diff --git a/module2/exo1/toy_notebook_fr.ipynb b/module2/exo1/toy_notebook_fr.ipynb index 9dbd128087d40387c4d6523ea30a58b7dcd40fec..ccd0d203852a46d0bcac5bb27dd07d8b8026c60c 100644 --- a/module2/exo1/toy_notebook_fr.ipynb +++ b/module2/exo1/toy_notebook_fr.ipynb @@ -9,7 +9,92 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# **1 A propos du calcul de $\\pi$**" + "# **A propos du calcul de $\\pi$**" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## **En demandant à la lib maths**" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Mon ordinateur m'indique que $\\pi$ vaut *approximativement*" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3.141592653589793\n" + ] + } + ], + "source": [ + "from math import pi\n", + "print (pi)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## **En utilisant la méthode des aiguilles de Buffon**" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation**" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3.128911138923655" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import numpy as np \n", + "np.random.seed(seed=42) \n", + "N = 10000 \n", + "x = np.random.uniform(size=N,low=0,high=1)\n", + "theta = np.random.uniform(size=N,low=0,high=pi/2)\n", + "2/(sum((x+np.sin(theta))>1)/N)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## **Avec un argument \"fréquentiel\" de surface**" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Sinon,une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si *X $\\sim$ U(0,1)* et *Y $\\sim$ U(0,1)* alors P[X^2 + Y^2 \\leq 1] = \\frac{pi}{4}" ] } ],