Test prise en main

parent 9e5e198f
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"hideCode": true,
"hidePrompt": true
},
"source": [
"#### Titre du document"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"hideCode": true,
"hidePrompt": true
},
"outputs": [
{
"data": {
"text/plain": [
"4"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"2+2"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"hideCode": true,
"hidePrompt": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"10\n"
]
}
],
"source": [
"x=10\n",
"print (x)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"hideCode": true,
"hidePrompt": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"20\n"
]
}
],
"source": [
"x=x+10\n",
"print (x)"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": true,
"hidePrompt": true
},
"source": [
"### Petit exemple de complétion"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"hideCode": true,
"hidePrompt": true
},
"outputs": [],
"source": [
"import numpy as np\n",
"mu, sigma=100,15"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"hideCode": true,
"hidePrompt": true
},
"outputs": [],
"source": [
"x=np.random.normal(loc=mu, scale=sigma, size=10000)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"hideCode": true,
"hidePrompt": true
},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"hideCode": true,
"hidePrompt": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD8CAYAAACRkhiPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAEhNJREFUeJzt3W2MXOd53vH/FcpmZCeCqYpSGZIoVYMuKgkIHbEsW6OFYwURExeh8sEAjTZiURUMBLlIivSFSoAm+UBATpMYEFCpYGpVVOpaIBK7IiqptUKkNQIoYlaqLIqSCTEhI63JiusYaZQWYEP67od5VI+p2d3ZXXJnl8//BxzMmfs8Z85zgy/XnjNnZlNVSJL69D2TnoAkaXIMAUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLHrpv0BOZz00031ZYtWyY9DUlaVV588cVvVtX6+cat+BDYsmULU1NTk56GJK0qSf54nHFeDpKkjhkCktQxQ0CSOmYISFLHDAFJ6pghIEkdMwQkqWOGgCR1zBCQpI6t+E8MS/PZsv/piRz3zEOfnMhxpSvJMwFJ6pghIEkdmzcEknxvkmNJvpbkRJJfbvUbkzyX5I32uG5onweTnEpyMsndQ/U7kxxv2x5OkqvTliRpHOOcCVwAPlFVPwhsA3Yl2QnsB45W1VbgaHtOktuAPcDtwC7gkSRr2ms9CuwDtrZl1xXsRZK0QPOGQA38eXv6vrYUsBs41OqHgHva+m7gyaq6UFWngVPAjiQbgBuq6vmqKuCJoX0kSRMw1nsCSdYkeRk4DzxXVS8At1TVOYD2eHMbvhF4a2j36Vbb2NYvr4863r4kU0mmZmZmFtKPJGkBxgqBqrpUVduATQx+qr9jjuGjrvPXHPVRxztYVduravv69fP+YhxJ0iIt6O6gqvpT4L8xuJb/drvEQ3s834ZNA5uHdtsEnG31TSPqkqQJGefuoPVJPtTWrwd+BPg6cATY24btBZ5q60eAPUnWJrmVwRvAx9olo3eS7Gx3Bd07tI8kaQLG+cTwBuBQu8Pne4DDVfWfkzwPHE5yH/Am8CmAqjqR5DDwGnAReKCqLrXXuh94HLgeeLYtkqQJmTcEquoV4KMj6n8C3DXLPgeAAyPqU8Bc7ydIkpaRnxiWpI4ZApLUMUNAkjpmCEhSxwwBSeqYISBJHTMEJKljhoAkdcwQkKSOGQKS1DFDQJI6ZghIUscMAUnq2DhfJS3Na8v+pyc9BUmL4JmAJHXMEJCkjhkCktQxQ0CSOmYISFLHDAFJ6pghIEkdMwQkqWOGgCR1zBCQpI7NGwJJNif53SSvJzmR5Gda/ZeSfCPJy2358aF9HkxyKsnJJHcP1e9McrxtezhJrk5bkqRxjPPdQReBn6uql5J8P/Bikufats9V1a8OD05yG7AHuB34AeB3knykqi4BjwL7gN8HngF2Ac9emVYkSQs175lAVZ2rqpfa+jvA68DGOXbZDTxZVReq6jRwCtiRZANwQ1U9X1UFPAHcs+QOJEmLtqD3BJJsAT4KvNBKn0nySpLHkqxrtY3AW0O7TbfaxrZ+eV2SNCFjh0CS7wN+G/jZqvozBpd2PgxsA84Bv/bu0BG71xz1Ucfal2QqydTMzMy4U5QkLdBYIZDkfQwC4AtV9SWAqnq7qi5V1beB3wB2tOHTwOah3TcBZ1t904j6e1TVwaraXlXb169fv5B+JEkLMM7dQQE+D7xeVb8+VN8wNOwngVfb+hFgT5K1SW4FtgLHquoc8E6Sne017wWeukJ9SJIWYZy7gz4G/BRwPMnLrfbzwKeTbGNwSecM8NMAVXUiyWHgNQZ3Fj3Q7gwCuB94HLiewV1B3hkkSRM0bwhU1e8x+nr+M3PscwA4MKI+BdyxkAlKkq4ePzEsSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLHDAFJ6pghIEkdMwQkqWOGgCR1zBCQpI4ZApLUMUNAkjpmCEhSxwwBSeqYISBJHTMEJKljhoAkdcwQkKSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR2bNwSSbE7yu0leT3Iiyc+0+o1JnkvyRntcN7TPg0lOJTmZ5O6h+p1JjrdtDyfJ1WlLkjSOcc4ELgI/V1V/HdgJPJDkNmA/cLSqtgJH23Patj3A7cAu4JEka9prPQrsA7a2ZdcV7EWStEDzhkBVnauql9r6O8DrwEZgN3CoDTsE3NPWdwNPVtWFqjoNnAJ2JNkA3FBVz1dVAU8M7SNJmoAFvSeQZAvwUeAF4JaqOgeDoABubsM2Am8N7Tbdahvb+uX1UcfZl2QqydTMzMxCpihJWoCxQyDJ9wG/DfxsVf3ZXENH1GqO+nuLVQerantVbV+/fv24U5QkLdBYIZDkfQwC4AtV9aVWfrtd4qE9nm/1aWDz0O6bgLOtvmlEXZI0IePcHRTg88DrVfXrQ5uOAHvb+l7gqaH6niRrk9zK4A3gY+2S0TtJdrbXvHdoH0nSBFw3xpiPAT8FHE/ycqv9PPAQcDjJfcCbwKcAqupEksPAawzuLHqgqi61/e4HHgeuB55tiyRpQuYNgar6PUZfzwe4a5Z9DgAHRtSngDsWMkFJ0tXjJ4YlqWOGgCR1zBCQpI4ZApLUsXHuDpI0wpb9T0/s2Gce+uTEjq1ri2cCktQxQ0CSOmYISFLHDAFJ6pghIEkdMwQkqWOGgCR1zBCQpI4ZApLUMUNAkjpmCEhSxwwBSeqYISBJHTMEJKljhoAkdcwQkKSOGQKS1DFDQJI6ZghIUsfmDYEkjyU5n+TVodovJflGkpfb8uND2x5McirJySR3D9XvTHK8bXs4Sa58O5KkhRjnTOBxYNeI+ueqaltbngFIchuwB7i97fNIkjVt/KPAPmBrW0a9piRpGc0bAlX1VeBbY77ebuDJqrpQVaeBU8COJBuAG6rq+aoq4AngnsVOWpJ0ZSzlPYHPJHmlXS5a12obgbeGxky32sa2fnldkjRBiw2BR4EPA9uAc8Cvtfqo6/w1R32kJPuSTCWZmpmZWeQUJUnzWVQIVNXbVXWpqr4N/Aawo22aBjYPDd0EnG31TSPqs73+waraXlXb169fv5gpSpLGsKgQaNf43/WTwLt3Dh0B9iRZm+RWBm8AH6uqc8A7SXa2u4LuBZ5awrwlSVfAdfMNSPJF4OPATUmmgV8EPp5kG4NLOmeAnwaoqhNJDgOvAReBB6rqUnup+xncaXQ98GxbJEkTNG8IVNWnR5Q/P8f4A8CBEfUp4I4FzU6SdFX5iWFJ6pghIEkdMwQkqWOGgCR1zBCQpI4ZApLUMUNAkjpmCEhSxwwBSeqYISBJHTMEJKljhoAkdWzeL5DT6rJl/9OTnoKkVcQzAUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLHDAFJ6pghIEkdMwQkqWPzhkCSx5KcT/LqUO3GJM8leaM9rhva9mCSU0lOJrl7qH5nkuNt28NJcuXbkSQtxDhnAo8Duy6r7QeOVtVW4Gh7TpLbgD3A7W2fR5Ksafs8CuwDtrbl8teUJC2zeUOgqr4KfOuy8m7gUFs/BNwzVH+yqi5U1WngFLAjyQbghqp6vqoKeGJoH0nShCz2PYFbquocQHu8udU3Am8NjZtutY1t/fK6JGmCrvQbw6Ou89cc9dEvkuxLMpVkamZm5opNTpL03RYbAm+3Szy0x/OtPg1sHhq3CTjb6ptG1EeqqoNVtb2qtq9fv36RU5QkzWexIXAE2NvW9wJPDdX3JFmb5FYGbwAfa5eM3kmys90VdO/QPpKkCZn310sm+SLwceCmJNPALwIPAYeT3Ae8CXwKoKpOJDkMvAZcBB6oqkvtpe5ncKfR9cCzbZEkTdC8IVBVn55l012zjD8AHBhRnwLuWNDsJElXlZ8YlqSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLHDAFJ6pghIEkdMwQkqWOGgCR1zBCQpI4ZApLUMUNAkjpmCEhSx+b9RfOSVp4t+5+eyHHPPPTJiRxXV49nApLUMUNAkjpmCEhSxwwBSerYkkIgyZkkx5O8nGSq1W5M8lySN9rjuqHxDyY5leRkkruXOnlJ0tJciTOBH66qbVW1vT3fDxytqq3A0facJLcBe4DbgV3AI0nWXIHjS5IW6WpcDtoNHGrrh4B7hupPVtWFqjoNnAJ2XIXjS5LGtNQQKOArSV5Msq/VbqmqcwDt8eZW3wi8NbTvdKu9R5J9SaaSTM3MzCxxipKk2Sz1w2Ifq6qzSW4Gnkvy9TnGZkStRg2sqoPAQYDt27ePHCNJWrolnQlU1dn2eB74MoPLO28n2QDQHs+34dPA5qHdNwFnl3J8SdLSLDoEknwwyfe/uw78KPAqcATY24btBZ5q60eAPUnWJrkV2AocW+zxJUlLt5TLQbcAX07y7uv8x6r6L0n+ADic5D7gTeBTAFV1Islh4DXgIvBAVV1a0uwlSUuy6BCoqj8CfnBE/U+Au2bZ5wBwYLHHlCRdWX5iWJI6ZghIUscMAUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktSxpX6BnEbYsv/pSU9BksbimYAkdcwQkKSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktQxvztI0tgm9b1YZx765ESO2wPPBCSpY4aAJHXMEJCkji17CCTZleRkklNJ9i/38SVJ37GsIZBkDfBvgB8DbgM+neS25ZyDJOk7lvvuoB3Aqar6I4AkTwK7gdeuxsH8DV+SNLflDoGNwFtDz6eBv7nMc5C0ykzyB7pr/fbU5Q6BjKjVewYl+4B97emfJzl5VWd1Zd0EfHPSk7gCroU+roUe4NroY9X2kM9+19PV1MdfGWfQcofANLB56Pkm4Ozlg6rqIHBwuSZ1JSWZqqrtk57HUl0LfVwLPcC10ce10ANcO30MW+67g/4A2Jrk1iTvB/YAR5Z5DpKkZlnPBKrqYpLPAP8VWAM8VlUnlnMOkqTvWPbvDqqqZ4Bnlvu4y2hVXsYa4Vro41roAa6NPq6FHuDa6eP/S9V73peVJHXCr42QpI4ZAkuU5ENJfivJ15O8nuRvJbkxyXNJ3miP6yY9z7kk+adJTiR5NckXk3zvaughyWNJzid5dag267yTPNi+ruRkkrsnM+vvNksP/7r9fXolyZeTfGho24rrAUb3MbTtnyWpJDcN1VZcH7P1kOSftHmeSPIrQ/UV18OiVJXLEhbgEPCP2/r7gQ8BvwLsb7X9wGcnPc855r8ROA1c354fBv7haugB+LvADwGvDtVGzpvB15R8DVgL3Ar8IbBmhfbwo8B1bf2zK72H2fpo9c0MbgT5Y+CmldzHLH8WPwz8DrC2Pb95JfewmMUzgSVIcgODvzifB6iq/1tVf8rgqzAOtWGHgHsmM8OxXQdcn+Q64AMMPrux4nuoqq8C37qsPNu8dwNPVtWFqjoNnGLwNSYTNaqHqvpKVV1sT3+fwedpYIX2ALP+WQB8DvgXfPeHQldkH7P0cD/wUFVdaGPOt/qK7GExDIGl+avADPDvk/yPJP8uyQeBW6rqHEB7vHmSk5xLVX0D+FXgTeAc8L+q6iusoh4uM9u8R31lycZlntti/CPg2ba+qnpI8hPAN6rqa5dtWk19fAT4O0leSPLfk/yNVl9NPczJEFia6xicPj5aVR8F/jeDSxCrRrtmvpvBKe0PAB9M8g8mO6urYqyvLFlJkvwCcBH4wrulEcNWZA9JPgD8AvCvRm0eUVuRfTD4N74O2An8c+BwkrC6epiTIbA008B0Vb3Qnv8Wg1B4O8kGgPZ4fpb9V4IfAU5X1UxV/QXwJeBvs7p6GDbbvMf6ypKVIsle4O8Bf7/aRWhWVw8fZvCDxdeSnGEw15eS/GVWVx/TwJdq4BjwbQbfH7SaepiTIbAEVfU/gbeS/LVWuovB12IfAfa22l7gqQlMb1xvAjuTfKD9hHMX8Dqrq4dhs837CLAnydoktwJbgWMTmN+8kuwC/iXwE1X1f4Y2rZoequp4Vd1cVVuqaguD/zR/qP2bWTV9AP8J+ARAko8wuPnjm6yuHuY26XemV/sCbAOmgFcY/IVZB/wl4CjwRnu8cdLznKeHXwa+DrwK/CaDOx5WfA/AFxm8j/EXDP6TuW+ueTO4PPGHwEngxyY9/zl6OMXgevPLbfm3K7mH2fq4bPsZ2t1BK7WPWf4s3g/8h/Zv4yXgEyu5h8UsfmJYkjrm5SBJ6pghIEkdMwQkqWOGgCR1zBCQpI4ZApLUMUNAkjpmCEhSx/4fUk9+evIPNxoAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"plt.hist(x)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": true,
"hidePrompt": true
},
"source": [
"### Utilisation d'autres langages"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"%load_ext rpy2.ipython"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAMAAABKCk6nAAAC9FBMVEUAAAABAQECAgIDAwMEBAQFBQUGBgYHBwcJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUWFhYXFxcYGBgZGRkbGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7///+WLN6DAAAXMElEQVR4nO2deWAUVbaH4Y0zvPGJqDg4oujgE0d4M+NbTDqk01kIYUsMssqmLLKp7CAYQBYViCKo7AIjghJkkV2RLYAgSAIigRAEJOyEJSGGrH3/eVUdGDrdTXVX1721nP59f9wOVbdOHfPZldruPdUYIE01oxMAYoFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HE0SD4chowAV+VihK8tONsYDy248IEfxL8toAb3bULLs7OzCnzXgzBpkCz4HOta9R58uE/drvquQKCTYFmwbEjrkvtxT6Jnisg2BRoFvxAueuj5CHPFRBsCjQLfibd9bGpkecKCDYFmgWvfyjmtWH9oh/e5LkCgk2B9rPo60snjJy4vMBrOQSbAg6XSZXkeS6AYF24clF5vWbBRxx1O5yVPmt4roBgHchrmdQu5oRSD82CbSkZk+rnQLAxdNrB2NF4pR6aBd9XwdiGBufdBP/wnovEvgEmCYInSm4Sryv00Cy4wU6pWdzo5B3Bpze5SE4KKEWgBZfghCKFHpoFr6i5TG7rVvdcMaCd322BVgbPZmxtB6Ue2s+ic8/I7ZX5nsshWAeKh9vtvZWO0Pwuky54LoBgU8BNsNdZNASbAs2CL98Cgs2JZsHVf1eJV08INgWaBQ8ZW/mJb7A50Sy4LDHT9QnB5kTcwwYINgXcBHsBwaYAgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiSOurA4EmwJxZXUg2BSIK6sDwaZAXFkdCDYF4srqQLApEFdWB4JNgbiyOhBsCnCZRBxcJhEHl0nEEXCZ9FWsi8ejtWUGuIDLJOLgMok4uEwiDsrqEAdldYiDsjrEQVkd4qCsDnFQVoc4KKtDHLxVSRwIJg4EEweCiQPBxIFga3My9b2fFTtAsKXZEr1qQ8vFSj0g2NJEX2OsJMyp0AOCLU3UZwnx09tcVOgBwZbmqf6Fxe/+Gd9gsjSM376nfYNShR4QbGmiDr01fHdrr+cAbkCwpWkp6ctrrNQDgi3NMduocbY9Sj0g2NqUpG8uVOwAwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMjKw+L35Q7PZvCKbFQXvG5U9bub3DA8G0ePmo1PTLuLMAgsVwuKU9cp4B+21SIjVTV91ZAMFCuGE7yUq7r/LfkTfD1ktNi1N3FkCwEDZNkJrz7fXf8XX72wtbT3FbAMFCWJMqNVdfMGDPZRsWZLv/G4KFkBd5g7Hxc41Og0GwKL4Lf8k+TGnEgV5AsCjOlBidgQtM6U8cTOlPHEzpTxxUPvPBbxVGZ8APTOnvxaHYZrYh5UZnwQtM6e9JiS2XsdRUo9PghYAp/X+a7SKmhcbUDGL/IKkpjTM6DV7wuQ6uyHW7TspOc9G8lYa0DCRzIINgN4456nQ6/p9/qJ3uucKqh+jSiBOMTZxmdBq80CzYMfXQuLrL2Mb/9VxhVcHsSLO4iBQy59GaBT/FmPOBys+qWFawdJ5ldAIc0Sz42VNs/z2n2KWnPVdYWDAlNAteWqvhI4ue7FhvkucKCDYF2s+iz2zPZwenfuu1HIJNAR4XCqL8xA2jU3ABwWLYEPZy3OtmOBWHYCFcshcxNnmm0WkwCBbE6vel5lqS0WkwCBbEd+Ol5mxHo9NgECyIQls2u9llndFpMAgWxbHkaPvnRichA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAsKVxLmjaZKpS4TMItjbvD/qtZMobSj0g2NLY5ZdGolG7kCxRcoPahXRplcPY5UilHhCsF1fXbbrJPWiObeTbth+UekCwTmyNmDzOdox72JIdm39T7ADBOhGWz9gvBoyohWB9qJy3Mkr/HUOwPpRES02ZXf8dQ7BODHinMK/nHP33C8E6UT6r2QvLVW5ztE1UwhaN+4Vg83JFOuvOa5rhv6MSEGxevpwhNfsGawsCweZl9hKpyemhLQgEm5cjiRWMpXyhLQgEG0b+kjnKv3w2L3JgwiCNewlM8GlXq3jP0wsIVuZY2CeLm/9Tuc+NDKUHRQERmOBnXXurpSoyBCuTnMNYWXix/47aCETwgjrVa0j8m7rp/SBYGddty/6HRO8moG+wM+myxHV1kSFYmSb5txuhBHaILtrJCidPUTdtDAQr823TA6feGih8N4EJ7jiEdY3tqs4YBPthf79uX4gvvBOY4Ccqbta86qyvKjIEm4LABNd3rnUwZ13ffVBWx8wEJrhT3KPLWYrPKdxRVsfcBCa4ZNlOxqZd8tUDZXXMDcrqeLNt7PTLRufAjUAE179cvxJfPeiV1Rn96tYvns8xOgteBCJ4X9m+Snz1IFdW50KC1BwxwyR1XBBQVmfpcy7qxGhMzSDSU+TWgPcfxRDQIfoWT9y1W56P25hW/Qafk19ePm7R5L0JRHBm5oTOG/euSfrAV4+MLuxwwz/8/n+8Xtq3qmA2eODeNeGHjc6CF4Edov8h31IrfcZXj/9awBwflJdPtXuusKxgtn7oe2eNzoEbgQl+7LzUnHnEV497y1g9563SOlWwrmBSBCZ4Yq1WXRNrjfbVIyrV2X0LY3P/23MFBJuCAM+is2ZOnHHAZ49fGz/m+Pe/13va68k1BJsCDi/dnVi5YMV+7/oTEGwK8FalGMoX9hl7TrlL1vD+a8QnAsFiaJt6ZEPYCaUe22N2HhowSngiECyE/X2kZl8/pS5N5QesMQVKXXgAwUJY9rHU3Gyq1MV1M/S1n0RnAsFCONJBajYNVeqS9CtjFTb+87J4AMGBcPaM2i0G9173kU1xWMLhsH+uSp6tMmzFCbVDHSDYP7lxHV6K/VXlRjumLCpS7pE3Z6ra19732boltlWeVccTCPZP0gHGfm5pdBYS5WGXGFupbjgaBPulLFZu44WPIvLP4b5yq+5RNQT7xemQ25hyo/Ng7FRXqSmPVrUNBPun7wLGPu9ldBYyTXaw8pEfqdoEgv1TNCwqaoi6U5tASO/aeo7Kw8KFbo7ID9QNd4Fgo1iTdDzvvd7CdwPBRhFXKDXNroneDQQbhZkGgAcFBCvTNouxkrAS0buBYD7kpl9QucXJ8Elz4pYJScYdCObCkMSUpuNVblO0eonqW9zqgWAerB4iNd13Gp2GLyCYB0P3Ss037xidhi8gmAfvrpeaxbOMTsMXEMyDk5Gn2NEItadZugDBXDjQOqrjUZXbLEuIHe/nkTEHINgoPnuloHxhB+G7gWCjiJHvcbwgfK4ICDYK163KvsKHqUKwUXSVLq0Kn/cxwRhfIJhlfZWpx26urPm2yinVRfugcRFeM5twB4IHd/yoZ2fvsXO82dw4dYIt231J+d7vhI9rgGC2TR5f8u7nwvcj1y48YcCrmSEvePI6qTnUX/RuzrkuiFC7UH8WyTcY1wq/jVwiv5qJ2oUGkG/bWrrPJn7SlUETCi51nyt8N16EvGB2fmBsH8WBvHwon92i9Urxu/ECgokDwcSBYOJAMHEgWBA/frxc+CuxgQDBYnjr5bTJjYUPWwgADoJRdcWb7DZSs36E0WkwDoJRdcUXrll2ihKMToNxEIyqK77Y95rUZIgfO+gfVF0RgjNpxultNq9J0g1As2B6VVcCINUWlVSlLsuaSEf0FvcFpTM7Dz+lb1K+0SyYXNWVAJg3rIIdbex2FXSgeSG7FvOLcRndHQFVV35Jc9Hc668yGZrJ8zkMcasyNHar1KyYZlA6inC6DnafF3ffey4imgedlNlpIn95R+66s8D189opRuWjhGbBR1zUPnLEcwXhQ/QU6bt62eb2Ct2OTuWsNFH4xKLBoFlwtTrPStzz7LOeKwgLLu/vaBO5133JrLD2zy8xKh1FNAve+vfRNxmr472CsGDpqtCzEmvFefHFvINC+9/g4jENN4WcYOvA4yQrO7pTbe+lEGwK+JxFL0zyXgbBpgCPC31QKGTi0SJDng9DsBcHo1s0HsRd8enmCbGddRiq4gkEe1IivyT94WTeYZseZGz1q7yj+geCPflxMLs9CThHrr0gtxi6YgIODJCakiaco+a77sxDsAkobZzDnOPUzbodAK12Mfb5G7yj+oeY4DV9hqq9I3wluUGzKk9us1tE297mfl/qQnuHvZ/4SXW8oCV49Os/74n/TtUm+Q/0+GZwzarP5sWUZzCm6AMpwUXy37j8OFXbDJAHZQ9oJSQfM0BKcLarcoa6M5kEeZLYVV4vHJGBlODSsDLGcluo2masTWo6dBKTkAkgJZjNb7ViYbi6s6yKx58fE1v7hsodXTnm8Re18Ij6MpMXj4uf+4WYYJY1fa7a6o0VE1uOUHmXuLRLyx7h29yXTIrsHTFTXZAbycmvROxXt00QEBOsD+PnM1ZgK7yz4Lue0v8o7X5UFaT/OunaySb8OwzBQRBXKjUp6XcWjNgtNesnqQriOhfsle2vm1YgOAhayH+yB2bcWTBevvZO+1hVEIf85e0ofPYXCA6CJb1L2P4otxGVWXF57Jz9tKogU9+qYFuacc7MGwgOhrl2R6dc9wXbmjia7b1bb984UyMdPYXPJgzB1IFg4kAwcSCYONQFl2fs8XgIm7P9ijGpGANxwWftr71p2+22oKzDS2Mc8w3LR3+IC26XydgVm9uCqbMYq0gwxdh7fSAu2HU/sLPbHYhk+fg880uD0jEA6oLl+4HN3B4G9pTrk72t7q0eS0Nc8LRBJc753dwW7G52me2OVP/s1rLQElw0PqZplXHYznmxjnFVTqO3trD3Pue+4ES3qA5V3hHIHxHdfK37gvKP4+KmCy9wJAhagjvNLy/srW7e/Cu2AyynsduU787mK51X265265IytqR0ohmmJQwGUoKvy29IlkWr2mbhp1LzjVt59mPdpSbf/cWuSLmxm3QEvz9ICT4uu1H5VuUU+Wh88PU7C3aNlBqn486CUtd7uAkGvLTOA1KCK54vYCzjJVXbfP+K1IxOu7OgIKKEsY0D3brE/8rYGd6j0fSClGC21TZ6kP28YhfnzmVVZ6Qb22pC277uC1ZEvt0vPt9twWHbmyNth7glqS+0BLMbW/cpjxApShj0cVLVGctyv/GoqnNtc2bVP7jFu3YWc0nPAIgJ9stE+SrqBTNMA6sToSY4SZ5mf7Y55ywTQqgJ7ntQakZuNzoN/Qg1wYfsPxeviLXqbakgMLHgWVH2Xp4zBmrnp1eajsn3340M5hU87/VStq2JRe8fmQfzltWJk0eEdc/x2w8oYt6yOg75yztI/PA74pi3rM6QlYxdDzdFeTgrY96yOoXJbfradmqL4YOSZdN/ULvN2blzz3BPRCfMXFbnbFap1hBeXLdPWd5jqLpttkR+tijKq6qMRQi1sjop8pP8l35WtY39GmMFjcXkIxwBZXWWPueiTozG1ISQKJ8xzFmsZpPK58GuUjoWhNt1sNfUGOb8Br+xR2oG7vLbz50I6SKwPFxMPsLRXlbHUbeDPEy9hucKcwo+Ebb51IxW6m6fzOt4OKuLyilWTINmwbaUjEn1c0wi+FzbqIjhymdmuSO7zlR77ra1T+/NwSdlLJoF31fB2IYG580hOF66Apo+Wv/9mhjNghvIl6qLG500g+AL7eW2ykt35ft3W/TsiBOaBa+ouUxu61b3XGGA4NOd5dZd8Bn762+Gf697IiZC+1l0rusmzxWvIZlGHKLt0n/NV+6zbrc7IKVm1RNgLpj3caE3RXNHfqk8M9yxuKS4Lu6HZK/RhSGHhQQXRM7Z9W6Sn7n/rlUdV+Y1ujDksJDgVPlVuZT1qraZNrDY+Wk3//3oYiHBPeWXXVe/r2ob56dxUeMtOuiEDxYSnCqPyx+9jnNU6lhIcEHEpz9MaaV5/t2K6zySsQwWEsx+mzl0sebSJePDkhqH0GvRlhLMg8+HOVl+pPg5QE1DqAnuII89/HCl0WnoR6gJds0CnLrG6DT0I9QEr+pVxs5HXDM6Df0INcFsRnh0k1B62TrkBDMWWqNhQlBwaAHBxIFg4ugluDCr8G4dNVCcFVr3HYNAJ8EfRvaNVPccKBDSbL2bDAitcybV6CN4V2cnc76cfvfOQfGrXGJu3ELOUYmhj2BX6bf0lOCD+WTJHKk5q25iu5BDH8FTV0nNOnXFG/3ztXzQP/oq56jE0EfwiagL7GK08q7Uk2/LYTeSeR/4iaHTSdbuZo4EdSO+AuHoi/bYr7lHpQWug4kDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxDGx4BUJjlGhPLKXD+YVnNYp37nMaw5boBLzCo6Xh/V2DqFa3WIwr2DX9BpD9mkLAswruO8Wxm6Gh/TofB7oJThzSabK7a/G9hvTWN2MHMAbnQT36j6zR3eV7z86M7cV+O8FlNFH8Oo3pSZlRfDBQLDoI3i0PGnCbqtWSbc0+gie9ZnUfPFR8MFAsOgj+Gr49pvp4V6TwgPx6FT57NzAhAFnVSUG+GDeymeACwIqn1360UWHZK25AQ4IqHy2fbiL2B7aMgNcEFf5bOknQaYEeCKu8hkEmwIBlc9uAcGmQNx1MASbAggmDgQTR5zgjX+LVeRPDzwogHvvFxG15n0iot5/r4ioD9Su8mtuoHwDUYNgf4gpdjNmq4ioi+aKiPr9myKiXmyrpjcEu4DgIIBgCA4CCIbgIIDgIIBg4oK7nhERdZyQabOWeNVW5cGeUSKiXm6vprdAwWJeiS3UXDjLFyXFIqI6RUzAq/IXK1AwMAMQTBwIJg4EEweCiQPBxIFg4kAwcUQJLq5Wo0aNNnxjlg2tLtcF3tDwwfjzvKPyzvfrZ+63Z3PPtTKqqlxFCT5fm3/MxDG/k1Rcr/192agXeUflnG/u/TsrRjl453orqqpcRQk+Wp9/zEwmq0iLlyTX4HdrsTIq53xz0xjLeJR3rreiqspVlOA9f3Y8HJvNO6qsYsJr0g91eIaWowrId1I7AbnKUVXlKkrw4V5Hbo7wGu2iFVnFyGHSD0+qnfHFX1T++W58MldArnJUVbmKPIsu/QPvEcOyion9pB8ezuEcVYZrvosb5AjI1RVVJuBcRQk+d1g6M739m+OGHHB5JGNn/uhjQLqmqLzzXdVIPnnmnWtlVFW5ihK8/vGT5W/9H++o8n9VQe3NZX268I7KOd+rdU/KH5xzvRVVVa7CDtHvPvpQ/EmuEfNq1JAuAC+wb//6YAt+s4Hcjso33/nVpUvVGnmcc70dVU2uuJNFHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBbmQKGG9jNBDsBgRbnZJOf3miY9Hehv0d/0hnbE2jv8Rc+tfHO3X/NgGCLc6yOGfF4J2Z1daz9U+zMw8eZKlJtz+yap2r6AjBFmfHo2tvSkfiWoyVVb80O46xG78vvfUxsxVjGyHY6qTZa75cmFlP+une7En31qtXr9a5Wx8TuzK2F4KtT17M5Mz/cLKb1S4vqqzGeOtjRpL01xiCLc60MU5ntymZ96Sxz/7KLvwpm+3tf/vjQK2zZckQbHEuNX/siTY3Mp8a/HSDnYytbfTUczv+9ZHyyDMfPGF0gvwJLcGVULzcvSsQTBwIJk4oCg4pIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4vw/C6hxe08+0jwAAAAASUVORK5CYII=\n"
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"%%R\n",
"plot(cars)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"hide_code_all_hidden": true,
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
{
"cells": [],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment