"Wages\",color = \"blue\", fontsize = 14)\n", "\n", "\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }