{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Sujet 2 : le pouvoir d'achat des ouvriers anglais du XVIe au XIXe siècle"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Unnamed: 0 | \n",
" Year | \n",
" Wheat | \n",
" Wages | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1 | \n",
" 1565 | \n",
" 41.0 | \n",
" 5.00 | \n",
"
\n",
" \n",
" 1 | \n",
" 2 | \n",
" 1570 | \n",
" 45.0 | \n",
" 5.05 | \n",
"
\n",
" \n",
" 2 | \n",
" 3 | \n",
" 1575 | \n",
" 42.0 | \n",
" 5.08 | \n",
"
\n",
" \n",
" 3 | \n",
" 4 | \n",
" 1580 | \n",
" 49.0 | \n",
" 5.12 | \n",
"
\n",
" \n",
" 4 | \n",
" 5 | \n",
" 1585 | \n",
" 41.5 | \n",
" 5.15 | \n",
"
\n",
" \n",
" 5 | \n",
" 6 | \n",
" 1590 | \n",
" 47.0 | \n",
" 5.25 | \n",
"
\n",
" \n",
" 6 | \n",
" 7 | \n",
" 1595 | \n",
" 64.0 | \n",
" 5.54 | \n",
"
\n",
" \n",
" 7 | \n",
" 8 | \n",
" 1600 | \n",
" 27.0 | \n",
" 5.61 | \n",
"
\n",
" \n",
" 8 | \n",
" 9 | \n",
" 1605 | \n",
" 33.0 | \n",
" 5.69 | \n",
"
\n",
" \n",
" 9 | \n",
" 10 | \n",
" 1610 | \n",
" 32.0 | \n",
" 5.78 | \n",
"
\n",
" \n",
" 10 | \n",
" 11 | \n",
" 1615 | \n",
" 33.0 | \n",
" 5.94 | \n",
"
\n",
" \n",
" 11 | \n",
" 12 | \n",
" 1620 | \n",
" 35.0 | \n",
" 6.01 | \n",
"
\n",
" \n",
" 12 | \n",
" 13 | \n",
" 1625 | \n",
" 33.0 | \n",
" 6.12 | \n",
"
\n",
" \n",
" 13 | \n",
" 14 | \n",
" 1630 | \n",
" 45.0 | \n",
" 6.22 | \n",
"
\n",
" \n",
" 14 | \n",
" 15 | \n",
" 1635 | \n",
" 33.0 | \n",
" 6.30 | \n",
"
\n",
" \n",
" 15 | \n",
" 16 | \n",
" 1640 | \n",
" 39.0 | \n",
" 6.37 | \n",
"
\n",
" \n",
" 16 | \n",
" 17 | \n",
" 1645 | \n",
" 53.0 | \n",
" 6.45 | \n",
"
\n",
" \n",
" 17 | \n",
" 18 | \n",
" 1650 | \n",
" 42.0 | \n",
" 6.50 | \n",
"
\n",
" \n",
" 18 | \n",
" 19 | \n",
" 1655 | \n",
" 40.5 | \n",
" 6.60 | \n",
"
\n",
" \n",
" 19 | \n",
" 20 | \n",
" 1660 | \n",
" 46.5 | \n",
" 6.75 | \n",
"
\n",
" \n",
" 20 | \n",
" 21 | \n",
" 1665 | \n",
" 32.0 | \n",
" 6.80 | \n",
"
\n",
" \n",
" 21 | \n",
" 22 | \n",
" 1670 | \n",
" 37.0 | \n",
" 6.90 | \n",
"
\n",
" \n",
" 22 | \n",
" 23 | \n",
" 1675 | \n",
" 43.0 | \n",
" 7.00 | \n",
"
\n",
" \n",
" 23 | \n",
" 24 | \n",
" 1680 | \n",
" 35.0 | \n",
" 7.30 | \n",
"
\n",
" \n",
" 24 | \n",
" 25 | \n",
" 1685 | \n",
" 27.0 | \n",
" 7.60 | \n",
"
\n",
" \n",
" 25 | \n",
" 26 | \n",
" 1690 | \n",
" 40.0 | \n",
" 8.00 | \n",
"
\n",
" \n",
" 26 | \n",
" 27 | \n",
" 1695 | \n",
" 50.0 | \n",
" 8.50 | \n",
"
\n",
" \n",
" 27 | \n",
" 28 | \n",
" 1700 | \n",
" 30.0 | \n",
" 9.00 | \n",
"
\n",
" \n",
" 28 | \n",
" 29 | \n",
" 1705 | \n",
" 32.0 | \n",
" 10.00 | \n",
"
\n",
" \n",
" 29 | \n",
" 30 | \n",
" 1710 | \n",
" 44.0 | \n",
" 11.00 | \n",
"
\n",
" \n",
" 30 | \n",
" 31 | \n",
" 1715 | \n",
" 33.0 | \n",
" 11.75 | \n",
"
\n",
" \n",
" 31 | \n",
" 32 | \n",
" 1720 | \n",
" 29.0 | \n",
" 12.50 | \n",
"
\n",
" \n",
" 32 | \n",
" 33 | \n",
" 1725 | \n",
" 39.0 | \n",
" 13.00 | \n",
"
\n",
" \n",
" 33 | \n",
" 34 | \n",
" 1730 | \n",
" 26.0 | \n",
" 13.30 | \n",
"
\n",
" \n",
" 34 | \n",
" 35 | \n",
" 1735 | \n",
" 32.0 | \n",
" 13.60 | \n",
"
\n",
" \n",
" 35 | \n",
" 36 | \n",
" 1740 | \n",
" 27.0 | \n",
" 14.00 | \n",
"
\n",
" \n",
" 36 | \n",
" 37 | \n",
" 1745 | \n",
" 27.5 | \n",
" 14.50 | \n",
"
\n",
" \n",
" 37 | \n",
" 38 | \n",
" 1750 | \n",
" 31.0 | \n",
" 15.00 | \n",
"
\n",
" \n",
" 38 | \n",
" 39 | \n",
" 1755 | \n",
" 35.5 | \n",
" 15.70 | \n",
"
\n",
" \n",
" 39 | \n",
" 40 | \n",
" 1760 | \n",
" 31.0 | \n",
" 16.50 | \n",
"
\n",
" \n",
" 40 | \n",
" 41 | \n",
" 1765 | \n",
" 43.0 | \n",
" 17.60 | \n",
"
\n",
" \n",
" 41 | \n",
" 42 | \n",
" 1770 | \n",
" 47.0 | \n",
" 18.50 | \n",
"
\n",
" \n",
" 42 | \n",
" 43 | \n",
" 1775 | \n",
" 44.0 | \n",
" 19.50 | \n",
"
\n",
" \n",
" 43 | \n",
" 44 | \n",
" 1780 | \n",
" 46.0 | \n",
" 21.00 | \n",
"
\n",
" \n",
" 44 | \n",
" 45 | \n",
" 1785 | \n",
" 42.0 | \n",
" 23.00 | \n",
"
\n",
" \n",
" 45 | \n",
" 46 | \n",
" 1790 | \n",
" 47.5 | \n",
" 25.50 | \n",
"
\n",
" \n",
" 46 | \n",
" 47 | \n",
" 1795 | \n",
" 76.0 | \n",
" 27.50 | \n",
"
\n",
" \n",
" 47 | \n",
" 48 | \n",
" 1800 | \n",
" 79.0 | \n",
" 28.50 | \n",
"
\n",
" \n",
" 48 | \n",
" 49 | \n",
" 1805 | \n",
" 81.0 | \n",
" 29.50 | \n",
"
\n",
" \n",
" 49 | \n",
" 50 | \n",
" 1810 | \n",
" 99.0 | \n",
" 30.00 | \n",
"
\n",
" \n",
" 50 | \n",
" 51 | \n",
" 1815 | \n",
" 78.0 | \n",
" NaN | \n",
"
\n",
" \n",
" 51 | \n",
" 52 | \n",
" 1820 | \n",
" 54.0 | \n",
" NaN | \n",
"
\n",
" \n",
" 52 | \n",
" 53 | \n",
" 1821 | \n",
" 54.0 | \n",
" NaN | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Unnamed: 0 Year Wheat Wages\n",
"0 1 1565 41.0 5.00\n",
"1 2 1570 45.0 5.05\n",
"2 3 1575 42.0 5.08\n",
"3 4 1580 49.0 5.12\n",
"4 5 1585 41.5 5.15\n",
"5 6 1590 47.0 5.25\n",
"6 7 1595 64.0 5.54\n",
"7 8 1600 27.0 5.61\n",
"8 9 1605 33.0 5.69\n",
"9 10 1610 32.0 5.78\n",
"10 11 1615 33.0 5.94\n",
"11 12 1620 35.0 6.01\n",
"12 13 1625 33.0 6.12\n",
"13 14 1630 45.0 6.22\n",
"14 15 1635 33.0 6.30\n",
"15 16 1640 39.0 6.37\n",
"16 17 1645 53.0 6.45\n",
"17 18 1650 42.0 6.50\n",
"18 19 1655 40.5 6.60\n",
"19 20 1660 46.5 6.75\n",
"20 21 1665 32.0 6.80\n",
"21 22 1670 37.0 6.90\n",
"22 23 1675 43.0 7.00\n",
"23 24 1680 35.0 7.30\n",
"24 25 1685 27.0 7.60\n",
"25 26 1690 40.0 8.00\n",
"26 27 1695 50.0 8.50\n",
"27 28 1700 30.0 9.00\n",
"28 29 1705 32.0 10.00\n",
"29 30 1710 44.0 11.00\n",
"30 31 1715 33.0 11.75\n",
"31 32 1720 29.0 12.50\n",
"32 33 1725 39.0 13.00\n",
"33 34 1730 26.0 13.30\n",
"34 35 1735 32.0 13.60\n",
"35 36 1740 27.0 14.00\n",
"36 37 1745 27.5 14.50\n",
"37 38 1750 31.0 15.00\n",
"38 39 1755 35.5 15.70\n",
"39 40 1760 31.0 16.50\n",
"40 41 1765 43.0 17.60\n",
"41 42 1770 47.0 18.50\n",
"42 43 1775 44.0 19.50\n",
"43 44 1780 46.0 21.00\n",
"44 45 1785 42.0 23.00\n",
"45 46 1790 47.5 25.50\n",
"46 47 1795 76.0 27.50\n",
"47 48 1800 79.0 28.50\n",
"48 49 1805 81.0 29.50\n",
"49 50 1810 99.0 30.00\n",
"50 51 1815 78.0 NaN\n",
"51 52 1820 54.0 NaN\n",
"52 53 1821 54.0 NaN"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = pd.read_csv('https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/master/csv/HistData/Wheat.csv')\n",
"data"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Unnamed: 0 | \n",
" Year | \n",
" Wheat | \n",
" Wages | \n",
"
\n",
" \n",
" \n",
" \n",
" 50 | \n",
" 51 | \n",
" 1815 | \n",
" 78.0 | \n",
" NaN | \n",
"
\n",
" \n",
" 51 | \n",
" 52 | \n",
" 1820 | \n",
" 54.0 | \n",
" NaN | \n",
"
\n",
" \n",
" 52 | \n",
" 53 | \n",
" 1821 | \n",
" 54.0 | \n",
" NaN | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Unnamed: 0 Year Wheat Wages\n",
"50 51 1815 78.0 NaN\n",
"51 52 1820 54.0 NaN\n",
"52 53 1821 54.0 NaN"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Voir les lignes avec des données manquantes\n",
"\n",
"data[data.isnull().any(axis = 1)]"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Unnamed: 0 | \n",
" Year | \n",
" Wheat | \n",
" Wages | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1 | \n",
" 1565 | \n",
" 41.0 | \n",
" 5.00 | \n",
"
\n",
" \n",
" 1 | \n",
" 2 | \n",
" 1570 | \n",
" 45.0 | \n",
" 5.05 | \n",
"
\n",
" \n",
" 2 | \n",
" 3 | \n",
" 1575 | \n",
" 42.0 | \n",
" 5.08 | \n",
"
\n",
" \n",
" 3 | \n",
" 4 | \n",
" 1580 | \n",
" 49.0 | \n",
" 5.12 | \n",
"
\n",
" \n",
" 4 | \n",
" 5 | \n",
" 1585 | \n",
" 41.5 | \n",
" 5.15 | \n",
"
\n",
" \n",
" 5 | \n",
" 6 | \n",
" 1590 | \n",
" 47.0 | \n",
" 5.25 | \n",
"
\n",
" \n",
" 6 | \n",
" 7 | \n",
" 1595 | \n",
" 64.0 | \n",
" 5.54 | \n",
"
\n",
" \n",
" 7 | \n",
" 8 | \n",
" 1600 | \n",
" 27.0 | \n",
" 5.61 | \n",
"
\n",
" \n",
" 8 | \n",
" 9 | \n",
" 1605 | \n",
" 33.0 | \n",
" 5.69 | \n",
"
\n",
" \n",
" 9 | \n",
" 10 | \n",
" 1610 | \n",
" 32.0 | \n",
" 5.78 | \n",
"
\n",
" \n",
" 10 | \n",
" 11 | \n",
" 1615 | \n",
" 33.0 | \n",
" 5.94 | \n",
"
\n",
" \n",
" 11 | \n",
" 12 | \n",
" 1620 | \n",
" 35.0 | \n",
" 6.01 | \n",
"
\n",
" \n",
" 12 | \n",
" 13 | \n",
" 1625 | \n",
" 33.0 | \n",
" 6.12 | \n",
"
\n",
" \n",
" 13 | \n",
" 14 | \n",
" 1630 | \n",
" 45.0 | \n",
" 6.22 | \n",
"
\n",
" \n",
" 14 | \n",
" 15 | \n",
" 1635 | \n",
" 33.0 | \n",
" 6.30 | \n",
"
\n",
" \n",
" 15 | \n",
" 16 | \n",
" 1640 | \n",
" 39.0 | \n",
" 6.37 | \n",
"
\n",
" \n",
" 16 | \n",
" 17 | \n",
" 1645 | \n",
" 53.0 | \n",
" 6.45 | \n",
"
\n",
" \n",
" 17 | \n",
" 18 | \n",
" 1650 | \n",
" 42.0 | \n",
" 6.50 | \n",
"
\n",
" \n",
" 18 | \n",
" 19 | \n",
" 1655 | \n",
" 40.5 | \n",
" 6.60 | \n",
"
\n",
" \n",
" 19 | \n",
" 20 | \n",
" 1660 | \n",
" 46.5 | \n",
" 6.75 | \n",
"
\n",
" \n",
" 20 | \n",
" 21 | \n",
" 1665 | \n",
" 32.0 | \n",
" 6.80 | \n",
"
\n",
" \n",
" 21 | \n",
" 22 | \n",
" 1670 | \n",
" 37.0 | \n",
" 6.90 | \n",
"
\n",
" \n",
" 22 | \n",
" 23 | \n",
" 1675 | \n",
" 43.0 | \n",
" 7.00 | \n",
"
\n",
" \n",
" 23 | \n",
" 24 | \n",
" 1680 | \n",
" 35.0 | \n",
" 7.30 | \n",
"
\n",
" \n",
" 24 | \n",
" 25 | \n",
" 1685 | \n",
" 27.0 | \n",
" 7.60 | \n",
"
\n",
" \n",
" 25 | \n",
" 26 | \n",
" 1690 | \n",
" 40.0 | \n",
" 8.00 | \n",
"
\n",
" \n",
" 26 | \n",
" 27 | \n",
" 1695 | \n",
" 50.0 | \n",
" 8.50 | \n",
"
\n",
" \n",
" 27 | \n",
" 28 | \n",
" 1700 | \n",
" 30.0 | \n",
" 9.00 | \n",
"
\n",
" \n",
" 28 | \n",
" 29 | \n",
" 1705 | \n",
" 32.0 | \n",
" 10.00 | \n",
"
\n",
" \n",
" 29 | \n",
" 30 | \n",
" 1710 | \n",
" 44.0 | \n",
" 11.00 | \n",
"
\n",
" \n",
" 30 | \n",
" 31 | \n",
" 1715 | \n",
" 33.0 | \n",
" 11.75 | \n",
"
\n",
" \n",
" 31 | \n",
" 32 | \n",
" 1720 | \n",
" 29.0 | \n",
" 12.50 | \n",
"
\n",
" \n",
" 32 | \n",
" 33 | \n",
" 1725 | \n",
" 39.0 | \n",
" 13.00 | \n",
"
\n",
" \n",
" 33 | \n",
" 34 | \n",
" 1730 | \n",
" 26.0 | \n",
" 13.30 | \n",
"
\n",
" \n",
" 34 | \n",
" 35 | \n",
" 1735 | \n",
" 32.0 | \n",
" 13.60 | \n",
"
\n",
" \n",
" 35 | \n",
" 36 | \n",
" 1740 | \n",
" 27.0 | \n",
" 14.00 | \n",
"
\n",
" \n",
" 36 | \n",
" 37 | \n",
" 1745 | \n",
" 27.5 | \n",
" 14.50 | \n",
"
\n",
" \n",
" 37 | \n",
" 38 | \n",
" 1750 | \n",
" 31.0 | \n",
" 15.00 | \n",
"
\n",
" \n",
" 38 | \n",
" 39 | \n",
" 1755 | \n",
" 35.5 | \n",
" 15.70 | \n",
"
\n",
" \n",
" 39 | \n",
" 40 | \n",
" 1760 | \n",
" 31.0 | \n",
" 16.50 | \n",
"
\n",
" \n",
" 40 | \n",
" 41 | \n",
" 1765 | \n",
" 43.0 | \n",
" 17.60 | \n",
"
\n",
" \n",
" 41 | \n",
" 42 | \n",
" 1770 | \n",
" 47.0 | \n",
" 18.50 | \n",
"
\n",
" \n",
" 42 | \n",
" 43 | \n",
" 1775 | \n",
" 44.0 | \n",
" 19.50 | \n",
"
\n",
" \n",
" 43 | \n",
" 44 | \n",
" 1780 | \n",
" 46.0 | \n",
" 21.00 | \n",
"
\n",
" \n",
" 44 | \n",
" 45 | \n",
" 1785 | \n",
" 42.0 | \n",
" 23.00 | \n",
"
\n",
" \n",
" 45 | \n",
" 46 | \n",
" 1790 | \n",
" 47.5 | \n",
" 25.50 | \n",
"
\n",
" \n",
" 46 | \n",
" 47 | \n",
" 1795 | \n",
" 76.0 | \n",
" 27.50 | \n",
"
\n",
" \n",
" 47 | \n",
" 48 | \n",
" 1800 | \n",
" 79.0 | \n",
" 28.50 | \n",
"
\n",
" \n",
" 48 | \n",
" 49 | \n",
" 1805 | \n",
" 81.0 | \n",
" 29.50 | \n",
"
\n",
" \n",
" 49 | \n",
" 50 | \n",
" 1810 | \n",
" 99.0 | \n",
" 30.00 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Unnamed: 0 Year Wheat Wages\n",
"0 1 1565 41.0 5.00\n",
"1 2 1570 45.0 5.05\n",
"2 3 1575 42.0 5.08\n",
"3 4 1580 49.0 5.12\n",
"4 5 1585 41.5 5.15\n",
"5 6 1590 47.0 5.25\n",
"6 7 1595 64.0 5.54\n",
"7 8 1600 27.0 5.61\n",
"8 9 1605 33.0 5.69\n",
"9 10 1610 32.0 5.78\n",
"10 11 1615 33.0 5.94\n",
"11 12 1620 35.0 6.01\n",
"12 13 1625 33.0 6.12\n",
"13 14 1630 45.0 6.22\n",
"14 15 1635 33.0 6.30\n",
"15 16 1640 39.0 6.37\n",
"16 17 1645 53.0 6.45\n",
"17 18 1650 42.0 6.50\n",
"18 19 1655 40.5 6.60\n",
"19 20 1660 46.5 6.75\n",
"20 21 1665 32.0 6.80\n",
"21 22 1670 37.0 6.90\n",
"22 23 1675 43.0 7.00\n",
"23 24 1680 35.0 7.30\n",
"24 25 1685 27.0 7.60\n",
"25 26 1690 40.0 8.00\n",
"26 27 1695 50.0 8.50\n",
"27 28 1700 30.0 9.00\n",
"28 29 1705 32.0 10.00\n",
"29 30 1710 44.0 11.00\n",
"30 31 1715 33.0 11.75\n",
"31 32 1720 29.0 12.50\n",
"32 33 1725 39.0 13.00\n",
"33 34 1730 26.0 13.30\n",
"34 35 1735 32.0 13.60\n",
"35 36 1740 27.0 14.00\n",
"36 37 1745 27.5 14.50\n",
"37 38 1750 31.0 15.00\n",
"38 39 1755 35.5 15.70\n",
"39 40 1760 31.0 16.50\n",
"40 41 1765 43.0 17.60\n",
"41 42 1770 47.0 18.50\n",
"42 43 1775 44.0 19.50\n",
"43 44 1780 46.0 21.00\n",
"44 45 1785 42.0 23.00\n",
"45 46 1790 47.5 25.50\n",
"46 47 1795 76.0 27.50\n",
"47 48 1800 79.0 28.50\n",
"48 49 1805 81.0 29.50\n",
"49 50 1810 99.0 30.00"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Supprimer la ligne qui ne contient pas de données valables\n",
"# Copier les données\n",
"my_data = data.dropna().copy()\n",
"my_data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Représentation graphique du prix du blé "
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAADcRJREFUeJzt3V2sZXdZx/Hvzw4EaCG09kwz9MUDSYNUI2AmpFpjKgWptmF6UwMJZGJq5gaxKAROuWk0aTKJhuCFmkwAmYQ3J7zYxhJlMtKgN8XTF9OWKWkDYxk6zhxEBAkBi48Xe9WeTKdzOnvtfV6e8/0kzdrrv9fe6/mfPfM7T/977zWpKiRJff3MRhcgSZovg16SmjPoJak5g16SmjPoJak5g16SmjPoJak5g16SmjPoJam5HRtdAMDFF19ci4uLG12GJG0p991333eqamGt4zZF0C8uLrK8vLzRZUjSlpLk357PcS7dSFJzBr0kNWfQS1JzawZ9ko8lOZXk4VVjFyU5nOSxYXvhqvtuS/J4kq8necu8CpckPT/Pp6P/OHD9aWNLwJGquhI4MuyT5CrgbcAvDI/5yyTnzaxaSdI5WzPoq+orwHdPG94DHBxuHwRuWjX+mar6cVV9E3gceMOMapUkTWHaNfpLquoEwLDdOYxfCnxr1XHHhzFJ0gaZ9ZuxOcPYGf+twiT7kiwnWV5ZWZlxGZKkp00b9CeT7AIYtqeG8ePA5auOuwx48kxPUFUHqmp3Ve1eWFjzi12SpClN+83Yu4C9wP5he+eq8U8l+RDwCuBK4Ktji5SkDhaX7n7W2LH9N8z9vGsGfZJPA9cCFyc5DtzOJOAPJbkFeAK4GaCqHklyCPga8BTwrqr66ZxqlyQ9D2sGfVW9/Tnuuu45jr8DuGNMUZKk2fGbsZLUnEEvSc0Z9JLUnEEvSc0Z9JLUnEEvSc0Z9JLUnEEvSc0Z9JLUnEEvSc0Z9JLUnEEvSc0Z9JLUnEEvSc0Z9JLUnEEvSc0Z9JLUnEEvSc0Z9JLUnEEvSc0Z9JLUnEEvSc0Z9JLUnEEvSc0Z9JLUnEEvSc0Z9JLUnEEvSc0Z9JLUnEEvSc0Z9JLUnEEvSc0Z9JLU3KigT/KHSR5J8nCSTyd5UZKLkhxO8tiwvXBWxUqSzt2OaR+Y5FLgD4CrqupHSQ4BbwOuAo5U1f4kS8AS8IGZVCtJW8Di0t3PGju2/4YNqGRi7NLNDuDFSXYALwGeBPYAB4f7DwI3jTyHJGmEqYO+qr4N/BnwBHAC+K+q+hJwSVWdGI45Aew80+OT7EuynGR5ZWVl2jIkSWuYOuiHtfc9wCuBVwDnJ3nH8318VR2oqt1VtXthYWHaMiRJaxizdPMm4JtVtVJV/wN8HvhV4GSSXQDD9tT4MiVJ05r6zVgmSzZXJ3kJ8CPgOmAZ+CGwF9g/bO8cW6QkbUab7U3X5zJ10FfVvUk+C9wPPAU8ABwALgAOJbmFyS+Dm2dRqCRpOmM6eqrqduD204Z/zKS7lyRtAn4zVpKaM+glqTmDXpKaG7VGL0nbwVb5dM1zsaOXpOYMeklqzqCXpOYMeklqzqCXpOYMeklqzqCXpOYMeklqzqCXpOYMeklqzqCXpOYMeklqzqCXpOYMeklqzqCXpOYMeklqzqCXpOYMeklqzqCXpOYMeklqzqCXpOYMeklqzqCXpOYMeklqbsdGF9DR4tLdzxo7tv+GDahEkuzoJak9g16SmjPoJak5g16SmhsV9ElenuSzSR5NcjTJryS5KMnhJI8N2wtnVawk6dyN7ej/HPj7qvp54LXAUWAJOFJVVwJHhn1J0gaZOuiTvAz4deCjAFX1k6r6HrAHODgcdhC4aWyRkqTpjenoXwWsAH+d5IEkH0lyPnBJVZ0AGLY7z/TgJPuSLCdZXllZGVGGJOlsxgT9DuCXgb+qqtcDP+Qclmmq6kBV7a6q3QsLCyPKkCSdzZigPw4cr6p7h/3PMgn+k0l2AQzbU+NKlCSNMXXQV9W/A99K8uph6Drga8BdwN5hbC9w56gKJUmjjL3WzbuBTyZ5IfAN4HeZ/PI4lOQW4Ang5pHnkCSNMCroq+pBYPcZ7rpuzPNKkmbHb8ZKUnMGvSQ1Z9BLUnMGvSQ1Z9BLUnMGvSQ1Z9BLUnMGvSQ1Z9BLUnNjL4EgAbC4dPezxo7tv2EDKpF0Ojt6SWrOoJek5gx6SWrOoJek5gx6SWrOT91IU/KTRtoq7OglqTk7+lXs0CR1ZEcvSc0Z9JLUnEs3kjQ4ffm2y9KtQT+Ca/rS+vHv2/RcupGk5uzotenYuUmzZdBLasmG4Rku3UhSc607en+jr82fkdSfHb0kNde6o5e2Cv/Panr+7NZmRy9JzdnRqy07va3J12327OglqbnRHX2S84Bl4NtVdWOSi4C/ARaBY8DvVNV/jj3PLNkxrB9/1tpstuOfyVks3dwKHAVeNuwvAUeqan+SpWH/AzM4z4bZjn8wJPUxKuiTXAbcANwB/NEwvAe4drh9ELiHOQd91yvOSdIsjO3oPwy8H3jpqrFLquoEQFWdSLJz5DnUlL+gpfUxddAnuRE4VVX3Jbl2isfvA/YBXHHFFdOWIc2dS3fa6sZ86uYa4K1JjgGfAd6Y5BPAySS7AIbtqTM9uKoOVNXuqtq9sLAwogxJ0tlM3dFX1W3AbQBDR/++qnpHkj8F9gL7h+2dM6hTm4Td7ebm66Mzmcfn6PcDb07yGPDmYV+StEFm8s3YqrqHyadrqKr/AK6bxfNKksbzm7GS1JzXutGW57q0dHZ29JLUnEEvSc0Z9JLUnGv0kubK91A2nkHfjH+p1ubPSNuNSzeS1JxBL0nNGfSS1Jxr9JvANGvG5/qYeR+v+fB10CzY0UtSc3b0m5z/CtMzOnS3m20Om60ezYcdvSQ1Z0cvaSZ8H2jzsqOXpObs6KU58L0VbSZ29JLUnB29tAW5vq1zYUcvSc0Z9JLUnEs3ks6JbzRvPQb9OnJddXPz9XmGP4teXLqRpObs6KVtwA59e7Ojl6TmDHpJas6gl6TmDHpJas6gl6TmDHpJas6gl6TmDHpJam7qoE9yeZIvJzma5JEktw7jFyU5nOSxYXvh7MqVJJ2rMR39U8B7q+o1wNXAu5JcBSwBR6rqSuDIsC9J2iBTB31Vnaiq+4fbPwCOApcCe4CDw2EHgZvGFilJmt5M1uiTLAKvB+4FLqmqEzD5ZQDsnMU5JEnTGR30SS4APge8p6q+fw6P25dkOcnyysrK2DIkSc9hVNAneQGTkP9kVX1+GD6ZZNdw/y7g1JkeW1UHqmp3Ve1eWFgYU4Yk6SzGfOomwEeBo1X1oVV33QXsHW7vBe6cvjxJ0lhjrkd/DfBO4KEkDw5jHwT2A4eS3AI8Adw8rkRJ0hhTB31V/TOQ57j7ummfV5I0W34zVpKaM+glqTmDXpKaM+glqTmDXpKaM+glqTmDXpKaM+glqTmDXpKaM+glqTmDXpKaM+glqTmDXpKaM+glqTmDXpKaM+glqTmDXpKaM+glqTmDXpKaM+glqTmDXpKaM+glqTmDXpKaM+glqTmDXpKaM+glqTmDXpKaM+glqTmDXpKaM+glqTmDXpKaM+glqTmDXpKam1vQJ7k+ydeTPJ5kaV7nkSSd3VyCPsl5wF8AvwVcBbw9yVXzOJck6ezm1dG/AXi8qr5RVT8BPgPsmdO5JElnMa+gvxT41qr948OYJGmdpapm/6TJzcBbqur3hv13Am+oqnevOmYfsG/YfTXw9XM4xcXAd2ZU7lbhnLcH57w9zGrOP1dVC2sdtGMGJzqT48Dlq/YvA55cfUBVHQAOTPPkSZaravf05W09znl7cM7bw3rPeV5LN/8CXJnklUleCLwNuGtO55IkncVcOvqqeirJ7wP/AJwHfKyqHpnHuSRJZzevpRuq6ovAF+f09FMt+Wxxznl7cM7bw7rOeS5vxkqSNg8vgSBJzW2poN8ul1VI8rEkp5I8vGrsoiSHkzw2bC/cyBpnKcnlSb6c5GiSR5LcOoy3nTNAkhcl+WqSfx3m/cfDePd5n5fkgSR/N+y3ni9AkmNJHkryYJLlYWzd5r1lgn6bXVbh48D1p40tAUeq6krgyLDfxVPAe6vqNcDVwLuG17bznAF+DLyxql4LvA64PsnV9J/3rcDRVfvd5/u036iq1636WOW6zXvLBD3b6LIKVfUV4LunDe8BDg63DwI3rWtRc1RVJ6rq/uH2D5iEwKU0njNATfz3sPuC4b+i8byTXAbcAHxk1XDb+a5h3ea9lYJ+u19W4ZKqOgGTYAR2bnA9c5FkEXg9cC/bYM7DMsaDwCngcFV1n/eHgfcD/7tqrPN8n1bAl5LcN1wVANZx3nP7eOUc5AxjfmSokSQXAJ8D3lNV30/O9JL3UlU/BV6X5OXAF5L84kbXNC9JbgROVdV9Sa7d6HrW2TVV9WSSncDhJI+u58m3Uke/5mUVmjuZZBfAsD21wfXMVJIXMAn5T1bV54fh1nNeraq+B9zD5L2ZrvO+BnhrkmNMll7fmOQT9J3v/6uqJ4ftKeALTJai123eWynot/tlFe4C9g639wJ3bmAtM5VJ6/5R4GhVfWjVXW3nDJBkYejkSfJi4E3AozSdd1XdVlWXVdUik7+//1hV76DpfJ+W5PwkL336NvCbwMOs47y31Bemkvw2kzW+py+rcMcGlzQXST4NXMvkCncngduBvwUOAVcATwA3V9Xpb9huSUl+Dfgn4CGeWbv9IJN1+pZzBkjyS0zehDuPSdN1qKr+JMnP0njeAMPSzfuq6sbu803yKiZdPEyWyz9VVXes57y3VNBLks7dVlq6kSRNwaCXpOYMeklqzqCXpOYMeklqzqCXpOYMeklqzqCXpOb+D66p8ZpxOP/hAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.bar(my_data[\"Unnamed: 0\"], my_data[\"Wheat\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Représentation grahique des salaires"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHbNJREFUeJzt3Xl4VPXd/vH3JyFsYYdAAUFc0GpRQeOK1BUrooK1Wpei1hbqY60b7m0fl0cr7j+VimKLUNtqqUpRWhdEERVEQZHFaEGMQFgSAmTf5/P7YwaLFkxIZnImZ+7XdeWamZMzzv0Fva+v3zmLuTsiItLypQUdQERE4kOFLiISEip0EZGQUKGLiISECl1EJCRU6CIiIaFCFxEJCRW6iEhIqNBFREKiVXN+WI8ePXzAgAHN+ZEiIi3e4sWLN7t7Vn37NWuhDxgwgEWLFjXnR4qItHhm9mVD9tOSi4hISKjQRURCQoUuIhISKnQRkZBQoYuIhES9hW5mbc3sfTP72MxWmNntse3dzGy2ma2MPXZNfFwREdmVhszQq4AT3f0QYDBwqpkdBdwEzHH3gcCc2GsREQlIvYXuUaWxlxmxHwdGAdNi26cBoxOSUEREGqRBa+hmlm5mS4B8YLa7LwR6ufsGgNhjz128d5yZLTKzRQUFBfHKLSKS3LZuhQkTKCmt5KmFa3kvd2vCP7JBZ4q6ex0w2My6ADPMbFBDP8DdJwOTAbKzs3VHahEJt7IyeOQR/J57oLiYR4q6sWT/bNLMOGpAYr9q3K1T/919m5nNBU4FNplZb3ffYGa9ic7eRURSU20tPPkkfscd2MaNLBn8fZ49+3I+7zswukjdDOotdDPLAmpiZd4OOBm4B3gRuBiYEHucmcigIiJJraiIsomTyOvcm2d+fjfL9j642SM0ZIbeG5hmZulE19ynu/ssM1sATDeznwFrgHMSmFNEJDlFIlBXx4KSNB6/ZjJlaRlgFkiUegvd3ZcCQ3ayvRA4KRGhRERaBHe49lqKln/KYxfcQUV660Dj6ExREZHGuu02ePhh3k3vTgXpQadRoYuINMoDD8AddzD3uNFM+fG1gS2z7EiFLiKyu6ZMgeuuY+GRp/DYmFuSosyhme9YJCISBoX7HsCnx57Ooxf9hkha8Est26nQRUQaavVqtnxnD25cn0nRpbc31+HlDaYlFxGRhnjzTfzAA3n5mrsorqxNujIHFbqISP0WLsTPPJONPfvxxkHHEUnGNkeFLiLy7ZYtw0eMYEuHrtwx/vcUZXYJOtEuqdBFRHaltBT/wQ8oTmvN7dc9RkGnHkEn+lb6UlREZBfq2mfy0iXX806nPVnfrU/QceqlQhcR+aZIBF+9mol56Sz87vFU1yXpovk3aMlFROSbZs2C/faj+LU3WkyZgwpdROTr3OHuu9ma1Ydlex0UdJrdokIXEdnRvHnw3nvMPPUiIukta1VahS4isqO776a0S3dmH3N60El2mwpdRGS79evxuXN5afgFVLduG3Sa3day/n9CRCSR+vRh4p/m8v7mmqCTNIoKXUQEoKqKjVUwv7INNe2CvfNQY2nJRUQE4IorqD7pZOrqIkEnaTQVuohIXh4+bRqfdepNhOS4WUVjqNBFRB56CI9EeHHERUEnaRIVuoikti1b8McfZ/4Rp7Che/Jfr+XbqNBFJLU98QRWVsZLIy8JOkmT6SgXEUlpVZdfwaRNbfi8z75BR2myemfoZtbPzN40sxwzW2FmV8W232ZmeWa2JPZzWuLjiojE19sbq/jgsBODjhEXDZmh1wLj3f1DM+sILDaz2bHfPeTu9ycunohIAl19NRutD1UHnxx0kriod4bu7hvc/cPY8xIgB+ib6GAiIgm1di3+yCO0+2JV0EniZre+FDWzAcAQYGFs0xVmttTMpphZ1128Z5yZLTKzRQUFBU0KKyISN08/jbkztwVehGtXGlzoZtYBeB642t2LgUnAPsBgYAPwwM7e5+6T3T3b3bOzsrLiEFlEpInc8aeeIue7h7Eha4+g08RNgwrdzDKIlvlf3P0FAHff5O517h4BngSOSFxMEZE4mj8fW7WKecPODDpJXDXkKBcD/gjkuPuDO2zvvcNuZwHL4x9PRCQxVmcP4+0h4Ti6ZbuGHOUyFBgDLDOzJbFttwDnm9lgwIFc4BcJSSgiEmel2Ufy6ysepibScu4X2hD1Frq7vwM7vVrNv+IfR0QkwXJyeL8wQlqaQcgKXaf+i0hqueIKDjzvDKpq6oJOEncqdBFJHbm58MYbzDtyBFjLvUzurqjQRSR1/OlPuBlzjwnnlUpU6CKSGiIRfOpUPjnwcPK79a5//xZIhS4iqeHjj7EvvuCtYaOCTpIwunyuiKSGIUN4dNobLKhoE3SShFGhi0hKKK6sZb53oaZ1uA5V3JGWXEQk/B5/nPJTTyOzsjToJAmlGbqIhFtNDX733ZS07ca2jPZBp0kozdBFJNyefRZbs4aZI38aymPPd6QZuoiEVySCT5jA+n778t6goUGnSTjN0EUkvF56Cfvkk5SYnYMKXUTC7Nhjeeni65h7WDjuGVofLbmISGh9UtOGZ0+6kEhtJOgozUKFLiLhNH48izrtT1X/7KCTNBstuYhI+Hz4ITz4IBkrUutGaip0EQmfe+6hsn0HXjnu7KCTNCsVuoiEy8qV+HPP8eoJ51DWvmPQaZqVCl1EwuW++6hrlcGs4ecHnaTZ6UtREQmVskOP4KWtrdnaqXvQUZqdCl1EQuVvg3/Aa+0OC90NoBtChS4i4fDuuxTNfYc3+pxILelBpwmE1tBFpOWrrsbHjSPy8MNYZVXQaQJTb6GbWT8ze9PMcsxshZldFdvezcxmm9nK2GPXxMcVEdmJe+/FPvmEP4y5mYq24b5E7rdpyAy9Fhjv7gcARwG/NLMDgZuAOe4+EJgTey0i0rxWrsTvvJOFRwxnYQpcUfHb1Fvo7r7B3T+MPS8BcoC+wChgWmy3acDoRIUUEdmlyy+nulUGT10wPugkgdutL0XNbAAwBFgI9HL3DRAtfTPrGfd0IiL1WPXL6/jn/h+zuVNW0FEC1+BCN7MOwPPA1e5ebA28trCZjQPGAfTv378xGUVE/ps7VXXOhMrebDtMZQ4NPMrFzDKIlvlf3P2F2OZNZtY79vveQP7O3uvuk909292zs7L0hy4icfLzn7Pqkv+hvLou6CRJoyFHuRjwRyDH3R/c4VcvAhfHnl8MzIx/PBGRnXjjDZgyhVVFNVTXpd4JRLvSkCWXocAYYJmZLYltuwWYAEw3s58Ba4BzEhNRRGQHK1fiF1xA4Xf6Mf30nwedJqnUW+ju/g6wqwXzk+IbR0TkW6xdi598MhWV1Uy46TGqWrcNOlFS0an/ItJiRD79lPLSCu4a/3tyew0IOk7SUaGLSPKrq8PT0niy/X68d89MStLbBJ0oKanQRSS5lZbCiBEsOOEs5g08kSqV+S7p4lwikrwqK2H0aCILFrBwG1TVRoJOlNRU6CKSnKqq4NxzYc4cnrj0Vt4dcnzQiZKellxEJPnU1sKoUfDqq0y56GbmHD0y6EQtggpdRJJPq1Z8OnAwb+1xJLOHjgo6TYuhQheR5LF1K6xZw9+9JzMO/7HOAt1NWkMXkeSQn4+fcALlJ5/CPxflqswbQTN0EQleXh5+0knU5X7JI1c+SKkOTWwUFbqIBGvDBnzYMGo2FTBh/ESW7jsk6EQtlgpdRALlEyZQu3ET/3f94+QM+F7QcVo0FbqIBGrWJdfxXvej+Kzf/kFHafFU6CISjEmT+PDI4TyzvIRqlXlc6CgXEWl+kybB5Zez+q4HdDRLHGmGLiLN65VX8F/9io8HD2P6aZcGnSZUNEMXkeazbBl+7rms6zeQB37xOyJp6UEnChUVuog0G7/ySkpat2PClQ9R0aZ90HFCR0suItIsauoi/OHKe8nNyWVTl55BxwklzdBFJLGef56ac8/jf1/K4e2SVnzee5+gE4WWCl1EEsMd7r4bfvQj1iz5lE3rN+uIlgTTkouIxF91NfziFzB1KvOPPpWJl/wv1Rm6PkuiqdBFJP7GjIHp03l+9DieOWMcmAWdKCWo0EUkruoiziunXEhu14N588gRQcdJKfUWuplNAU4H8t19UGzbbcBYoCC22y3u/q9EhRSRJBeJwP33U16whduGXUJeRj+qjtwj6FQppyFfik4FTt3J9ofcfXDsR2UukqoKCmDkSLjxRpa+/RFrNpdSpS8/A1HvDN3d55nZgMRHEZEW56238AsuoG5zIdMuvoWXv/9DrZcHqCmHLV5hZkvNbIqZdY1bIhFpGQoL8ZEjKaA1v/3tNF4+7myVecAaW+iTgH2AwcAG4IFd7Whm48xskZktKigo2NVuItISVFTAn/9MVU0dz6+r5u4rHmD8b59mZd+BQScTGnmUi7tv2v7czJ4EZn3LvpOByQDZ2dlaWBNpiWprYepU/PbbsXXruGdVhE/3Pojq/Q8POpnsoFEzdDPrvcPLs4Dl8YkjIknFHZ57Dh80CMaOZXW7btx585Ms3XOQzvpMQg05bPEZ4High5mtA24FjjezwYADucAvEphRRALiFRXUXHElhRnteeaqB5l/8Pe1Tp7EGnKUy/k72fzHBGQRkWTwwQcwcSKf3fUQf/xwE7XjJ7GuWx9du7wF0JmiIhKVkwO/+Q288AJlnboyZeBprO47EHr0CzqZNJAKXSTVFRXBmDH4rFlUt8vkxbMu48WTL6CiXWbQyWQ3qdBFUlFJCXz0EZFhw1hS7HRes5mlp1/KrJPPp6ijTitpqVToIqkiEoFFi+Dpp/Fp06iNOFdNnE1xelsqr5oYdDqJAxW6SCp48UX88suxvDzqWmUw/4jhvHbyeeR7a6iNBJ1O4kSFLhI2FRUwezbMmEHVT8aweO8hfLY2wqBe+7H49MtYMOhYyjI7BZ1SEkCFLhIGNTXw3HPwwgv4yy9jZWVUZHZkavqezD++GxXt+/PPK+4POqUkmApdpKWqq4MvvoB992VzeS0df3UlVRFYeMQIFmefyJKBh1LbKgNqtKSSKlToIi2NO7z0Ev7rX1NTUMgtD71EXnUaPW9+ivVdvoOn6d7vqUp/8yItybx5MHQojBpFQWEJj//oar4sd2oiTl63PirzFKcZukhLsWABHHccxd16Mv2nv2X20SOpa5URdCpJIip0kWTmDp99RmG/vXmipAddx97B24edRHXrtkEnkySk/z8TSVbl5TBmDJEhhzLh8VdYsr6EOUePVJnLLmmGLpKMcnPxs86Cjz/m+bMuI7dLH1yXH5d6qNBFks3rr+PnnUdVZTWPXvMwCwcNDTqRtBAqdJEkU/6Pl9jWviv333A/a7J06VppOBW6SDIoK4O1a1nWqS8PZP+EukHnUNGmfdCppIXRl6IiQVu1Cj/qKMpOOoX7Xv6EUk9XmUujqNBFgvTyy/jhh1P55Toe+cnNlKfpuHJpPBW6SBDc4a678JEjyevcixtvfZrF3z0y6FTSwmkNXSQIkQglr77O0qNH8NiYW6hq0y7oRBICKnSR5lReDrW1zPyynBlj7qI0vQ2YBZ1KQkJLLiLNpboazj6brUOP4++L1lLaqq3KXOJKhS7SHGpr4cIL4ZVX+PvhZ1BJetCJJITqLXQzm2Jm+Wa2fIdt3cxstpmtjD3qNuEiuxKJwLhx8Nxz/Pn8a3lt2OigE0lINWSGPhU49RvbbgLmuPtAYE7stYjszJ13wlNP8fzocfxj+IVBp5EQq/dLUXefZ2YDvrF5FHB87Pk0YC5wYxxziYTGytN+xOLlm3nu1IuDjiIh19ijXHq5+wYAd99gZj3jmEkkHF5/ndUHH8XtOdVUjrgk6DSSAhL+paiZjTOzRWa2qKCgINEfJ5IcJk+G4cN5+4bfUVmrmzRL82hsoW8ys94Ascf8Xe3o7pPdPdvds7Oyshr5cSItyDPP4JddxseHDOXloaOCTiMppLGF/iKwfUHwYmBmfOKItHCzZuEXXcS/9z+Uey+7h1rd81OaUUMOW3wGWADsb2brzOxnwARguJmtBIbHXouktqIifMwYvtxzf3535YM6nV+aXUOOcjl/F786Kc5ZRFq08nYdmHz9Iyzr1Jeyth2CjiMpSNdyEWmqpUupWfwht3U/irV9B1ET0c0/JRg69V+ksYqL4dZb8WOOofyGm8nfWKgyl0Bphi6yuyor4bHH8N/9Diss5P0jhvOXc6+kNENr5hIsFbrIbqpdl0fajTey4oDDefZXv+Sz/gcEHUkEUKGL1M8dXngBnzuXd6+5nWmLyul49/Os6b5H0MlEvkaFLvJt5szBb74Z++ADNu6xD1MHncu21plsVZlLElKhi+xMbi6MHQuvv862rN5MH3s7c44cQSRN1zGX5KVCF9nR1q3QtSvraEPbnM/51wXjefm4s6nJaBN0MpF6qdBFqqrg73/HH32U6qISHnp0Jks3lFJ7+3QiaTqyV1oOFbqkrvXrYdIkfPJkLD+f/D578fJJ5/LRl1upS28FKnNpYVToklo2bYJWraB7d4pffo2Od93FR4OH8dolt7No/8N102Zp0VToEn65uTBjBsyYgb/zDsuvvJnJwy5gGwfQ9Z6ZrO/RN+iEInGhQpfwqqvDhw7FFi4EYG3//Xh/1Fjm9zqMDcVVkJZBhcpcQkSFLuEQicAHH8CMGUTWbyDn3om88/kW9uy2H1t/fDTzDz2eDVn9gk4pklAqdEl+7rB5M+Tl/efnpz+FjAyYOBF/4gl87VrSioqoS2/F8u8dwYOvfkZ5JA0/5+qg04s0GxW6BOvzz+Gtt6JXLiwpiT5uv4ph795UP/IorW+4Hquu/trb7m2zP7ntu3PI0i0MyehOUfaBfL7vQSwYdCxlmZ1At/GUFKRCl8Tatg3eey9a3Dk5kJND5NNPWTt5GqsGDqb1M/9k2G1XfbV7deu2VLZrz317Deffvffhu/kdOHz4BWztmkVh157kd8pic9eebK3NxEurmX306cw++vQAByiSPFToUr9IBLZsgfz86E9BAQwaBAccED0M8L77orProiLYuJFIXh5bf30beaecQd28dxlyfrRwK9tlktd7L9btdSivfryFL7esw7KG8Jd7Z1HRLpOKtu2JpO/wr2TEWbHvYFbsOziggYu0LCr0VFRWBjU10KUL1NbC009DYeHXf848k6oLx1CyJo/uAwdgka+vYbwz9nrm/mgsbdas4cqJj1HZtj2VbduztXN3tnTbmzc/K+ezVl+QUd6FPjf/gU09+rKlS9bXj/OujUC7TCrbZTbzH4BIOKnQw6SyEtati/60awdHHhndfv75eG4uvmEjFOSTVl7OxvMv5qPf3se2sip+PHYsaXV11KW3orRDZ0o7dOb1NnvxT19CW6/j7DMupbhTN7Z17MbWzM5s69iVwq69KMsrgfSuXDjpnZ3nqamDjHYUDRzSfH8GIilMhd4SFBVFlzl2nEFnZsIPfwiAjx6NL3iPtPxNX71l7dHH86fbnmRzWTU/X/YFdQ5FfQ6k5MBjKenUjdV7HsjSD9ZRU+e8dfdMyjI7UtE28+szaIdy0nl61P8094hFpBFU6Mmiqgr+/W9YvhxWrICKCqrvuY/1xZV0P+00Oi6c/7Xd8wfsx73pB7ClvIazKjuQecAxbBnWm8Luvcjv0pMN3fuSn1cMwK3jH9v5Z9ZF73+5uUfvhA5NRJqHCr055OfDF19EHzdujP4UFMDDD+NAzTXXkjHxUayuDoBIWjpr+w/k+kEX0CYjnSHHnEu7wSMobt+Zbe07UdKhC8Udu1C+pQKAaT++NsDBiUiyUKE31qZN0LNndIli3jx47rmvlkO8sBDPL2DDG++wtX1nutx5D3s89uDX3l7WoTPXDj6frWltGFrdiwEjL2HdHvuwutfe5H1nT2ozWgNQURNh/kHDghihiLQwTSp0M8sFSoA6oNbds+MRKim5R4+jnjkTnzkTW7iQ1559jSU99mb/F95g+NSplHboTElmZ4ozO1PS7yD+9sq/Kencjd79j6HbNQPY0qELRZ26sa1T968KG4e3Dz+Ftw8/JdjxiUiLF48Z+gnuvjkO/5zkUV4ePb08MxP69IEVK/DRo7FVqwDI3ft7LDr7ct7YEKGgvIj3DzuDp7PP3Pk/qybC5z334vOeezXjAEQkFbXcJZe6uugXie3bR19/8gmUlkYP3dv+06vXfw7du/fe6NEiZWVQURH9/XHHwaWXRq/Kd+KJeGEh5OWRtm0bACvHXsW8S8eTv6mWH3Tow9KLz2HBId+nsEvPr2fRNbRFJAk0tdAdeM3MHHjC3SfHIdPOP2j0WfiKFXhxMVZaQlp5OUUn/YBlk/9KVW2EoSecRNv8jV97z6oTRzLzN49QUVPHdbf/H60ry6lq047q1m2pyWjD/G0Z/C3jUGrrIvw2v5zy9llsyx7Etq5ZbOnak1V7fpfcnAIAFl/5UKKGJiISF00t9KHuvt7MegKzzexTd5+34w5mNg4YB9C/f/9Gf9A7tZmk9diHyn7RMwsr22ayvs9evD9/DRF3PhjzazwSobpVa6oz2lCd0Zrijl0pzI3Oti95aDa1rTL+ezZdGz0D8rYbnmh0NhGRZNCkQnf39bHHfDObARwBzPvGPpOByQDZ2dne2M/685gbKSyv+e9f1EQLedH3jvnW93/1JaSISEg1+i64ZpZpZh23PwdOAZbHK5iIiOyepszQewEzLLqE0Qr4q7u/EpdUIiKy2xpd6O6+GjgkjllERKQJGr3kIiIiyUWFLiISEip0EZGQUKGLiISECl1EJCRU6CIiIaFCFxEJCRW6iEhIqNBFREJChS4iEhIqdBGRkFChi4iEhApdRCQkVOgiIiGhQhcRCQkVuohISKjQRURCQoUuIhISKnQRkZBQoYuIhIQKXUQkJFToIiIhoUIXEQkJFbqISEg0qdDN7FQz+8zMVpnZTfEKJSIiu6/RhW5m6cDvgRHAgcD5ZnZgvIKJiMjuacoM/Qhglbuvdvdq4FlgVHxiiYjI7mpKofcF1u7wel1sm4iIBKBVE95rO9nm/7WT2ThgHED//v0b/WF9OrehrLqu0e8XEQlSVofWCf+MphT6OqDfDq/3ANZ/cyd3nwxMBsjOzv6vwm+oW0/dr7FvFRFJCU1ZcvkAGGhme5lZa+A84MX4xBIRkd3V6Bm6u9ea2RXAq0A6MMXdV8QtmYiI7JamLLng7v8C/hWnLCIi0gQ6U1REJCRU6CIiIaFCFxEJCRW6iEhIqNBFRELC3Bt9rs/uf5hZAfBlPbv1ADY3Q5xko3GnFo079TRl7Hu6e1Z9OzVroTeEmS1y9+ygczQ3jTu1aNyppznGriUXEZGQUKGLiIREMhb65KADBETjTi0ad+pJ+NiTbg1dREQaJxln6CIi0ghJU+ipdMNpM5tiZvlmtnyHbd3MbLaZrYw9dg0yYyKYWT8ze9PMcsxshZldFdse6rGbWVsze9/MPo6N+/bY9lCPG6L3Hjazj8xsVux16McMYGa5ZrbMzJaY2aLYtoSPPSkKPQVvOD0VOPUb224C5rj7QGBO7HXY1ALj3f0A4Cjgl7G/57CPvQo40d0PAQYDp5rZUYR/3ABXATk7vE6FMW93grsP3uFQxYSPPSkKnRS74bS7zwO2fGPzKGBa7Pk0YHSzhmoG7r7B3T+MPS8h+h96X0I+do8qjb3MiP04IR+3me0BjAT+sMPmUI+5Hgkfe7IUum44Db3cfQNEiw/oGXCehDKzAcAQYCEpMPbY0sMSIB+Y7e6pMO7/B9wARHbYFvYxb+fAa2a2OHZfZWiGsTfpBhdx1KAbTks4mFkH4HngancvNtvZX3+4uHsdMNjMugAzzGxQ0JkSycxOB/LdfbGZHR90ngAMdff1ZtYTmG1mnzbHhybLDL1BN5wOuU1m1hsg9pgfcJ6EMLMMomX+F3d/IbY5JcYO4O7bgLlEv0MJ87iHAmeaWS7RJdQTzezPhHvMX3H39bHHfGAG0WXlhI89WQpdN5yOjvfi2POLgZkBZkkIi07F/wjkuPuDO/wq1GM3s6zYzBwzawecDHxKiMft7je7+x7uPoDof89vuPtPCPGYtzOzTDPruP05cAqwnGYYe9KcWGRmpxFdc9t+w+m7Ao6UMGb2DHA80auvbQJuBf4BTAf6A2uAc9z9m1+ctmhmdizwNrCM/6yr3kJ0HT20Yzezg4l+CZZOdBI13d3vMLPuhHjc28WWXK5z99NTYcxmtjfRWTlEl7X/6u53NcfYk6bQRUSkaZJlyUVERJpIhS4iEhIqdBGRkFChi4iEhApdRCQkVOgiIiGhQhcRCQkVuohISPx/wIEK+HXbkVcAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.plot(my_data[\"Unnamed: 0\"], my_data[\"Wages\"], \"r--\")\n",
"\n",
" \n",
"y1 = my_data[\"Wages\"]\n",
"x = my_data[\"Unnamed: 0\"]\n",
" \n",
"plt.fill_between(x, y1, color='#539ecd')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Superposition des deux graphiques"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGzRJREFUeJzt3Xl4ldW59/HvnZ2JEEAgAcIYZMa2DEaLiCNOr1qxr9Jqq6WtPdhzPFZbrUXP6eGtndBq21Pbo3JalVZrpbVOiLWKpWq1aBCZRzWMgYQxCZBp7/v9Y28wCgpkJ9nJyu9zXV5PnrWfvZ97JeaXxXomc3dERCRcaakuQEREmpeCXkQkcAp6EZHAKehFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAKnoBcRCVx6qgsAyMvL88LCwlSXISLSpixcuHC7u+cfabtWEfSFhYUUFxenugwRkTbFzNYfzXaauhERCZyCXkQkcAp6EZHAHTHozewBMyszs2UN2rqZ2Qtmtjax7NrgtVvNbJ2ZrTaz85urcBEROTpHM6J/CLjgQ23TgHnuPgSYl1jHzEYCVwAnJN7zP2YWabJqRUTkmB0x6N39ZWDnh5onAbMSX88CLm3Q/gd3r3H394B1wMlNVKuIiDRCY+foe7p7KUBi2SPR3gfY2GC7TYk2ERFJkaY+GGuHaTvsswrNbKqZFZtZcXl5eROXISIiBzQ26LeZWQFAYlmWaN8E9GuwXV9gy+E+wN1nunuRuxfl5x/xwi4REWmkxl4Z+zQwBZiRWD7VoP33ZvZToDcwBHgj2SJFREJQOO3ZQ9pKZlzU7Ps9YtCb2aPAmUCemW0CphMP+Nlmdg2wAZgM4O7LzWw2sAKoB65z92gz1S4iIkfhiEHv7ld+xEsTP2L7HwI/TKYoERFpOroyVkQkcAp6EZHAKehFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAKnoBcRCZyCXkQkcEkFvZl908yWm9kyM3vUzLLNrJuZvWBmaxPLrk1VrIiIHLv0xr7RzPoA3wBGuvt+M5sNXAGMBOa5+wwzmwZMA77TJNWKiLQBhdOePaStZMZFKagkLtmpm3Sgg5mlAznAFmASMCvx+izg0iT3ISIiSWh00Lv7ZuAuYANQCuxx978CPd29NLFNKdDjcO83s6lmVmxmxeXl5Y0tQ0REjqDRQZ+Ye58EDAR6Ax3N7Kqjfb+7z3T3Incvys/Pb2wZIiJyBMlM3ZwDvOfu5e5eB/wZGA9sM7MCgMSyLPkyRUSksRp9MJb4lM04M8sB9gMTgWJgLzAFmJFYPpVskSIirVFrO+j6URod9O6+wMz+BLwF1AOLgJlALjDbzK4h/sdgclMUKiIijZPMiB53nw5M/1BzDfHRvYiItAK6MlZEJHAKehGRwCnoRUQCl9QcvYhIe9BWzq75KBrRi4gETkEvIhI4Bb2ISOAU9CIigVPQi4gETkEvIhI4Bb2ISOAU9CIigVPQi4gETkEvIhI4Bb2ISOAU9CIigVPQi4gETkEvIhI4Bb2ISOAU9CIigVPQi4gETkEvIhI4Bb2ISOAU9CIigVPQi4gETkEvIhI4Bb2ISOAU9CIigUtPdQEhKpz27CFtJTMuSkElIiIa0YuIBE9BLyISOAW9iEjgFPQiIoFLKujN7Dgz+5OZrTKzlWZ2ipl1M7MXzGxtYtm1qYoVEZFjl+yI/r+Bv7j7cGAUsBKYBsxz9yHAvMS6iIikSKOD3sw6A6cDvwFw91p33w1MAmYlNpsFXJpskSIi0njJjOiPB8qBB81skZn92sw6Aj3dvRQgsexxuDeb2VQzKzaz4vLy8iTKEBGRj5NM0KcDY4F73X0MsJdjmKZx95nuXuTuRfn5+UmUISIiHyeZoN8EbHL3BYn1PxEP/m1mVgCQWJYlV6KIiCSj0UHv7luBjWY2LNE0EVgBPA1MSbRNAZ5KqkIREUlKsve6uR54xMwygXeBrxD/4zHbzK4BNgCTk9yHiIgkIamgd/e3gaLDvDQxmc8VEZGmoytjRUQCp6AXEQmcgl5EJHAKehGRwCnoRUQCp6AXEQmcgl5EJHAKehGRwCnoRUQCl+wtEEQAKJz27CFtJTMuSkElIvJhGtGLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAROZ92INJLONJK2QiN6EZHAaUTfgEZoIhIijehFRAKnoBcRCZymbkREEj48fRvK1K2CPgma0xdpOfp9azxN3YiIBE4jeml1NHITaVoKehEJkgYM79PUjYhI4IIe0esv+pHpeyQSPo3oRUQCF/SIXqSt0L+sGk/fuyPTiF5EJHAa0UuwNNJrm/Rza3oa0YuIBC7pEb2ZRYBiYLO7X2xm3YDHgEKgBPicu+9Kdj9NSSOGlqPvtbQ27fH/yaaYurkBWAl0TqxPA+a5+wwzm5ZY/04T7Cdl2uP/GCISjqSC3sz6AhcBPwS+lWieBJyZ+HoWMJ9mDvpQ7zgnItIUkh3R/xy4BejUoK2nu5cCuHupmfVIch8SKP2BFmkZjQ56M7sYKHP3hWZ2ZiPePxWYCtC/f//GliHS7DR1J21dMmfdnApcYmYlwB+As83sYWCbmRUAJJZlh3uzu8909yJ3L8rPz0+iDBER+TiNHtG7+63ArQCJEf3N7n6Vmf0EmALMSCyfaoI6pZXQ6LZ1089HDqc5zqOfAZxrZmuBcxPrIiKSIk1yZay7zyd+dg3uvgOY2BSfKyIiydOVsSIigdO9bqTN07y0yMfTiF5EJHAKehGRwCnoRUQCpzl6EWlWOoaSegr6wOiX6sj0PZL2RlM3IiKBU9CLiAROQS8iEjjN0bcCjZkzPtb3NPf20jz0c5CmoBG9iEjgNKJv5fQUpveFMLptbX1obfVI89CIXkQkcBrRi0iT0HGg1ksjehGRZpZTux/eeIPJS14gv2pXi+9fI3qRZqBjKzKi7F2+9crDDCtfT/892+Bn8BPg2ktv4/lh41u0FgW9iEgT6FxdxQWrX4MXswDY2aEzx+/cwtu9hzH7U+cSGTuWJ/fnsrFLzxavTUEv0gZpfrt16Fizj3PXLeDilS9z+nuLyIzV83rtRjjpGrZ1ymPiv9x3cNuiYQWsX12akjoV9CIixyASixJNiwDwyGP/yejSNWzulM+DRZfwzIjTyT59AqzZmuIqP0hBLyJyFEZtWc1Xi59m/IbFnHbtr/nO06vYfNrV7MvIZlGfYbjFz20pMktxpYdS0IvIMWl3B5pravj232fx9QWPU5HVkeeGnUrH2mre2bGP4oFjUl3dUVHQtyDNq7Zu+vm8T9+LhMpKfMIErluyhMc+eS7fn/gvVGXlADAwxaUdCwW9iMhH2J2ezcpBY/n1kEnMG/zpVJfTaAp6kXZAI/SjN2DXFmb85R6mn3Mt1z++nNpLrmfBqtScLdNUFPQiIgmnrF/MfU/8CIDeFdupqouluKKmoVsgiIgAPPggv539X2zt1J2LvvIL5g8qSnVFTUYjehGRJ5+Er36V1wvHcN2l06jM6pjqipqUgl5E2r23PjWBZV/8NrcXnEp9JLxY1NSNiLRL3ffu5hdP30m3fXu469WNPD3xiiBDHhT0ItIOTXhvEc/MupFz1y5geNl71EY91SU1KwW9iLQfe/dy+1/v5eHZ32VfRjaXf/EOXiscneqqml2Y/04RETkMv+UWvrToWX5TNIk7T/8SNRlZqS6pRTQ66M2sH/BboBcQA2a6+3+bWTfgMaAQKAE+5+4t/0gVEREgs76OzjVVbO/YlR+M+wLLd/Xln/0/leqyWlQyUzf1wE3uPgIYB1xnZiOBacA8dx8CzEusi4i0LHfOW/M6cx66gXuf+DG4szTaod2FPCQxonf3UqA08XWlma0E+gCTgDMTm80C5gPfSapKEZGj5Q7PPcdTv/0Wo7au5d2uvbl33OVgRizsY64fqUnm6M2sEBgDLAB6Jv4I4O6lZtajKfYhInI0Llv2Etz5M7p16cnNF97IEyecdfBBIe1V0kFvZrnA48CN7l5hR3nTfTObCkwF6N+/f7JliEg71bm6ivPXvE5FdkeeHzqeucNOZUTPXO7oPpa6SEaqy2sVkgp6M8sgHvKPuPufE83bzKwgMZovAMoO9153nwnMBCgqKmqn/6ASkcboWLOPc9YtgEvup/jZ58iM1fPc0PE8P3Q8+zOz+ctpl1KXoueztkbJnHVjwG+Ale7+0wYvPQ1MAWYklk8lVaGICJBTu599mR0A+NVTd3DmewvZ3b0Xs0/8DM+MOJ2lvQanuMLWK5kR/anA1cBSM3s70XYb8YCfbWbXABuAycmVKCLtVd892zh37T/h7LtZ9PIrnPJvs9iZ04V7xn+ee8Z/nrSzzuLNtdtSXWarl8xZN68CHzUhP7GxnysiMmbzKn70/C8ZUV4CwJa+g3jipM+S5vH7wy/sOxKAojRd3H80dGWsiKRcZn1dfM795U4AbO3Unb2ZHfjBWV/lhSHjyB93IsWac280Bb2IpERWfS1Fm1Zw3trXmbTi7xxXXcXC3ctg3Ncp7ZzP5Vf95OC2+SmsMwQKehFpGe70rixnS+f4pTWP/OE/KNq8kppIBs8PPYU/fvIcas67ANYe9kQ9SYKCXkSahzusXMmVb/+FkzYt55T1SziuuopRN/yBf/3jMmrGTcbNWNDvEwfPpilq5xc2NRcFvYg0ic7VVQzdvp7lPQaxPzOba994HO58iB8D5R2PY0HfT/DKwDGYxyivqqV48MmpLrndUNCLSKP0272VL701B87/BbHly1myeTMAX758OvMHncSLgz5N3uABPGK9KenaG47yqnlpegp6ETmsSCzK8PISBu3YyLDy9XDJ/fjy5Xxu6MXMHnUeOXXVXL1oLiV9j2fDgNH8Y8i5rM4bwNu9hwHwTl4/nh92MiU6WyblFPQi7ZU7Q8tL6Fm1k16VO+i7ZxsDdpfix28G+tCxdj/PPnQDAHVpETb3LqSk92BKO+cBsCavPyO/+UfGjugLoNMfWzEFvUjAzl/9Gty1kv+c9yo9q3bSo2oniwuG8qOzr2FJaSWPP/xtOtXuByBqaWzpnM9jzy+GIX2oyM7l2s/eRknX3rzbrQ+jRsZvPngg0N3ScM3GtAkKepE2rKCinOHlJQzdvh6+9Bhz/voa23K7cc3l0wG4+ZXfwZMb+UJGFltzu1Oe24092bkA3PXSu0QuuYXKrBzKOnajtHMedZEMioYVQCLMnx86PmV9k6ajoBdpQ3pVbIdnnuHAw+HumvszTl2/BIBd3Xqyo0sfFiXmyAGmfO57DD7heF7eUHnIwdB9dTGKB53UYrVL6ijoRVqxrvv2cOr6xYxfv4RxG5Zw/K4t+P1pdPrGo1RmdeSOM75MZrSONXkDGDpqyCHz5Fs696B3TiewqhT1QFoDBb1IK9K5uopxG5byRr8TiMacS1fMZ/q8/6UiM4c3+p3AI2MupPKMiVTtjV9gtKRgaIorlrZAQS+SamVlXPXWs3xm5cuctGkFaTjf+My3ufrh4awdfjpv9R7Osl6DDz4Or6hfAa4zXOQYKOhFUsEdzOhVsR0vKOAHsRhruvfnnvFX8MrA0SwuGMqoqFOe25Xy3K6prlbaOAW9SEupqODS5X/jMytfZk92Lt+6+Ca2ds7jt1d+i0eyClmTX5jqCiVQumu/SDM7492FcNlleM+e/HzO3QwvK2Fjl14HX39m4pUKeWlWGtGLNJGsuhpYtAiWL+c785/iV6d8jqqsHD69cSkVq1/mtQmXMrPniSzqMww3jbGk5SjoRY5RerQeVqygc3UVFdm5nPbeW/y/F++ncFcp/DT+qLtr0tKZM+I0lvccxC9P+Tzzv3YLsbQIb+kgqqSAgl7kMMxjZESjAPSo3MGXFj3LgF2lDN6xkUE7NsFd9UyYNI25wyews0Nn1uQNYM7w07GxY3i31/HM2Z1OfST+67UvswMx3WddUkhBL+1ORrSO/L27qEtLpzy3Gzm1++HWW7l7zoL3b/BVUcZdp13F3BXjyYrW8fV//onNXXqwrns/5h9fBGNGszAtfjOv5b0G86+fvQ0gfvsAoL5SI3dpPRT00vq406GuhnSPUpnVMd62cSMDd24mPVpPRixKdn0NVYmnEgFcuOpVOldXkRWtI7u+Br5XzIWrqpk7fALmMX79+PfpVbmD2ANfZW15/FF1D5x4CbefM5X6tHTq77qbT+ccR1luN9bm9eelQSexpGAoy9/czKYuPRh+058PjtAhHujbNA0jbYSCXt7nTkasHior6bpvD+mxKOW53QDoXVEGCxcydtNKMmN1ZETrcYxXB44BYMJ7iyjcXUpmfR3psXrSY1H45XvAQAC+8PZzDNm+gey6Gtj0KOzfz/T1dXzvnGsBuPeJHxF9+OtYRQXvVFUR8RgL+n2Cz39hBgD7zjiLv733zgfKnTfoJH735iQAps+bSc+qne+/OB/OG3kGc4dPwC2N7PoaSjt1Z2u/0Syu78C23G4s6zkIgNr0DK687zXeXLvtkG9JUcxxS6M+ooOn0nYp6NuI7Lpq8vbtgSVLoKKCM995k041+5g3+GT2ZXZg9JbV8JMVXPfaUjKj9WRFa8mqr+WOM6YAcNnSeUxaMZ/s+hqy62vJrqslOjudyOU/I5oWYfqL9zNl4RzScLgLFgE1kQyG3fwEADe98jDc+xJ/blDTzg6dGfuN33PPKyVc9fZcLljz+gdq3rlqHnzlfgDOXvcGJ21aQXVGFmVbc6jNyCQ/t/fBbdfk9adDz3xqOuSwujLG3qwObGhwCuL9l1xHyTub46PvSITq9CzKO3YlZ1l8dH7ZF+8kmhahOj2T6vQsPnlCf95o8JDpL17xIyA+Ej/cfdM9TUEu4VLQN5GMaB29KnfAq69y4apX6VG1k/y9u3jihLNYl9cfFi3i7jl3kxmtJyNWT2Z9HVnRWvyKPgBMXLeA2/72IFn1tWRG64jd51BTzYgr72Rlj+OZvPRFvv/CfXBffH8PJfZ7+tT/ZUNmB8ZtWAq/e4hvJ9prIhnsz8jil6d8ni//fjF962vIrd1HdXoW23NyqE7PpKx7FyKxGNG0CK8UjqEyM4fa9Az69sljVfk+atIzD/bvwRMv4Z2Jn2HZlgrqIhnURtKpzsgC4O/rdvLA+f/Od8/9N2rSM6hPi1Cfls7oEX0gEbZfS9w2F96fx24YuD877arDth/wj1FnUJx9aHtRYrnpuF4faNfBT5H3BRP0abEoVy2aS3osBj9ZAfX1XP+P5bzVZwT/KBxNdl01N776e7jpJb778jukeYxILMZLg05i/qAi2L6dn865m/RYlLRYjIjHSPMYnBoD0ui7Zxs/fu4esqK1ZNfXEnv6Fv5eupM7zvgyc4dPYOzmVTz26K1wP/xPoqa6tAjFfUeyLq8/dz9ezORNK6iLZFCXFqE2PYOaSCa3PLkcOI7d2Z1Y2WMgNYn27j27UpeRxa7szgC8NmAUN194I30G9WFvVkfe3LafqqwctnTOB+CBokksveJr/PPdHUQt7QO3pK2qifLwmAt5eMyFH/ieFQ0roDYRqi8NPpmXEg9rPtyod1mvwWQPKzhs2ALsyulySJvCVqR1CCboAW5/MT5NwEvxxU3A/Sf/X/5ROJqMWJQpbz1LzeI0JrsRS0sjammsP64X8wcV8c3Zi7lx80qilkbM0oimxZe/mrMYuo4Bd3LqqqlJz2R7Tg5vduzClt492JEIuDV5/bn5whvpPmIwf9/pbMvtxu4OnQ5eGPP6oBO55+u/OaTmogHxhzws7DuShX1Hvt+eGN1uTQTuO9378U73fgfbF0c+GLi16RnUZHU4eOMrEZEDggn6mKUx9vpHqE+L8KlhfYhGIixYV04sEbSVWR0ZcdPjHzlHu7FDV8649teHtB942s6m43px2dV3faC94efsyunCnz55DkXDClilszFEpBUJJugxY2didF2dnQNo6kBEBHRTMxGR4CnoRUQCp6AXEQmcgl5EJHDNFvRmdoGZrTazdWY2rbn2IyIiH69Zgt7MIsCvgP8DjASuNLORH/8uERFpDs01oj8ZWOfu77p7LfAHYFIz7UtERD5GcwV9H2Bjg/VNiTYREWlh5u5N/6Fmk4Hz3f1rifWrgZPd/foG20wFpiZWhwGrj2EXecD2Dzd26j1wuKVFwrkIrIHaqj2RzNwu0VTX0ZLU5/ahvfY5WldTUre3Yk+SHzXA3fOPtFFzheImoF+D9b7AloYbuPtMYGZjPtzMit296MhbhsPMivfvKlOfA6c+tw8tnWHNNXXzJjDEzAaaWSZwBfB0M+1LREQ+RrOM6N293sz+HXgeiAAPuPvy5tiXiIh8vGabz3b3ucDcZvr4Rk35tHHqc/ugPrcPLdrnZjkYKyIirYdugSAiErg2FfTt5bYKZvaAmZWZ2bIGbd3M7AUzW5tYdk1ljU3JzPqZ2d/MbKWZLTezGxLtwfYZwMyyzewNM1uc6Pf3Eu2h9ztiZovMbE5iPej+AphZiZktNbO3zaw40dZi/W4zQd/ObqvwEHDBh9qmAfPcfQgwL7EeinrgJncfAYwDrkv8bEPuM0ANcLa7jwJGAxeY2TjC7/cNwMoG66H394Cz3H10g9MqW6zfbSboaUe3VXD3l4GdH2qeBMxKfD0LuLRFi2pG7l7q7m8lvq4kHgJ9CLjPAB5XlVjNSPznBNxvM+sLXAQ0fG5nsP09ghbrd1sK+vZ+W4We7l4K8WAEeqS4nmZhZoXAGGAB7aDPiWmMt4Ey4AV3D73fPwduAWIN2kLu7wEO/NXMFibuCgAt2O+2dLsAO0ybThkKiJnlAo8DN7p7hdnhfuRhcfcoMNrMjgOeMLNPpLqm5mJmFwNl7r7QzM5MdT0t7FR332JmPYAXzGxVS+68LY3oj3hbhcBtM7MCgMSyLMX1NCkzyyAe8o+4+58TzUH3uSF33w3MJ35sJtR+nwpcYmYlxKdezzazhwm3vwe5+5bEsgx4gvhUdIv1uy0FfXu/rcLTwJTE11OAp1JYS5Oy+ND9N8BKd/9pg5eC7TOAmeUnRvKYWQfgHGAVgfbb3W91977uXkj89/cld7+KQPt7gJl1NLNOB74GzgOW0YL9blMXTJnZhcTn+A7cVuGHKS6pWZjZo8CZxO/SuQ2YDjwJzAb6AxuAye7+4QO2bZKZTQBeAZby/tztbcTn6YPsM4CZfYr4QbgI8UHXbHe/3cy6E3C/ARJTNze7+8Wh99fMjic+iof4dPnv3f2HLdnvNhX0IiJy7NrS1I2IiDSCgl5EJHAKehGRwCnoRUQCp6AXEQmcgl5EJHAKehGRwCnoRUQC9/8B0eAAEfF3nwIAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"\n",
"\n",
"p = plt.bar(my_data[\"Unnamed: 0\"], my_data[\"Wheat\"]), plt.plot(my_data[\"Unnamed: 0\"], my_data[\"Wages\"], \"r--\")\n",
"\n",
"\n",
"x = my_data[\"Unnamed: 0\"]\n",
"y2 = my_data[\"Wages\"]\n",
"\n",
"\n",
"plt.fill_between(x, y2, color='#539ecd')\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Utlisaion de 2 axes d'ordonnées"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAasAAAEOCAYAAAA3wDgwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXmYFeWxuN8a9kVBQBGBAReCuGOEqzEalZioMeAaNURxSchVEzXqNUYTtyuJNzFqfsYlCEYiExOXKJrERC9qFPS6xEFRUJFVBFkEFRgQhqnfH9WHOXOmz9Jnzn7qfZ5++vR3ur+uPj3T1VVffVWiqjiO4zhOKVNTbAEcx3EcJx2urBzHcZySx5WV4ziOU/K4snIcx3FKHldWjuM4TsnjyspxHMcpeVxZOY7jOCWPKyvHcRyn5HFl5TiO45Q87YstQFuoqanRLl26FFsMx3GcsqKhoUFVtayMlbJWVl26dGHDhg3FFsNxHKesEJGNxZYhKmWlWR3HcZzqxJWV4ziOU/LkTVmJyL0islJE3opr6yUiT4vIvGC9Q9x3PxGR90XkXRH5er7kchzHccqPfFpW9wHHJLRdCUxX1SHA9GAbEdkLOB3YOzjmThFpl0fZHMdxnDIib8pKVZ8H1iQ0jwGmBJ+nACfEtf9JVT9X1YXA+8DIfMnmOI7jlBeFHrPqq6rLAYL1TkF7f+CDuP2WBm2O4zhOHHUXzGBw+6XUSBOD2y+l7oIZOT+HiHQWkVdE5A0ReVtErg/akw7l5JtSCbCQkLbQEsYiMl5EXhOR1xobG/MsluM4TulQd8EMxt81nMVbB6DUsHjrAMbfNTwfCutz4ChV3R84ADhGRA4myVBOISi0slohIv0AgvXKoH0pMDBuvwHAsrAOVHWiqh6kqge1b1/W08Qcx3EicfXEwTTQrUVbA924euLgnJ5HjfXBZodgUZIP5eSdQiurx4FxwedxwLS49tNFpJOI7AoMAV4psGyO4zglzZKtu0RqT0H7mIcqWMYn7iAi7URkFmZUPK2qL5N8KCfv5M00EZEHgCOAPiKyFLgWuAl4UETOA5YApwKo6tsi8iAwB2gELlTVrfmSzXEcp9Spq4Orr4YlS2DgQBg5EjR0xARq2y3DHFIZ06iqB6XaIXgGHyAiPYFHRWSfKCfINaIaOjRUFnTr1k093ZLjOJVGXR2MHw8NDS3bd9vxM5avas9Gum5r68oGJp5fz9g7v5xx/yLSoKrd0u+5bf9rgQ3A94AjVHV5MJTznKoOzfjEbaBUAiwcx3GcgKuvbq2oALZ23Z57vvk4g1iE0MSgdksjK6pMEJEdA4sKEekCfBV4h+RDOXnHLSvHcZwSo6YGwh7NItD0u3vM7Fq0CAYNyqr/dJaViOyHBVC0w4yaB1X1BhHpDTwI1BIM5ahq4nzavODhdI7jOCVGnz6walXr9tpaYOFCaN8eBkQao4qEqr4JDA9p/xgYlbcTp8DdgI7jOCXE/Pmwfr1ZUfF07QoTJmAWVW0ttKuujHSurBzHcUqEhgY46STo3BluucW8fCK2njgRxo7FLKvBg4stasFxN6DjOE4JoGpDUbNnw5NPwte/DpdcErLjokXwjW8UWryi45aV4zhOkairMyOppgZ697btG24wRRXKxo3w0UduWTmO4ziFIXEu1dq1NgyVUg8tWmTrXXfNs3Slh1tWjuM4RSBsLtXWrfDTn6Y4yJWV4ziOU0iWLInWDlhwBVSlG9CVleM4ThGorY3WDpiy6tQJdt45LzKVMq6sHMdxisCxx7Zu2zaXKhmLFjVHZFQZ1XfFjuM4ReaNN2DKFBg61CypVnOpklGlc6zAowEdx3EKytq1NvF3hx3gX/+Cvn0jHLxoEYwYkS/RShq3rBzHcfJM/HyqXXYxnfPwwxEV1bp18PHHVRkJCK6sHMdx8kpsPtXixZalYtMmy0O7YEHEjqo4EhBcWTmO4+SVsPlUmzdbeySqeI4VuLJyHMfJK1nNpwrDLavCIyIXi8hbIvK2iFwStPUSkadFZF6w3qEYsjmO4+SSrOZThbFwIXTrZsWuqpCCKysR2Qf4HjAS2B84XkSGAFcC01V1CDA92HYcxylrJkywMap40s6nCmPRInMBJha6qhKKYVkNA/5PVRtUtRH4F3AiMAYro0ywPqEIsjmO4+SU006D7t2tRlXG86nCqOI5VlAcZfUWcLiI9BaRrsBxwECgr6ouBwjWOxVBNsdxnJzy5JPwySfwwAPQ1GQGUmRFpdpsWVUpBZ8UrKpzReR/gKeB9cAbQGOmx4vIeGA8QMeOHfMio+M4Tq6YNMnmU7WpXuLatfDZZ1WtrIoSYKGqk1X1QFU9HFgDzANWiEg/gGC9MsmxE1X1IFU9qH2iI9hxHKeEWLYM/vY3OOcc6NChDR1VeSQgFC8acKdgXQucBDwAPA6MC3YZB0wrhmyO4zi54ve/txpV553Xxo6qfI4VFC834CMi0hvYAlyoqmtF5CbgQRE5D1gCnFok2RzHcdpMUxNMngxHHgl77NHGztyyKo6yUtXDQto+BkYVQRzHcZyc88wzpmNuvDEHnS1cCD172lKleAYLx3GcPDBpkmVWP+mkHHRW5ZGA4MrKcRwn56xeDY8+CmeeafOr2kyVz7ECV1aO4zg55w9/sGS13/1uDjrzOVaAKyvHcZycUVdnGSouuww6doQ338xBpytXwsaNVa+sfKKS4zhODojVrYqVA9m82bYhi4wV8XgkIOCWleM4Tk4Iq1vV0JBF3apEfI4V4MrKcRwnJ+SsblUiRbCsRGSgiDwrInODUk4XB+3XiciHIjIrWI4rlEzuBnQcx8kBtbVWuj6svU0sXAg77mi1rApHI3CZqr4uItsB/xaRp4PvblXVmwspDLhl5TiOkxNyVrcqkSJEAqrqclV9Pfi8DpgL9C+oEAm4snIcx8kB3/42bL89dOnSxrpViSxcWNTxKhEZDAwHXg6afiAib4rIvYWs6O7KynEcJwe8/jqsWQN33NGGulWJNDWZbzH341XtReS1uGV82E4i0h14BLhEVT8D7gJ2Bw4AlgO/zrVgSQUu1Ikcx3Eqmcceg5oa+OY3c9jpsmWwZUs+LKtGVT0o1Q4i0gFTVHWq+hcAVV0R9/09wF9zLVgy3LJyHMfJAY8+CocdBn365LDTIs2xEhEBJgNzVfWWuPZ+cbudiFV+LwhuWTmO47SRefPg7bfhttty3HHx5lgdCpwJzBaRWUHbVcAZInIAoMAi4PuFEsiVleM4Tht57DFbjxmT445jltWgQTnuODWqOgOQkK/+XlBB4nA3oOM4Tht57DE44IA8eOsWLoRddoFOnXLccfnhyspxHKcNfPQRvPQSnHhijjuuq4MHHrAgi8GDbbuKcWXlOI7TBh5/3Kp4nHBCDjuNZcX9/HPbXrzYtqtYYYmqFv6kIj8CvosN0s0GzgG6An8GBmMDd99S1bWp+unWrZtu2LAhr7I6juOk4rjj4N134f33bTJwThg8ODx306BBzUEXbUBEGlS1oPmb2krBLSsR6Q9cBBykqvsA7YDTgSuB6ao6BJgebDuO45Qsn30G06ebVZUzRQV5zIpbvhTLDdge6CIi7TGLahkwBpgSfD8FyKVR7TiOk3OefNLqVuV0vOrZZ5N/1+asuOVLwZWVqn4I3AwswdJ1fKqqTwF9VXV5sM9yYKdCy+Y4jhOFRx+1hOiHHJJlB3V15vKrqbH1+efD178O/fpZksF4cpIVt3wphhtwB8yK2hXYBegmIt+JcPz4WD6rxsbGfInpOI6Tks8/h7//HUaPhnbtsuggFkSxeLFFaCxeDHffDXvsYTOM77nHxqhymhW3fCl4gIWInAoco6rnBdtnAQcDo4AjVHV5kNLjOVUdmqovD7BwHKcY1NXBpZfCypVmWd16axZ6JFkQRbLCWDnEAywyYwlwsIh0DfJPjcJqpTwOjAv2GQdMK4JsjuM4KYkZRCtX2vaqVVlGlScLlvjggzbJV6kUK3T9euA0rBplPRbG3h14EKjFFNqpqromVT9uWTmOU2hyFlWe5/D0VJSjZVUUZZUrXFk5jlNoampsiCkRESs/lTG33mq+xHi6di3I2FQ5KivPYOE4jhOBZNHjkaLKN22C+++3iL9ddvEgigxwZeU4jhOBRGMIsogqv/hiqK+HP/8ZPvwwh6WFKxdXVo7jOBFYGySBy9oguv9+O+DHP85xWeHKxsesHMdxMmTrVthtNxg6FJ56KsKBdXVw9dXNEYBf+AK89Ra0L05JQR+zchzHqWCeftr0zXe/G+GgxMm/qtbJn/+cNzkrEbesHMdxMuSUU+Bf/4KlSyPUQyxiiHoy3LJyHMepUFasgGnT4KyzIhbu9QzqOcGVleM4TgZMmQKNjRFdgJCjWHfHlZXjOE4aVGHSJPjyl2HYsIgHT5hgse3xVHkG9WxwZeU4jpOG55+HefOysKrAYtonToQOHWzbJ/9mhQdYOI7jpOHMM+Hxx2H58tZGUsYMHAijRsF99+VStKzwAAvHcZwKoq7OdMzUqZZk4tFHs+xIFVavtnoiTlYUZ0aa4zhOiRObHtXQYNvr19s2ZOHB27DB8gH26ZNTGasJt6wcx3FCuPrqZkUVo6HB2iOzerWt3bLKGldWjuM4IeR0etSqVbZ2yyprXFk5juOEMHBgeHtW06Pcsmozrqwcx3FCOPnk1m1ZT4+KWVaurLLGlZXjOE4CW7da0tqddzZLqs21Ed0N2GYKHg0oIkOB+HTDuwHXAH8I2gcDi4BvqeraQsvnOI7zpz9ZBY8//xm+9a0cdLh6tZUD6dEjB51VJwW3rFT1XVU9QFUPAL4INACPAlcC01V1CDA92HYcxykoW7bANdfAAQdYlvWcsGqVWVUiOeowv4jIQBF5VkTmisjbInJx0N5LRJ4WkXnBeodCyVRsN+AoYL6qLgbGAFOC9inACUWTynGcquXee2HBAhubqsnVE7L8JgQ3Apep6jDgYOBCEdmLIhoVxVZWpwMPBJ/7qupygGC9U9GkchynKtm4EW64AQ49FI49Nocdr1pVVspKVZer6uvB53XAXKA/EY0KEfYSYWjc9tEiTBXhJyK0iyJT0ZSViHQERgMPRTxuvIi8JiKvNTY25kc4x3GqkjvugGXL4Oc/z7HHLuYGLB3ax56jwTI+2Y4iMhgYDrxMdKNicnAsIgwApgG9gAuBGyMJHGXnHHMs8Lqqrgi2V4hIP1VdLiL9gJVhB6nqRGAiWCLbwojqOE6lUldnWSmWLDEFte++cPjhOT5J6bkBG1X1oHQ7iUh34BHgElX9TKJr8GHA68HnU4GXVTlOhCOB3wM/ybSjYroBz6DZBQjwODAu+DwO08CO4zh5I5b/b/FiyzXb1GSlQOrqcniSLVtg7dpSU1ZpEZEOmKKqU9W/BM0rAmOCVEZFHO2AzcHnUcDfg8/zgb5R5CmKshKRrsDRwF/imm8CjhaRecF3NxVDNsdxqoew/H+bNmWZ/y8Za9bYurTcgCkRM6EmA3NV9Za4r6IaFW8B54twGKas/hG09wdWR5GpKG5AVW0Aeie0fYxdjOM4TkHIaf6/ZJRn9opDgTOB2SIyK2i7CjMiHhSR84AlmGsvFT8GHgMuB6aoMjtoHw28EkUgLxHiOE7VUltrLsCw9pxRhtkrVHUGkGyAKmOjQpXnRdgR2F6V+CQPv8Pm2GZMZm5AkV0zanMcxykjwib9Zp3/LxlVnsRWla1AOxH+Q4ROQdsi1bTjXS3IdMzqkZC2h6OcyHEcp5R4/32YNMly/g0cmIP8f8koTzdgThBhOxEewgIxXsTGqhDhbhGui9JXajegyJ7A3kAPRE6K+2Z7oHOUEzmO45QKGzbASSdZhopnn4Vd8+knillWvXun3q8y+R9gF+BAYEZc+1+BCZC5wko3ZjUUOB7oCXwzrn0d8L1MT+I4jlNs4udTdeliUYD/+EeeFRWYZdWzJ3TokOcTlSSjgRNVmSVC/LzYuVgS84xJraxUpwHTEDkE1Zcii+k4jlMCxOZTxcLUGxpMd6yOFDydJaWXvaKQ7AB8HNK+HbA1SkeimkESCJHOwHmYS7DZ/ad6bpST5Zpu3brphg0biimC4zhlwODB4VF/gwbBokV5PvlXv2ra8cUX83yizBGRBlXtlv/z8BzwmCq3ibAO2E+VhSLcBQxS5bhM+8o0dP1+4B3g68ANwFjMjHMcxyl5CjKfKhmrVpm2rE6uAv4pwt6Yvrk0+DwSiJTUKtNowD1Q/RmwAdUpwDeAfaOcyElDXZ39QdfU2Dqn+V4cp7rp3z+8PafzqZKxenXVugFVeRH4EtARS7E0ClgGHKK6LWdgRmRqWW0J1p8gsg/wEVbR18kFiQ71xYttG3IcQ+s41UdDA3Tq1Lo95/OpwlAtu/IguSbIWjEu7Y5pyNSymohVhPwZlhtqDvDLtp7cCQhLUNbQkOMEZY5TfWzdCt/5jhVTvOQSG6PK23yqMD77zBLZVqllJUJtkmVgkNki874yCrAoUSomwKKmxt7AEhGxNNCO42RMfIh69+6wbh3cdhtcfHERhJk/H/bYA+67D8a12bjIGQUMsGgCUimZz7BSIVeokrJAYabplvoiMhmRJ4PtvbBEhk4uSOY4L4hD3XEqh8SSH+vWQfv2RTRsqjh7RcAZwFLgp1g1jaODz0uAc7FJwWdiXruUZOoGvA/4JzYTGeA94JIIAjupmDChtVO9IA51x6kswjzqjY1F9KjHJnJVqRsQOB/4kSq/UOWZYPkFcBlwriq/AS7ClFpKMlVWfVB9EDCflGojESd0OSkYOxZOP715u2AOdcepLIoaoh6GW1b/AdvKgsTzFjAi+PwSMCBdR5kqqw2I9CbmexQ5GPg0w2OdTIjlDdtzT5ul6IrKcSIzcGB4e9E86mVYHiTHLAbGh7R/D3MFAuwIrEnXUaah65diUYC7IzIz6Dwkub6TNfPn2/qTT4orh+OUMQcd1NqKKqpHffVqc/F3714kAYrOZcAjIhwHvIoZPCOA3YGTg31GAA+m6ygzZaX6OiJfwRLbCvAuqlvSHOVEYcECW7uycpysmDkTHnsMDj0Uli41pVVba4qqaI6K2BwrSVbHsLJR5W8iDAEuoFl/PA7crWqWlSp3ZtJX5qHrIl/CJgI3KzjVP0SQO64r6QlMAvbBNO25wLvAn4NzLAK+paprk3QBVFDouipst52NDKvCxo3Q2SuwOE6mfPop7L8/tGsH9fWw/fbFlijgm980zVlfX2xJWlCo0PVckpllJXI/ZrbNojmwQoGslBXwG+AfqnqKiHQEumI5pKar6k0iciVwJfDjLPsvL1autAI7w4bB3Ln2n+fKynEy5oILTCfMmFFCigqqPntFDBF2AWqxtEvbUOX5TPvIdMzqIGAvcjCDWES2xxIYng2gqpuBzSIyBjgi2G0K8BzVoqxi41UHHmjK6pNPoG/f4srkOCVObPJvLJv6ySfDwQcXV6ZWrFoFu+9ebCmKRqCk/og98xVzA8brkXaZ9pVpNOBbwM6ZdpqG3YBVwO9FpF5EJolIN6Cvqi4HCNY75eh8pU9svOrAA23t41aOk5L4yb8xnnyyBPM/V3ES24DbMG/cXkADcBhwKla145goHaUra/8EpgW3A+Yg8grw+bbvVUdHOVncOQ8EfqiqL4vIbzCXX0aIyHiCUMiOHTum2btMmD/fBmAPOMC2P/VZAY6TilTpNEtm1sfnn1tuwOp2A34F+IYq7wSVglepMlOEz4H/Bp7OtKN0bsBngn3qac683laWAktV9eVg+2FMWa0QkX6qulxE+gErww5W1YnARLAAixzJVFwWLIABA5pdf25ZOU5KSm7ybxgfBwVyq9uy6gLE6jGvwTxm72HJ0PeL0lE6N2B/4ETgIeB6rPhid2A2qv+KcqIYqvoR8IGIDA2aRmGCP05zGvlxwLRs+i9L5s+H3XaDnj1t25WV4yRl06bwkh9QYuk0PXsFWNHePYPPs4D/FGEQcCHwYZSOUltWqpcDYBF7B2FFtM4F7kHkE1T3iiR2Mz8E6oJIwAXAOZjifFAsQe4SzK9ZHcyfD8cd58rKcdLw+ecWSLFpE3TsCJs3N39Xcuk0XVmBRX7H4h1uAP6B5QH8nIg1rjKNBuwCbA/0CJZlhOd7yghVnYUpv0RGZdtn2dLQAB99ZJZV166WItqVleNsI77kR+fONg3xd7+Dbt2a24s++TeMKk5iK8IRwIuqbAt5UeV1EQZjltYS1W3uwYxIF2AxEdgbWAe8DLwI3EKaybpOBGKRgLvvbkEWPXq4snKcgMQi2hs3QocOpqjGji0x5ZRIdVtWzwCbRHgJeDbYflmVBohWzj5GujGrWqATVsb+Qyw4wp+kuSReWYG5Al1ZOQ4QHvW3ZUuZFNFevdpeQHv1KrYkxeALwMWY7jgfmAF8IsKTIvyXCAeJECkHVboxq2MQEcy6+hKWlHAfRNYAL6F6bRYX4cQTmxC82262dmXlONsoi6i/ZKxaZYqqXcbzXisGVd4H3gfuARBhT+BILJT9MuAmrHJHxpo8/ZiVZa14C5FPgs4/BY4HRgKurNrKggXm+ou9ffXs6fOsHAdYscJcfvFBFDFKKuovGZ5qaRvBPKs1WPj6p8DpWGR5xqR2A4pchMifEPkAeB5TUu8CJxFBIzopiIWtx7Iyu2XlOMybB4ccYnmdy7aIdhlnrxCRe0VkpYi8Fdd2nYh8KCKzguW41H3QW4STRfitCHOwKO+LgI+BbwE7RJEp3ZjVYGzS7khUd0P1TFTvRPUNVJuinMhJwoIFLXOHubJyqpC6Ohg8GGpqoF8/yzy2bp0lpp082Ypni5RZEe3ytqzuIzwd0q2qekCw/D3ZwSK8gcU4XILFOVwM9FLlUFWuUuWfqkQqmZFuzOrSKJ05Edm6FRYuhDFjmttcWTlVRmLE30cfmWK67joYOdKWslBOiaxeDV/6UrGlyApVfV5EBrehiyHAWmwe7Xzg/SASMGsyTWTr5INly8whn2hZNTSEO+odpwIJi/hThdtvL448OaGpyZRV+VpWyfiBiLwZuAlTufF6YK6+94EzgbdFWCzCFBHOEWHXqCd2ZVVMEiMBwYItwIMsnKqhrCP+kvHpp+Y5KV1l1V5EXotbxmdwzF1YXcMDgOXAr5PtqMoWVWao8t+qHIWNT40DFmLloeaIsCiKwK6siklMWSVaVuCuQKciiR+bqq2Fr37VrKgwyiLiLxmxCcGlG2DRqKoHxS0T0x2gqitUdatavMI9WER4pjTFLbG6VgOjCJxpuiUnHyxYYOmVBsbds5iycsvKqTASx6Y++MCW/faz6L+NG5v3LZuIv2RUYPaKWFWMYPNErM5hkn1pjymzI4PlEKAzFhH4LDA5WGeMW1bFZP58C29qH/fOUG2WVfyr9uDBJVg9z8kVYWNTYO9l99xTphF/yYjlBSxTZSUiDwAvAUNFZGmQYPyXIjJbRN7EFNCPUnTxCfAClr1iOZa8fA9VdlXlXFXuV2VpFJncsiomiWHrUF3KKvFVe/Fi24Yyf1I5iTQ1tazqG8+SJWWQ5y8qpe8GTImqnhHSPDlCF5cBz6gyL0ciuWVVVGITguOpJmWVqtyrU9bEG8z9+8NeKYoJlfXYVDKqOOM6gCq/y6WiAresiscnn8CaNdVtWVVkGJiTaDAvW2brI4+El19u+X5S9mNTyVi1yi6ua9diS1IxuGVVLGLZ1hMtq+7d7XW0GpRVslfqinzVrh6uuip8bGrBAhuLqqixqWSUd/aKksSVVbFILA0So5pqWk2YUMaJ3xxo6e4bNAh++MPUBvPYsbBokY1hLVpUoYoKKnVCcFFxZVUswiYEx6iWlEtjx8IppzRv9+xZwa/alUfM3bd4sc2VWrIEfvvb5BUxqspgXrWqaser8kVRlJWILApCIGeJyGtBWy8ReVpE5gXrSBl5y44FC+zNa7vtWn9XTWVCunSx32G33WDUKFdUJUrYDIMrrwx39/Xo0XqopuoMZresck4xLasjg8y9BwXbVwLTVXUIMD3YrlzCIgFjVItlBTB3LgwbZtlKX3212NIUjjKaX5ZoQS1eDOPGwdIks2TWrq2isalkuGWVc0rJDTgGmBJ8ngKcUERZ8s/8+a3Hq2JUi7JShTlzLK55xAjzI61YUWyp8k/Y03/8+JJVWGEzDLZubS7BlkhtbRWNTYWxcSNs2OCWVY4plrJS4CkR+XdcAsW+sVQewXqnIsmWf7ZssQdztVtWK1bYa3hMWUF1WFclOr8s0dj7/e/h/vuTT+ZVdXdfKGWevaJUKZayOlRVDwSOBS4UkcMzPVBExscyBTc2NuZPwkzI1pWzeLG9cla7ZTVnjq332suq7dXUVIeyKsH5ZWHG3rnnwllntcwGFk/MvVfV7r4wyjx7RalSFGWlqsuC9UrgUSzh4QoR6QeWMBFYmeTYibFMwe2T/RcVgra4cpLNsYrRowesXw/FVsb5Jl5ZdesGe+8Nr7xSXJkKQQnOL0uWt69vX7jvvuQWVFW7+5LhllVeKLiyEpFuIrJd7DPwNSx77+NYvROC9bRCyxaJtrhywkqDxFMtmdfnzLFr3Xln244FWSSrGVEplNj8ssbG5K6+lStNAbkFFQG3rPJCMSyrvsAMEXkDeAX4m6r+A7gJOFpE5gFHB9ulS1tcOQsWQOfO0K9f+PfVknIpFlwRG6kfMQI+/the0SuZsWPhqKOat3feuaBP/3jv9S67wJAhyfeNGXtuQUWgAsuDlAIFV1aqukBV9w+WvVV1QtD+saqOUtUhwXpNoWWLRFtcOfPnw6672tMijGqyrOIznMaCLKrBFbh2bfN9vuOOgiqqeO/18uWmfI4+2oMlckJdHVx7rX0ePrxkIzzLkVIKXS8vJkxoPfKcyX93XR389a82vyhZUEY1WFarVtkSr6z23dfcY5UeZLFxI/z733DyybZdwMCKZGNT771XBa6+fM9ti70JfPaZbS9ZUtJTEsoOVS3bpWvXrlo0mppUe/VS7dJF1V5SVW++OfUxU6eqdu3avD/Y9tSpLfebNcu+e+SR/MlfbP71L7vGf/yjZfvBB6sedlh2fU6dqjpokKqIrRN/11Lh+eft2qdNs7+fSy8t2KlFWv75xRZBdMUgAAAgAElEQVSRgolQHDL932sLgwaF/7iDBuXuHDkC2KAl8AyPsrhllS2vvWYlPu66CxYuzOyYTIMyqsGyio8EjGfkSHj9dZt1GoVymmg7c6atv/QlGDiwYJbVkiVVnLevEHPbSnBKQiXhyipbHn7Y3ICjR5tLYb/94PHHUx+T6R9zjx62rnRl1b07DBjQsn3ECJv9P3dutP5KdKJtKC++CF/4gkWL1dbCBx/k/ZTvvw+HHQYdOpRUIGLhyFaRRHEdluCUhErClVU2qJqy+upXYYcg3+7o0TBjhkWzJWPgwPD2xD/m7be3gYNKV1bxkYAxsg2yKJe3WlVTVoceatsDB+ZNWcU/Z4cOtT/NGTNg8uQKH5sKIxtFEtVav/761m1V8SZQGFxZxZPpW9SsWRZ+Hl/eYswYi+v9+9+T9z9uXOu2sD/mmhpTWKWqrHIxUJ0YCRhjyBCzLKMGWZTLW+2775rWiFdWy5fD5s05PU3ic7apyTyrc+dWaRj65ZeHt196afJjolrrnTvbescdq+xNoEAUe9CsLUtOAyyiDMBedZVqu3aqq1Y1t23dqrrLLqonn5z8HKefbgPqAwemDwIYNEj1rLPackX5IRcD1WvW2HG//GX496NGqX7xi9Hkuuuu1gPbuR5AzwWTJplsc+e23F64MKenKaOx/sJw5pn2P7vLLva/t8suqp06qR5yiOrnn4cfE/YDpopGOeww1d12s2dBiUMZBlgUXYC2LDlVVpn+dzc1qQ4ZYg/URL7/fdVu3VQ3bmz93fLlqh06qF5ySWby7L+/6ujRUa8i/+TiKThzph3zxBPh3//kJ6rt24f/jsn4zW+sz3btmuUpNUWlqnruuRZFGnug/fOfJu/zz+f0NFUb9RfGyy/bxV95Zcv2Bx+09sT/yaYm1WuuSa6swv7W33zTvvvVr/J2GbmkHJWVuwFjZDrm8dZbMG9eSxdgjDFjLDjguedaf3fPPZZt/YILMpOnVJPZ5mJsKFkkYIwRIywH0BtvZN7nvffCF78IF11kBR0XLChN98vMmRYFGJsQHhvHbMvYWoJb9skrnkWTZKwqNa9o3lGFSy6xLCFXXdXyu1NPhYsvhttuM9ddTY257g4/HG64wdaJM6W7dAkfg7rzTnMDnnNO/q6lynFlFSPTMY+HHzZ/9Ikntt73yCMtIeu0hLSGjY3wu9/B176WOrdNPKWqrHIxNjRnjv3TDxoU/n3UIIv6elNs554Le+5pk25LLbACLMHpu+82j1dBs7LKNsiiro66c/6XwYufo0Yb2XHxKxz/q8MY1GcdXbq03LUqx/ofeABeegl+/vPwqtzDh5uSWr3aFNuSJRaFcvLJ9tIZP1Ma4IADWr8Effqp1VI5/XTo3Tvvl1S1FNu0a8uSUzfgFVe0Nvc7dWrtStprL9WvfCV5PyedZP7wpqbmtocftv4eeyxzecaNU62tjXIFhSEXY1bHHKM6fHjy75uaVPv1s3GGTPjBD+xerVnTPOH2ySczl6dQTJtmsv3rXy3bd9hB9YILsupyau8falfWt7gdNTTqPb2uKJs50nlj/XrVAQNUDzww+ThSFLf2T39q382c2bL9//0/a3/11VxfQd6gDN2ARRegLUvOlNXmzarDhqnutJMpCBEbM9luO9WlS5v3mzPHfrLbb0/e13332T6vvdbcduSR1m9jY+YyXXSR6vbbR7+WQnDPPc3/1N26RX8K1taqjh2bep/Ro1X33DN9Xxs32sP+jDNse+VKk+uWW6LJFE++nvI//rGNWzY0tGzff3/V44/PqstBLAx/1rKw7fKWK7H7F/sxfvaz5PtGGdxbt85eREeMaFZ+TU32dzpyZF4uJV+Uo7JyNyDA3XdbTO/Eic2FEd9809annWZjTQCPPGLrk05K3tc3vmFuhdgE4blz4dln4T//M3n6gDB69rQcY1EzORSCmCtzu+1srCTK2NC6deZqSTZeFWPkSHjnnfTJfKdNs6SwsbGCHXc0V8w772QuUzz5zIQxc6YVmUz0z7VhrtUSwt2vydornvj7F+PXv05+/6K4tbt3h5tusmkVU6da2zPP2N/ahRe2TW4nPcXWlm1ZcmJZrV5tb+ajRrV03amqPvCAvWVdfrlt77+/6qGHpu/zsMNsX1VzUXXsqLpiRTS5brnFzr1mTbTjCsGtt5ps3/ueRd8lWgqpeOUVO/bRR1PvF4uSmz499X5f+1prq/XLX84+v2C+Yr43bTJXZVgewPPPtwjBLNil54ZwcXuva5u85UrU+xfVrb11q1lR/fqZpXXiiaq9e0eLXC0BcMuqDLn+ent7v/XW1tkUTj/d3phuvtkyVbzxhgUHpHvLHj3a9n37bZgyxaKOdtopmlylXCakvt6iq445xiy/2bMzPzZdJGCMWE2rUaOSTzxesgSefhrOPrul1brnntlbVvnKhPH66/D55xYJmEhtreWZ3LAhUpfr14N06wq0DP3r2rGRCb/p3gZhy5io9y9qZcmaGoseXL7c/gcefdQ8LzGvi5M3qltZzZljIaff/76VpwhjxAj7A41F5q1dm94tFFN6++xjbq899oguWykns62vtyiq4cObtzNlzhzo2BF22y35PnV18KMfNW8nc8VNmWLvwmef3bJ92DArP5Iq9VUy8pUJ48UXbR0fCRgji4hAVfjud2H5cuXKzrcxqMMyhCYG9dnAxHvbl2TUfkHI5v5FTemxYIG9HMVeLj77rHSTJlcSxTbt2rJk7QacOtVcR7GB1LvuSr5vvt0KyXjmGTv22WejHZdvNm40199VV5nbtGdPmwydKccfr7rvvqn3yeQ337rVsgUcdVTr4//2N9t/xozM5YoxdWrzxOK23L9ETjzR5A0jVi7lqacy7u7Xv7ZDfnHlJ7otoKRz54KWGylJpk41d2uu7188FZAehDJ0AxZdgLYsWSmrqMokaiqAXP0hv/66ZjS2U2hefdXkeugh2z7iiGiRULvtpnraaan3yeQ3f/ZZawu7bwsW2Hf33JO5XDHWrbOHXbduzeedPDl6P/E0NVmkabJQ/IUL7TyTJiXtIj5AsW9fW594omrT40/oNsV88ME2XlftnH56899LPmL2KyA9SDplBdwLrATeimvrBTwNzAvWO6TqI9dL0dyAItJOROpF5K/Bdi8ReVpE5gXrHfJy4qjJKaO6FXI15lGqZUJiLr+YC/CAAyxysrEx/bENDVb7K914VbLfVhW+/W0bVzjySHO3hiWAra21bALZjFs9/LCNLf3znzYeBhZh2Bbmz4eVK8PHqwD697drSeIGTAxQXLHC2o87DmRWvR27//7NtcAyuReVjIi5VvOVqbdckia3jfuAYxLargSmq+oQYHqwXTCKOWZ1MRBftKgwP0RUZTJhQuuUK6lSAeTqD7lUx6zq6y0j/K672vbw4bBpk2VmSMe779rTNp2yCvvNYxkvHnig+V6pwg9+0HqsoF07q4kRtSYWWNqmL3zBFMthh1lGkiefjN5PjLo6OPhg+3zDDeHjGh062GB9kr/BsPcrVbjxRux+DBliYdUjRtiO2Vx3JREbU80XUZ8JZYiqPg+sSWgeA0wJPk8BTiikTEVRViIyAPgGMCmuuTA/RFRlEjVaKFd/yNtvb+tSU1azZpk1FcttF3sozJqV/thMIwHDfvN77rEndCLJrOJsIgLnzYMXXrA5WyJWpXDUKCv7EnbudMRMoligx/LlyQfiUxRhTPl+Ff9gHjnS1lFrgVUSGzbYS1E+lVXUZ0Jp0l5EXotbxmdwTF9VXQ4QrCOGOLeRQvoc43yfDwNfBI4A/hq0fZKwz9p0/RRkzCobcpUBYbvtMs/SXggaG+23uuii5rbNm22M57LL0h9/1VWWGSRZSYZ0RBkruO46a48yB+yqq1RralQ//LC57e677Rxz5kSXN8r45SmnqA4dGq2bAY324aabbMetW1V79IgW8FJpvPii/SZRUptVIWQQYAEMpuWYVeRndC6XgltWInI8sFJV/53l8eNjbwON2fjmC/FWlKvqdqWWzHbePLNk4t9aO3SwsP904et1dTaXrbHR3GzZhPlGsYr33NOe6fPmZdb31q1w331w7LGwyy7N7ccea+tsXIFRXM4DB1p7iAX3ve+13r1rV5hwVmA5xu5HTQ0cdFD2llUuimoWm8QxVSeXrBCRfgDBemUhT14MN+ChwGgRWQT8CThKRKaS4Q+hqhNV9SBVPah9+/bZSVAupVJLTVklexAMH27fJXOVxdxhGzfadrYpjKK4WIcNs3Wm4zdPPQXLllnm9nhqa2HvvVNXgE5GFOVaW2u/z5qWwwQffwyTJtmc9AEDEt6vev/Tdoq/HyNH2iTtTZuiyZrPNFOFpL4eevVqnrvm5JLHgXHB53HAtBT75p5CmnEhZuYRNLsBfwVcGXy+EvhluuNzmnW9FDnsMAsNLxX+678sddTmzS3b77zTXC+LFoUfl8t5KZm6WBsabJ/rrsus31NOUe3TJ9xFefnlloB2XcQURlOn2u+Vics5lpm/vn5bU2Oj6te/bl28/HJI/9/5jmr//i3b/vIX6+ell6LJWgFzh1RV9aCDwgujOi0gfej6A8ByYAuwFDgP6I0Fv80L1r1S9ZHrpZQyWNwEHC0i84Cjg+3qphQtq332MddfPOkyWeQyhVGmVnGXLhaxmIlltXq1JcQ980zLrpHIscdaSp3p06PLOmqUfU7ncg4sgbr7t27zxPXubRH0t9/eHDvRgvp6C3aJJ9sgi3ylmSokW7aYVZn4mziRUdUzVLWfqnZQ1QGqOllVP1bVUao6JFgnRgvmlaIqK1V9TlWPDz4X9YcoSXr0KB1lpZo8JHi//ezpmkxZFWteSqYRgXV19qBLdAHG+PKXLTQ8m3GrxkbLtJ5OudbWUscZjL99v22euE8/tSj8bt1C9t+40a4t8X707w/9+llm8ChUwtyhd96xOXI+XlWRlJJl5SRSSpbV0qU2gBL2IOja1eY1JVNWYeUTCjEvZdgwC2NOVmalrs6snUsuMYvqjTfC9+vYEb76VVNWycblkvHmm8nzTsaz005czS9o2NLSat26Ncl89dmz7cuw+zFiRHTLasKE1qVLym3ukAdXVDSurEqZnj3t9bqpqdiSpH8QxIIswli92txgrSIE8hzYsueeFmgQ5sqKBRTEvtu8OXVAwXHH2b6xuWKZsGqVpZvYb7/0+9bUsITwoIBQT1yq+zFyJLz3XrQXnbFjW4YddupUfnOH6utN4Q4dWmxJnDzgyqqU6dnT3uTXry+2JPYgEEn+4B0+3Kyv1atbtm/ZYtnRR4+2Sa+FjMBMFREYNe1WNiHssdIpIZZVYpT4dddBewm3AEM9cfX19vcxeHDr70aMsPW/I84Oqamxh/1ZZ1lhzW9/O9rxxaa+3v4+oxQ5dcoGV1alTCmlXKqvt/lR3ZPUSYoNaidaV//4h1kXycaD8smee9o6bNwqakDBgAEWXBIlhD2JsgqLEr/+eugoW+jE5y32TeqJiwVXJNZgA5trBdFdgTNnmqI78EB76YglISwHVC2LirsAKxZXVqVMqSmrVA+CZBGB994Lffs2WyaFpHdvS0IbZlllE1Bw3HEwY4bVKMuE2bOhTx+7/jjCjDqAXt02M1nOY1CtpvaWNjbaWFiy+9Grl9VQixJk0dBg9+7QQ5uVa5Simvkkk8nKCxeay9yVVcXiyqqUKRVl9fHHZnGkehD07m3h1/HKasUK+Otfza2UGO5eKJJFBF53Xeu2dAEFUUPYZ8+2B3+C9ZPMeFu6rgdjtY5FLy5L7S19910bi0t1P0aMiKasXn3VlGCpKatMJyt7cEXF48qqlCmUskr35hpLUpvuQZAYZDF1qj0Azzknl9JGY9iwcMsqlqprp50yD/pYssT2PfHE9OmImprgrbeo63j2tp920CA477zkh9TuGGT4SFcxOJMH88iRNoa4fHnqvmLMnGnrQw4xa3TnnUtDWWU6tlhfb2NVmUReOmWJK6tSphA1rTJ5c42irN57zzJfq5oL8OCDmwMdisGee5plGB/40dQEN99s8n70UWZBH3V1cP75zaHr6dIRLVhAXcMYxj97xrafdskS+0n69bNyW/F07QoTLg1kTDcRt77eOoiNyYURC7LI1LqaOdPuU69etr3vvuZqLDaZji3W15v8iT+sUzG4siplCmFZZfLmWl9vAQZ9+qTua/hweyq/+aY9JOfMKU5gRTxhEYFPPGGutCuuCA9QCCNq9ODs2VzNz2nY3Nr92b695ftrlUv5P4OyMOksq1mzTJmkyo05fLhZGpkEWTQ1wUsvmQswxr772v1LNketUAwYEN6eOLaY7xpWTtFxZVXKxCyrTz/N3zkWLw5vj39zzfRBEB9kce+9FgZ92mltl7EthEUE/upX5sY75ZTM+0nzhp/oSb13Sg2LGRR6yAcfJMka1aOHRVumsqxSZRKJp2tXi17MxLJ65x1Yu7ZlJeN997VxsfffT398Pjn88NZtiWOLK1aYu9OVVUXjyqqU6dDBcu3kw7JShZ/+NPn3MSuqoSE8rU8YAweaG+nFF62i76mnNheRLBa1taY0Y5bViy+ay+vSS1NbJmH9JGkP86SeN200EG61JQ04FElZhBEwRbZ2bWb572JBFumybsTGqxItKyjuuNWGDfD001asc1Cc4r/xxpYuWw+uqApcWZU6yVIuZVN7KP6Y7t3t7fSII1qX3aipsewLZ58Nu+9ur/933ZX+HCI2MF9XB599ZllYi11ioqbGMhrELKtf/coUalT3ZFh5ki5dYMKEJKHowvbt1kcvGj1wYGplFeXBrGqKrV271H8jM2daUMWQIc1te+1lv10xldUdd8DKlVYletEi+PBDy6yRKFPsN/EEtpVNIVO853qp+BIhqqp776160kkt27Kpdhx2TIcO1p5YdmPyZNXhw1uXi8jkHO3bRzumEJxxhurgwarvvGPX+LOfZdXN1PNf0EHtPlBhqw5iod7/9T/o9OnhlTVAVWiKXjT6u99V3Wmn5N9fc41VM96wIY2wU1U7d87sXgwZojpmTOv2oUNVTzwxjcB54rPPVHv3Vj3mmJbtl1yi2q6d6nvvNbedeqrqrrsWVr4yhwwqBZfaUnQB2rJUhbI69FDVo45q2ZZN7aHa2mjHRN0/W7kKwfXXm7YYO9Ye4CtWRO4iTNcLTbaWJJfdZ310WW+4wQ7etCn8+29+U3XYsPT9ZHovVqyw9v/5n9Z9nHKK6u67R72C3HDjjSZXYiGvjz5S7dLFannFGDKkeEq1TClHZeVuwFInrExIsgH4xYstzCzePXj33ebjj5peKJkrKtXgf6nWRFq92h7VdXU2TvX00yl3D/Ow/uQnrV19itCnjzJ5ckgBYzYw4cdZBMbEKtwuXRou1BNP2H1O517N9F68+KKt48erYuy7LyxYYGNHycjGHZ2OTz6xqQXf/GbrQl59+8IPfgB//KONQ65bB/Pm+XhVNVBsbdmWpSosq29/W3W33Vq2JXtrTrUkuoTSWT3ZWEmlaFmlcIeFuejCLKhEz2YL60qatp1mW1/bfaxT259lpX6j8r//ax0/80zLa4jq9s30Xlx+uZUi3rixdR+xqsOhZYqzlCsTrr3W+nr99fDvV61S7d5d9bTTVF94wfZ94om2nbPKoAwtq6IL0JalKpTVBReo9urVsi3Z2FCPHuEPqH79oj9YcjUuVsAxq9DxoUGDdCpn6CAWbhtrmsoZOrX3D1uJ2rmz6nbbhf+ESV19PT9pLcjRR6seeGB2F/Hee9bxlCnNbdm8BITdi86dW9+LL31J9ZBDwvuYN8+OmzQp/PtcvpzE3zwRK0+fiquusnN1727r/v2LPzZaRriyKvBSFcrqqqtsQLmpqblt82bV7bc33338kznZE1XEjos62h85OiDLYyKQrPtkevJ8fqtdWd+ivQObtDMbIhunrfqXBp069PrWQu68s+q4cdldYEODdX7jjc1t6e5rJj9WTY2NP8X/HW3caFbV5ZeHH791q130xReHf5+tXGFyZqJY4/nd78JvkCusjHBllckJoTPwCvAG8DZwfdDeC3gamBesd0jXV1Uoq1/+0m7TunXNbdOmWdvjj7fctxTdcGlIpXwycdF17ap6++2qO+6YTMk0RWxP/hO2kmn0n+1FYu3a5gtaudIOuPnm7H+UPn1Ux4+3z59+Gt2FG8bvf2/HxD/MZ8ywtkcfTX7cyJGtA3xi5OrvrVJczmWEK6tMTmgzJbsHnzsALwMHA78ErgzarwT+J11fVaGsJk602/TBB81tY8bY2/uWLS33LbIbLhVRlM/554e377BD5solW2XVu3eEnzA2XvLQQ81tsVj2p57K/ofq0MH66N9fdcAA+9E6dmzbfd26VfWLX7Q+1wdRirEXoVTRkeedZ8oz3iKLETu+rX9v2VhoubLqqhRXVlFPDl2B14H/AN4F+gXt/YB30x1fFcrqwQftNs2ebdsffWRv81dcEb5/nt1w6U4RRSn16pX8eRNVKfXtG97erl14eyqllPFPuGWLas+equec09x2223W2fLl2f2wiUKB6pVX5ua+xpTrtdfa9pgxqnvskfqYVNdzxRUmT0yhgs2DiopbVgXHlVWmJ4V2wCxgfcyCAj5J2Gdtun6qQlk99ZTdphdesO2bb7btuXPzfuooiifZdx07hj9/c7nEZItipUVSSqn41rcsgCVmeaSyRNJRiAfwaafZWOfixeY7TTe2lsxS3LzZ3hBik4m3bLGJucmCNVIxaVLrN5QSD+Ypd1xZRT059ASeBfbJVFkB44HXgNc6duwY8RaVIS+/bLfpiSfsAbjXXhbBlQW5GB9K5orr0MHG8HOhfLKxhqJeX86IjQXV19v2yJGqRx6ZXV+FcG0tXmyRpJ06Wd+9eqX+QWJjcL/+dcv2xx+39mnTmtt++1trmzEjmkwXXmjH9e1bUsE8lYwrq2wEgGuBy90NmIR337XbdP/9qv/3f/b5nnsidxPF8kgVwp3LJZnyybs1lEuWLzcBJ0ywcaFu3VQvuii7vgphWcWPiWVqkey8s+rZZ7dsO+EEUy6bNze3bdhgN3X06Mzlef55kyFZxKGTF1xZZXJC2BHoGXzuArwAHA/8KiHA4pfp+qoKZRVLh/Pb31qEWNeuqp9+GtmKSPYczGZ8KNnzNNk5shkfKjmllIoDD1T98pdV339fs32ZUNXCuLayUYhHH23BGTFWrDDrLCzkPTahNxM39YYNNma2667NQR9OQXBllZmy2g+oB94E3gKuCdp7A9OD0PXpQK90fVWDspp63+ZgQmuTDpLFOvWwuyJZSR06mNcw39ZQJuNZZaN8onL11eYDvfdeu+j/+7/s+8r3D5WNq/HSS83cjmXk+PWv7Zi3326978qVtu9556WX5fLLrZ/p07O7FidrXFkVeKkkZZXxuFGnRu3dO/nzJqy9XTsbU0/2Xa6soWTXUfHMnGk/0D772IXHz4krNbKxrGLjcu+80zxuevDByfe/4AKLrFm2rPV38X8gkP34ntMmXFm5ssqKfEfRiRQxWq4aaGxs+SOW8o+Vjavxtddsv4ceag74mTgx+f4xd+j226d/++rSpXR/qwrGlVWBl3JUVokKYMqUVNkXki3hE1qTWUmxl+aKGB8qRaZObf3jl3IYddQb3tBgbs5rrlH9/vdNwXz6aer+E3+PLl2SR+343KiC48qqQpVV1Id8lPx12Sil3rI6spXk5JFqmKA6dKgVQtx+e9Wzzkq9b7LfI5Xp7xSUTJQVsAiYHcyJfS3d/vleiq5w2rJkq6xyMd8omWIIa+/USfXMM5O/WCabn9Sbla2SsHZlvU7l224llRLVkPpn5Mjm6+rbN/UfVtQQ00pS6mVCBGXVJ91+hVqKLkBblmyUVTLlM25c63yhHTs2VyAIew5Fc92lXkItot4/DC1v4f/cJUalW1ZR52ZlM4fBKSiurAq8ZKOsonoocrWIpK4UH2oReUqZ8qDS71NUZVy1cxjKhwyV1cIgd+u/gfHp9s/3UnSF05YlG2WVK4soWTBDqiCHrJ5p/s9dHlTyfcrGzVnJv0cFAHweS1sXLK2UEbBLsN4pKOl0eOI+hVwkEKYs6datm27YsCHSMYMHw+LFrdvbtYOtW1u39+4NGzdCQ0NzW9euMG4cTJmSefvEiTB2LNTVwdVXw5IlUFsLEyZYu+OULMn+aQYNgkWLCi2NkwNEpEFVu0XY/zpgvarenD+pUlNTrBMXiwkTTHnE07UrjB8f3v6b35iiGTQIRGw9cSLceWe09phCGjvW/r+bmmztisopeZL900yYUBx5nLwjIt1EZLvYZ+BrWMah4slUbZYVJLdu3OpxnCT4P0dFkc6yEpHdgEeDzfbAH1W1qG8nVamsHMdxqpmobsBSoOrcgI7jOE754crKcRzHKXlcWTmO4zgljysrx3Ecp+RxZeU4juOUPGUdDSgiTcDGNLu1BxoLIE6pUa3XDdV77X7d1UVbrruLqpaVsVLWyioTROQ1VT2o2HIUmmq9bqjea/frri6q7brLSrM6juM41YkrK8dxHKfkqQZlNbHYAhSJar1uqN5r9+uuLqrquit+zMpxHMcpf6rBsnIcx3HKnIpWViJyjIi8KyLvi8iVxZYnX4jIvSKyUkTeimvrJSJPi8i8YL1DMWXMByIyUESeFZG5IvK2iFwctFf0tYtIZxF5RUTeCK77+qC9oq87hoi0E5F6EflrsF3x1y0ii0RktojMEpHXgraKv+54KlZZiUg74A7gWGAv4AwR2au4UuWN+4BjEtquBKar6hBgerBdaTQCl6nqMOBg4MLgHlf6tX8OHKWq+wMHAMeIyMFU/nXHuBiYG7ddLdd9pKoeEBeuXi3XDVSwsgJGAu+r6gJV3Qz8CRhTZJnygqo+D6xJaB4DTAk+TwFOKKhQBUBVl6vq68HnddgDrD8Vfu1BZfL1wWaHYFEq/LoBRMVlgJwAAAW3SURBVGQA8A1gUlxzxV93EqrquitZWfUHPojbXhq0VQt9VXU52EMd2KnI8uQVERkMDAdepgquPXCFzQJWAk+ralVcN3AbcAXQFNdWDdetwFMi8m8RGR+0VcN1b6N9sQXIIxLS5qGPFYiIdAceAS5R1c9Ewm59ZaGqW4EDRKQn8KiI7FNsmfKNiBwPrFTVf4vIEcWWp8AcqqrLRGQn4GkReafYAhWaSraslgID47YHAMuKJEsxWCEi/QCC9coiy5MXRKQDpqjqVPUvQXNVXDuAqn4CPIeNWVb6dR8KjBaRRZhb/ygRmUrlXzequixYr8TKzY+kCq47nkpWVq8CQ0RkVxHpCJwOPF5kmQrJ48C44PM4YFoRZckLYibUZGCuqt4S91VFX7uI7BhYVIhIF+CrwDtU+HWr6k9UdYCqDsb+n59R1e9Q4dctIt1EZLvYZ+BrwFtU+HUnUtGTgkXkOMzH3Q64V1UnFFmkvCAiDwBHAH2AFcC1wGPAg0AtsAQ4VVUTgzDKGhH5MvACMJvmMYyrsHGrir12EdkPG1Bvh71wPqiqN4hIbyr4uuMJ3ICXq+rxlX7dIrIbZk2BDd38UVUnVPp1J1LRyspxHMepDCrZDeg4juNUCK6sHMdxnJLHlZXjOI5T8riychzHcUoeV1aO4zhOyePKynHKDBFZLyJnF1sOxykkrqycskNEnhOR34a0ny0i68OOqXbEuE5ElonIxuA33LvYcjlOpriycpzq4ArgMuCHwAiCBLixzAiOU+q4snIqFhG5T0T+KiIXi8iHIrJWRH4vIl3j9nlORO4UkZ+LyOqgiOXNIlITt893RORVEVkXfP+QiPSP+/4IEVEROTbIir1RRF4QkQEi8pWgSOL6QJbeCTKeIyJzRGSTiLwnIj9KOPcegYybxAqJHp/F7yDAJcBNqvqIqr6FpefZDvh21P4cpxi4snIqncOAfbD8eacBJ2LF++IZixVy/BLwA+zBflrc9x2xFFb7A8djaa0eCDnX9cGx/wHsAPwZuAYYj6XD2hu4LraziHwP+HmwzzDM8vkxcEHwfQ2WZqcGOAQ4Nzi+U/xJA2X2XIrfYFdgZ+CpWIOqbgSeD67ZcUqeSi4R4jgAnwHnq2ojMFdEHgJGAb+I22eOql4TfH4vUCKjCBSSqt4bt+8CETk/6GuAqi6N++5nqvoCgIjcDdwOfDFWIFJEpgCnxO8PXKGqDwfbC0XkJkxZ/RZTsHsBu6rqkqCPS7B8iPEsSfMb7BysVyS0r6C6arw5ZYwrK6fSmRMoqhjLMMsnnjcTtpcRV8hORA7ELKsDgF4010qrxUrRhPUTUwyzE9p2CvrcESth8zsRuStun/Zx/Q8DPowpqoCXaVl4EFU9i8xITAQqIW2OU5K4snLKkc+AHiHtPYFPE9q2JGwrrd3fSfcJSjL8E/hf4EwsMKEPZt10TNGPAqhqYlvs3LH1fwIvhlwLhBcQzYaPgvXOtKyevROtrS3HKUl8zMopR94FDpTWJYEPDL7LJXtiyukqVX1eVd8hB+XDVXUF8CGwu6q+n7gEu80B+otIfBHRkUT/v12IKayjYw0i0hkbz0umKB2npHDLyilH7sICIW4XkXuATcBxwBnAmByfawnwOfADEbkDc839d476vg67hk+AvwMdMIXbX1V/gVlz7wB/EJEfAV2AW7FgkG2IyB8guTtQVVVEbgOuDsqhvwf8FFgP/DFH1+I4ecUtK6fsUNUFwOHAECzC7RWscuypqvr3HJ9rFRbmfQJm6VwLXJqjvidhEX5nAm9grsXxmCWEqjZh0Ys12FjVH4AbMeUZT22wpOKXwC3AHcBrQD/ga6q6LhfX4jj5xosvOo7jOCWPW1aO4zhOyePKynEcxyl5XFk5juM4JY8rK8dxHKfkcWXlOI7jlDyurBzHcZySx5WV4ziOU/K4snIcx3FKHldWjuM4Tsnz/wHMPua8j8QYVgAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# create figure and axis objects\n",
"fig,ax = plt.subplots()\n",
"\n",
"# make a plot\n",
"ax.plot(my_data[\"Unnamed: 0\"], my_data[\"Wheat\"], color = \"red\", marker = \"o\")\n",
"\n",
"# set x-axis l# set x-axis label\n",
"ax.set_xlabel(\"Unnamed: 0\",fontsize = 14)\n",
"# set y-axis l# set x-axis label\n",
"ax.set_ylabel(\"Wheat\", color = \"red\")\n",
"\n",
"# twin object for two different y-axis on the sample plot\n",
"ax2 = ax.twinx()\n",
"\n",
"# make a plot with different y-axis using second axis object\n",
"ax2.plot(my_data[\"Unnamed: 0\"],my_data[\"Wages\"] ,color = \"blue\",marker = \"o\")\n",
"ax2.set_ylabel(\"Wages\",color = \"blue\", fontsize = 14)\n",
"\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}