From 7138a75ca7b48701472fd526ae088d24685bf3d4 Mon Sep 17 00:00:00 2001
From: 55f88d13fde26eae718b7fd1cc4c4751
<55f88d13fde26eae718b7fd1cc4c4751@app-learninglab.inria.fr>
Date: Thu, 9 Nov 2023 15:45:13 +0000
Subject: [PATCH] =?UTF-8?q?juste=20la=20copie=20de=20l'exo=20d'avant,=20?=
=?UTF-8?q?=C3=A0=20modifier=20pour=20le=20nouveau=20jeu=20de=20donn=C3=A9?=
=?UTF-8?q?es?=
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
---
.../exo1/analyse-syndrome-grippal-Copy1.ipynb | 2547 +++++++++++++++++
module3/exo2/exercice.ipynb | 2535 +++++++++++++++-
2 files changed, 5079 insertions(+), 3 deletions(-)
create mode 100644 module3/exo1/analyse-syndrome-grippal-Copy1.ipynb
diff --git a/module3/exo1/analyse-syndrome-grippal-Copy1.ipynb b/module3/exo1/analyse-syndrome-grippal-Copy1.ipynb
new file mode 100644
index 0000000..039e144
--- /dev/null
+++ b/module3/exo1/analyse-syndrome-grippal-Copy1.ipynb
@@ -0,0 +1,2547 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Incidence du syndrome grippal"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pandas as pd\n",
+ "import isoweek"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Les données de l'incidence du syndrome grippal sont disponibles du site Web du [Réseau Sentinelles](http://www.sentiweb.fr/). Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1984 et se termine avec une semaine récente."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Pour nous protéger contre une éventuelle disparition ou modification du serveur du Réseau Sentinelles, nous faisons une copie locale de ce jeux de données que nous préservons avec notre analyse. Il est inutile et même risquée de télécharger les données à chaque exécution, car dans le cas d'une panne nous pourrions remplacer nos données par un fichier défectueux. Pour cette raison, nous téléchargeons les données seulement si la copie locale n'existe pas."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data_file = \"incidence-PAY-3.csv\"\n",
+ "\n",
+ "import os\n",
+ "import urllib.request\n",
+ "if not os.path.exists(data_file):\n",
+ " urllib.request.urlretrieve(data_url, data_file)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Voici l'explication des colonnes données [sur le site d'origine](https://ns.sentiweb.fr/incidence/csv-schema-v1.json):\n",
+ "\n",
+ "| Nom de colonne | Libellé de colonne |\n",
+ "|----------------|-----------------------------------------------------------------------------------------------------------------------------------|\n",
+ "| week | Semaine calendaire (ISO 8601) |\n",
+ "| indicator | Code de l'indicateur de surveillance |\n",
+ "| inc | Estimation de l'incidence de consultations en nombre de cas |\n",
+ "| inc_low | Estimation de la borne inférieure de l'IC95% du nombre de cas de consultation |\n",
+ "| inc_up | Estimation de la borne supérieure de l'IC95% du nombre de cas de consultation |\n",
+ "| inc100 | Estimation du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
+ "| inc100_low | Estimation de la borne inférieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
+ "| inc100_up | Estimation de la borne supérieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
+ "| geo_insee | Code de la zone géographique concernée (Code INSEE) http://www.insee.fr/fr/methodes/nomenclatures/cog/ |\n",
+ "| geo_name | Libellé de la zone géographique (ce libellé peut être modifié sans préavis) |\n",
+ "\n",
+ "La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant `skiprows=1`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 202344 \n",
+ " 3 \n",
+ " 58340 \n",
+ " 48804.0 \n",
+ " 67876.0 \n",
+ " 88 \n",
+ " 74.0 \n",
+ " 102.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 202343 \n",
+ " 3 \n",
+ " 46200 \n",
+ " 39090.0 \n",
+ " 53310.0 \n",
+ " 70 \n",
+ " 59.0 \n",
+ " 81.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 202342 \n",
+ " 3 \n",
+ " 56842 \n",
+ " 49277.0 \n",
+ " 64407.0 \n",
+ " 86 \n",
+ " 75.0 \n",
+ " 97.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 202341 \n",
+ " 3 \n",
+ " 58357 \n",
+ " 51032.0 \n",
+ " 65682.0 \n",
+ " 88 \n",
+ " 77.0 \n",
+ " 99.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 202340 \n",
+ " 3 \n",
+ " 68894 \n",
+ " 60069.0 \n",
+ " 77719.0 \n",
+ " 104 \n",
+ " 91.0 \n",
+ " 117.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202339 \n",
+ " 3 \n",
+ " 72003 \n",
+ " 63452.0 \n",
+ " 80554.0 \n",
+ " 108 \n",
+ " 95.0 \n",
+ " 121.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 202338 \n",
+ " 3 \n",
+ " 63218 \n",
+ " 55227.0 \n",
+ " 71209.0 \n",
+ " 95 \n",
+ " 83.0 \n",
+ " 107.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 202337 \n",
+ " 3 \n",
+ " 49085 \n",
+ " 42079.0 \n",
+ " 56091.0 \n",
+ " 74 \n",
+ " 63.0 \n",
+ " 85.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 202336 \n",
+ " 3 \n",
+ " 38247 \n",
+ " 32237.0 \n",
+ " 44257.0 \n",
+ " 58 \n",
+ " 49.0 \n",
+ " 67.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 202335 \n",
+ " 3 \n",
+ " 31695 \n",
+ " 26013.0 \n",
+ " 37377.0 \n",
+ " 48 \n",
+ " 39.0 \n",
+ " 57.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 202334 \n",
+ " 3 \n",
+ " 26663 \n",
+ " 21057.0 \n",
+ " 32269.0 \n",
+ " 40 \n",
+ " 32.0 \n",
+ " 48.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 202333 \n",
+ " 3 \n",
+ " 19144 \n",
+ " 13161.0 \n",
+ " 25127.0 \n",
+ " 29 \n",
+ " 20.0 \n",
+ " 38.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 202332 \n",
+ " 3 \n",
+ " 14641 \n",
+ " 10285.0 \n",
+ " 18997.0 \n",
+ " 22 \n",
+ " 15.0 \n",
+ " 29.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 202331 \n",
+ " 3 \n",
+ " 15286 \n",
+ " 10705.0 \n",
+ " 19867.0 \n",
+ " 23 \n",
+ " 16.0 \n",
+ " 30.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 202330 \n",
+ " 3 \n",
+ " 13205 \n",
+ " 8647.0 \n",
+ " 17763.0 \n",
+ " 20 \n",
+ " 13.0 \n",
+ " 27.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 202329 \n",
+ " 3 \n",
+ " 11122 \n",
+ " 7113.0 \n",
+ " 15131.0 \n",
+ " 17 \n",
+ " 11.0 \n",
+ " 23.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 202328 \n",
+ " 3 \n",
+ " 9179 \n",
+ " 5703.0 \n",
+ " 12655.0 \n",
+ " 14 \n",
+ " 9.0 \n",
+ " 19.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 202327 \n",
+ " 3 \n",
+ " 8999 \n",
+ " 5763.0 \n",
+ " 12235.0 \n",
+ " 14 \n",
+ " 9.0 \n",
+ " 19.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 202326 \n",
+ " 3 \n",
+ " 9023 \n",
+ " 5934.0 \n",
+ " 12112.0 \n",
+ " 14 \n",
+ " 9.0 \n",
+ " 19.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 202325 \n",
+ " 3 \n",
+ " 10090 \n",
+ " 6739.0 \n",
+ " 13441.0 \n",
+ " 15 \n",
+ " 10.0 \n",
+ " 20.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 202324 \n",
+ " 3 \n",
+ " 11308 \n",
+ " 7639.0 \n",
+ " 14977.0 \n",
+ " 17 \n",
+ " 11.0 \n",
+ " 23.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 202323 \n",
+ " 3 \n",
+ " 14300 \n",
+ " 10661.0 \n",
+ " 17939.0 \n",
+ " 22 \n",
+ " 17.0 \n",
+ " 27.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 202322 \n",
+ " 3 \n",
+ " 18303 \n",
+ " 13822.0 \n",
+ " 22784.0 \n",
+ " 28 \n",
+ " 21.0 \n",
+ " 35.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 202321 \n",
+ " 3 \n",
+ " 16460 \n",
+ " 12188.0 \n",
+ " 20732.0 \n",
+ " 25 \n",
+ " 19.0 \n",
+ " 31.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 202320 \n",
+ " 3 \n",
+ " 16162 \n",
+ " 11963.0 \n",
+ " 20361.0 \n",
+ " 24 \n",
+ " 18.0 \n",
+ " 30.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 202319 \n",
+ " 3 \n",
+ " 16901 \n",
+ " 12577.0 \n",
+ " 21225.0 \n",
+ " 25 \n",
+ " 18.0 \n",
+ " 32.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 202318 \n",
+ " 3 \n",
+ " 19929 \n",
+ " 15402.0 \n",
+ " 24456.0 \n",
+ " 30 \n",
+ " 23.0 \n",
+ " 37.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 202317 \n",
+ " 3 \n",
+ " 27007 \n",
+ " 21779.0 \n",
+ " 32235.0 \n",
+ " 41 \n",
+ " 33.0 \n",
+ " 49.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 202316 \n",
+ " 3 \n",
+ " 27875 \n",
+ " 22767.0 \n",
+ " 32983.0 \n",
+ " 42 \n",
+ " 34.0 \n",
+ " 50.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 202315 \n",
+ " 3 \n",
+ " 37455 \n",
+ " 30993.0 \n",
+ " 43917.0 \n",
+ " 56 \n",
+ " 46.0 \n",
+ " 66.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 2006 \n",
+ " 198521 \n",
+ " 3 \n",
+ " 26096 \n",
+ " 19621.0 \n",
+ " 32571.0 \n",
+ " 47 \n",
+ " 35.0 \n",
+ " 59.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2007 \n",
+ " 198520 \n",
+ " 3 \n",
+ " 27896 \n",
+ " 20885.0 \n",
+ " 34907.0 \n",
+ " 51 \n",
+ " 38.0 \n",
+ " 64.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2008 \n",
+ " 198519 \n",
+ " 3 \n",
+ " 43154 \n",
+ " 32821.0 \n",
+ " 53487.0 \n",
+ " 78 \n",
+ " 59.0 \n",
+ " 97.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2009 \n",
+ " 198518 \n",
+ " 3 \n",
+ " 40555 \n",
+ " 29935.0 \n",
+ " 51175.0 \n",
+ " 74 \n",
+ " 55.0 \n",
+ " 93.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2010 \n",
+ " 198517 \n",
+ " 3 \n",
+ " 34053 \n",
+ " 24366.0 \n",
+ " 43740.0 \n",
+ " 62 \n",
+ " 44.0 \n",
+ " 80.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2011 \n",
+ " 198516 \n",
+ " 3 \n",
+ " 50362 \n",
+ " 36451.0 \n",
+ " 64273.0 \n",
+ " 91 \n",
+ " 66.0 \n",
+ " 116.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2012 \n",
+ " 198515 \n",
+ " 3 \n",
+ " 63881 \n",
+ " 45538.0 \n",
+ " 82224.0 \n",
+ " 116 \n",
+ " 83.0 \n",
+ " 149.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2013 \n",
+ " 198514 \n",
+ " 3 \n",
+ " 134545 \n",
+ " 114400.0 \n",
+ " 154690.0 \n",
+ " 244 \n",
+ " 207.0 \n",
+ " 281.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2014 \n",
+ " 198513 \n",
+ " 3 \n",
+ " 197206 \n",
+ " 176080.0 \n",
+ " 218332.0 \n",
+ " 357 \n",
+ " 319.0 \n",
+ " 395.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2015 \n",
+ " 198512 \n",
+ " 3 \n",
+ " 245240 \n",
+ " 223304.0 \n",
+ " 267176.0 \n",
+ " 445 \n",
+ " 405.0 \n",
+ " 485.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2016 \n",
+ " 198511 \n",
+ " 3 \n",
+ " 276205 \n",
+ " 252399.0 \n",
+ " 300011.0 \n",
+ " 501 \n",
+ " 458.0 \n",
+ " 544.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2017 \n",
+ " 198510 \n",
+ " 3 \n",
+ " 353231 \n",
+ " 326279.0 \n",
+ " 380183.0 \n",
+ " 640 \n",
+ " 591.0 \n",
+ " 689.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2018 \n",
+ " 198509 \n",
+ " 3 \n",
+ " 369895 \n",
+ " 341109.0 \n",
+ " 398681.0 \n",
+ " 670 \n",
+ " 618.0 \n",
+ " 722.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2019 \n",
+ " 198508 \n",
+ " 3 \n",
+ " 389886 \n",
+ " 359529.0 \n",
+ " 420243.0 \n",
+ " 707 \n",
+ " 652.0 \n",
+ " 762.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2020 \n",
+ " 198507 \n",
+ " 3 \n",
+ " 471852 \n",
+ " 432599.0 \n",
+ " 511105.0 \n",
+ " 855 \n",
+ " 784.0 \n",
+ " 926.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2021 \n",
+ " 198506 \n",
+ " 3 \n",
+ " 565825 \n",
+ " 518011.0 \n",
+ " 613639.0 \n",
+ " 1026 \n",
+ " 939.0 \n",
+ " 1113.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2022 \n",
+ " 198505 \n",
+ " 3 \n",
+ " 637302 \n",
+ " 592795.0 \n",
+ " 681809.0 \n",
+ " 1155 \n",
+ " 1074.0 \n",
+ " 1236.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2023 \n",
+ " 198504 \n",
+ " 3 \n",
+ " 424937 \n",
+ " 390794.0 \n",
+ " 459080.0 \n",
+ " 770 \n",
+ " 708.0 \n",
+ " 832.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2024 \n",
+ " 198503 \n",
+ " 3 \n",
+ " 213901 \n",
+ " 174689.0 \n",
+ " 253113.0 \n",
+ " 388 \n",
+ " 317.0 \n",
+ " 459.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2025 \n",
+ " 198502 \n",
+ " 3 \n",
+ " 97586 \n",
+ " 80949.0 \n",
+ " 114223.0 \n",
+ " 177 \n",
+ " 147.0 \n",
+ " 207.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2026 \n",
+ " 198501 \n",
+ " 3 \n",
+ " 85489 \n",
+ " 65918.0 \n",
+ " 105060.0 \n",
+ " 155 \n",
+ " 120.0 \n",
+ " 190.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2027 \n",
+ " 198452 \n",
+ " 3 \n",
+ " 84830 \n",
+ " 60602.0 \n",
+ " 109058.0 \n",
+ " 154 \n",
+ " 110.0 \n",
+ " 198.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2028 \n",
+ " 198451 \n",
+ " 3 \n",
+ " 101726 \n",
+ " 80242.0 \n",
+ " 123210.0 \n",
+ " 185 \n",
+ " 146.0 \n",
+ " 224.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2029 \n",
+ " 198450 \n",
+ " 3 \n",
+ " 123680 \n",
+ " 101401.0 \n",
+ " 145959.0 \n",
+ " 225 \n",
+ " 184.0 \n",
+ " 266.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2030 \n",
+ " 198449 \n",
+ " 3 \n",
+ " 101073 \n",
+ " 81684.0 \n",
+ " 120462.0 \n",
+ " 184 \n",
+ " 149.0 \n",
+ " 219.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2031 \n",
+ " 198448 \n",
+ " 3 \n",
+ " 78620 \n",
+ " 60634.0 \n",
+ " 96606.0 \n",
+ " 143 \n",
+ " 110.0 \n",
+ " 176.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2032 \n",
+ " 198447 \n",
+ " 3 \n",
+ " 72029 \n",
+ " 54274.0 \n",
+ " 89784.0 \n",
+ " 131 \n",
+ " 99.0 \n",
+ " 163.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2033 \n",
+ " 198446 \n",
+ " 3 \n",
+ " 87330 \n",
+ " 67686.0 \n",
+ " 106974.0 \n",
+ " 159 \n",
+ " 123.0 \n",
+ " 195.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2034 \n",
+ " 198445 \n",
+ " 3 \n",
+ " 135223 \n",
+ " 101414.0 \n",
+ " 169032.0 \n",
+ " 246 \n",
+ " 184.0 \n",
+ " 308.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2035 \n",
+ " 198444 \n",
+ " 3 \n",
+ " 68422 \n",
+ " 20056.0 \n",
+ " 116788.0 \n",
+ " 125 \n",
+ " 37.0 \n",
+ " 213.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
2036 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202344 3 58340 48804.0 67876.0 88 74.0 \n",
+ "1 202343 3 46200 39090.0 53310.0 70 59.0 \n",
+ "2 202342 3 56842 49277.0 64407.0 86 75.0 \n",
+ "3 202341 3 58357 51032.0 65682.0 88 77.0 \n",
+ "4 202340 3 68894 60069.0 77719.0 104 91.0 \n",
+ "5 202339 3 72003 63452.0 80554.0 108 95.0 \n",
+ "6 202338 3 63218 55227.0 71209.0 95 83.0 \n",
+ "7 202337 3 49085 42079.0 56091.0 74 63.0 \n",
+ "8 202336 3 38247 32237.0 44257.0 58 49.0 \n",
+ "9 202335 3 31695 26013.0 37377.0 48 39.0 \n",
+ "10 202334 3 26663 21057.0 32269.0 40 32.0 \n",
+ "11 202333 3 19144 13161.0 25127.0 29 20.0 \n",
+ "12 202332 3 14641 10285.0 18997.0 22 15.0 \n",
+ "13 202331 3 15286 10705.0 19867.0 23 16.0 \n",
+ "14 202330 3 13205 8647.0 17763.0 20 13.0 \n",
+ "15 202329 3 11122 7113.0 15131.0 17 11.0 \n",
+ "16 202328 3 9179 5703.0 12655.0 14 9.0 \n",
+ "17 202327 3 8999 5763.0 12235.0 14 9.0 \n",
+ "18 202326 3 9023 5934.0 12112.0 14 9.0 \n",
+ "19 202325 3 10090 6739.0 13441.0 15 10.0 \n",
+ "20 202324 3 11308 7639.0 14977.0 17 11.0 \n",
+ "21 202323 3 14300 10661.0 17939.0 22 17.0 \n",
+ "22 202322 3 18303 13822.0 22784.0 28 21.0 \n",
+ "23 202321 3 16460 12188.0 20732.0 25 19.0 \n",
+ "24 202320 3 16162 11963.0 20361.0 24 18.0 \n",
+ "25 202319 3 16901 12577.0 21225.0 25 18.0 \n",
+ "26 202318 3 19929 15402.0 24456.0 30 23.0 \n",
+ "27 202317 3 27007 21779.0 32235.0 41 33.0 \n",
+ "28 202316 3 27875 22767.0 32983.0 42 34.0 \n",
+ "29 202315 3 37455 30993.0 43917.0 56 46.0 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "2006 198521 3 26096 19621.0 32571.0 47 35.0 \n",
+ "2007 198520 3 27896 20885.0 34907.0 51 38.0 \n",
+ "2008 198519 3 43154 32821.0 53487.0 78 59.0 \n",
+ "2009 198518 3 40555 29935.0 51175.0 74 55.0 \n",
+ "2010 198517 3 34053 24366.0 43740.0 62 44.0 \n",
+ "2011 198516 3 50362 36451.0 64273.0 91 66.0 \n",
+ "2012 198515 3 63881 45538.0 82224.0 116 83.0 \n",
+ "2013 198514 3 134545 114400.0 154690.0 244 207.0 \n",
+ "2014 198513 3 197206 176080.0 218332.0 357 319.0 \n",
+ "2015 198512 3 245240 223304.0 267176.0 445 405.0 \n",
+ "2016 198511 3 276205 252399.0 300011.0 501 458.0 \n",
+ "2017 198510 3 353231 326279.0 380183.0 640 591.0 \n",
+ "2018 198509 3 369895 341109.0 398681.0 670 618.0 \n",
+ "2019 198508 3 389886 359529.0 420243.0 707 652.0 \n",
+ "2020 198507 3 471852 432599.0 511105.0 855 784.0 \n",
+ "2021 198506 3 565825 518011.0 613639.0 1026 939.0 \n",
+ "2022 198505 3 637302 592795.0 681809.0 1155 1074.0 \n",
+ "2023 198504 3 424937 390794.0 459080.0 770 708.0 \n",
+ "2024 198503 3 213901 174689.0 253113.0 388 317.0 \n",
+ "2025 198502 3 97586 80949.0 114223.0 177 147.0 \n",
+ "2026 198501 3 85489 65918.0 105060.0 155 120.0 \n",
+ "2027 198452 3 84830 60602.0 109058.0 154 110.0 \n",
+ "2028 198451 3 101726 80242.0 123210.0 185 146.0 \n",
+ "2029 198450 3 123680 101401.0 145959.0 225 184.0 \n",
+ "2030 198449 3 101073 81684.0 120462.0 184 149.0 \n",
+ "2031 198448 3 78620 60634.0 96606.0 143 110.0 \n",
+ "2032 198447 3 72029 54274.0 89784.0 131 99.0 \n",
+ "2033 198446 3 87330 67686.0 106974.0 159 123.0 \n",
+ "2034 198445 3 135223 101414.0 169032.0 246 184.0 \n",
+ "2035 198444 3 68422 20056.0 116788.0 125 37.0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 102.0 FR France \n",
+ "1 81.0 FR France \n",
+ "2 97.0 FR France \n",
+ "3 99.0 FR France \n",
+ "4 117.0 FR France \n",
+ "5 121.0 FR France \n",
+ "6 107.0 FR France \n",
+ "7 85.0 FR France \n",
+ "8 67.0 FR France \n",
+ "9 57.0 FR France \n",
+ "10 48.0 FR France \n",
+ "11 38.0 FR France \n",
+ "12 29.0 FR France \n",
+ "13 30.0 FR France \n",
+ "14 27.0 FR France \n",
+ "15 23.0 FR France \n",
+ "16 19.0 FR France \n",
+ "17 19.0 FR France \n",
+ "18 19.0 FR France \n",
+ "19 20.0 FR France \n",
+ "20 23.0 FR France \n",
+ "21 27.0 FR France \n",
+ "22 35.0 FR France \n",
+ "23 31.0 FR France \n",
+ "24 30.0 FR France \n",
+ "25 32.0 FR France \n",
+ "26 37.0 FR France \n",
+ "27 49.0 FR France \n",
+ "28 50.0 FR France \n",
+ "29 66.0 FR France \n",
+ "... ... ... ... \n",
+ "2006 59.0 FR France \n",
+ "2007 64.0 FR France \n",
+ "2008 97.0 FR France \n",
+ "2009 93.0 FR France \n",
+ "2010 80.0 FR France \n",
+ "2011 116.0 FR France \n",
+ "2012 149.0 FR France \n",
+ "2013 281.0 FR France \n",
+ "2014 395.0 FR France \n",
+ "2015 485.0 FR France \n",
+ "2016 544.0 FR France \n",
+ "2017 689.0 FR France \n",
+ "2018 722.0 FR France \n",
+ "2019 762.0 FR France \n",
+ "2020 926.0 FR France \n",
+ "2021 1113.0 FR France \n",
+ "2022 1236.0 FR France \n",
+ "2023 832.0 FR France \n",
+ "2024 459.0 FR France \n",
+ "2025 207.0 FR France \n",
+ "2026 190.0 FR France \n",
+ "2027 198.0 FR France \n",
+ "2028 224.0 FR France \n",
+ "2029 266.0 FR France \n",
+ "2030 219.0 FR France \n",
+ "2031 176.0 FR France \n",
+ "2032 163.0 FR France \n",
+ "2033 195.0 FR France \n",
+ "2034 308.0 FR France \n",
+ "2035 213.0 FR France \n",
+ "\n",
+ "[2036 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data = pd.read_csv(data_file, skiprows=1)\n",
+ "raw_data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Y a-t-il des points manquants dans ce jeux de données ? Oui, la semaine 19 de l'année 1989 n'a pas de valeurs associées."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1799 \n",
+ " 198919 \n",
+ " 3 \n",
+ " - \n",
+ " NaN \n",
+ " NaN \n",
+ " - \n",
+ " NaN \n",
+ " NaN \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n",
+ "1799 198919 3 - NaN NaN - NaN NaN \n",
+ "\n",
+ " geo_insee geo_name \n",
+ "1799 FR France "
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data[raw_data.isnull().any(axis=1)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nous éliminons ce point, ce qui n'a pas d'impact fort sur notre analyse qui est assez simple."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 202344 \n",
+ " 3 \n",
+ " 58340 \n",
+ " 48804.0 \n",
+ " 67876.0 \n",
+ " 88 \n",
+ " 74.0 \n",
+ " 102.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 202343 \n",
+ " 3 \n",
+ " 46200 \n",
+ " 39090.0 \n",
+ " 53310.0 \n",
+ " 70 \n",
+ " 59.0 \n",
+ " 81.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 202342 \n",
+ " 3 \n",
+ " 56842 \n",
+ " 49277.0 \n",
+ " 64407.0 \n",
+ " 86 \n",
+ " 75.0 \n",
+ " 97.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 202341 \n",
+ " 3 \n",
+ " 58357 \n",
+ " 51032.0 \n",
+ " 65682.0 \n",
+ " 88 \n",
+ " 77.0 \n",
+ " 99.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 202340 \n",
+ " 3 \n",
+ " 68894 \n",
+ " 60069.0 \n",
+ " 77719.0 \n",
+ " 104 \n",
+ " 91.0 \n",
+ " 117.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202339 \n",
+ " 3 \n",
+ " 72003 \n",
+ " 63452.0 \n",
+ " 80554.0 \n",
+ " 108 \n",
+ " 95.0 \n",
+ " 121.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 202338 \n",
+ " 3 \n",
+ " 63218 \n",
+ " 55227.0 \n",
+ " 71209.0 \n",
+ " 95 \n",
+ " 83.0 \n",
+ " 107.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 202337 \n",
+ " 3 \n",
+ " 49085 \n",
+ " 42079.0 \n",
+ " 56091.0 \n",
+ " 74 \n",
+ " 63.0 \n",
+ " 85.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 202336 \n",
+ " 3 \n",
+ " 38247 \n",
+ " 32237.0 \n",
+ " 44257.0 \n",
+ " 58 \n",
+ " 49.0 \n",
+ " 67.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 202335 \n",
+ " 3 \n",
+ " 31695 \n",
+ " 26013.0 \n",
+ " 37377.0 \n",
+ " 48 \n",
+ " 39.0 \n",
+ " 57.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 202334 \n",
+ " 3 \n",
+ " 26663 \n",
+ " 21057.0 \n",
+ " 32269.0 \n",
+ " 40 \n",
+ " 32.0 \n",
+ " 48.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 202333 \n",
+ " 3 \n",
+ " 19144 \n",
+ " 13161.0 \n",
+ " 25127.0 \n",
+ " 29 \n",
+ " 20.0 \n",
+ " 38.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 202332 \n",
+ " 3 \n",
+ " 14641 \n",
+ " 10285.0 \n",
+ " 18997.0 \n",
+ " 22 \n",
+ " 15.0 \n",
+ " 29.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 202331 \n",
+ " 3 \n",
+ " 15286 \n",
+ " 10705.0 \n",
+ " 19867.0 \n",
+ " 23 \n",
+ " 16.0 \n",
+ " 30.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 202330 \n",
+ " 3 \n",
+ " 13205 \n",
+ " 8647.0 \n",
+ " 17763.0 \n",
+ " 20 \n",
+ " 13.0 \n",
+ " 27.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 202329 \n",
+ " 3 \n",
+ " 11122 \n",
+ " 7113.0 \n",
+ " 15131.0 \n",
+ " 17 \n",
+ " 11.0 \n",
+ " 23.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 202328 \n",
+ " 3 \n",
+ " 9179 \n",
+ " 5703.0 \n",
+ " 12655.0 \n",
+ " 14 \n",
+ " 9.0 \n",
+ " 19.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 202327 \n",
+ " 3 \n",
+ " 8999 \n",
+ " 5763.0 \n",
+ " 12235.0 \n",
+ " 14 \n",
+ " 9.0 \n",
+ " 19.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 202326 \n",
+ " 3 \n",
+ " 9023 \n",
+ " 5934.0 \n",
+ " 12112.0 \n",
+ " 14 \n",
+ " 9.0 \n",
+ " 19.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 202325 \n",
+ " 3 \n",
+ " 10090 \n",
+ " 6739.0 \n",
+ " 13441.0 \n",
+ " 15 \n",
+ " 10.0 \n",
+ " 20.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 202324 \n",
+ " 3 \n",
+ " 11308 \n",
+ " 7639.0 \n",
+ " 14977.0 \n",
+ " 17 \n",
+ " 11.0 \n",
+ " 23.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 202323 \n",
+ " 3 \n",
+ " 14300 \n",
+ " 10661.0 \n",
+ " 17939.0 \n",
+ " 22 \n",
+ " 17.0 \n",
+ " 27.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 202322 \n",
+ " 3 \n",
+ " 18303 \n",
+ " 13822.0 \n",
+ " 22784.0 \n",
+ " 28 \n",
+ " 21.0 \n",
+ " 35.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 202321 \n",
+ " 3 \n",
+ " 16460 \n",
+ " 12188.0 \n",
+ " 20732.0 \n",
+ " 25 \n",
+ " 19.0 \n",
+ " 31.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 202320 \n",
+ " 3 \n",
+ " 16162 \n",
+ " 11963.0 \n",
+ " 20361.0 \n",
+ " 24 \n",
+ " 18.0 \n",
+ " 30.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 202319 \n",
+ " 3 \n",
+ " 16901 \n",
+ " 12577.0 \n",
+ " 21225.0 \n",
+ " 25 \n",
+ " 18.0 \n",
+ " 32.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 202318 \n",
+ " 3 \n",
+ " 19929 \n",
+ " 15402.0 \n",
+ " 24456.0 \n",
+ " 30 \n",
+ " 23.0 \n",
+ " 37.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 202317 \n",
+ " 3 \n",
+ " 27007 \n",
+ " 21779.0 \n",
+ " 32235.0 \n",
+ " 41 \n",
+ " 33.0 \n",
+ " 49.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 202316 \n",
+ " 3 \n",
+ " 27875 \n",
+ " 22767.0 \n",
+ " 32983.0 \n",
+ " 42 \n",
+ " 34.0 \n",
+ " 50.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 202315 \n",
+ " 3 \n",
+ " 37455 \n",
+ " 30993.0 \n",
+ " 43917.0 \n",
+ " 56 \n",
+ " 46.0 \n",
+ " 66.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 2006 \n",
+ " 198521 \n",
+ " 3 \n",
+ " 26096 \n",
+ " 19621.0 \n",
+ " 32571.0 \n",
+ " 47 \n",
+ " 35.0 \n",
+ " 59.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2007 \n",
+ " 198520 \n",
+ " 3 \n",
+ " 27896 \n",
+ " 20885.0 \n",
+ " 34907.0 \n",
+ " 51 \n",
+ " 38.0 \n",
+ " 64.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2008 \n",
+ " 198519 \n",
+ " 3 \n",
+ " 43154 \n",
+ " 32821.0 \n",
+ " 53487.0 \n",
+ " 78 \n",
+ " 59.0 \n",
+ " 97.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2009 \n",
+ " 198518 \n",
+ " 3 \n",
+ " 40555 \n",
+ " 29935.0 \n",
+ " 51175.0 \n",
+ " 74 \n",
+ " 55.0 \n",
+ " 93.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2010 \n",
+ " 198517 \n",
+ " 3 \n",
+ " 34053 \n",
+ " 24366.0 \n",
+ " 43740.0 \n",
+ " 62 \n",
+ " 44.0 \n",
+ " 80.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2011 \n",
+ " 198516 \n",
+ " 3 \n",
+ " 50362 \n",
+ " 36451.0 \n",
+ " 64273.0 \n",
+ " 91 \n",
+ " 66.0 \n",
+ " 116.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2012 \n",
+ " 198515 \n",
+ " 3 \n",
+ " 63881 \n",
+ " 45538.0 \n",
+ " 82224.0 \n",
+ " 116 \n",
+ " 83.0 \n",
+ " 149.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2013 \n",
+ " 198514 \n",
+ " 3 \n",
+ " 134545 \n",
+ " 114400.0 \n",
+ " 154690.0 \n",
+ " 244 \n",
+ " 207.0 \n",
+ " 281.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2014 \n",
+ " 198513 \n",
+ " 3 \n",
+ " 197206 \n",
+ " 176080.0 \n",
+ " 218332.0 \n",
+ " 357 \n",
+ " 319.0 \n",
+ " 395.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2015 \n",
+ " 198512 \n",
+ " 3 \n",
+ " 245240 \n",
+ " 223304.0 \n",
+ " 267176.0 \n",
+ " 445 \n",
+ " 405.0 \n",
+ " 485.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2016 \n",
+ " 198511 \n",
+ " 3 \n",
+ " 276205 \n",
+ " 252399.0 \n",
+ " 300011.0 \n",
+ " 501 \n",
+ " 458.0 \n",
+ " 544.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2017 \n",
+ " 198510 \n",
+ " 3 \n",
+ " 353231 \n",
+ " 326279.0 \n",
+ " 380183.0 \n",
+ " 640 \n",
+ " 591.0 \n",
+ " 689.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2018 \n",
+ " 198509 \n",
+ " 3 \n",
+ " 369895 \n",
+ " 341109.0 \n",
+ " 398681.0 \n",
+ " 670 \n",
+ " 618.0 \n",
+ " 722.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2019 \n",
+ " 198508 \n",
+ " 3 \n",
+ " 389886 \n",
+ " 359529.0 \n",
+ " 420243.0 \n",
+ " 707 \n",
+ " 652.0 \n",
+ " 762.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2020 \n",
+ " 198507 \n",
+ " 3 \n",
+ " 471852 \n",
+ " 432599.0 \n",
+ " 511105.0 \n",
+ " 855 \n",
+ " 784.0 \n",
+ " 926.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2021 \n",
+ " 198506 \n",
+ " 3 \n",
+ " 565825 \n",
+ " 518011.0 \n",
+ " 613639.0 \n",
+ " 1026 \n",
+ " 939.0 \n",
+ " 1113.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2022 \n",
+ " 198505 \n",
+ " 3 \n",
+ " 637302 \n",
+ " 592795.0 \n",
+ " 681809.0 \n",
+ " 1155 \n",
+ " 1074.0 \n",
+ " 1236.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2023 \n",
+ " 198504 \n",
+ " 3 \n",
+ " 424937 \n",
+ " 390794.0 \n",
+ " 459080.0 \n",
+ " 770 \n",
+ " 708.0 \n",
+ " 832.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2024 \n",
+ " 198503 \n",
+ " 3 \n",
+ " 213901 \n",
+ " 174689.0 \n",
+ " 253113.0 \n",
+ " 388 \n",
+ " 317.0 \n",
+ " 459.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2025 \n",
+ " 198502 \n",
+ " 3 \n",
+ " 97586 \n",
+ " 80949.0 \n",
+ " 114223.0 \n",
+ " 177 \n",
+ " 147.0 \n",
+ " 207.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2026 \n",
+ " 198501 \n",
+ " 3 \n",
+ " 85489 \n",
+ " 65918.0 \n",
+ " 105060.0 \n",
+ " 155 \n",
+ " 120.0 \n",
+ " 190.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2027 \n",
+ " 198452 \n",
+ " 3 \n",
+ " 84830 \n",
+ " 60602.0 \n",
+ " 109058.0 \n",
+ " 154 \n",
+ " 110.0 \n",
+ " 198.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2028 \n",
+ " 198451 \n",
+ " 3 \n",
+ " 101726 \n",
+ " 80242.0 \n",
+ " 123210.0 \n",
+ " 185 \n",
+ " 146.0 \n",
+ " 224.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2029 \n",
+ " 198450 \n",
+ " 3 \n",
+ " 123680 \n",
+ " 101401.0 \n",
+ " 145959.0 \n",
+ " 225 \n",
+ " 184.0 \n",
+ " 266.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2030 \n",
+ " 198449 \n",
+ " 3 \n",
+ " 101073 \n",
+ " 81684.0 \n",
+ " 120462.0 \n",
+ " 184 \n",
+ " 149.0 \n",
+ " 219.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2031 \n",
+ " 198448 \n",
+ " 3 \n",
+ " 78620 \n",
+ " 60634.0 \n",
+ " 96606.0 \n",
+ " 143 \n",
+ " 110.0 \n",
+ " 176.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2032 \n",
+ " 198447 \n",
+ " 3 \n",
+ " 72029 \n",
+ " 54274.0 \n",
+ " 89784.0 \n",
+ " 131 \n",
+ " 99.0 \n",
+ " 163.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2033 \n",
+ " 198446 \n",
+ " 3 \n",
+ " 87330 \n",
+ " 67686.0 \n",
+ " 106974.0 \n",
+ " 159 \n",
+ " 123.0 \n",
+ " 195.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2034 \n",
+ " 198445 \n",
+ " 3 \n",
+ " 135223 \n",
+ " 101414.0 \n",
+ " 169032.0 \n",
+ " 246 \n",
+ " 184.0 \n",
+ " 308.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2035 \n",
+ " 198444 \n",
+ " 3 \n",
+ " 68422 \n",
+ " 20056.0 \n",
+ " 116788.0 \n",
+ " 125 \n",
+ " 37.0 \n",
+ " 213.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
2035 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202344 3 58340 48804.0 67876.0 88 74.0 \n",
+ "1 202343 3 46200 39090.0 53310.0 70 59.0 \n",
+ "2 202342 3 56842 49277.0 64407.0 86 75.0 \n",
+ "3 202341 3 58357 51032.0 65682.0 88 77.0 \n",
+ "4 202340 3 68894 60069.0 77719.0 104 91.0 \n",
+ "5 202339 3 72003 63452.0 80554.0 108 95.0 \n",
+ "6 202338 3 63218 55227.0 71209.0 95 83.0 \n",
+ "7 202337 3 49085 42079.0 56091.0 74 63.0 \n",
+ "8 202336 3 38247 32237.0 44257.0 58 49.0 \n",
+ "9 202335 3 31695 26013.0 37377.0 48 39.0 \n",
+ "10 202334 3 26663 21057.0 32269.0 40 32.0 \n",
+ "11 202333 3 19144 13161.0 25127.0 29 20.0 \n",
+ "12 202332 3 14641 10285.0 18997.0 22 15.0 \n",
+ "13 202331 3 15286 10705.0 19867.0 23 16.0 \n",
+ "14 202330 3 13205 8647.0 17763.0 20 13.0 \n",
+ "15 202329 3 11122 7113.0 15131.0 17 11.0 \n",
+ "16 202328 3 9179 5703.0 12655.0 14 9.0 \n",
+ "17 202327 3 8999 5763.0 12235.0 14 9.0 \n",
+ "18 202326 3 9023 5934.0 12112.0 14 9.0 \n",
+ "19 202325 3 10090 6739.0 13441.0 15 10.0 \n",
+ "20 202324 3 11308 7639.0 14977.0 17 11.0 \n",
+ "21 202323 3 14300 10661.0 17939.0 22 17.0 \n",
+ "22 202322 3 18303 13822.0 22784.0 28 21.0 \n",
+ "23 202321 3 16460 12188.0 20732.0 25 19.0 \n",
+ "24 202320 3 16162 11963.0 20361.0 24 18.0 \n",
+ "25 202319 3 16901 12577.0 21225.0 25 18.0 \n",
+ "26 202318 3 19929 15402.0 24456.0 30 23.0 \n",
+ "27 202317 3 27007 21779.0 32235.0 41 33.0 \n",
+ "28 202316 3 27875 22767.0 32983.0 42 34.0 \n",
+ "29 202315 3 37455 30993.0 43917.0 56 46.0 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "2006 198521 3 26096 19621.0 32571.0 47 35.0 \n",
+ "2007 198520 3 27896 20885.0 34907.0 51 38.0 \n",
+ "2008 198519 3 43154 32821.0 53487.0 78 59.0 \n",
+ "2009 198518 3 40555 29935.0 51175.0 74 55.0 \n",
+ "2010 198517 3 34053 24366.0 43740.0 62 44.0 \n",
+ "2011 198516 3 50362 36451.0 64273.0 91 66.0 \n",
+ "2012 198515 3 63881 45538.0 82224.0 116 83.0 \n",
+ "2013 198514 3 134545 114400.0 154690.0 244 207.0 \n",
+ "2014 198513 3 197206 176080.0 218332.0 357 319.0 \n",
+ "2015 198512 3 245240 223304.0 267176.0 445 405.0 \n",
+ "2016 198511 3 276205 252399.0 300011.0 501 458.0 \n",
+ "2017 198510 3 353231 326279.0 380183.0 640 591.0 \n",
+ "2018 198509 3 369895 341109.0 398681.0 670 618.0 \n",
+ "2019 198508 3 389886 359529.0 420243.0 707 652.0 \n",
+ "2020 198507 3 471852 432599.0 511105.0 855 784.0 \n",
+ "2021 198506 3 565825 518011.0 613639.0 1026 939.0 \n",
+ "2022 198505 3 637302 592795.0 681809.0 1155 1074.0 \n",
+ "2023 198504 3 424937 390794.0 459080.0 770 708.0 \n",
+ "2024 198503 3 213901 174689.0 253113.0 388 317.0 \n",
+ "2025 198502 3 97586 80949.0 114223.0 177 147.0 \n",
+ "2026 198501 3 85489 65918.0 105060.0 155 120.0 \n",
+ "2027 198452 3 84830 60602.0 109058.0 154 110.0 \n",
+ "2028 198451 3 101726 80242.0 123210.0 185 146.0 \n",
+ "2029 198450 3 123680 101401.0 145959.0 225 184.0 \n",
+ "2030 198449 3 101073 81684.0 120462.0 184 149.0 \n",
+ "2031 198448 3 78620 60634.0 96606.0 143 110.0 \n",
+ "2032 198447 3 72029 54274.0 89784.0 131 99.0 \n",
+ "2033 198446 3 87330 67686.0 106974.0 159 123.0 \n",
+ "2034 198445 3 135223 101414.0 169032.0 246 184.0 \n",
+ "2035 198444 3 68422 20056.0 116788.0 125 37.0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 102.0 FR France \n",
+ "1 81.0 FR France \n",
+ "2 97.0 FR France \n",
+ "3 99.0 FR France \n",
+ "4 117.0 FR France \n",
+ "5 121.0 FR France \n",
+ "6 107.0 FR France \n",
+ "7 85.0 FR France \n",
+ "8 67.0 FR France \n",
+ "9 57.0 FR France \n",
+ "10 48.0 FR France \n",
+ "11 38.0 FR France \n",
+ "12 29.0 FR France \n",
+ "13 30.0 FR France \n",
+ "14 27.0 FR France \n",
+ "15 23.0 FR France \n",
+ "16 19.0 FR France \n",
+ "17 19.0 FR France \n",
+ "18 19.0 FR France \n",
+ "19 20.0 FR France \n",
+ "20 23.0 FR France \n",
+ "21 27.0 FR France \n",
+ "22 35.0 FR France \n",
+ "23 31.0 FR France \n",
+ "24 30.0 FR France \n",
+ "25 32.0 FR France \n",
+ "26 37.0 FR France \n",
+ "27 49.0 FR France \n",
+ "28 50.0 FR France \n",
+ "29 66.0 FR France \n",
+ "... ... ... ... \n",
+ "2006 59.0 FR France \n",
+ "2007 64.0 FR France \n",
+ "2008 97.0 FR France \n",
+ "2009 93.0 FR France \n",
+ "2010 80.0 FR France \n",
+ "2011 116.0 FR France \n",
+ "2012 149.0 FR France \n",
+ "2013 281.0 FR France \n",
+ "2014 395.0 FR France \n",
+ "2015 485.0 FR France \n",
+ "2016 544.0 FR France \n",
+ "2017 689.0 FR France \n",
+ "2018 722.0 FR France \n",
+ "2019 762.0 FR France \n",
+ "2020 926.0 FR France \n",
+ "2021 1113.0 FR France \n",
+ "2022 1236.0 FR France \n",
+ "2023 832.0 FR France \n",
+ "2024 459.0 FR France \n",
+ "2025 207.0 FR France \n",
+ "2026 190.0 FR France \n",
+ "2027 198.0 FR France \n",
+ "2028 224.0 FR France \n",
+ "2029 266.0 FR France \n",
+ "2030 219.0 FR France \n",
+ "2031 176.0 FR France \n",
+ "2032 163.0 FR France \n",
+ "2033 195.0 FR France \n",
+ "2034 308.0 FR France \n",
+ "2035 213.0 FR France \n",
+ "\n",
+ "[2035 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data = raw_data.dropna().copy()\n",
+ "data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nos données utilisent une convention inhabituelle: le numéro de\n",
+ "semaine est collé à l'année, donnant l'impression qu'il s'agit\n",
+ "de nombre entier. C'est comme ça que Pandas les interprète.\n",
+ " \n",
+ "Un deuxième problème est que Pandas ne comprend pas les numéros de\n",
+ "semaine. Il faut lui fournir les dates de début et de fin de\n",
+ "semaine. Nous utilisons pour cela la bibliothèque `isoweek`.\n",
+ "\n",
+ "Comme la conversion des semaines est devenu assez complexe, nous\n",
+ "écrivons une petite fonction Python pour cela. Ensuite, nous\n",
+ "l'appliquons à tous les points de nos donnés. Les résultats vont\n",
+ "dans une nouvelle colonne 'period'."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def convert_week(year_and_week_int):\n",
+ " year_and_week_str = str(year_and_week_int)\n",
+ " year = int(year_and_week_str[:4])\n",
+ " week = int(year_and_week_str[4:])\n",
+ " w = isoweek.Week(year, week)\n",
+ " return pd.Period(w.day(0), 'W')\n",
+ "\n",
+ "data['period'] = [convert_week(yw) for yw in data['week']]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Il restent deux petites modifications à faire.\n",
+ "\n",
+ "Premièrement, nous définissons les périodes d'observation\n",
+ "comme nouvel index de notre jeux de données. Ceci en fait\n",
+ "une suite chronologique, ce qui sera pratique par la suite.\n",
+ "\n",
+ "Deuxièmement, nous trions les points par période, dans\n",
+ "le sens chronologique."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sorted_data = data.set_index('period').sort_index()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nous vérifions la cohérence des données. Entre la fin d'une période et\n",
+ "le début de la période qui suit, la différence temporelle doit être\n",
+ "zéro, ou au moins très faible. Nous laissons une \"marge d'erreur\"\n",
+ "d'une seconde.\n",
+ "\n",
+ "Ceci s'avère tout à fait juste sauf pour deux périodes consécutives\n",
+ "entre lesquelles il manque une semaine.\n",
+ "\n",
+ "Nous reconnaissons ces dates: c'est la semaine sans observations\n",
+ "que nous avions supprimées !"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n"
+ ]
+ }
+ ],
+ "source": [
+ "periods = sorted_data.index\n",
+ "for p1, p2 in zip(periods[:-1], periods[1:]):\n",
+ " delta = p2.to_timestamp() - p1.end_time\n",
+ " if delta > pd.Timedelta('1s'):\n",
+ " print(p1, p2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Un premier regard sur les données !"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sorted_data['inc'] = sorted_data['inc'].astype(int)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "petite manip pour transformer la chaine de caractères en entier pour pouvoir génerer le plot"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAEKCAYAAADenhiQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXecHMWZ93/PhM0raZWFAhIgAyIZ0IlgsDmibHyHA/jwYSPb3HHmxdi+93w2OBx+4fDhBDa2webIDgQDNtiAsRA5WEIgQEhC0oLSKu1Ku5JWu9rdCfX+0VU91T3VYXpmdmZWz/fz2c/MdneFqa6up55Q1SSEAMMwDMOUklilK8AwDMOMPFi4MAzDMCWHhQvDMAxTcli4MAzDMCWHhQvDMAxTcli4MAzDMCWHhQvDMAxTcli4MAzDMCWHhQvDMAxTchKVrsBwMn78eDFz5sxKV4NhGKameO2113YIISYUkma/Ei4zZ87E0qVLK10NhmGYmoKINhSahs1iDMMwTMlh4cIwDMOUHBYuDMMwTMlh4cIwDMOUHBYuDMMwTMkJFC5EdAcRdRLR29qxsUS0kIjWys827dxVRNRORKuJ6Bzt+PFEtFyeu4mISB6vJ6L75fHFRDRTS7NAlrGWiBZox2fJa9fKtHXFNwXDMAxTKsJoLncBmO86diWARUKI2QAWyf9BRHMAXAjgCJnmZiKKyzS3ALgUwGz5p/K8BECPEOIQADcC+L7MayyAqwGcAGAegKs1IfZ9ADfK8ntkHgzDMEyVEChchBDPA+h2HT4PwN3y+90APqYdv08IMSiEWAegHcA8IpoCYJQQ4hVhvVf5HlcaldeDAM6QWs05ABYKIbqFED0AFgKYL8+dLq91lz8i6ejpxzOrOytdDYZhmNBE9blMEkJsBQD5OVEenwpgk3Zdhzw2VX53H3ekEUKkAewGMM4nr3EAdslr3XmNSM664Xl8/s5XK10NhmGY0JTaoU+GY8LneJQ0fnnlV4joUiJaSkRLu7q6vC6ravalMpWuAsMwTEFEFS7bpakL8lPZbDoATNeumwZgizw+zXDckYaIEgBGwzLDeeW1A8AYea07rzyEELcKIeYKIeZOmFDQ1jgMwzBMRKIKl0cBqOitBQAe0Y5fKCPAZsFy3C+RprNeIjpR+kwudqVReZ0P4Gnpl3kSwNlE1CYd+WcDeFKee0Ze6y6fYRiGqQICN64konsBnAZgPBF1wIrguh7AA0R0CYCNAC4AACHECiJ6AMBKAGkAlwshlE3nMliRZ40AnpB/AHA7gF8TUTssjeVCmVc3EV0LQDkbrhFCqMCCbwC4j4j+G8AymQfDMAxTJZClCOwfzJ07V9Tirsgzr3wMALD++nMrXBOGYfZHiOg1IcTcQtLwCn2GYRim5LBwYRiGYUoOCxeGYRim5LBwqSH2J/8YwzC1DQuXGoJlC8MwtQILlxoiy9KFYZgagYVLDcGihWGYWoGFSw3BmgvDMLUCC5cagmULwzC1AguXGoKFC8MwtQILlxpCsNeFYZgagYVLDZFl2cIwTI3AwqWG4EWUDMPUCixcaggWLQzD1AosXGoIka10DfK59J6lOPF7iypdDYZhqozAl4Ux1UM1OvT/unJ7pavAMEwVwppLDcEOfYZhagUWLjUEO/QZhqkVWLjUEKy5MAxTK7BwqSFYc2EYplZg4cIwDMOUHBYuNQTrLQzD1AosXBiGYZiSw8KlhmCXC8MwtQILlxqiGhdRMgzDmGDhwjAMw5QcFi41BJvFGIapFVi4MAzDMCWHhUsNwYoLwzC1AguXEcCPnlyNT97ycqWrwTAMY1OUcCGifyeiFUT0NhHdS0QNRDSWiBYS0Vr52aZdfxURtRPRaiI6Rzt+PBEtl+duIiKSx+uJ6H55fDERzdTSLJBlrCWiBcX8jlrBa/uXnz/Tjtc29AxzbRiGYbyJLFyIaCqALwOYK4Q4EkAcwIUArgSwSAgxG8Ai+T+IaI48fwSA+QBuJqK4zO4WAJcCmC3/5svjlwDoEUIcAuBGAN+XeY0FcDWAEwDMA3C1LsRGKuzQZximVijWLJYA0EhECQBNALYAOA/A3fL83QA+Jr+fB+A+IcSgEGIdgHYA84hoCoBRQohXhDU1v8eVRuX1IIAzpFZzDoCFQohuIUQPgIXICSSGYRimwkQWLkKIzQB+BGAjgK0Adgsh/gpgkhBiq7xmK4CJMslUAJu0LDrksanyu/u4I40QIg1gN4BxPnkxDMMwVUAxZrE2WJrFLAAHAGgmos/4JTEcEz7Ho6Zx1/NSIlpKREu7urp8qscwDMOUimLMYmcCWCeE6BJCpAA8DOBkANulqQvys1Ne3wFgupZ+GiwzWof87j7uSCNNb6MBdPvklYcQ4lYhxFwhxNwJEyZE/KnVAftcGIapFYoRLhsBnEhETdIPcgaAVQAeBaCitxYAeER+fxTAhTICbBYsx/0SaTrrJaITZT4Xu9KovM4H8LT0yzwJ4GwiapMa1Nny2IiG9xZjGKZWSERNKIRYTEQPAngdQBrAMgC3AmgB8AARXQJLAF0gr19BRA8AWCmvv1wIkZHZXQbgLgCNAJ6QfwBwO4BfE1E7LI3lQplXNxFdC+BVed01QojuqL+FYRiGKS2RhQsACCGuhhUSrDMIS4sxXX8dgOsMx5cCONJwfABSOBnO3QHgjgKrXNOwWYxhmFqBV+gzDMMwJYeFSw3BigvDMLUCCxeGYRim5LBwqSG89hZjGIapNli41BAjUbT8+K+rcc8r6ytdDYZhSkxR0WIMUyw/e7odAHDxSTMrWxGGYUoKay41BFvFGIapFVi4MAzDMCWHhUtNwaoLwzC1AQuXGoLNYgzD1AosXBiGYZiSw8KlhmDFhWGYWoGFC8MwDFNyWLjUEOxzYRimVmDhwjAMw5QcFi41BL+JkmGYWoGFSw3BZjGGYWoFFi4MwzBMyWHhUkOw5sIwTK3AwmUEwe97YRimWmDhUkMEOfRZtjAMUy2wcKkhgoQHyxaGYaoFFi4jiCyrLgzDVAksXEYQLFsYhqkWWLiMICq5yJKDCRiG0WHhUkME+lwqOL6Xq+zOPQNIZbLlyZxhmLLBwqUAXm7fgcXv7ax0NfYbBlIZzPveIlz18PJKV4VhmAJh4VIA/3zbYvzTrX+rWPnVHIpcjqIHUhkAwF9XbCtD7gzDlBMWLjVEcCjyyPK5qCyJqOR5MwxTXli4jCCyI0xzUXmybGGY2oOFSw0RNIBXMmKrHEWr38OyhWFqj6KECxGNIaIHiegdIlpFRCcR0VgiWkhEa+Vnm3b9VUTUTkSriegc7fjxRLRcnruJpB2EiOqJ6H55fDERzdTSLJBlrCWiBcX8jpFCJYOBy2GSy2kuLF4YptYoVnP5KYC/CCEOA3AMgFUArgSwSAgxG8Ai+T+IaA6ACwEcAWA+gJuJKC7zuQXApQBmy7/58vglAHqEEIcAuBHA92VeYwFcDeAEAPMAXK0LsZFKkGYy0kKRbZ9L6bNmGKbMRBYuRDQKwAcB3A4AQoghIcQuAOcBuFtedjeAj8nv5wG4TwgxKIRYB6AdwDwimgJglBDiFWGNnve40qi8HgRwhtRqzgGwUAjRLYToAbAQOYE0Ygkcv0foOkZWXBim9ihGczkIQBeAO4loGRHdRkTNACYJIbYCgPycKK+fCmCTlr5DHpsqv7uPO9IIIdIAdgMY55PXfs1Iew3ySPs9DLM/UYxwSQA4DsAtQohjAfRBmsA8MM0/hc/xqGmchRJdSkRLiWhpV1eXT/WqnyDTU0WjxcoZLsYwTM1RjHDpANAhhFgs/38QlrDZLk1dkJ+d2vXTtfTTAGyRx6cZjjvSEFECwGgA3T555SGEuFUIMVcIMXfChAkRfmbtUNFosTJIgpywZLsYw9QakYWLEGIbgE1EdKg8dAaAlQAeBaCitxYAeER+fxTAhTICbBYsx/0SaTrrJaITpT/lYlcaldf5AJ6WfpknAZxNRG3SkX+2PDbCCXDoD1MtjGWXoXD1CgH2uTBM7ZEoMv0VAH5LRHUA3gPweVgC6wEiugTARgAXAIAQYgURPQBLAKUBXC6EyMh8LgNwF4BGAE/IP8AKFvg1EbXD0lgulHl1E9G1AF6V110jhOgu8rfUPCNt+5csr3NhmJqlKOEihHgDwFzDqTM8rr8OwHWG40sBHGk4PgApnAzn7gBwRyH1rXX23+1fSp41wzBlhlfo1xDVHIpcXs1l/5Qut73wHmZe+Ri/coCpSVi4jCBGns/F+txfNZefPrUWANA/lAm4kmGqDxYuNURwKPLIit0dyT6X9s5erNne63/RSPzhzH5DsQ59poqoqGwp4/YvI5Ezb3geALD++nODLx7B7cCMXFhzqSEC9xYbpnqYyy6HQ1+FIvMUfrjZ1N2PtzfvrnQ1mBqGhUsNsb9tuV/uHQd270vhK/ctw+7+VHkLqkFO/cEz+OjPXqx0NZgahoXLCGLErnMpk+Jy98vr8cgbW3D7i++Vp4AiUT+b91hjahEWLjVENfsgyqE1lTtAoT5hdf+BdHWG+ipzYCX3jKtFrvnTSsy88rFKV2O/h4XLCKKS0WJl2beyRJlu6u5H1jBCK+EymKruUN+RFgVYbu54aR2AypqJGRYuNUWQeWSkvSysFLR37sWpP3gGtzz3bt65uoT1rrrBqtVcrE8WLtHYV+WThpEOC5cIVOuMqDpr5U1QO5bC57Kxuw8A8Or6/K3n6qTmMlSlwkVRpd2taqmLW/d172C6wjXZv2HhEoFMpYzgQXuL1diW+4F7pZXg56QyViaJWH5XT8QsqZWucqcGC5fCULe6Ys8pA4CFSySqVLZUVnOJUPhw/J60FC7JeL76E5fCJeogJITAolXbyybUVY3ZLFYYai86li2VhYVLBKr1Ya+1UOTARaEl+EHprGXySsT9NJdoZrEHlm7CJXcvxf2vbgq+uAii9reX2ndgU3d/iWtTO5iCOJjhg7d/iUCl1O3gMaa2FlEOh+aizGLJmJ/mEi3vrbsHAABbdu2LlkEAKhQ5qoy96DbrJbGhtpgZgVTpHHC/gTWXCGQ8eu0La7vwpzeNb1seFio5Uaten4vSXPKFS4yUcIkmXeIqfZlHsWrVlMvFhp19OPLqJ7F+R19R+fDi08rCwiUCXur2Z29fgivuXVa2ckdaKHLww1/8DxqQ4aiNybhn7lEd+rFYeW37OZ9LefKvVh59Ywv2Dqbx+9eimRtzIdwlrBRTMCxcIlCtUSgVfRNllDTDoLmotQ6NdfkWYKURRL2fSvMpt22/WkPfy0V9Ui1uLS5EfH/T+KoNFi4RKLcZxIvhGIyjUp7tX6zPYt5EOSBftNWQzO/qxVY5Pkwhr9U2l9nU3Y/egfJt9llf5OJWe082Fi4VhYVLBCKa6Ism6FGptZlasLAs/veksioU2dTVRah6eBErgc/F7zcq8041DZJCCJz6g2fw2duXlK0MNRHYU6QAqzahvL/BwiUCldJcgqg1n0uQMCz3zylecykumgsINwBW0yDZK1e9v7FpV9nKmNjaAABFh1HX2mRrpMHCJQKVip+vphlsKQh+P015y1e3MaqvKhdtFr2i/mlVwED13Pdh2SpHaWxFZlMpCwNjwcIlAtX0sOtUdFfkKNFigZqLcHxGwa8IUaxZLFa8WSzMPaum/jYsdSlRERyKXFlYuESgYosog87X2jqXoi8IU4aViWnzy2LbqxTvMAszWFeRbBmWdbqqTaL+7mIXnzKlgYVLBCo2kwwotvY0l4Dz0apixBRxVg0agd88JefQH566hGE45lWl+r3VcH/3Z1i4RCDqdiHlppKPUqSyQwrLYkKRw1Ss2HYrzqFfW2ax4TA12ZpLxPT76+LTaoOFSwQqZxar5hX6Ucxiw/d7fM1ikc0vkauTXwdT/vKzmoTLsGguJcqnmtptf4SFSwSqtdPWWjTZcJjF/PKododvNW5jMhyRknY/LrI/19rzMNJg4RKBat0VudbMYsEBCmVe+Z5V9ahoJETwJfvZIFmqn7ufNVvVwcIlAkGhp5UaDCr5/oryhCIXjyrDVJRtFSu6oDILwSoaJIdDay+6hCrU+PZHihYuRBQnomVE9Gf5/1giWkhEa+Vnm3btVUTUTkSriegc7fjxRLRcnruJZCwhEdUT0f3y+GIimqmlWSDLWEtEC4r9HYUQNIiXq1NXs+YSpfRhCUX2WShZDRpBGK0pkj+rTL9tOJqsWIe+Ox+mMpRCc/kKgFXa/1cCWCSEmA1gkfwfRDQHwIUAjgAwH8DNRKT2Qb8FwKUAZsu/+fL4JQB6hBCHALgRwPdlXmMBXA3gBADzAFytC7FyE2QWK1enrup1LmUJRS7+B/lpJ9U+9hTzut5y/bZh0VxKtP6IhUtlKUq4ENE0AOcCuE07fB6Au+X3uwF8TDt+nxBiUAixDkA7gHlENAXAKCHEK8Kabt3jSqPyehDAGVKrOQfAQiFEtxCiB8BC5ARS2Ql62CvVqSs5E4/mcwkQ0mUO+c7tABCNokKkVR1CrXMpg1YYkeHoYcUuolSwbKksxWouPwHwdQD6MDBJCLEVAOTnRHl8KgD97T8d8thU+d193JFGCJEGsBvAOJ+8hoXADRfLZhbzz/ini9aWp+AQRPrNIc18pQn5NZnFvM8VlndRyQOJprmUplLufKrBlBiEWqHPmktliSxciOijADqFEK+FTWI4JnyOR03jLJToUiJaSkRLu7q6QlU0iEqZxYJYvK67IuUC0UxYQYNmKQYylYWprGoYevzqUIx5p1R+P3fRw+Ekz/lciiusEg79/qE0bli4xn699v5MMZrLBwD8IxGtB3AfgNOJ6DcAtktTF+Rnp7y+A8B0Lf00AFvk8WmG4440RJQAMBpAt09eeQghbhVCzBVCzJ0wYUK0X+oiKFqsbA798mRbMQIXUZawDNMtK5XjuNxEES6lCq925zIs+1aWTDAO/5396aK1uGnRWvx+aUfwxSOcyMJFCHGVEGKaEGImLEf900KIzwB4FICK3loA4BH5/VEAF8oIsFmwHPdLpOmsl4hOlP6Ui11pVF7nyzIEgCcBnE1EbdKRf7Y8NiwER4vVbqROVMri0C97tFhxeZfLXJd3TaR8IyQy4O7Lw6GV269CqEGfyz755tOhdGb4C68yyrHO5XoAZxHRWgBnyf8hhFgB4AEAKwH8BcDlQgh1By6DFRTQDuBdAE/I47cDGEdE7QD+L2TkmRCiG8C1AF6Vf9fIY8NCkFlM1JhG/PjyrdjVP1RUHpGES8grSilknMeqWFprRAtFDr5my659gRMldz7Do7mU5r6zz6WyJEqRiRDiWQDPyu87AZzhcd11AK4zHF8K4EjD8QEAF3jkdQeAO6LWuRiCOm35OnXp8922ewD/57ev4+SDx+F3/3pi5Hwibbk/jIERRod+0XkWXxdfn4tyTEeYrATdj3e79uKMHz+Hb8w/DJeddrDndZXQXIotoRq2zaFSqLU1Dq/Qj0CQr66WZkxpOXKt39FXVD7VuuW+n1+l2B0NoobMFnp9JJ9LQBL1CuFX3ttZcN7lplQaZSWewxp69MsOC5cIDAbYUyu1Qj8KdXGrCwxlqu+psLfcL2IS6CcAir1PUZPr6cLc0yj1DBsuH9S0FdFcivWF2flUX5/en2DhEoH+IX/hUkudWqnvxYZOVqtD33YOG0RBsQNl1PtcaLpyLKJU7RELkC6VCUWWZZcoH6YysHCJQP9QOu+YbmKppVBkNXClixUukfYWG4ZQZPn7jOtcQs7evfOOlk6vS6i9xSKUEVZwB/kG8kORh8PnUqIw6goIF7/Xau9vsHApgLic5g2k8gdife1LLYUiqyxTFTCLBQ+AxdfJ3lbfaBYrkc+lwMEw7PU5x3T5giUKN4sVXJWCyYUil+b+MJWBhUsBxOXTbgpFzmTLL1zKQW4Fe7EmoghpiioxHH4CoFjzS277mGjpggovJuopqE5h/Vn5+QzDXSuyL/L2L9UBC5cCUAOUSbjoHblse4uV4cEu1Sr1aKabcLPrYhB5X/RztTEzLo/PxSLQLFZBzaVYKilb2CrGwqUgVGdNjyTNRX1WwLkd1ulcDH7Cs1K3SS/Xrwq5LfcLr2iposXyHPrD+JrjqPenklvu19CjX3ZYuBSA6jemTqsvdKulUGRRxZqLatNiZoG22c+kbRZ5oyIvoiywtSItogwsIpxZzN3Xh2PsLFUZHC1WWVi4RCBtcH4Pi0O/HHlG9Bt45VPKNKX4vb6LKIuMFot6nx2aS4gsIgnuoHfl2L+9sGixYd1brEbMlowZFi4FkAtrze+0aW16GdXElM0KdO4ZiFa5iJTu+SuDWSxk5YQQ+Nrv38Sr6/O3l/PbBLFYf1O50xUXLeZ/PqxDP6/sYfHnl8rpUppsIsGxyCxcCkH11bTBTlEKs9jNz7Zj3vcW2Vtz5JXv8dAl49E7ciXXFJRKcxlMZ/Hgax34zG2L8875RYsVa9uPKpyce4sFpy7HxpW5dS5BGTn/HQ5TU6m06Yr4XIa9xOqFhUsBqL5qDEUugVns+TU7AACbd+0rKF0iFv02VtIuHTiwCseHJ2p3gbhhubmfACl2PUV0n0s4co7pKGUEOPRVGYUuogxR+5fbd+DYa/5acD8upAw/KrlxJVvicrBwiYAxFFmPFou42F0NjsMRkaMo2etwI5UdlGe4XJUPzCxc1Kfhnvms3g9DKYRSmCzK8SZKVfdYgHCJsojywdc70NOfwlKDmTIMper+fu32z//7N9ywcE1pCmKMsHAJiT6QRA1Ffn1jj/0yIRMJad4y5V8uSlVSWcxiIfNUmkvCIFx8Q5Fd1xRKZLkcMl1uMWCEIkJWruBQ5BD5qslR0HuPgsqM3jdJ5uOdw8vv7sRNi9YWnPO/3P0q/vyW8aW3hhrs37BwCYneT4PMYqY+vXtfCp+4+WVcce/rnmWombfXQ+n1rBRjRiiZ5hJpnUs4000QQ7ZZLL87h3LoR/a5eOfth/67wyQth8+lnA59dR8iC5cSTXnKMUd7alUnvvS7ZYHXsT+fhUto9H4aaBYzroOxjj2/dodnGWrm7aW5eD10xciHsGmffmc7+gbzN+y08ylD2fYAGJCPMouZNBe/CD97DUxUzSXiIFiwMCqDVqjarByaSyJgkgRY7w96dnWnb5m1ubcYO10ULFxConf0KA59dX4o7e2QUZpLoTsUF9Odw8zu1u/owxfuWoqvP/iWdx3K8EwVahYz+Vz89g9TAr9YzaVQ9GR+A2gxK82D17mE87nkKS4hqhILmCQBwGk/ehafu/NVjzJLpU2XJJuaK7taYOESkiDNxelzyU8fxkmvFrR5XenZYYvRXEIk7pOvGHi3a29R+eSlCfK5uD69UGaxhCEkO8zLwvwG7+8+ugIPvtbhUUGVd2G/3RGKHCJpOTautAf+oI0rXa1fiObyyBubA681UeyGosWsD/KjkPvMsgVIVLoCtUKQz0WPEDN1wkyVTmXCVCtoFbeVUYSyA0ORw2kWb2/eDcA/WsxUwVy0mHcBd728HgBw/vHTDOmd+YQl9NXy50SZyQfVSU12gu6tu6uHEXRNdXEAwKvre4IvNlCyNZQlfuQKya+WXhhYLlhzCYk+EBqjxRxmsfz0pi1j3JA9mHjUwet4EfOkMAOj8pOXfiYYcB7hyv3GQ8sB+EeLmcLDi91XTbV7oZpF2GYszizmj+rDJquYU7Ny5xRcl1GNSQDASQeNC7zWhP17I96YoHbz8wUNpDL43+ffM5qmw0wQ/dbC7W+wcAmJ3q+MPpUgh36IjmkLFy/HfYi6FUohmovftVGqEJQm59gNl58pWiw3TuVnIlzXFEpU803BG1eWwSym+qvpNcd6X3ZnE6YuRW8I6lF2oXhVw++V3jcuXIPrHl+Fx5ZvNeQXvkYsW1i4RMKkhWSFv3Ap50ym3P1YDYZ+5UQZoIO3hQ82W+n4rnMx+lwKyz+/fs58wifMzyNMOW7e2bYHr280m56CzDIZH7OYM6zemU+Y+qr0Ube2KfS+e+GV3k+4bPTYegkobHE0m8XY5xIJk3rs0FwMnTCU5hKgIXh12GI6cph6KWHqV045HPqF+jTM0WLegjGqz0SR21qmTD4XiVf95v/kBQDA+uvPLbgM1YdNZjGn/zBcXZzXOD9965EVeYEYxYaIB+Fnot4rw+2jWh/KXfdagjWXkAQ59PVjZuETopCIC6+K6cahZqJZ7wE6bD5vbNqF465diF39Q3oq/7rJz7BKn1lz8a6fPUOOuF1PVLOafr2fUI75vFa7kDJMZNQ6F0Of0zdmdRcdpiaqXcPU2/Ss2JpyxI5tR4t5lO+nuahzQa/VCKLA1QRFk8pk8ZnbFuO1DdGCKMoBC5eQBDr0HZpLcWYx/UrnDrqlJ0ye6vfmr3kIX7efP92O7r4hLF6X228q0KFfoGbgv3GlYSaahee5MKj7XOgsNez1SrgUuu4pTBm5gdIgkHXNxXVnw7SV6uuhhIvxleGqrMDkvnj6XHzq5afNigJuw3BrLht29uPF9h34z9+/Oazl+sHCJSQOh35AtJj5gQnf2fT8i7HJhyqrgMHCz/4eNOgYo5KCqwegAM3FsM7FL/CoVO9z8avfPa+sx8adTju+c/Lgl791cihEpGFe2iDNxa60f192a3V6f/G65yrrMMLFNFErlWnJK72fsFbPnqlehdRnuH0uqrxq2naGhUtI9K5i7HiBZrHgzqb6hWfkWRn6a5hnQJlJ3JcKj+9hywvWXKzP8D4X095iPppLkYOYX96AFdb6X4+swAW/etlxPPxL0KzPKJpLkA9M9TGTSdDx4rs8zSX33atLF2QWMwjOYh36uSjDws1i6tkNmkAGMdzRYqq4oB0XhhMWLiERjtlcBLNYGIe+srF7mJv8XngVnUI0F5+yA7LJdfngmW/uyvCDFBDgczHlbw9iobI3pHd+ulH13r5n0JjOq14KNbj6DYaAub+F1VzM++B556MXFbSOJLLmYiirEIICClI+mmCxmkuhfbZUhN2IdDhh4RISp+ZieBOlbhYzPrDhNZdCtgcpl11ax/a5uGexjnz8M4piFgsavN34+VxMv1O4rimUoBl2sa9OUKmDzGIpQ38M+kmqbkYt26f/OSZ5Y/wJAAAgAElEQVRZXsJFeOedd62PFSD6xCngvvgJF+FXrxAlB2hN5UIVx5pLDRJkDtAnl0HRZEFkPByqxogn9/8enXrr7n34y9v5C8NCRYtlvE0oirA/ryCzmJ13CTQXn9DSIPNOcP3M573MWWF9VWHNYqbBMqxZzFS8bqry21vMqz8U8j4XkwBKZ/3vSxBBi1uHfNpT+AimUodhl5JqDH2OLFyIaDoRPUNEq4hoBRF9RR4fS0QLiWit/GzT0lxFRO1EtJqIztGOH09Ey+W5m0jah4ionojul8cXE9FMLc0CWcZaIloQ9XeERrt3Js0l7K7IYQh6N0wUzr/lFXzxN68bnPLRTBdW2tz3Ynfu9Rv8fZ3e2slk3MfnYkgb5HMJGhyDAgI838sT0kOlfluQWcy8qNc/bz+zmN9WRmHMYulChIuh7ur5Knb9URSHvi3QI04Qi12YGxU1JI0UzSUN4D+EEIcDOBHA5UQ0B8CVABYJIWYDWCT/hzx3IYAjAMwHcDMRxWVetwC4FMBs+TdfHr8EQI8Q4hAANwL4vsxrLICrAZwAYB6Aq3UhVg70AcG4SFJ36BvPB5dhis8Pss+HXUGt3mfufkDCLnQzllWA/8S4QWKANhjGoZ8NaJ8wmounzyRIcwkwgYQRyn4lqHN+PgLAyyzmf29sx7VRC/dOG+aNq+p4OJ9Lft3TtqZsTr951z7MvPIxvLC2y6N869Pr9r3VsTuwXlH8WFbZ8rd7XLxuRx/uXbIxOKMCUe1oiGmpGJGrIoTYKoR4XX7vBbAKwFQA5wG4W152N4CPye/nAbhPCDEohFgHoB3APCKaAmCUEOIVYfXke1xpVF4PAjhDajXnAFgohOgWQvQAWIicQCoLel8zai4BD10oh74hfaFmsSDc9Qgzi85t5+EqO0A4mNAvCzMLdpfjJmjbHb+FkkEz3KAJQVTNJ+w9C+vQD9JcjALEZwB3tqnznDOwxVyfYte5pOwdIcxplsktb7wG6dw9N2dw3eOrPOvjq7kUYBbzuvS8n7+Iqx5eXnKfjN92PpWiJHJOmquOBbAYwCQhxFbAEkAAJsrLpgLYpCXrkMemyu/u4440Qog0gN0AxvnkZarbpUS0lIiWdnWZZzphcL4sLP+8c22A4YEtyOfipbkEz6aCSnEPCKF8LioUOeQgb8K047MjCMI4U/SfBbrzMO9TBc88cosozXkHDybeggvw01z8Jwzuc0HCxXQ+vOaSf84prArXXPyCBbyudR7zN4sl5PR8KO2vGUbxe+R20fYXup7ps97pAWDPgLW9TJA2Wigpnx0XKkXRwoWIWgA8BOCrQog9fpcajgmf41HTOA8KcasQYq4QYu6ECRN8queP6itEXuGb2kBpepjDRIvJnuE1Gzeq6gXqLnmaS4jktpnCJ22UBznItxTGLOaog8+ebn4LWyP7XJRw8rgHng5931y162zh4p8icMcIk+biF4oc0ufiJTwKcuibhIvd38xpknH1pkv/9vW6r3UG35y7PkFr2bwIChJRBE0YCkW1RRXJluKECxElYQmW3wohHpaHt0tTF+SnelF2B4DpWvJpALbI49MMxx1piCgBYDSAbp+8yoaa/SVjscB3PURe56KudUSLaXmE6Nxhd8PN5R9+AHBfWZDPxfA6gWzALDjIxOBO5zdQ+q+nCNYwjOfhP5CE8bn4iZqwDv2MMTQ+v57ONN5199KcreuDNRclC6ObxdSiXXN6FbjhFVIctLj1rCMmAQDGNtd51seo6YaYFYR16BcjXG5/cR3ufGmd41ju/TzVI16KiRYjALcDWCWEuEE79SiABfL7AgCPaMcvlBFgs2A57pdI01kvEZ0o87zYlUbldT6Ap6Vf5kkAZxNRm3Tkny2PlQ3VVRJxMnYyp0M/2qzHvtZjRm96lgo3izmvKGidS8hB3oRpx+egzT7DCK+gGbptFvNxenuaxQKjxcLXzVWyb77uq/xCZwGzZhNkesut0DdoDj5C36tvOvPOOsrww2wW8xfage89UvfFo8w+n52P0z7tEk5YwjNvIFf3oHvqx7V/Xon/96eVjmNK0Jrez1Mpitly/wMAPgtgORG9IY99E8D1AB4goksAbARwAQAIIVYQ0QMAVsKKNLtcCJGR6S4DcBeARgBPyD/AEl6/JqJ2WBrLhTKvbiK6FsCr8rprhBC5HRHLgOosiRgZO0baMVDmpy9o6wiPEKhiX8JkqkchGxG6H1enoAhXvpfJxbQpoNspbdg6zJmHn+Zi2uU2QGiGjRYrRnMJI7CD7nvQDr6+wiXALOY+HbSeSz8eVXMZSGVk2V6aiX+eQdqDLVx8BEjQCv10JouEwbwWFCQSI0JGiJL7XJRArybNJbJwEUK8CG8T3xkeaa4DcJ3h+FIARxqOD0AKJ8O5OwDcEba+xaL6WjIew0AqIFos4qxHtabXmhlzNJT//27cdQvTxT13RdbzDSpY/TaPWbExvcvh77cC3ysPVZxxYastHDwGsQCBmdsa3muQLY3PJUjImUKRg8xiftqB802Uzgs2dvdpZRQvXEx+EyVcvJIHBZgECX2/aDQ/jU7/vZt69mHW+GbPazy1Lvk5lC6tzyVVhZpLFUVFVzdqAEnEKdr2LxE1Fz1VkOkoDH6ai3qo89J4RO8ERSTpqD7v0PBC+lzc13pdYzSLwWcm6jN7B0qguXjMTh2ai0/+Kt8gIWcMRQ4wF/rN7v125b53ySbtOnN9/PwWXtfqqMlblO1bgDBC3/u3q35i1lxy3/uH0ua87XvmrbkA5XToV490YeESEtUPk/EYsiK/4wZv/xK+DC9TT5iFXWG3/TCl/8lTa41pvGa5Ts3Ft9jcdR4CJUhwekYmBWkust2NUUm20Ayuq4mg9814msXC6y6yfv7XmwJMgkK00yEGWCutd7lhHPpBkw5TGw2klVnMI4w6pC8sKETcrLV5Cza93H1D5olY4I7OyudSYs0lPRJDkfcXVGdRkSr5K939hUAYf4lpxufQXAoQUF74rXPp6RuCiYxtRvAWTGE1My9nsSl5OM3FPw//0NLcdz9/jRe2Q9/jfLE+l1wwgn89TC+/CtLocusx8s8FbWUUdE43Bwb6RwwXDGpmZ2M0WUih723uDBasfuuuAGCfh5YfZBZTZqvSay5C5l890oWFS0hUv1KbI7pn0oGvOQ4x+JocuMGze4u2pmRg/kC+jVvPv7Eu7r5cphGOsvIKR/AgQoZX9urPV5A/yUs4Bwk49RCb/B9hnd5eqLNhBllHurBansifbJgwhsZ7BIXYaXxm6F5mWa/6+ZXttRYld977nnmdD/K52JqLx3m/3+43GdF/V7+H5uJncgN0s1hY7TUcuVDkkmZbFCxcQmJHi3loLqVw6BtnqgEDrJpNhZ2x5PlNtO/1SXN3sB84nwci7HYWXu0UNFOMahZT5ofghYaGtEHvUbEnA+bznj4XPcTaZ/gOimZTBIYiG8pQdQ4yi4Xd182Ut/u7CdN919vdb3sYc9nBbeu3xscvFFk/5GUWy5nkgoRLqc1iWUf+1QALl5CovqJWB5vMYkTWO0WiOvRNKrUwnNdRR8L2KXef1rOs91i5nHNyOhN7LYg0EfSWTbNZLDj/IPPPoPzBhe6hBQAX3PKKsUwbe4YcPIN3JAutufjn41dOULv4+ZucDn3nBQ3aBMR7+5es8bv5WvOEgAyRkwq/9gjjL/LzN4UNRX5+jXkrqaAX0JUrWox9LjXKpu5+PPOOtdGAbRYzaC5xIsSJzHuPhdBcTBE8ev83msXkIWV2Chq48h36uf/rk2azmDJDpDJOB60IGMBMONcD+c+Q9UNe/gu/gVAIYc8Qo2guvYPmiCC/NDpeddZnrX5ZhA3pDXoFhHlvMevTOMDqGqOW9dWPvO0Iw/dc5+LQtj2rLfPIvyCVyaJR9kXjlvw+K/hD7dqsaYTuiMew638eXrbZmHeQWQxl9rlUE8UsotxvOPOG5zAoZxqeZjEhEIsRYh57jxWyutdzLYgpDyVcAnPPz09LDgBo8BAuesdNZ4WtvQVpVTr26wQ8fk/Q7DuMQ999STorfJ3iftuchEGlCTOD9yrXD7/NJXWCzGKm4jI+moteP32GffcrGwBY2rs10TDXJ+voL4Xt6JzNWgsMRzfG0T+U8V3Bb8wvRDCBW7uxtSS93j6LbgHgg+8z71OoLvFqm7L5XNgsVpsMag+Yl0M/69Bc/Gc9QYvuHNc6znvXMWhLjFwernoL/YEKHgz1h66Q1zHb61wy5kHPLDdDzEIdeTivCXYMB+fvR1BkkJfPJXSob9As2C4nIBTZtIjSZ8t9vV38ZtheQtJLOzXh/m3K36ImOoVO1MLcU69rgnxN6lBjMo6BgFBkrzpSkZqLl6bODv0RgNJc3BOyTNbyt8RiZuHijIwy522yBQetQFcDRyysWSzPdJRfvle9AOdq8EI0F3VWN4NkPB4UU91CaS6ua/RZt3mFvlmIh0WlKXRvMYeA9nPo2wOVfz227RnwL8NQhN8iSi/NRaFm3UFmJ+u7R6VVPd33TP5YZRYzR5P5aS7BkzinEMkdd0Yyek8Qm+sTnqHIQdqm7XOJKFxSWfOESWlsYbXi4YCFS4EkPTSXpRu6sXcwjWQ8FryC38tWbbCxBw2wts8lXPV9t3/xmmnrdm+vQSuoT6t0Xn4Wsz8peBbqF1GmBsa6uHkn66BdmYMIct46BrECTEUq7yCzW33Cenw7ewfzzgWZ/OwgDeOLxjTh4jMIev9uf4e+8HkWUvKeNdWF8LkYys+EEGxe911vCz9Nt7k+7rmbRS4Kz1y28o0OeqQPIu3xLAYJ/ErAwqVA1P5W7kFavTo1EaNAe623jT5/puocwL1n37FYvh/EhJ9D39NHIPROrGsu4Qdnk2M9aCBwzirN+erXuNs9Z2KJBWsuQfuIGR28stwQvhWv3+0p0ANm0VadrM+9A/mBB6mA/qb672A6f5DT66prLk2udVChTJUB99X7nknhYijDT+A5NBev9+x4msWyxuPuejfVeWsuKp2X1qQWUX7nkRXG80E4BIpWXyWsSu3LKQYWLgWSiOe/0EsnGY8Zb7DXQGO6xmuNgl8Ei2lTR2MZEcxiYWzwgTv3KpOfh0nCz+RnpfcoVwlXMphY7FlwwjwTzfi3rbOc/GNB639MZgv38R8+udqYNswqeXXNXkNUW8YxCfCu26DB7KXfI30gb65PeF7nKDsrbNt/0CvB3YJzyK25GNKra4wTBg+fnrv8pP0c54477pePRtdc56O5KFOmp7aZE9B9AdGIJhxrgLQ6Dvq0SaVg4VIg6hWrXjfRiqSJZhYzvR42yCymnj0lXIIWM+Zt/6IP4B6Cw/OhcwgH32KNmksh2794mzisz2Q8XztRQr6xLh6ouQQLF+8Jg9dsUW/PlIc5441Nu8zlORYiGgSvyIXNBmkffvtzmQZJx2RCEz4tbuHiM3irtz2aF2l6B1qofqJ2izBNCtRAatoGRh98vX0uWfs51uunP7d+E7mm+oRxZ3TrGuenG93hHmWti952uuZiLxYucYhzMbBwKZAgzSXh4XPRO5L3jC9/9iEc5/PT2JoLhTSL5UW55b57ay5mG7p+dVizmNesNcjnsmufed8zVW6dod1Vmzck4x42dK0s39r7hzJ7aVV6mbqNXb8+yLwCmNvGy3RlOm+6NWqANg2Sjry1RpoyugEAcN77D8iro04mK1An/UFBDnl3HoPaPVN5uVF1Mg2kA452NveprMgthtbNoUGmSNvnUhfHvlTGdz86T8Hm8JMULghSafMkRbXbmx278eBrHQXnWw5YuBTIqAZrDy+9X+idPBEj40xWf0g9o7IMTrmg7U1Uhw9rFovi0Dc5DgHnoBW4+61y6HtoLkGLKDt69hnzVdckE7E85+9QxhpolIkl/y2cwrj+RjGqIeG41o2tuXjMQPXf2tOfMh73XohoHU/Gyai16QOTUbgELNRU25cMpPMHSS+HfiIewzHTRuOzJx6Yd5277irYwPT79Lrl+VzyzGKGZ8nHBKQLl0Gf9y4p4ef0J/rfF3Vpc30Cmaz5hV9B4eNpTaszmSSDcESLGYQLANy4cE3B+ZYDFi4F0tZkvXdbdZ49Aykc8q0n7PNJj8gkh+bi0fHUgJEtYDalsgobiuwWbBkfE4VC77jeDn3/cm2zmD5rDTDdZIVAqxzg9+xL5Z0HnIOw20wyJGd5XmGtmaxAUppHTO2WyujCx7tsr1169fK6tR2nw6ymVoLSesWDYfafNg8spjLc6bNZgX2pDOIxghD5Zj11i5NxcoVzZ5GMx4ybkDrT5wZQo3Bx9Gln3W1Tpm8octbxqaM0wYZkzNdcqHwf+rMapEnrmotelo7Kwtv0nbVNflE0F2dEm+bQ136r6XdXAhYuBTJrgvX2OdV5urQw0DMOm4hknDz3S1J4dbxdcnbrFZ3lFy0WVnNxd2hV13iMPO21+iZ9XppL2FXk+szLa5sRPf+W+gTiMUKvISLKSpdbF+FuV+UwbfSYBTsduy6NTggMpjO5bUh8Bknvxae54z39mnAJEdGj2qkhGQ+MmDJFT23fk+uX7tRKGKmdtAdcg5Fqi4Zk3NFfUhmBRJzsiCevW57JCiR9NBc9z0FX3dVzotrdZEL224xU9dUxjXW+b4xVe6TpE4OUj0YFOH0ugDmcOMzCWqWVRVnr4rUweCjtvE/VAAuXArjohBlo8lk5fNacSUjEY3kDuBACv9fsoF4P3E45u3WsiQiIaLKjpewn3v83uOtmP2yJmOeMum8onZtJekQhBU3G1SzLqcHp6U2/zdLIWuoT2DNg1lzUg1SfiOcN8lc+/JaxDopMVuQWxbqKT2ct27yfeSZnAjEPgnp76sLFayt+HfW7GhIx40uzgsxi9y7ZmKunK62acY+RWrjbqZ/WtAf3pCgRi+XC8f18Ln6ai9an3SvdlSmzsc4awP0maiYBMCDPjWlK5glNPT9bezBM+uoTZm1RjxYDPDQXmYeXmTiVydp9Stc+w+IU9rrmkvu+e18KvR7Py3DCwqUADp3caj9Ypmib+mTM3ndJ57UNPY7/TQ/czc+8mzvvEXvvN8DFQ66idA9E6gGt93B6A9ZscFRj/sMeZNYylePQxHxMN0DO7DaqMeFpFlP5mtay7NhrDeheAiIjNM3FdU49rKMbrdm9aSDx2rlAr5vKf/vuAWM699oROz9Zfr2H5qTasS4RC4w6cjet+i1Kc3H7JjKa5qLnnc4KaxeKMGYxP5+L1lbu96LkNBfv9LZD39DmSliNaUr6+lzUZMmpCcg295hoqUMqJNvUJ5QmZGoaSxvOYpTsU0qQFsIeTYPX28ZtGn1i+TYAVpj6zCsfw/2vbsRww8IlBGqTus+ccKCtIajBUFe9t+0eRCKW73PRnbmAeTa2bsfe3HkPB7o5Wsz6tEORDaqLPvC7VXGH5uKhpvcNpXOD7JA5GifILKbK9XKamibzanBurU96msVyA0I8z/fx+Q/MBADMPbAtr75WmcLTnLhttxVAoHxs/YY1CbpA8lrb1JiMY8roBqzZbr6/px1q3gBRDXrKMe7uMup8a30i0DHsFvz75PvfvTQX1S51iZjrfmWR0ISLn0Pf642tVt1zx9wD9JAWPg74hyKbNJec4Kwz+h6U8FICYshgCqtPxn33XGuWWpXJ7OYXbKDq3SqDgoYK1Fze2bYHC+5YYv+vt+NQOuMIc1ZWkO1ya6Drn3inoLJKAQuXEPzPJ47Cc/95GmIxsrd/UR1Dt7te+HfTjZpLv3yYrzj9EADAj//qXDiXymTxxze2AABOOmic46HQHyCVj447WszLMW1/d2su2dwD5aW59A9mMK2tCQCwobtfK9ts4jJh0lyC1pmks1kk4jG0NiS8hYvSXAxrWdIZgbamJOIea5MyQhjXOwDA/33gTQBAe5clFEwLFR3rNQyCOS0d4JNHN6BPu3eqnQ+a0OypdahBr97DDKv6X3N9wpjHmKYkxrfUA8i3lO4bcvpc3MIpnbU2Ya2Lxxzn0hkldPx39nVoLob7qgsU90u3bM1FDuAmE2JuNbq3Q99Lc1FplIBwrD/SzGJ+Dv2m+rix7kDOmW7S5JUQV1GIhfpc1moTFMDZ5wbTWXz82Kn2Pe3us3xuu6XG39Ofsr8PFyxcQjB1TCMOHGc58pUzTw30+oPS1lxn3FtMqf6d0sn6xNvbHOe/+fBy+3t90vlAK3PLuOa6PA0IyA06aqZoEhC67Tk/MkgzBRg6uxAC/akMZk9qAeDcasRvvYIbk88lyJ+UyggkYoRRjUlPn0ta07wyWef7ZgZSGTQk4/baJLf/QIjc2zfd7aaCK5SPzfRa23QIzSUeIzQm446BSLV5i4/WYQtND/OSGiSb6uLGQWrfUMY2uXmbxTw0FyEQi1nh3W4HcjIeQ13cyter7plsLhTZz+mu10UxZM/uvbUDJej98h7VaPa5DGntBpgd5PWGsHa9bmMaze2mzF6AebKlfqsyi3mFsHuxfkef43+3Q78+EcOTX/0gAGDvoFWWLlB27M3fg66csHApkBY5a1EdXK2w/s0lJwCQiyhdHVPd4DMOnwgAOGxyq+P8I1Jr+chRk1HvsqGr2dehk1vR3tmbN0tVg7IdWuljhwbyZ0tBmsuu/hQyWYGJrQ1IxsnxwAZtjqij6u3lkLznlQ2YeeVjDg0hnbFm/r6aixKOBt/EgHzgmgwOWFUftercfc9UPsqEcedL6/PK7htM25FTeW/pFALvdvUhHiM01cUdwmnvYAbJuHXcNLsGcsJMmW/cM2nVdi1yzYXTxGgNcvb6Hlfazbss7VOZxdwDfEZqLvWJmGMAVcJSCWSTxqRm7qpdTQOoEgBtTck8oa1+1/hmS+sy7ZvmJ1ysCUUMjck4UhmRJ5TdZrGUY7KTM7H6RegpE7G77vr7g0yTJSUo1Vq5QjWXH7vWr6jfv233ADp7B1GfiGPiqAbMGt9st5Huq1T1Hi5YuBSI6pQrt+4BAPzs6XYAwMRR1sPQUh/Pm2X39A2hPhHDWXMm4fApo3DAmEb73O0vrrM72b6hDOoTcXv2I4TAF3/zGgBg3qyxSGUEtuxyLib881tbAeRm4KYIlHnfW2R/dw8ImaxAjIC6uHnDTbXj7sTWejQk4p4roP1i9oUQ9oPlFUL7tHzT505tdpXOWqGvoxp8NBfXDF+vk9Jc1D3TBZc9yNjmEbPQbpEz6KdWbXec7xtMY8feIYxttgZod7uv2LIHS9Z1Y+vuAUwe3YDN2n3bsXcQ45rrrXvt0W4q0k2ZUNwba6q2s30H2n1VEwA1Q3ZrGP9+v2XyG99i1f2Py7Y4zu9LZdBYF0drfcLRZqlM1hIuCbUIMF8zUMJAmeQGDMLlT29Z5U1orc8zLSnz4fhWq26mt4H2yVm5SdPuH7LuuVrh766je5Gm7qfLTbTMG52qdhwjTU99LjP1Ls2yYNLqbLNYo7nPBXHWnEmO/9Xv/+YflsvyLT9LS30Ce+XzomsurQ3D+25IFi4Foh7mXz33HlZu2WMfP2SCZTaa1taEHXuHHOtffrt4I4YyWRCRNG/lwlKv/fNK+3tMzhaVTfmFtTvsczOlWU6fwa/e1otbn38PAFAfV3H7+TNoHXeH7h+y1nIkYuYHavX2XgDApFENaHBt2Kc/3CafhKKnP5Vz6Kd1gSQwobXeca1ehVQmi2TM0lz2DqaNTlY1eKj74thyJZ1FfTJuC5D+wfyFZvYMVvstW3fvw1YZ3fUl6Sdz8/UHrcFfObe7+53b03T05HxTbU11jtDQHXsHMb61Di31Cc+Q0Q07rfRqtum+r3dJTUoJP124qAF7omxbrzKmjLYmOQ+97twupH8wjaa6BFobEujRFn8OSKGj/Ckmk5Ua+G3hYjAnKk196pjGPK1pU3c/xrfUYWKrtdWMW3PJZoXd10wh4Ot39uGA0Y05Aeiq4yZ5X5QPMWUw09YZ9qkDrD5Tl4jZWpl748nOXqvPjGpIGDUu2yzWkC/0X2rfgeVyZ3Uv3OUpU+yLcpzYsssqv0WbFOyWAu9HFxzj2DRzOGDhUiBqoAKAL937OgCrM6oosvdPHwMAWNtpDcrLNvZg72DaVpfHNCUdMxwdInL4XPTuPVnu69Q7mEurCyk1yLiFR5fLzup26u3qT2FMUx2SCfOK5mdXd2JMUxJHTxuNhmTMMaDoA7lXqDAAnHXDcwCscGGHWSydxZjGpCNiyx3MoDQXIYC9rpli554BfOMha9amZum6rXwglUFDIoZmlynTKsdp29d/y+sbcptJnnTQOHz5jNkgcg5kKrx8xlhrkFqzrddRN72drFX2OVPbjr2DmNBSj3Etddi517xnmmK6zN89sPx1paVJTZCD+KAW1qq0hUmjrD6zZ59Z8B9xwCjj8X7przloQgu27B6whVPvQBqt9Qk0JuMY11yHd7v25qVV/VNNGtzCQ2/DyaMb80xLnXsGMbG1wTYnugWj0haU0HWbxrbtHsCMsU225uL2uyi/5fSxlmB1rhXJTTiMwiVlmVmbvYSL9KkePLHFONl6fk0XAM3nopV90W2L8Q8/fzEvjaK7bwgvv7vTcezaP6/Ev9y91J64qUhR3Yy8s28ILfUJnH/8NM+8ywULlwLRB0K1UEzNkgBgupwRqb2wPn7zy470bU05zUWf3Vp5w2EWUyGjj1z+AXu2pM+I9JdE2Q+by7S1qdtpRvvt4o3auX489HoHWuoTGNuUzJt9P7liGx5+fTMOmdCChmQ8zzGtr7XY4+ETeW1Djx0WOWNsk8MUlspkUZeIYYxmC9YH5VQmFy0GIM/v8svn3sv7/Xr+/UNpNNZpmotsz4FUBg+/vhkAbMGTcqVTJOQgJ4RzoGqT5rAjp45GPEbY0O10tupCXAUUpDJZDKQyeHvzHuzsG8L4lnrs3pfKM1Xq2uG0tsa8364L4PdNsvx3+gxd3aNJ0lTrNikePW00Tp09HmiehoYAABhuSURBVG3NdXjfpBbMP2Ky4/yufSmMakzaE5pd/Sk8+uYWDKazaK5PgIhw8MQWPPqG05wG5DQXJVzcTu9f/20DACtSrsmwdb2l1SkTcyJvkG7vtASaMi27fV2dvYOY0FpvP5Nu7eqJ5ZYZ2dxfcv4ik3DpHUhjVEMSdYkY6hKxPJOd0lwOGt9i1LR/8tRaADmNUt13r+37dZ5b05l3bPOufXhq1XZ7t4HvffwoANYYo7Yb6ujpt/vQcMPCJQL/cdb7QJQTKnonmzKmATECOrqdguMHnzwagOXE3NWfwp/e3JL3BkFlz1aDh4r4aGuqywkXraxO7fW26mFxayZKgCk7sY6KmV+9vRfjW+qxo9cpXP7t15a/R9ml12zfi7+syEW6qYHkgNENnmGOn7wlJ1yPm9HmMAUMSoe7/nCpEErAWjA2ujFpO9Xds1glGICc/0DV43eLN+LtzXswtqkub6b586fbceNTa2Qe+SGp+m+JxwgJOaFQfqEbFq7BKulz+8b8wzCtrdE2Y9l1l3k8+MWT7ElIKpO1Jx3T25owWWoWb3bkNKVVW/fgsO/8xf5fmVBU3R97aysO/bZ1/tTZ422NVdcQVHsq05JbU947mLbzbapL5PkOdvQOYmJrvT0ItnftxZfvXSbztI4tWdeNoUzWYf4FcvdoXIs5WODFdsuEs25HHxqTcfQPpR2m267eQftetjQk8gbwPy6zJgUnHjQWgPO+rdyyB7v3pTCxtd7+fe5+qWb/tlNd91XJuo5uTBp9JnsGUvZEp6U+kae5qC13DpJbRLnbVXHgOGmSk4LtOanRAMB7XXtx1cPL7fZWLJSa6ieOm5qX30Aqi6/PPxSz5URjypgGdPYOorN3ABu7+20T4HDDwiUCf3/YRAhhbW8NAH+vLYRLxmOYMroRHT377Bnkp+ZOw6f+bjqAXITOFfcuw/9Kf8lUOQsjsmbJqYxAT9+Q7ZRraUjYg4gejqxMXnWJGI6eZpnjLrptsf2wPvNOJ75y3xsAgFeuPAOfPfFAe6AEnGa3cS312JfKGNfSqAfZzR+WWbb6GeOaHYLOzl8bNL7z0TkY21yHnr4hZLMC63b04cX2HWiuT6BP04b0QXpX/xDGNCbtB/rdzpx2sH5Hnx1MURePYZyMLnpg6Sb0DqRsJ+fY5jpbCKlydO1ThePqA4U+GBMRjp1hte0jb2zBg6914KZFa+3zjXVxHDKhxQ7wACxflIrsmTtzrB0mnsoIezC+6IQZOHLqaADABb98xU7734/lfHB3fG5uXjDCA0s32ee/de7htllunQxT3bxrHz76sxft397WlMRGTat6bk0X3uvqs9ukqS6e51RXs39l4n23M2f+OungcY5r9QCT/qE0Lrl7KQDLXFeXiDmEy4adffYgedvFc9FYF0dW5EyU5/3iJWzZPWBv7d9a7/RdCCFw9yuW5nOUbLsNO63f1t03hI/c9IJVdms9xkoB1aNtqXSDFm2lJlu6xt3TP4QYWf6idFbkaZR7pEYHWKan3S5z49INPWhrSmKc1Gr1frRvKINEjPCvp87K+aOkVqUmcQBw+o+fw71LNuLRN7fYwuf5NV14XK64/9H5x+Cda+fDjWozAJg303pe71uyCR09++w+MtzUtHAhovlEtJqI2onoyuEq91BXKPHNFx3v+L+1IYGHl222VfiTDx5vn5s5PnejV8iAgNMPs0KU40T2bgB/XbnNHlCa6+O2ZnLtn1fiF8+0YyidRdeeQUwe1YDFV52Bo6eNtvNVg6g+UDXWxTGx1Xpo3pTh00rQ3POFefZsUQ1+Vhgw4cSDxuJrZx8KAA677b6hDJ5cYQ0UpxwyDnsG0nhLm4E/vnwrZl31OABgwUkH4pJTZmGcfGjf7NiFL9z1KgAraOG6jx9pm1E2So0vncmip9+aKR480QqWuPx3r9tBBKf96Fm7rDXXfdieKd/6/Hv4hbaVztiWOjQm4yDKCRBd41GLzn79ygb86U3LzON+d8zxB47FMdPHYMfeQXzt92/CzXEHtuG9rj7M/8nz6HXtkg1oa5AyWSxeZ82cJ46qx1TNXPHOtj2O9geAA8c125MKZRbTTWKHTR5lz5LVGogntTVUk0c3YGpbox2cAOS01UE7asop3PuH0tg7mMaE1npLa6xPOHwrar3X7794EoCcgxwAHng1J/jGyXbXBdeHfvis/f2MwyfZEVsDqQwG0xm7XyoNYFRjEs+t6cLR330SABzC4ZRDrGfqden70k3Mk0Y32AO8MskuXtdtTwrOOGwiRjUkkYiRHZ24qbsfv3jmXbxvUqs9mdEnHP/zxCosXtdtm7omj2qwd3FQvNu5FweOa7Y1Bb1tVm3bg3RW2JONyaMa7AmBF6ulH09pzIC1h6DyJ+no2skhck3aDQvXoH8ogwPGNORdPxzUrHAhojiAXwD4MIA5AD5NRHOGo+xkPIZnv3aa/X+ja3+od2SnUA46fRCZMyUnBNRA+gH5oBw9bTSOOMA6/42HluNHf7UepvpE3B6gAOvVuB/+6fP4wxubMXl0A9qa69CQjOPDR1q288fe2oL2zl77wb72vCMAAKdKwXXeL15C554BdO0dxEUnzMAH3zfBtq//92OrAFimslRG4FNzp9tlK3/S9x5fhSXruwFYb9b7x2MsVf2pldvtgeIZ7YH48hmzAeTs8D98crUd6nvm4RNx0QkH4tVvnYnDJrfaAlcN0Ft3D9iaHQC8tXm3cfWzEi4A8MvncsLllEPGg4jQUpdAT/8QuvuG8L3Hc1thqBX6r7y3E1fcuwztnXvtGecz2j0+fkYblm10vjVSTQTU73pnWy8+c9ti+/w/HGO9VEvZxO98eb0tBGaMbXa8L2b+T17Adx9dYQ8S45rrMHVMo206+530lam6ffVMq01bpWbz28UbIYTAMu3Nlu+b1IoJLfV4t2sv3t6822F+vOJ0K/2ohgQ2dfcjmxXYsLMPH73J6rOZjLDarSGBe5fkhIbiqKmjkYwTnl7Via279+H1jT1Yr2mdTXUJHDyhGYvf6867X5+eN11eYz03vQNpvLAmFxmp2k1plXsG0ti8a5+tqV7/iaMwobUeDckYlm/eg8F0Brc8m7vnJ8wai3FSO1Dbn/xI2xXj1ovnIhYjjG3OBVRcJ/t9Ik52IMSfpX+mbzCNX0n/nhLKY5vrHK9R+MOyDmzetQ9nzZlkm72UFj6UzuIT0vd6+GQriOKwKa14e7Nl+RjfUocjp+YHV9z/6iace9MLuOvl9QCAOz/3d/a5meOc2ojuV5nY2uCwpnhtMVRuhjfwubTMA9AuhHgPAIjoPgDnAVjpm6pEzBzf7HnusS+fgnNvykV+HD4l13Emj27ANz9ymGOAm3/kZDz+5VNx+JRWEBGOP7Atb7NLAHjlqtNx0v88DQB4t8sapHTb8PfPPxpPvL3NjqCa2FqPc4+ags+eNBNALpINyK19UdFIJx00Du+fPgYLV27HzCsfs69Tgg+AbWq49fn37BDoN/7rbHuQvOnpdtwkBwDFvf96ov2gf/SoKfjKfcvw8rs7UReP4R+OOQA/+/Sx9rUffN8E3Pr8ezjth8/Yx775kcMBAJ87eSbuenm9/ZAqLv3gQVbdmurgZum3z7RNEL2Dafzmbxvxm785N/Bzm3nOlJFtRMAs7R63uNYInD1nEn78qWMA5KKygJypFAB+8k/vBwAcI9tdDYAzxzXZ4bw3ffpY276uBhF3uwDAkvXd9n0596gp+OqZ75P1tLTPjd39+Kdf/c3WMi477WAA1iLQTd05UxlgTTYOkdrgsTPG4OFlm3HQNx93lHfxyTMBWFrZY3It1UOXnWyfb0jGcdyMNjy8bDMeln4QxT9K4fDJ46fhW39429ZgFf95zmEAcn3v1B/k7vdDl52M4+VecIdObgWkoviB65+2r/nYsVNBRBhIZfHQ6x2OUOq3/985aNIiOn/45GrUJ2L287TsO2fZZtGBVAb3L92E+zVT4/WfONqezHznj2/j7Y7d+MMbud/3tXMsLT4Zj+Hdrj586IfP4CNHTbHv7QdnT7CDDf7rkbeRzgqs3Z6LJFRC4O9mjsWzq1fb9/TT82bgcyfPQkt9HOccMRmzv/WEHfwAWD7bv5cWDgB45PJT0Nk7gP96ZAVWbdtj+9cUP/30sfj8na9i3qyxOGSi09IyXNSs5gJgKgB9StUhjw0bq66Zj1XX5Ns/jzhgND55nGVCOnbGmLx3j1/6wYPtgf6Ryz8AAJhzwCh7oLjnC/Psa+/6fG62MmV0I9qv+zAuPulA+5iawQI5J6Wis3cQx8kHVfHC1//enlkBwGw5yCTiMVz14cPyfos+cH7kyMl550c3JkFE+LcPHZR37sSDxjoG71iM8O1zLeVyKJPNWxQ2X+avZsC3XHScrRVc9ZHD8qJe/nzFKXadE/EYvnrmbHtgmDSq3hYsABxtBgBf/NDBWH/9uThgTCOWf/fsvLqfMMvpZ/rEsc6udd3Hj7IDDU45ZLytQShWXnOOPYgdLNdAKdTCS8AaiP/5hBmO8x92tfPBE5wTmWOmj3b8f9JBVhsvWd+NnX1D+NzJM/F1OQieOns83Mwan6vPOYZ7+r8Xz7XNsD//9LG46IQZuPLDh9mDvuLWz87NS/vjC47BTVIwKg1E54+Xf8D+/WoWr3PcjNwEyOTrW/ads2yz0AcOcU4Mrjj9EMezdow0FStt/DsfnWNH+QHAtz/qNHR8/5NH4cipo9HWXGeXff/STRhKWybi33/xJHxIaqsqjHvDzn7c8uy7qEvEcPNFx+GoaVb04PEHtiGVEfjOH9/GPa9swORRDVj+3bPtJQvzXe1+5uGTcP7x0zD/yCkgIvzuX0+02+Ohy062fbaK0U1JzJ7UitsWzMXT/3Fa3gasoxqSeOiyk/GN+fnP9HBBQVulVytEdAGAc4QQ/yL//yyAeUKIK1zXXQrgUgCYMWPG8Rs2bMjLqxwMpbN4+PUOnDJ7vDFaI5XJQojc61YL5fk1XThKPgg663b04fHlW7Fs4y6Makzgex8/ymijvW/JRkwf24STDx5nCzXA8gsk4jH7gdLPKTp6+tEg1zro53f1D+GaP61E31AaX/r72ZhzwCjjrsPPr+nCjr2D+MRx+bH3HT39uPOl9WhtSOCK02c70u/cO4gN3f14auV2fOSoKbZDXGcwbfmCzp4zyfG7hRAYymTRuWcQ/UOZPL8ZYJk/PviDZ/Cpv5uOK04/xDEDBqyZ7o1PrcG0tib7Vb8623YP4PHlW3H0tNGYO3NsXtr2zr14+d0dOGvOZIdWpEhlsnirYxeOP9CZNpO13hz58OsdmDSqAWfPmZR3X7bvGcAJ31uEgyY049EvneIYZDt7B/DIsi342dNr8bmTZ+KrZ74v9/4fWe/bXngPHzp0AprqEjhuxhjjfTfR2TuAnXuH8PyaLrQ11+FTc52DYN9gGqu392Lxe91YcPKBeW26qbsf/UMZDKQyOHraaEe5Qgg8uWIbGpJxbNk1gJMOHudoNyEE9uxLY18qg72DaUwf25i3UHDPQApvbdqNF9q7cNmHDrYDavQ8Hn1zC9qa6mwzJ2D5O+5+ZT3Gt9Tjo0dPwdjmOsdkRQiBGxeuwZQxjWhrskK6D9ImEbv7U/jDsg6s3LoHsye2Yv6Rk21NTfFS+w6kswLT2hrzJiCAFYQQMzw/lYCIXhNC5M8m/NLUsHA5CcB3hRDnyP+vAgAhxP94pZk7d65YunTpMNWQYRhmZBBFuNSyWexVALOJaBYR1QG4EMCjFa4TwzAMgxp26Ash0kT0JQBPAogDuEMIsaLC1WIYhmFQw8IFAIQQjwN4PPBChmEYZlipZbMYwzAMU6WwcGEYhmFKDgsXhmEYpuSwcGEYhmFKDgsXhmEYpuTU7CLKKBBRL4BtALzeJzra5xwAzACw0ed8UPpizldz3YLOc924bly36q8b4F2/Q4UQhW1SJoTYb/4ALAVwq895z3PyfFfA+aD0kc9Xc91C1J3rxnXjulV53fzqB2CpXzrT3/5oFvtTxHMAsCvgfFD6Ys5Xc92CznPdop3nukU7z3WLfj6ofqHZ38xiS0WB++OUMn054bpFg+sWDa5bNKq5boB3/aLUe3/TXG6tcPpywnWLBtctGly3aFRz3QDv+hVc7/1Kc2EYhmGGh/1Nc2EYhmGGgf1euBDRHUTUSURva8eOIaJXiGg5Ef2JiEbJ40kiulseX6XeISPPPUtEq4noDfk30VReGetWR0R3yuNvEtFpWprj5fF2IrqJwr4JanjqVtJ2I6LpRPSMvD8riOgr8vhYIlpIRGvlZ5uW5irZNquJ6BzteEnbrcR1q2i7EdE4ef1eIvq5K6+KtltA3SrdbmcR0WuyfV4jotO1vMrxnJayfoW1XaHhZSPtD8AHARwH4G3t2KsAPiS/fwHAtfL7PwO4T35vArAewEz5/7MA5lawbpcDuFN+nwjgNQAx+f8SACcBIABPAPhwFdWtpO0GYAqA4+T3VgBrAMwB8AMAV8rjVwL4vvw+B9ab2usBzALwLoB4OdqtxHWrdLs1AzgFwBcB/NyVV6Xbza9ulW63YwEcIL8fCWBzudqtDPUrqO1K0sC1/gdgJpyD5B7k/FHTAayU3z8NK5QvAWCcvFFjy9FpI9TtFwA+o123CMA82bne0Y5/GsCvqqFu5Ww3raxHAJwFYDWAKfLYFACr5ferAFylXf+kfMDL1m7F1q0a2k277nPQBvBqaDevulVTu8njBGAnrMlD2dutmPpFabv93izmwdsA/lF+vwDWQAkADwLoA7AV1irWHwkhurV0d0p18TulUGkLrNubAM4jogQRzQJwvDw3FUCHlr5DHquGuinK0m5ENBPWTGwxgElCiK0AID+VSj8VwCYtmWqfsrZbkXVTVLLdvKiGdguiWtrtkwCWCSEGMQzPaZH1U4RuOxYuZr4A4HIieg2WKjkkj88DkAFwACwzxX8Q0UHy3EVCiKMAnCr/PjvMdbsDVodcCuAnAF4GkIY1+3BTrhDBQusGlKndiKgFwEMAviqE2ON3qeGY8DleDXUDKt9unlkYjg13u/lRFe1GREcA+D6Af1OHDJeV7DktQf2AAtuOhYsBIcQ7QoizhRDHA7gXlq0bsHwufxFCpIQQnQBeAjBXptksP3sB/A6WIBq2ugkh0kKIfxdCvF8IcR6AMQDWwhrUp2lZTAOwpUrqVpZ2I6IkrAfpt0KIh+Xh7UQ0RZ6fAqBTHu+AU4tS7VOWditR3aqh3byohnbzpBrajYimAfgDgIuFEGpsKdtzWqL6Fdx2LFwMqCgIIooB+DaAX8pTGwGcThbNAE4E8I4094yXaZIAPgrLRDRsdSOiJlknENFZANJCiJVS5e0lohOlGnsxLLtrxetWjnaTv/F2AKuEEDdopx4FsEB+X4BcGzwK4EIiqpcmu9kAlpSj3UpVtyppNyNV0m5e+VS83YhoDIDHYPnSXlIXl+s5LVX9IrVdqR1GtfYHa4a9FUAK1uzhEgBfgeWsXwPgeuSc1C0Afg9gBYCVAP5THm+GFQH1ljz3U8ionmGs20xYTrpVAJ4CcKCWz1zZEd4F8HOVptJ1K0e7wYoSEjLPN+TfR2AFYCyCpTEtggzEkGm+JdtmNbQInVK3W6nqVkXtth5AN4C9sg/MqaJ2y6tbNbQbrElXn3btGwAmlvE5LUn9orQdr9BnGIZhSg6bxRiGYZiSw8KFYRiGKTksXBiGYZiSw8KFYRiGKTksXBiGYZiSw8KFYaoEIvoiEV1cwPUzSduVmmGqiUSlK8AwjLVITQjxy+ArGaY2YOHCMCVCbgz4F1gbAx4LazHpxQAOB3ADrEW4OwB8TgixlYiehbXP2gcAPEpErQD2CiF+RETvh7XDQROsRXVfEEL0ENHxsPZq6wfw4vD9OoYpDDaLMUxpORTArUKIo2G9guByAD8DcL6w9ly7A8B12vVjhBAfEkL82JXPPQC+IfNZDuBqefxOAF8WQpxUzh/BMMXCmgvDlJZNIrcn028AfBPWS5cWyh3K47C2zVHc786AiEbDEjrPyUN3A/i94fivAXy49D+BYYqHhQvDlBb3fkq9AFb4aBp9BeRNhvwZpiphsxjDlJYZRKQEyacB/A3ABHWMiJLyXRmeCCF2A+gholPloc8CeE4IsQvAbiI6RR6/qPTVZ5jSwJoLw5SWVQAWENGvYO04+zNYrye+SZq1ErBemLYiIJ8FAH5JRE0A3gPweXn88wDuIKJ+mS/DVCW8KzLDlAgZLfZnIcSRFa4Kw1QcNosxDMMwJYc1F4ZhGKbksObCMAzDlBwWLgzDMEzJYeHCMAzDlBwWLgzDMEzJYeHCMAzDlBwWLgzDMEzJ+f/uvPwidk82QAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sorted_data['inc'].plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Un zoom sur les dernières années montre mieux la situation des pics en hiver. Le creux des incidences se trouve en été."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEKCAYAAADaa8itAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztvXl4ZGWZ9/95as+eztLpJb3vC9BAswkIyLCq6MwA0zgqgzqog7vODPj6Do7KjPoqOOjPBQUBR0TABZTNZhFBmt6g6X1f00uSzp5UUuvz++OcU6kktSWpSp2qvj/Xlauqnzrn1HNOV9X33Mtz30prjSAIgiBkA0e+JyAIgiAUDyIqgiAIQtYQUREEQRCyhoiKIAiCkDVEVARBEISsIaIiCIIgZA0RFUEQBCFriKgIgiAIWUNERRAEQcgarnxPINvU1dXp2bNn53sagiAIBcXGjRtPaq3rx3ucohOV2bNns2HDhnxPQxAEoaBQSh3KxnHE/SUIgiBkDREVQRAEIWuIqAiCIAhZI62oKKVmKKVeVkrtUEptU0p91hz/qlLqqFJqk/l3bdw+dyil9iqldimlroobP1sptcV87V6llDLHvUqpX5vja5VSs+P2uVkptcf8uzmbJy8IgiBkl0wC9WHgi1rrN5VSFcBGpdRq87V7tNbfid9YKbUUWAUsA6YBLyilFmqtI8CPgFuBN4BngKuBZ4GPAh1a6/lKqVXAt4B/UErVAHcCKwFtvvdTWuuO8Z22IAiCkAvSWipa6+Na6zfN5z3ADmB6il3eBzyqtQ5orQ8Ae4FzlVJTgUqt9RptdAZ7GHh/3D4Pmc+fAC43rZirgNVa63ZTSFZjCJEgCIJgQ0YVUzHdUmcCa82hTymlNiulHlBKTTLHpgNH4nZrMsemm8+Hjw/ZR2sdBrqA2hTHEgRBEGxIxqKilCoHfgN8TmvdjeHKmgesAI4D37U2TbC7TjE+1n3i53arUmqDUmpDa2tryvMQBKHwaerw89LO5nxPQ0hARqKilHJjCMovtda/BdBaN2utI1rrKPBT4Fxz8yZgRtzujcAxc7wxwfiQfZRSLqAKaE9xrCFore/TWq/UWq+srx/3glBBEGzOT17Zz6cfeSvf0xASkEn2lwLuB3Zore+OG58at9nfAlvN508Bq8yMrjnAAmCd1vo40KOUOt885oeBJ+P2sTK7rgdeMuMuzwNXKqUmme61K80xQRBOYQ629TEQjuZ7GkICMsn+uhD4ELBFKbXJHPsycJNSagWGO+og8HEArfU2pdRjwHaMzLHbzMwvgE8CDwIlGFlfz5rj9wO/UErtxbBQVpnHaldKfR1Yb273Na11+9hOVRCEYuFwu59IVKO1xlyZINiEtKKitX6NxLGNZ1LscxdwV4LxDcDyBOMDwA1JjvUA8EC6eQqCcGoQjkQ52tEPQCii8bhEVOyErKgXBKGgON41QDhq5OuEo+ICsxsiKoIgFBSH2/2x56HwiGRQIc+IqAiCUFAcaosTFbFUbIeIiiAIBUW8pRKOiKViN0RUBEEoKA6398WehyJiqdgNERVBEAqKITEVERXbIaIiCELBoLXmUJuf2jIPQCwLTLAPIiqCIBQMPYEwPQNhZteVAWKp2BERFUEQCob+oFGcY1KpG5BAvR0RUREEoWAImvW+yrxGMRCxVOyHiIogCAVDwBSVUo8lKmKp2A0RFUEQCoaYpeJxAlKmxY6IqAiCUDAETXdXqen+kpiK/RBREQShYLAslXKvYakEJaZiO0RUBEEoGILDYipiqdgPERVBEAqGYMRIKS6VmIptEVERBKFgGG6pBKWlsO0QUREEoWAIxGIqpvtLyrTYDhEVQRAKhpilYgbqwxKotx0iKoIgFAzWYscyWfxoW0RUBEEoGILhoYF6KdNiP0RUBEEoGKx1KRJTsS8iKoIgFAxWTKVELBXbIqIiCELBYImK1+XAoWTxox0RUREEoWAIRKJ4XA6UUridDrFUbIiIiiAIBUMwHMXrNH62DFERS8VuiKgIglAwBMOGpQLgciop02JDRFQEQSgYhoiKQywVOyKikgFd/pD4bgXBBgQjg6LicSr5XtoQEZU0aK254p5X+Omr+/M9FUE45QmGo3iclvvLIWVabIiIShq6+8O09AQ40NqX76kIwilPKBLF7RyMqYRk8aPtSCsqSqkZSqmXlVI7lFLblFKfNcdrlFKrlVJ7zMdJcfvcoZTaq5TapZS6Km78bKXUFvO1e5VSyhz3KqV+bY6vVUrNjtvnZvM99iilbs7myWdCc88AAO19wYl+a0EQhhEIx7u/xFKxI5lYKmHgi1rrJcD5wG1KqaXA7cCLWusFwIvmvzFfWwUsA64GfqiUcprH+hFwK7DA/LvaHP8o0KG1ng/cA3zLPFYNcCdwHnAucGe8eE0EJ7oMUTkpoiIIeWd49pcE6u1HWlHRWh/XWr9pPu8BdgDTgfcBD5mbPQS833z+PuBRrXVAa30A2Aucq5SaClRqrddorTXw8LB9rGM9AVxuWjFXAau11u1a6w5gNYNCNCE0d1uWSmAi31YQhAQEI1G8Q7K/xFKxG6OKqZhuqTOBtUCD1vo4GMIDTDY3mw4cidutyRybbj4fPj5kH611GOgCalMca8Jo6THEpL1XLBVByDfxgXq3U0mZFhuSsagopcqB3wCf01p3p9o0wZhOMT7WfeLndqtSaoNSakNra2uKqY0ey1LpC0YYCEWyemxBEEZHvPvL7XTI4kcbkpGoKKXcGILyS631b83hZtOlhfnYYo43ATPidm8EjpnjjQnGh+yjlHIBVUB7imMNQWt9n9Z6pdZ6ZX19fSanlDGWqIAE6wUh38SvU3E5HQTFUrEdmWR/KeB+YIfW+u64l54CrGysm4En48ZXmRldczAC8utMF1mPUup885gfHraPdazrgZfMuMvzwJVKqUlmgP5Kc2zCaO4OoEx7qU1cYIKQV4a4vxxKsr9siCuDbS4EPgRsUUptMse+DHwTeEwp9VHgMHADgNZ6m1LqMWA7RubYbVpry2/0SeBBoAR41vwDQ7R+oZTai2GhrDKP1a6U+jqw3tzua1rr9jGe65ho6R5gdm0ZB0720SbBekHIKyNqf4mlYjvSiorW+jUSxzYALk+yz13AXQnGNwDLE4wPYIpSgtceAB5IN89cEI1qWnoCXLVsCgdO9on7SxDyzPCYimR/2Q9ZUZ+Ctr4g4ahmydQKQGIqgpBvApFhoiKBetshopICK0g/f3I5bqeiTURFEPKG1ppQZLCfissh7i87IqKSghazREtDpY9JpR5ZqyIIeSQc1WjNkOwvWVFvP0RUUtDcbQTmGyp91JZ7JVAvCHnE6k8vpe/tjYhKClrN1fT1FV5qyzzi/hJsz3NbT/DAawfyPY2cYImKW0rf2xoRlRQMhCK4nQq300FNmUcC9YLteXzDER74a5GKSmSopSKl7+2JiEoKAuEoXpdRYLmmTGIqgv3p7A/R5Q/lexo5Ieb+ii1+FEvFjoiopCA+J76u3ENPIEwgLPW/BPvS6Q/SEwgX5Y9tYFhMxe10ENUQEWvFVoiopCAQjsTKbFeVuAHoGQjnc0qCkJKufsNK6S7Cz6llqXjj3F+ABOtthohKCuItlVKPUXygL1B8X1ahONBa02m6vjr9xeeqHR5TcZuiEhZLxVaIqKQgEFe8rsxriYq4vwR74g9GYj+wnf3FF1cZjKkYcU6Xw/huFqOrr5ARUUlBMBzF67ZExfgg+4NiqQj2JF5IuopZVCxLxXwMiqjYChGVFMRbKpb7q1fcX4JNiXd5FWMGWGi4+8thur9kVb2tEFFJQTAupXjQUhH3l2BP4oWkGC2VwLCUYpfTcn+JqNgJEZUUBMKR2F1RmQTqBZsTLySdRWipJAvUS6VieyGikgJj8ePQQL1YKoJdiY+pdPYXYfbXsJRiq1yLpBTbCxGVFAxNKTbcXxJTEeyKZZ3UlXuK0v01PFDvkpiKLRFRSUF8mRavy4HLoST7S7Atnf1BPC4Hkyt8RRmoD5rVLGJlWsRSsSUiKikIxnWZU0pR6nHKOhXBtnT5Q1SXuKkudRfnOpUEBSVBFj/aDRGVFARCg2VawIirSKBesCtd/SGqSw1RKWb3l3u4pRIWS8VOiKikIBiJjhAVCdQLdqXTH6K6xENVibs4s79ioqKGPEr5e3shopIErbWx+DFeVDxO+iSmItiUzv4QlSVuqko8dPeH0Lq4fmwDpjtaKUNMpEyLPRFRSYLVDzveUin1iPtLsC9d/mDM/RWMROkPFZdVHQxH8ToHv4+DVYqLSzwLHRGVJAzv3QDGqnoJ1At2pbPfDNSbbRqKzQUWigz1HHgk+8uWiKgkYXChlTM2ZsRUxFIR7EcwHMUfjFBd6o71/im2YP1AaGiMM1amRVbU2woRlSRYHR49w91fEqgXbIglIFUlbqpKi9NS8QfDscoWMLj4Udxf9kJEJQnDS0KAGaiXmIpgQ7rMsixVpR6qSzxDxooFfzASq2wBgzd84v6yFyIqSUgcUzFSiqOSwijYDKvNdYXXRYXPuJsvtpbC/kAk1oICpEyLXRFRSULimIrxvNiyaoTCp990y5Z4nPjcxuc0UGSf075gOPYdhMGYilgq9kJEJQnJYiog5e8F+2Hd6JR6nPjMbqUDoeL6sfUHI5TEWSrSo96eiKgkYXhDIIByq0+9BOsFm2FVeihxD1oqA0VmqfiDYcriYipWmZaglGmxFWlFRSn1gFKqRSm1NW7sq0qpo0qpTebftXGv3aGU2quU2qWUuipu/Gyl1BbztXuVuSxWKeVVSv3aHF+rlJodt8/NSqk95t/N2TrpTLBExepRD4Pl78VSEeyGZamUeJy4nUZF7YFwkYnKsJiK2+nA43LI99FmZGKpPAhcnWD8Hq31CvPvGQCl1FJgFbDM3OeHSinr1uJHwK3AAvPPOuZHgQ6t9XzgHuBb5rFqgDuB84BzgTuVUpNGfYZjJJjAUpFGXYJd6Y+zVAB8bif9weK5g9daj4ipAFT6XPSIqNiKtKKitf4L0J7h8d4HPKq1DmitDwB7gXOVUlOBSq31Gm0UJHoYeH/cPg+Zz58ALjetmKuA1Vrrdq11B7CaxOKWEyxR8YmlIhQAgzEV48bH53YWlaUSCEeJasMSi6fc64plvgn2YDwxlU8ppTab7jHLgpgOHInbpskcm24+Hz4+ZB+tdRjoAmpTHGtCGIypDH6IB2Mq8iEW7IVlPVvrqnxuR1HFVKzzK4tzfwFU+Nz0DhTXIs9CZ6yi8iNgHrACOA581xxXCbbVKcbHus8QlFK3KqU2KKU2tLa2ppp3xgQTxVQs95fU/xJsxkAoQonbicNcu+FzO4tKVCzvQKlYKrZnTKKitW7WWke01lHgpxgxDzCsiRlxmzYCx8zxxgTjQ/ZRSrmAKgx3W7JjJZrPfVrrlVrrlfX19WM5pREEhrUuBWKZJ9KnXrAb/mB4iGuoxO0sqpRiy1IpHWGpiKjYjTGJihkjsfhbwMoMewpYZWZ0zcEIyK/TWh8HepRS55vxkg8DT8btY2V2XQ+8ZMZdngeuVEpNMt1rV5pjE0JCS8VjBerlQyzYi/5gNBakh+Jzf1ku59JhgfoKn1tu8myGK90GSqlfAZcCdUqpJoyMrEuVUisw3FEHgY8DaK23KaUeA7YDYeA2rbX1yf4kRiZZCfCs+QdwP/ALpdReDAtllXmsdqXU14H15nZf01pnmjAwbhKtU/G4HHicDlmnItiO/tBQS8XndhbVj21/0piKi26JqdiKtKKitb4pwfD9Kba/C7grwfgGYHmC8QHghiTHegB4IN0cc0EwHMXpULFSEBalXikqKdiP/mHFFr0uJyd7i6egZLKYSoXPRW8gjNY61hFSyC+yoj4JgXBkiJViUe510Ss+XMFm+IOR2Ep6MFJvi6n212BMZWSgXmupcmEnRFSSEBzWn96iwucuuuqvQuHTHxpqqfhcjqIqfGrFVOL7qYDxfQToEReYbRBRSUIgPLTLnEWF10VvQD7Agr3oD0aGBeqLK6W4P4mlYpX5F++BfRBRSUJyS0VSGAX7YVTwHer+KqaU4r5A4pTi8iLtHVPIiKgkIamlIqIi2BBr8aOFz+VgIBzByM4vfPzBMF6XA6djaDC+0rJUJHnGNoioJCEQjuJxOUeMV/jc4r8VbMfwVrtetxOtB1PjC52+Yf3pLcq9ElOxGyIqSQiEIwktlXLTUimWO0Ch8NFa0z/MUimJdX8sDlExyt4nusmTmIrdEFFJQqqYSjiqi+YOUCh8rNhJfFfEWKOuIqlUPNwSs7BiKuKStg8iKkkIRpLFVAxzW1bxCnYh1qArrqSQ1bKhv0jWb/QFwyOC9ADlHhdKifvLToioJCEQSiwqlXJnJNgMqxZdaZFbKsMbdAE4HIpyjzTqshMiKkkwLJXkPlwRFcEuWOtRfJ6RMZViSSvuCyS2VGAwzinYAxGVJATCkYQxFck2EexGrISJOz77q7jcX8MrBsRT4ZPSSXZCRCUJwXA0Ye0vyTYR7EasP/2wKsVQPO6vvkAkuaXiddEjVS5sg4hKEgLh6JBeKhbi/hLshj80UlQGU4qLQ1T8wXCsSd5wjLVj8n20CyIqSUhuqUj2l2AvBixLxZ3AUimCmEo0qpOmFIO4v+yGiEoSklkq5V6xVAR7kagsfCyluAgsFcuFV5pgRT1Yjbrk+2gXRFQSEIlqIlGNxznyzsjpUJR5nCIqgm2Iub8SrKgvhkrFVjHJVO4vqRxuH0RUEmDd3fkSWCog9b8EezGQKlBfBO6vwa6PyQP1A6EooUjhn2sxIKKSgMHFZCl8uLLYSrAJ/gQxFWvhbjG4vzr8Rlvk6lJ3wtet76m/SNKnCx0RlQQMNgRK7sMV95dgF/pDRutrV1xiiVIKn9tRFNlfnX7DKzCpzJPwdet7WixrcgodEZUEJOuHbVEu7i/BRvQHwwldtcXS/dGyVCaVJhMVy1KRGz07IKKSAH8CH3U8YqkIdsJYbT7Sqva5nEXh/mrvs0QlsfurRNxftkJEJQHp3F+VksIo2IjhrYQtfG5HUQTqO/0hHAoqfYlFpcz8noqo2AMRlQT0pQ3UD6Ywaq050u6fsLkJwnCGtxK2KCb3V3WpB8ewVsIWJeL+shUiKglIVEspnoq4FMYXdrTwzv/3MjuOd0/kFAUhRl+Srog+d3G4vzr8waSuLxi8+ZNAvT0QUUlA+kD94Kr6V3a3oDW8tuckYCycFISJpCcQitWki8fI/ip891dHXyhpkB4Gv6d9Iiq2QEQlAYmaHsXTUOkDYG9LL2v3twPwxv423jzcwdL/eI59rb0TM1FBwLi5qUgQbyhxO4uiSrHl/krGYEqxuL/sgIhKAvrTWCrvXFiP1+Xg4TUH2dPSi8flYN3Bdh7860EC4SiH2yTGIkwcvQPhJJZK8cRUasrSu78kUG8PRFQS4A9FcDsV7gRVisEoC3H5ksn8cfNxAFadM4OegTB/2HwMQFbbCxNKz0A45pKNpxhiKlprOvyp3V9WkoKIij0QUUlAfzBxNk087z19GmD4rf/54rkAaDOcIqIiTBQDoQjBSDRhuq1hqRR2TKU/FCEYjiZdTQ9Gn3qf2yHZXzZBRCUB/mDyftgWly2eTLnXxVkzJzGjppS59WXMqCkBBgvgCUKusRbhJgvUF7r7K93CR4syj0ssFZuQVlSUUg8opVqUUlvjxmqUUquVUnvMx0lxr92hlNqrlNqllLoqbvxspdQW87V7lVLKHPcqpX5tjq9VSs2O2+dm8z32KKVuztZJp6MvRUMgC5/byU8+dDb/8d6lAPz4g2fz4C3nAtJrRZg4rHJBxRpTsep+pQrUg5H+LynF9iATS+VB4OphY7cDL2qtFwAvmv9GKbUUWAUsM/f5oVLK+nX+EXArsMD8s475UaBDaz0fuAf4lnmsGuBO4DzgXODOePHKJf3BCKXe1KICcOH8OhZPqQRgYUMF8+rLKfU4xVIRJgzL1VrhTeD+cjkJRXRBp7lblkpNCvcXGMF6sVTsQVpR0Vr/BWgfNvw+4CHz+UPA++PGH9VaB7TWB4C9wLlKqalApdZ6jdZaAw8P28c61hPA5aYVcxWwWmvdrrXuAFYzUtxygj8YptSd2v2VjHKvlMUXJg7LKk4UqC/xGF/vQrZWBotJpnZ/lXhcsWZlQn4Za0ylQWt9HMB8nGyOTweOxG3XZI5NN58PHx+yj9Y6DHQBtSmOlXP6k9RSyoRyr4seERVhgkjn/oLC7qmSqfurzOPEL987W5DtQH2i4jw6xfhY9xn6pkrdqpTaoJTa0NramtFEU+HPIKaSjHKfS9xfwoRhFTZNmP3lKvyWwpb7q7oktaUi7i/7MFZRaTZdWpiPLeZ4EzAjbrtG4Jg53phgfMg+SikXUIXhbkt2rBFore/TWq/UWq+sr68f4ykNkqzqayaUe130SqBemCB6U2V/eQq/pXCnP0ilzzWkAVkiSjyuhBZZKBLlv5/ZwVNvJ/zpEHLAWEXlKcDKxroZeDJufJWZ0TUHIyC/znSR9SilzjfjJR8eto91rOuBl8y4y/PAlUqpSWaA/kpzLOcY/SnGJiplElMRJpBYTMWbqJ9KMcRUQinXqFiUeZwj1qmEIlE+++hb/OQv+/nhy3tzNUVhGGmj0UqpXwGXAnVKqSaMjKxvAo8ppT4KHAZuANBab1NKPQZsB8LAbVpr6xP9SYxMshLgWfMP4H7gF0qpvRgWyirzWO1Kqa8D683tvqa1Hp4wkBP6AunXqSSjQkRFmEB6BkKUuJ0J7+StmEohi0pnfyit6wuMlGJ/YOh5Prf1BM9sOcGSqZXsON5NW2+A2nJvrqYqmKT95dRa35TkpcuTbH8XcFeC8Q3A8gTjA5iilOC1B4AH0s0xm0SimkA4Oi5LRWIqwkTRk6TuFwy2bihk91dXf4jKDESl1OPEH4qgtcZcAkdTRz8A/+faJXzw/rWsPdDOtadNzel8BVlRPwLLLzueQL1YKsJE0RtILirFEKjv7g9RlZGouIhENcHIoIC29gQo8zg5b24NpR4na/a15XKqgomIyjAsv2zJGN1f5V4XoYgmUAQlxwX70z0QSlj2HowyLVDYKcVdGYvKyEZdrb0B6iu8uJ0Ozpldw5r9IioTgYjKMGJl79MUlEyGFTCVDDBhIkjl/ir0mIrWmq7+ENVpFj5C4vL3rT0D1FcYMZQL5tWyt6WXlp6B3ExWiCGiMox0XR/TERMVcYEJE0DPQCjhGhWIE5VwYcZU+oIRIlGdkaVieRbiM8BaewLUmYH5MxqrAdh1oicHMxXiEVEZhj9Nf/p0lImoCBNIz0A4YToxDLq/Bgp0UWBXv7GaPiP3V4KeKq09gZilMqu2FIBD0kAv54ioDMO60ylL8kVNh+WKEPeXMBGkDNQXuPuryz8KUfEOFZVAOEL3QJh601KZUunD43JwuF1EJdeIqAwjZqmMM6bSJw2DhBwTjkTxByNJA/VupwOXQxVsn3rLUskspdjqU2+c68leo7yLZak4HIqZNaUcauvLxVSFOERUhpGuP306LAtHeqoIuSZW9j6JpQJmS+FgYcZURuX+Mr+v1s1ca08AGBQVgFk1peL+mgBEVIYxGKgfn/urL1CYd4dC4ZCq66OFz+0oWEulexSiMrxPvSUqdXEr6GfWlnK43Y/WhdtfphAQURnG4DqV8QbqQ1mbkyAkIjNRKdzuj6OxVKzvXf8wUYm3VGbXluEPRmjtDWR7qkIcIirDGK/7q9TtRCkJ1Au5Z7CXSvIfXZ/bSaBAy7R09YdwOlTS7LZ4hq9TsUSltnywGOVMMwPssLjAcoqIyjD8oQhup8KdptR2MhwORbnHRa+4v4QcY8VUUv3o+tyOgl1R39lvlL23anmlwutyoBT0m56Gk70BqkvdeF2DN4ezaiSteCIQURlGz0AoozujVBjl78X9JeSWmKikcn+5Ctn9Fc7I9QWglKK2zMPxLmPFfGtPIJZObNE4qRSHQjLAcoyIyjAy7d+QCqP7Y2F+kYXCIRNLpcRTyKKSWd0vi9Mbq9l0pBMw6n7VDRMVj8vBtOoSDplrVb72h+3cdN8bsfUwQnYQURlGR1+QmjT9sNNRJn3qhQnAarGQaqGu1+Wkv4BjKlWj+C6eNbOaPS29dPWHaO4eGBKkt5hVO5hW/NreVtbsb2PVT9/gpATvs4aIyjDa+4LjtlQqvC56B+TuR8gtvQNhlEpd/NTndhAoUEsl07L3FmfOnATA7986SlNHP6dNrxqxzcyaslha8eF2PytnTeLAyV5u/MkajnX2Z23upzIiKsPo8I/fUin1OIfUIBKEXNAbiFDmceFwJA9klxR4SnFVSebxzdMbq1AK7l69G6XguhXTRmwzq7aU9r4g+0/2MRCKct2Kafzio+fR2h3gtkfezOb0s07PQIjHNxwhErX3OhsRlTi01nT4Q1SXZX53lIhyr0vKtAg5pzeQPqnE53YWZPaXVfZ+NJZKhc/NwskVdPWHuHBeHQ2VvhHbzDbTil/bcxKAGTWlnDO7ho9fMpdNRzrp9AezcwI54PENTfzrE5t5ZN3hfE8lJSIqcfiDEYLh6PgtFe/IftmCkG36AhHKvKnXU/ncjoJsJzyasvfxnDXLKHH/vgRWChjuL4BX97Sa/zZE5tw5tWgN6w92jHXKOefNw8bcvv3cTlv3hRFRiaO9z7hLGW9MpcwjLYWF3NMbCFOeYuEjmO6vcKTgSpOMZjV9PFcvn8qSqZVcvXxKwtetBZBr9rWhFDROKgEM15nH5WDdAft2h9x0pJMzGqsIhKJ8/8W9+Z5OUsa3IKPI6DBN30lZyP4KhKOEI1FcY1xEKZy6/N/fb6W61M0nL52XsgZdbyBMeRpLxet2ojUEI9EhCwHtzmjK3sdzycJ6LllYn/T1cq+LunIPJ3uDTKvyxa6Jz+1kxYxq1h1oH/ukc0hLzwBNHf380ztmM6nsJBsO2deikl+8ODrMD3LNOGMqsZIRBejLFvKLPxjmF28c4vsv7eXd9742pJPhcPoCyRt0WcR6qhRYpWLLa1BTNjIteLzMqjVcYDNM15fFeXNq2Hqs25Zehk2HjfU3Z86sZvGUSva29BCK2PP/VEQljo7MLYFoAAAgAElEQVS+7FkqMLiOQBAy5WiHkdb6ntOncuBkHy/saEm6bc9AOG0zuVj3xwKrVNzWN7J2V7awyrXMHCYq586pIRLVvGlDK2DTkU5cDsWyaVUsmVpBKKLZ19qb72klREQljsG7o2yJSmF9kYX802SKyocvmE1DpZc/vH0s6bZ9wfSWSkmBdn+0mmzV5cBSseIqw0Vl2TRjXcveFvv9WL91uJOl0yrxuZ0smVoJwM7jPXmeVWJEVOLo8AdxKKhME/xMR1msYqpYKsLoaOowVnvPqi3lPadP45VdrbGgdTxaa3pT9Ke3sNxfhZZW3N4XwOVQVI5inUqmWP3qLXGxmFTqxutycLzLfosgtx3rii3mnFNXhsfpYMeJ7jzPKjEiKnF0+INUl3pSLibLBCu4akffrGBvmjr68Tgd1Jd7ue6MaQQjUZ7femLEdoFwlHBUZ+7+KrC04rbeIDVlnowqFI+WlbNqmFtfxlnmCnwLpRTTqks41mWvdN0uf4jugTBz6oxYkNvpYEFDOTvEUrE/HX0hJpWOz0qBwQJ/slZFGC1NHf1Mn1SCw6E4vbGK+govb+wfmeaaSSthiAvUF5ilcrI3SG159l1fYAToX/ripSMC9QBTq3wct1m5lkPtRlXl+PkunlLJzuNiqdie9r7guIP0YCx+BGRVvTBqmjr8sbUTSikaJ5VwonvknXOsmGSatteF6v5q6wtQl4MgfTqmVpXEyufbBasA5qw4d92SqRW09ASG1Cv73zcO8cBrByZ8fsMRUYmjwz/+YpIw+EWXQL0wWpo6+mOiAjCl0kdzAlGxWgmn6qUCRj8VoOCKSrb1BqnNwndxtEyrNq532EbpuofNUv3xiQUXL6jH43Rw40/WsNOMrTyxsYnV25vzMsd4RFTiyEYxSSBWOkMC9cJo8AfDtPUFaZw0+OPRUOmjuXtkWfa+DHqpgNFPBQoxphLIyRqVdEytKiGqobnHPqXwD7f5qSv3DlkIu2hKBY9/4gIGQlH+86ntaG2kGM+bXJbHmRqIqJhorY2YShbujiRQL4yWLn8olk48xFKp8tEbCI/4LGXSoAsGA/WF5P4aCEXoC0ZyskYlHdOqjSKUdoqrHG73D3F9WZwxo5qrljWw7VgXrT0BegbCzK8vz8MMhzIuUVFKHVRKbVFKbVJKbTDHapRSq5VSe8zHSXHb36GU2quU2qWUuipu/GzzOHuVUvcqM+VDKeVVSv3aHF+rlJo9nvmmoi8YIRiJZiVQ73QofG6HlL8XMqJ7IMTF336Jjz60HmCIpTLFrLR7YpifvzeDBl3xr/cOFM4NTpu5XiwfMZVp1Yag2ykD7HC7f8SaGovFUyvpHgjzqll1ed7kAhcVk8u01iu01ivNf98OvKi1XgC8aP4bpdRSYBWwDLga+KFSyipG9CPgVmCB+Xe1Of5RoENrPR+4B/hWFuabkFA4ymWL6pmfpf+Ucq9LVtQLGfHq7pN0D4Q50m7cHc+Is1Ss8u3D4yqZWioVXhc+t8PWVW2H02Z2YazNi/vLXpZKIBzhWFd/UlFZMqUCgKe3HAfI2u/XeMiF++t9wEPm84eA98eNP6q1DmitDwB7gXOVUlOBSq31Gm2UUn142D7WsZ4ALle5SFzHqEz881vO5fIlDVk5XqlHREXIjBd3NlNd6ubO9y7lwvm1Q3qrT6lKbKnEYippAvVKKRoqfZxIEJexK23mavp8uL8qfG4qvC7bZIAd7ehHaxK6vwAWmqLy6p5WSj3OmGWbT8YrKhr4k1Jqo1LqVnOsQWt9HMB8nGyOTweOxO3bZI5NN58PHx+yj9Y6DHQBteOc84RQ6nHSJ+4vIQ2RqObPu1q5dGE9t1w4h19+7Pwhi28bKg2BGZ5W3GtmFqZqJTx4jMQZZHblZB4tFYCp1T7btBY+lCDzK55Kn5vGSSWEIpp59eU5WSw6WsZbA+FCrfUxpdRkYLVSameKbROdrU4xnmqfoQc2BO1WgJkzZ6ae8QRR7nVJ9peQlk1HOmjvCya1kEs9Lip8rpHuL7NESybVHxoqfWxu6szKfLPJj/68j75AmE9cOm+IG8+KqeTDUgEjA+yYTUq1HDppLHwcXlImnsVTKmnq6LeF6wvGaalorY+Zjy3A74BzgWbTpYX5aJVZbQJmxO3eCBwzxxsTjA/ZRynlAqqAEQ0PtNb3aa1Xaq1X1tcn76UwkZR6XbG7SUFIxiu7WnE6FO9M0QNkSqUvofsrXdfHwf29NHcP2KpRV18gzD2rd/ODl/dy+Xf/zKG2vthrbb0BfG5HrIXERNM4qYQj7f22uF67mnupLnVTn6K6wJKphgtsXn3+04lhHKKilCpTSlVYz4Erga3AU8DN5mY3A0+az58CVpkZXXMwAvLrTBdZj1LqfDNe8uFh+1jHuh54SdvhfzoDyjxO/BJTEdKw80QPc+rKUjajmlI10n3Vm0EvFYuGSh8DoSjd/fb5PL6+r41gJMrt1yymPxjhs49uivUHaesLUlvmzZsrZ9EUo899ovVBE82uE90saqhIeS0WTzGqFs+zQToxjM9SaQBeU0q9DawDntZaPwd8E7hCKbUHuML8N1rrbcBjwHbgOeA2rbV1K/9J4GcYwft9wLPm+P1ArVJqL/AFzEyyQqDM65KUYiEt+1p7mVuX+g7TCLSPT1QAmm2UAfbyrhbKPE4+cuEc/uvvTmPTkU5+/Od9ALT25KdEi4X1I53vKsDRqGZ3cy+LzWB8Mi5dVM8nLpmX0tqdSMYcU9Fa7wfOSDDeBlyeZJ+7gLsSjG8AlicYHwBuGOsc80mZxymLH4WUhCJRDrf7uXJZ4n7qFlMqfbT2BIhENU4zhtIbSN+gy6Ihbq3LwobUP1ATgdaaV3a1cuH8OjwuB+85fRqPrD3M01uO8+nLF7C7uYcL59flbX6LzB/xncd7uGzR5DRb546jnf30BsIsMkUuGWVeF7dfs3iCZpUeWVGfI0olUC+k4Ui7P5a1k4qGKh9RbdzBWzR3D1BfkVl21JQka13yxZ6WXo529nPZ4sEf7DNnVrOnpZcTXQM0dwdYkuaHNJdUlbiZXl0Sq6mVL3aeMErbL0pjqdgNEZUcUe51EYpoguHCqrkkTBz7Wo3g9Nw0AdY5Zk91q31sJKo50TXA9OqSVLvFmGymJdtBVHoDYf7tic14nA7eFScqy6ZVEYlqntx0FCDW3TBfLJ5SkffOirtMURNREQBimSuFtAAyEtW2yHg5VdhvisS8utSWSswdY965NncPEI5qpk/KTFR8bifVpe6EJfQnms//ehNbjnbx/Q+cGXPLASybZojIb940lqwtnprfH9IlUyvZ19pLIJy/uOjOEz3MqCnJOHZmF0RUckSs/H2BuMDaegNc/b2/cMuD6/P6RTqV2NfaS125l6o09ebqK7zUlnlid65HzYV5mVoqAA0ViasdTySBcISXdrZwyztmc9WwONKMSaWUe13sbjauSV2OGnRlyuKpFYSjOq/96ned6GFRQ34ttrEgopIjrCBqIWSA9QcjfPShDRxq8/PnXa188bG3xWKZAPa39qV1fVksmlLBLtNSORqrZpx8QdxwGhKkJU80+1v7iEQ1p8+oHvGaw6FYarq8luTZSoG4DLA8ucA6/UH2tfayfLqIimBidX8shAywR9cfZtORTu69aQWf/5uF/HHzcbYetWer0mJiX2tvxmsLFk2pYHdzL9GoHqOl4h2xgDJTOv1B7vjtFrr6Q2Pa32J3sxl4TpKBttR0gaVLoZ0I5tSVUeJ2su1YV17e/5XdrUQ1XGKTNOHRIKKSIyz3VyH0qX9+2wkWNpRz9fKpXL3ccEsciFvhLIyfJzcd5Y7fbmbDwXZOdA3wned30eEPZfwDunhKBf2hCEc6/DR19FNb5ok14MqE2XVltPQE6PQHRz33p94+xq/WHeave0+Oet94dp3oweVQzEmyLmdQVPJ/d+50KJZOq2Tr0fyIyss7W6gt83BG40irzu4UVgSogKgpM/zkVnE8u9LpD7L+YAcff+dcAGbUGHe/R8xCdsL4CUWifP2POzjZG+BX6wZrqt5wdiP/cM6MFHsOYq0v2Xmih6Od/RkH6S3OnmW0NXrzcAfvWjy6Stwv7zQqLVmJBWNld3MPc+vL8LgS38teurCeixfUcfGC/K1Riee06VU8tuHIkPVBE0EkqnlldyuXLZ6cUW03uyGikiMaJ5WiFBxqs/eP88u7WohENVcsNX5oSj0u6sq9HLb5vAuJ1dubOdkb4Ps3nUlUa3oDYWbXlo1qgZ8lKrtO9HC0wz/qRYxnNFbjcig2HhqdqPQHI7y+rw2A/SfHZ73uau5hxYxJSV+fXOnjFx89b1zvkU2WT6/iwdcPcuBkL/MnT5xLbtORDjr8oSEp14WEiEqO8LmdTKsq4aDN3UirtzczucI7xMyeWVPCYbFUssYv1x5ienUJ1542dcx3vGVeF3Pqynht70lj4eAoV3qXeJwsm1bJhoMdo9rvjf1tBMJRSj1O9reO/bPcFzCakP3DyswsMztw2vQqADY3dU2oqDy/rRmXQ3Hx/MKLp4DEVHLKrNpSW4tKIBzhlV2tXL6kYYiZPau2TEQlSxxu8/PXvW3cdO6McbtQPnj+LNYdaGcgFB21+wvgrFmTeLupM1a4MRNe3tVCidvJu0+byv7W3jFnBe4xU3PtUCYmU+bVl+FzO9gygXGVUCTKb988ymWLJ6dNNbcrIio5ZHZdma3dX6/va6MvGOHKpUPdITNqSjne1S/VALLAn7afAOB9K6an2TI9/3jezFjG12gyvyxWzqphIBRl+7HMMvu01ry0s4UL59fGeqG3940+0A+Dq8MLSVRcTgfLplVNaLD+lV2tnOwNcMPZjek3tikiKjlkdm0p7X3Bcadi5orV25sp9Ti5YN7QZpoza0qJ6sFFdsLY+dP2ZhZPqWBGks59o8HndvKvVy1CqbH9OFvB+o2HMnOB7Wvtpamjn0sXTY6tpxlrXGXtgXZqyjxJOxjalbNnTWLDoQ5ufXjDhKzzeXzjEerKPUPqohUaIio5ZJZZs+mQDV1g0ajmhe3NXLKwHt+wlrTWF3+iXWAv7mjm6c3HJ/Q9c0lHX5ANB9tjSRDZ4P1nTmfjV65gdppy+YmYUuWjvsLLtgwtlZd3tgJw2eLJsVIyY8kA01rz+t42LphXW3DZTJ+5fAGfvmw+f97Vyg9e2pvT9+oNhHlpZwvvXzEdt7Nwf5olUJ9DrHz8g21+TrdZvvnmo1209AQS/uDlQ1SiUc1Xfr+VDn+Qc+ZMYnKFL/1ONuflXS1ENfxNklbBY6WmbOy9RpZMrWTH8QxFZVcLixoqmF5dQiSq8TgdYwrW7z/Zx4nuAS6cZ49U4dFQ7nXxhSsXsfVYN6+Nc51OOtYfbCcU0QVtpYBYKjnF+nE+OM5UzGzwx83Hhpjvq7efwOlQCdMWJ1d48bgc416r4g+GMw7svnWkk+NdAwyEovzw5X3jet+JJtk5vrijhckV3lgWkR1YMrWCvS29aYP1PQMh1h9s59LFRgaS06GYVVs6plpYVkryhfNr02xpXy6aX8eBk300deTuRmvNvjY8TkfMTVmoiKjkEJ/bydQqX94zwFp6BvjUI2/x38/siI2t3t7MObMnUV068q7X4VDMrCkdlxg2dw9w8bde5q6nd6TfGHhmy3E8TgfvPm0qj6w9zPGuwojnRKOam376Bv/x5NYh41pr1h5o46L5dbZy+SydWkkwEo2V0U/Gs1tOEIpo3hWXunzBvFpe3tXCugPto3rP1/eeZHp1ScHFU+KxFmS+tid31sqafW2smFk9wh1daIio5JjZtWUcyLOlsulwJwDPbDlBW2+AQ2197G7u5YqlyTsOLptWyZuHO8ecQnrnk9to6wvy0JqDae/uolHNs1uO886Fddx+zWJC0Si/Wnt4TO870Ty95Thv7G/n4TWH2Hho8Mf2UJufk71Bzp5tr7tOq09JKhfYQCjC917YzemNVZwzuyY2/m9XL2ZmTSmf+dVbGZd7iUY1a/a38Y55tXnrOZ8N5k8up6HSy6s5coF19YfYdqyLC+YWrjVnIaKSY86aVc3mpq68lmvZdKQTh4JgJMpjG5pYvb0ZYEQqcTzvmFfLyd5Axu6OTn8wlqq6enszz207wT+9YzYKxX/+YTvffHYnD71+MGEm3Bv72zjWNcA1y6cyo6aUSxbW89iGJsKjWE+RD8KRKPe8sJsF5g/O1/6wnWjUEOENZobVylk1qQ4x4cytM8qkpKq++4s1hzjWNcDtVy8eYmWVe138z6ozOdE9wBMbmzJ6v+3Hu+n0h/LaHjgbKKW4aH49f917koFQ9uv5rTvQTlQzIhOzEBFRyTHXnTGdSFTzzJb8ZTW93dTJ0mmVnD+3hp+9up8HXz+YNs31grnGj8Ca/W0ZvcedT23juh+8xtajXfzXMztYMLmc//PuJXzgvJms3t7MT1/dz51PbeOib7405C45EtV8/ekdTKvyce1pUwFYdc5MTnQP8Mru1nGcdW7ZerSLWx5cz/7WPr545SL+9arFvN3UxZ9Mwd54qJ1Kn4sFkzOrQjxRuJwOFjaUJ7VU3jrcwXdX7+KShfW8I4EQnDGjmiVTK3l264mM3s8qQvmOIvixvHFlI53+EPe+uGfI+ImuAR5Ze5hIdOztIl7a2YzP7eDMmfZK6BkLIio5ZtGUChZPqeDJTcfy8v7RqGbzkS5WzKjmy9cuobGmlJbuAH9/VurFVTNqSpheXcKafelF5WRvgGe2HCdsxhcOnOzjjmsX43Y6uP2axfzyY+ex+c4reepTF1LicfLJ/91I94BhsTyy9hA7jnfzlfcsjVXdvXzJZOrKvdz/2gFbWitH2v3c+JM1bD3axVfevYSrljXw/hXTmFFTwk/+sg+tNRsOdnDWrEm2iqdYLJlilGtZdd8aXtrZHBs/1NbHRx5cT0Olj+/ccEbS/d992hQ2HurIKO71+r425k8uZ3Jl4WfznTe3lhvObuS+v+zn9X0n0VpzuM3P9T9+nS//bgt/3Dy273iXP8Tv3zrGdWdMw+sq7HgKiKhMCNetmMbGQx15qfy7r7WXnkCYMxqrOb2xmidvu5CdX7+afzarEidDKcX5c2t5Y39bzKWTjMc3NBGKaD512Xx6BsKcP7cmVpvK53Zy4fw6yrwuTm+s5gcfOIsjHf3c+eQ2egNh7nlhDxfMreWa5YPxHbfTwWcvn8/r+9q47ZE3bdWJUmvNl3+3BQX84dMX8bGL56KUwuV08M8Xz+Wtw508vqGJPS29rLRpFs+1p09lVm0p2491xzLtolHNvz6+mUhU89At51JfkbzzomVRPrsltbUSDEdZd6CdC4vASrH48rVLqC338IGfruWcu17gku+8TG8gzMyaUn748r6035V4wpEovYEwj288Qn8owocvmJ27iU8gIioTwHVnTMPpUNz/2oEJf++3jhhB+nizOtO75wvm1dLhD/HIusNJA/aRqOaRdYc4b04NX7xyId++/nS+e+OKpEHZc+fU8C+XzuN3bx3lc4++RXtfkH+/ZvGI7T90wWzufO9Snt/WzN2rd2c034ngyU3HeHXPSW6/ZvGIzos3nD2DmjIP//abzQBcYNN1GZctmsxzn3snH79kHhsOdXC0s59frj3EuoPtfOU9S9MurJxbX87iKRU8uv5wymoRm4500h+KJHSjFSqTyjys/sIlfOP9y3nnwno+864F/O5fLuQLVyxkV3MPL+xoTn8QjLp7tzy4nhX/+SfuXr2blbMmsdxGqefjQURlAmicVMqNKxv55dpDE15S/u0jnVT4XMytG71v/5rlUzhvTg1f+f1W/u2JzQmF5clNRznS3s/N75iNUoobV85IW5fqXy6dz/TqEl7Y0cIVSxtYkaC9LMAtF87hxpWN3P/qAXaeyH8nymA4ynf+tIvl0yv5x/NmjXi9xOPk/ptX8t0bzmD1599p+/UG7zndsDjuWb2b/3pmJxcvqMu45tSXrlzEgZN9/MNP1iRNT355VwsOBefPKR5LBaDS5+aD58/i7htX8PkrFjKnroz3mNbft5/fldayjkQ1n//1Jl7dc5LrVkxjVm0Zn/2bBRM0+9wjojJBfPbyhTgdiu+u3jWh77vpSCdnNFaPybdf5nXxyD+fz22XzePxjU187Y/b+dfH3+bvfvhX/v0Jo4vh3at3s3x6JVcvS56ePJwSj5Nv/O1yplX5+NKVi1Jue8c1S6gscfN/f791zOnN2eJX6w7T1NHPv161OOn1PHPmJP7+7EYWFEDhxFm1ZZwxo5onNjZR4XPx3RvOyDjt92+WNvDAP51DU0c/V97zF+7+09DPdSgS5YmNTbyrgKvtjgaX08FXr1vG3pbelIt3o1HN7b/ZzDNbTvCVdy/h7htX8OxnL+biBYVZ5j4RIioTxJQqHx+5cA5Pbjo2YVVP+4MRdp7oSWoJZILTofjSlYu4cWUjP//rQZ56+xguh4Nnth7n+h+voamjn39L8SObjMsWTeavt7+LRWna6U4q8/D5v1nA+oMdsTTdbLK3pXfI+pJk7DzRzfde2M15c2p4p006E2aDm86Zgdfl4EcfPGvUwfSLF9Tz8pcu5aplDdz70t4hi2Vf2tlCa0+AVefMzPaUbctliybz/hXT+OGf9/KzV/ePqFqgteZrf9zO4xub+MzlC/jYxanjmoWK1P6aQD5+yTweWXeYbz23c0I63G071kUkqjljHKICRtD+G+8/jXPn1HLxgjoaKn30DIT4ySv76Q9Fxtz+NdO74uvPnsHdq3dz31/2D1mMN152nejhhh+/Tl8wwg9uOpNrzAD0cN463ME//Xw9PreD//q70wp6Ed9wVp07k+tWTKPUM7afgvoKL3e+dxl/2tbMI+sO8+VrlwCGVddQ6eXSRcVzB54JX71uGR3+EN94egePb2jiK+9ZwoLJFfSHIjy67jAPvn6Qj100h88XkbtrOCIqE0hViZtPXTafbzy9g7tX7+aWd8xm0jiKA6ZjkxmkH4+lYuFxObg+zt9e4XPzpatSu66yRYnHyYfOn8X3X97L3paecXfhe2JjE394+xhbjnbhczuZW1/Op3/1Fj9yOjijsYpvPL2D6lI358+tJRLV/PtvNlNX7uWXHzsvKyXs7cZYBcWiodLHlcsaeGzDEb5wxUIeXnOQP+9q5bOXL8BVwNV2x0J1qYcHbzmHP21v5mt/2M6H7l835PWbzp3J/3n3kqK6MRmOyrefOtusXLlSb9iwId/TSMpAKMKnHnmTF3a0MK3Kx0tfujRntX5ue+RNNh3u5K+3vysnx59IWnsCvOs7f6a6zM2PP3g2fYEIj204wpF2P/fedCYNGbpuXt93kn/82Vpm1ZQyq7aMO65dzLTqEj70s7XsON7D5EovrT0BHErRb66cXjC5nP/92HkZv8epyOt7T/KBn62l3OuiNxDmPadP5e4bV+BxnVqiEk9/MMKftp/AH4zgdTmYXl3CObNrbLl2CUAptVFrvXLcxxFRyQ8vbG/mYw9v4NvXn86No+jb/fo+o0zEpQsnp/1wXvjNl1gxs5r/7wNnjXe6tuDtI53c/PN1dPqNNNZSc7FkQ6WP+29eydz65Blue1t6eWlnMz999QCVPhdPfeoiyryDd+hd/hAf+NkbHGrz8+At57B8ehV7mntp7R1g5ewaKn3FH2weD1prHvjrQY60+5leXcJHLpoz7vbJwsQiopKEQhEVrTVXf+9VHA7FM5+5KK05HAhH+M8/bOcRs9DigsnlfG/VCpZNG5nbHo5E+d4Le/jBy3v5j/cs5SMXzcnJOeSDgyf7eGV3K1OqfJw/t5a9LT3c/MB6+oJhLls0mQ9dMItLFtTHBDccifLo+iN87Q/bCUaizK0r44cfPIvFUypHHHsgFKEvEKa2PPnCP0EoVk4pUVFKXQ38D+AEfqa1/maybQtFVMAIZt7x2y08/JFzeefC5AFNrTVfeOxtfvfWUT5+yVyWTq3km8/upGcgzP+sWsHlZhOosFkw8mev7mf/yT5uXNnI1963vOBLaaejuXuAX649zCNrD3OyN8Cs2lKuWNLAruYe3jzUQV8wwjsX1vPtvz+dKVXiwhKERJwyoqKUcgK7gSuAJmA9cJPWenui7QtJVPqDEa645xXaeoP85/uWceH8OqZW+nA4VGxNRntfkB+/so+fvnqAL16xkE9fbmSNHO/q55afr2fniR4uXVTP2TMn8ezWE2w/3s3pjVXcdtl8rhrF2pFiIBiO8ty2E/xizUE2HOpgUUMF58yu4YJ5tVy9bIptfdmCYAdOJVG5APiq1voq8993AGit/zvR9oUkKmA00Pr4LzbyltnzxOd2UFvmpaVngLBZR0hruP7sRv7f9acPcZMNhCI8+PpBfvbqfk72BmmoNNI7r1k+paizSzIhFIkWdJ9vQZhosiUqhZBSPB04EvfvJiD3izwmiMkVPh77+AVsPNTB/tY+9rf20tYXpKHSh8epcDocXLW8IWEMwOd28olL5vGJS+YxEIrgcqhTLoUzGSIogpAfCkFUEt1yDzGvlFK3ArcCzJxZeCt43U4H58+t5fxxdH0r9riJIAiFQSHczjUB8Tm3jcCQxgVa6/u01iu11ivr60+tFbyCIAh2ohBEZT2wQCk1RynlAVYBT+V5ToIgCEICbO/+0lqHlVKfAp7HSCl+QGu9Lc/TEgRBEBJge1EB0Fo/AzyT73kIgiAIqSkE95cgCIJQIIioCIIgCFlDREUQBEHIGiIqgiAIQtawfZmW0aKU6gHG0gi+DjiZxalUAdnsG2z349n5+sm1K+7jnUrXL9tzs6gDyrTW41/op7Uuqj9gw0Tul+J4951ix7Pt9ZNrV/THO2WuX7bnlotrKO6v3PGHU+x42Sab85NrV9zHyzZ2Pl+7X7uidH9t0GOotDnW/QQDuX5jR67d+JDrN36yeQ2L0VK5b4L3Ewzk+o0duXbjQ+bSkiUAAAURSURBVK7f+MnaNSw6S0UQBEHIH8VoqQiCIAh5omhFRSk1Qyn1slJqh1Jqm1Lqs+Z4jVJqtVJqj/k4yRy/Qim1USm1xXx8V9yxzjbH9yql7lWnQFvFLF+/u5RSR5RSvfk6n4kkW9dOKVWqlHpaKbXTPM4383leE0WWP3vPKaXeNo/zY7M9edGTzWsYd8ynlFJb0755LtLT7PAHTAXOMp9XYPS5Xwp8G7jdHL8d+Jb5/Exgmvl8OXA07ljrgAswGoY9C1yT7/MrsOt3vnm83nyfVyFdO6AUuMx87gFelc/eqD97leajAn4DrMr3+RXaNTTH/g54BNia9r3zffITeJGfBK7AWBg5Ne7C70qwrQLaAK+5zc64124CfpLv8ymU6zds/JQQlVxcO/O1/wH+Od/nU4jXD3BjpOP+Q77Pp9CuIVAOvGaKUlpRKVr3VzxKqdkYSrwWaNBaHwcwHycn2OXvgbe01gFgOkb3SYsmc+yUYZzX75QmW9dOKVUNvBd4MZfztRvZuH5KqeeBFqAHeCLHU7YdWbiGXwe+C/gzeb+iFxWlVDmG2fs5rXV3BtsvA74FfNwaSrDZKZMyl4Xrd8qSrWunlHIBvwLu1Vrvz8Vc7Ui2rp/W+iqMu3IvMCJWUMyM9xoqpVYA87XWv8v0PYtaVJRSbowL+kut9W/N4Wal1FTz9akYdzDW9o3A74APa633mcNNQGPcYRuBY7meux3I0vU7JcnytbsP2KO1/l7uZ24Psv3Z01oPYLQhf1+u524XsnQNLwDOVkodxHCBLVRK/TnV+xatqJgZWvcDO7TWd8e99BRws/n8Zgxfo+VeeBq4Q2v9V2tj00TsUUqdbx7zw9Y+xUy2rt+pSDavnVLqGxhFBD+X63nbhWxdP6VUedwPqAu4FtiZ+zPIP1n8/fuR1nqa1no2cBGwW2t9aco3z3cAKYeBqYsw3FSbgU3m37VALYZfeo/5WGNu/xWgL27bTcBk87WVwFZgH/ADzEWjxfyX5ev3bQyLL2o+fjXf51cI1w7DKtbAjrjxj+X7/Aro+jUA683jbAO+D7jyfX6FdA2HHXM2GQTqZUW9IAiCkDWK1v0lCIIgTDwiKoIgCELWEFERBEEQsoaIiiAIgpA1RFQEQRCErCGiIggTjFLqE0qpD49i+9kZVYcVBBvgyvcEBOFUQinl0lr/ON/zEIRcIaIiCKPELND3HEaBvjMxyop/GFgC3I1R1fUk8E9a6+NmWYvXgQuBp5RSFRgVm79j1lb6MUaZ+33AR7TWHUqps4EHMIr4vTZxZycI40PcX4IwNhYB92mtTwe6gdswVmxfr7W2BOGuuO2rtdaXaK2/O+w4DwP/bh5nC3CnOf5z4DNa6wtyeRKCkG3EUhGEsXFED9ZI+l/gyxjNjVYbZZdwAsfjtv/18AMopaowxOYVc+gh4PEE478Arsn+KQhC9hFREYSxMby+UQ+wLYVl0TeKY6sExxeEgkDcX4IwNmYqpSwBuQl4A6i3xpRSbrM3RVK01l1Ah1LqYnPoQ8ArWutOoEspdZE5/o/Zn74g5AaxVARhbOwAblZK/QSj4uv3geeBe033lQv4HkZ13FTcDPxYKVUK7AduMcdvAR5QSvnN4wpCQSBVigVhlJjZX3/UWi/P81QEwXaI+0sQBEHIGmKpCIIgCFlDLBVBEAQha4ioCIIgCFlDREUQBEHIGiIqgiAIQtYQUREEQRCyhoiKIAiCkDX+f3VsauotQQXjAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sorted_data['inc'][-200:].plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Etude de l'incidence annuelle"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Etant donné que le pic de l'épidémie se situe en hiver, à cheval\n",
+ "entre deux années civiles, nous définissons la période de référence\n",
+ "entre deux minima de l'incidence, du 1er août de l'année $N$ au\n",
+ "1er août de l'année $N+1$.\n",
+ "\n",
+ "Notre tâche est un peu compliquée par le fait que l'année ne comporte\n",
+ "pas un nombre entier de semaines. Nous modifions donc un peu nos périodes\n",
+ "de référence: à la place du 1er août de chaque année, nous utilisons le\n",
+ "premier jour de la semaine qui contient le 1er août.\n",
+ "\n",
+ "Comme l'incidence de syndrome grippal est très faible en été, cette\n",
+ "modification ne risque pas de fausser nos conclusions.\n",
+ "\n",
+ "Encore un petit détail: les données commencent an octobre 1984, ce qui\n",
+ "rend la première année incomplète. Nous commençons donc l'analyse en 1985."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n",
+ " for y in range(1985,\n",
+ " sorted_data.index[-1].year)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "En partant de cette liste des semaines qui contiennent un 1er août, nous obtenons nos intervalles d'environ un an comme les périodes entre deux semaines adjacentes dans cette liste. Nous calculons les sommes des incidences hebdomadaires pour toutes ces périodes.\n",
+ "\n",
+ "Nous vérifions également que ces périodes contiennent entre 51 et 52 semaines, pour nous protéger contre des éventuelles erreurs dans notre code."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "year = []\n",
+ "yearly_incidence = []\n",
+ "for week1, week2 in zip(first_august_week[:-1],\n",
+ " first_august_week[1:]):\n",
+ " one_year = sorted_data['inc'][week1:week2-1]\n",
+ " assert abs(len(one_year)-52) < 2\n",
+ " yearly_incidence.append(one_year.sum())\n",
+ " year.append(week2.year)\n",
+ "yearly_incidence = pd.Series(data=yearly_incidence, index=year)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Voici les incidences annuelles."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAD8CAYAAABQFVIjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAG2JJREFUeJzt3X2Q1dWd5/H3BxubjEEFBMOD2myFZaLJro5daMp9ELMCmUmJ2TFZRjdSNVbhGFPlrFOrUGHLbGR2ZGsrzrBWHK1oxsQHdDOxZMcgQYSKM8sCzaqjaJjGDYOMxG4WFEwVPWn57h/3tN6+dje3u899/ryqbt17zz3n3MPh3vvt8/D7/RQRmJmZjdeEWjfAzMyagwOKmZll4YBiZmZZOKCYmVkWDihmZpaFA4qZmWXhgGJmZlk4oJiZWRYOKGZmlkVbrRtQTeecc050dHTUuhlmZg1l9+7dhyNi+qnytVRA6ejooKurq9bNMDNrKJL+vpx8nvIyM7MsHFDMzCwLBxQzM8vCAcXMzLJwQDEzsywcUOpEz7ETfPWB7fQcP1HrppiZjYkDSp1Yt6WbXfuPsO757lo3xcxsTFrqOJR6NH/1Rvr6T374/NEdB3h0xwHa2yawd80Xa9gyM7PR8Qilxl68YyHXXDyLSRML/xWTJk5g6cWzePHOhTVumZnZ6Dig1NiMMycxub2Nvv6TtLdNoK//JJPb25gxeVKtm2ZmNiqe8qoDh9/v44bLLuD6Befz+M4D9Hph3swakCKi1m2oms7OzvC5vMzMRkfS7ojoPFU+T3mZmVkWDihmZpaFA4qZmWXhgNJAfDS9mdUzB5QG4qPpzayeedtwA/DR9GbWCDxCaQA+mt7MGoEDSgPw0fRm1ggcUMpQD4vhA0fTP/31K7jhsgvofb+vZm0xMxuKj5Qvw+qnX+WxnQe4YcH5rPny5yrQMjOz+lXukfJelB+BF8PNzMrnKa8ReDHczKx8ZQUUSfslvSrpZUldKW2qpM2SutP9lKL8qyTtk7RX0uKi9EtTPfskrZOklN4u6cmUvkNSR1GZ5ek9uiUtL0qfm/J2p7Knj787BvNiuJlZ+UYzQlkYERcXzaOtBLZExDxgS3qOpAuBZcBFwBLgu5JOS2XuB1YA89JtSUq/CTgaEZ8G7gXWprqmAncBlwELgLuKAtda4N70/kdTHdl5MdzMrDxlLcpL2g90RsThorS9wJURcUjSTGBbRMyXtAogIv4k5dsEfAvYD2yNiN9M6b+Xyt88kCcitktqA34JTKcQmK6MiJtTmQeAbcB6oBf4VET0S/p8Kv/haGgoPn29mdno5T59fQA/lbRb0oqUdm5EHAJI9zNS+mzgraKyB1Pa7PS4NH1QmYjoB94Dpo1Q1zTg3ZS3tC4zM6uBcnd5XRERb0uaAWyW9PMR8mqItBghfSxlRqprcGMKAXAFwPnnnz9UFjMzy6CsEUpEvJ3ue4CnKaxnvJOmukj3PSn7QeC8ouJzgLdT+pwh0geVSVNeZwFHRqjrMHB2yltaV2nbH4yIzojonD59ejn/XDMzG4NTBhRJZ0iaPPAYWAS8BmwABnZdLQeeSY83AMvSzq25FBbfd6ZpseOSLk+7u24sKTNQ13XAC1FY3NkELJI0JS3GLwI2pde2pryl729mZjVQzpTXucDTaYdvG/B4RDwnaRfwlKSbgAPAVwAiYo+kp4DXgX7g1oj4INV1C/AXwCeAjekG8BDwQ0n7KIxMlqW6jki6G9iV8n07Io6kx3cC6yWtAV5KdZiZWY341CtmZjai3Lu8zMzMRuSAYmZmWTigmJlZFg4oZmaWhQOKmZll4YBiZmZZOKCYmVkWDihmZpaFA4qZmWXhgGJmZlk4oJiZWRYOKGZmloUDipmZZeGAYmZmWTigmJlZFg4oZmaWhQOKmZll4YBiZmZZOKCYmVkWDihmZpaFA4qZmWXhgGJmZlk4oJiZWRYOKGZmloUDipmZZeGAYmZmWTigmFlD6Tl2gq8+sJ2e4ydq3RQr4YBiZg1l3ZZudu0/wrrnu2vdFCvRVusGmJmVY/7qjfT1n/zw+aM7DvDojgO0t01g75ov1rBlNsAjFDPLppLTUS/esZBrLp7FpImFn61JEyew9OJZvHjnwuzvZWPjgGJm2VRyOmrGmZOY3N5GX/9J2tsm0Nd/ksntbcyYPCn7e9nYeMrLzMatWtNRh9/v44bLLuD6Befz+M4D9Hphvq4oImrdhqrp7OyMrq6uWjfDrOn0HDvBmp+8wU/3/JITvz7JpIkTWHzRp/jm73zGI4gmIGl3RHSeKl/ZU16STpP0kqS/Ss+nStosqTvdTynKu0rSPkl7JS0uSr9U0qvptXWSlNLbJT2Z0ndI6igqszy9R7ek5UXpc1Pe7lT29HL/LWaWl6ejDEa3hnIb8EbR85XAloiYB2xJz5F0IbAMuAhYAnxX0mmpzP3ACmBeui1J6TcBRyPi08C9wNpU11TgLuAyYAFwV1HgWgvcm97/aKrDzGpkYDrq6a9fwQ2XXUDv+321bpJVWVlTXpLmAI8AfwzcHhFfkrQXuDIiDkmaCWyLiPmSVgFExJ+kspuAbwH7ga0R8Zsp/fdS+ZsH8kTEdkltwC+B6RQC05URcXMq8wCwDVgP9AKfioh+SZ9P5T8cDQ3FU15mZqOXe8rrT4E7gJNFaedGxCGAdD8jpc8G3irKdzClzU6PS9MHlYmIfuA9YNoIdU0D3k15S+syM7MaOGVAkfQloCcidpdZp4ZIixHSx1JmpLoGN0ZaIalLUldvb+9QWaxJ+RQdZtVVzgjlCuAaSfspTDVdJelR4J001UW670n5DwLnFZWfA7yd0ucMkT6oTJryOgs4MkJdh4GzU97SugaJiAcjojMiOqdPn17GP9eahU/RYVZdpwwoEbEqIuZERAeFNY0XIuLfAxuAgV1Xy4Fn0uMNwLK0c2suhcX3nWla7Liky9PurhtLygzUdV16jwA2AYskTUmL8YuATem1rSlv6ftbi5u/eiMdK5/l0R0HiCgcE9Gx8lnmr95Y66aZNbXxHCl/D3C1pG7g6vSciNgDPAW8DjwH3BoRH6QytwDfA/YBbwID3/CHgGmS9gG3k3aMRcQR4G5gV7p9O6UB3AncnspMS3WY+RQdZjUyqiPlI2IbhV1WRMT/A74wTL4/prAjrDS9C/jsEOkngK8MU9fDwMNDpP9fCluJzQYp95iInmMn+MYTL3Hf9ZfU/fESjdRWa10+l5c1pXKOiWikNZZGaqu1Lp96xVpO6XmnBtTjadAbqa3WvLKfesWsWTTSGksjtdXMAcVaTiOdd6qR2mrm09dbS2qk06A3UluttXkNxczMRuQ1FDOzYfi0PJXhgGJmLcfbsCvDayhWl3wgn1VCtS5V3Ko8QrG65L8grRK8DbuyPEKxutKKf0F6NFY93oZdWR6hWE0Mtyjain9BejRWXb5UceV4hGKjluMv6uIf0TVf/tyH6a30F2QrjsbqwQNf+2j365prP3auWhsHBxQbteGCQTnK+RFtlQP5XrxjIWt+8gY/3fNLTvz6JJMmTmDxRZ/im7/zmVo3zWxMHFCsbDn+oi7nR7RV/oJspdGYtQavoVjZcqxv+Ed0sEaaz/fBgHYqHqFY2XIFg1aZ0ipHI43GxjPVaa3B5/KyUbn5h11MnzxpUDAo/lG05uNrsli55/JyQDGzEfUcOzHsulerTlW2Gp8c0syy8LqXlctrKGZ2Sl73snJ4ysvMzEbkKS8zM6sqBxQzM8vCAcXMzLJwQDEzsywcUMzMLAsHFDMzy8IBxWwcfMJEs484oJiNg6+2aPYRHylvNga+2qLZx3mEYjYGOa4NY9ZsHFCsIdV67cInTDT7uFMGFEmTJO2U9IqkPZL+c0qfKmmzpO50P6WozCpJ+yTtlbS4KP1SSa+m19ZJUkpvl/RkSt8hqaOozPL0Ht2Slhelz015u1PZ0/N0iTWCeli7aKSrLZpVwylPDpl+9M+IiPclTQT+GrgN+LfAkYi4R9JKYEpE3CnpQuAJYAEwC3ge+KcR8YGknans/wZ+AqyLiI2Svg78s4j4A0nLgC9HxL+TNBXoAjqBAHYDl0bEUUlPAT+OiPWS/hx4JSLuH+nf4pNDNj5f7Mms+rKdHDIK3k9PJ6ZbAEuBR1L6I8C16fFSYH1E9EXEL4B9wAJJM4EzI2J7FKLYD0rKDNT1I+ALKZAtBjZHxJGIOApsBpak165KeUvf35qY1y4qp9bTiNb4ylpDkXSapJeBHgo/8DuAcyPiEEC6n5GyzwbeKip+MKXNTo9L0weViYh+4D1g2gh1TQPeTXlL6ypt+wpJXZK6ent7y/nnWh3z2kXl1MM0ojW2srYNR8QHwMWSzgaelvTZEbJrqCpGSB9LmZHqGpwY8SDwIBSmvIbKY43FF3vKy1ugLZdRHYcSEe9K2gYsAd6RNDMiDqXprJ6U7SBwXlGxOcDbKX3OEOnFZQ5KagPOAo6k9CtLymwDDgNnS2pLo5TiuqzJPfC1j6Zy11w70t82Vo4X71g47DXjzUajnF1e09PIBEmfAP4N8HNgAzCw62o58Ex6vAFYlnZuzQXmATvTtNhxSZenNZAbS8oM1HUd8EJaZ9kELJI0Je0iWwRsSq9tTXlL39/MRqGa04iNtE7TSG2tF+WsocwEtkr6W2AXhTWUvwLuAa6W1A1cnZ4TEXuAp4DXgeeAW9OUGcAtwPcoLNS/CWxM6Q8B0yTtA24HVqa6jgB3p/fdBXw7pQHcCdyeykxLddSEP3jW6Kq1BbqR1mkaqa31wteUz2D106/y2M4D3LDgfNZ8+XPZ6zdrdI203buR2lot5W4bdkAZB3/wzMrTc+zEsOs09bZDr5HaWi3ZjkOx4Y3mmAhPi1mt1fIz2EjbvRuprfXGAWUcRvPB83ys1VqtP4ONdKqaRmprPfGU1zjd/MMupk+eNOiYiOJtrZ4Ws1rzZ9DGy2soQ6jFubwabT6259gJvvHES9x3/SV12T4bvUb7DDaTZvk+eQ2lTjTafGytp0Usv0b7DDaTVvs++YqNVdAIpwrx6TeaWyN8BptJq36fPOVlgKdFzHJqtu+Tp7xsVDwtYpZPq36fHFBazEjHInirpFk+rfh98pRXi/FpYsxstMqd8vKifIto1UXC8WqWbZ9m1eAprxbhS+eOTatt+zQbD49QWkSrLhKOlUd0ZqPnEUoLacVFwrHyiM5s9DxCaSG+dG75PKIzGz0HFLNh+Ohys9HxtmEzMxuRj5Q3M7OqckAxM7MsHFDMmoAvMV197vOPc0AxawI+ALP63Ocf50V5swbmy/tWXyv2uRflzVqAD8Csvpx93mzTZg4oZhVWyR8NH4BZfTn7vNmmzXxgo1mFFf9oVOKSAT4As/rG2+fNeq44r6GYVUgrzrXn0AqXDGi0SwR7DcWsxry+MTbNNg00lGadqvSUl1mFNOuPRqU06zTQcJpxqtIBxayCmvFHo1JevGPhsNNAzagZz/7tgGJWQc34o1EpHtE1Pq+hmFnd8EXg8qvmsS7e5WVm1sRWP/0qj+08wA0Lzh/ztvVsu7wknSdpq6Q3JO2RdFtKnypps6TudD+lqMwqSfsk7ZW0uCj9UkmvptfWSVJKb5f0ZErfIamjqMzy9B7dkpYXpc9NebtT2dPL7Rwzs0YwntHF/NUb6Vj5LI/uOEBEYZNDx8pnmb96YwVaWlDOlFc/8EcR8RngcuBWSRcCK4EtETEP2JKek15bBlwELAG+K+m0VNf9wApgXrotSek3AUcj4tPAvcDaVNdU4C7gMmABcFdR4FoL3Jve/2iqw8ysaYxnC3Uttq2fclE+Ig4Bh9Lj45LeAGYDS4ErU7ZHgG3AnSl9fUT0Ab+QtA9YIGk/cGZEbAeQ9APgWmBjKvOtVNePgPvS6GUxsDkijqQym4ElktYDVwHXF73/tygELDOzhpZjC3UtNjmMalE+TUVdAuwAzk3BZiDozEjZZgNvFRU7mNJmp8el6YPKREQ/8B4wbYS6pgHvpryldZW2eYWkLkldvb29o/nnmpnVRK7RRbU3OZS9bVjSJ4G/BP4wIo6l5Y8hsw6RFiOkj6XMSHUNTox4EHgQCovyQ+UxM6snuUYX1d62XtYIRdJECsHksYj4cUp+R9LM9PpMoCelHwTOKyo+B3g7pc8ZIn1QGUltwFnAkRHqOgycnfKW1mVm1vAacQv1KUcoaS3jIeCNiPhO0UsbgOXAPen+maL0xyV9B5hFYfF9Z0R8IOm4pMspTJndCPz3krq2A9cBL0RESNoE/JeihfhFwKr02taUd33J+5uZNbxGPCi2nBHKFcDXgKskvZxuv00hkFwtqRu4Oj0nIvYATwGvA88Bt0bEB6muW4DvAfuANyksyEMhYE1LC/i3k3aMpcX4u4Fd6fbtgQV6ChsAbk9lpqU6rA4020WDzKw8PrDRsstxIJWZ1Y9yD2z0ubwsm1Y7W6yZDeZzeVk2vv6HWWtzQLFsfLZYs9bmKS/Lytf/MGtdXpQ3M7MR+ZryZmZWVQ4oTcTHf5hZLTmgNJHxnOrazGy8vCjfBHz8h9lgPcdO8I0nXuK+6y/xLsMq8gilCfj4D7PBPFqvDY9QmoCP/zAr8Gi9tjxCaRKNeKprs9w8Wq8tj1CaRCOe6tosN4/Wa8sBxcyais/WUDs+Ut7MzEbkI+XNzKyqHFDMzCwLBxQzM8vCAcXMzLJwQDEzsywcUMzMLAsHFDMzy8IBxczMsnBAMTOzLBxQzMwsCwcUMzPLwgHFzMyycEAxM7MsHFDMzCwLBxQzM8vCAcXMzLJwQDEzsywcUMzMLItTBhRJD0vqkfRaUdpUSZsldaf7KUWvrZK0T9JeSYuL0i+V9Gp6bZ0kpfR2SU+m9B2SOorKLE/v0S1peVH63JS3O5U9ffxdYWZm41HOCOUvgCUlaSuBLRExD9iSniPpQmAZcFEq811Jp6Uy9wMrgHnpNlDnTcDRiPg0cC+wNtU1FbgLuAxYANxVFLjWAvem9z+a6jAzsxo6ZUCJiJ8BR0qSlwKPpMePANcWpa+PiL6I+AWwD1ggaSZwZkRsj4gAflBSZqCuHwFfSKOXxcDmiDgSEUeBzcCS9NpVKW/p+5uZWY2MdQ3l3Ig4BJDuZ6T02cBbRfkOprTZ6XFp+qAyEdEPvAdMG6GuacC7KW9pXR8jaYWkLkldvb29o/xnmplZuXIvymuItBghfSxlRqrr4y9EPBgRnRHROX369OGymZnZOI01oLyTprFI9z0p/SBwXlG+OcDbKX3OEOmDykhqA86iMMU2XF2HgbNT3tK6zMysRsYaUDYAA7uulgPPFKUvSzu35lJYfN+ZpsWOS7o8rYHcWFJmoK7rgBfSOssmYJGkKWkxfhGwKb22NeUtfX8zM6uRtlNlkPQEcCVwjqSDFHZe3QM8Jekm4ADwFYCI2CPpKeB1oB+4NSI+SFXdQmHH2CeAjekG8BDwQ0n7KIxMlqW6jki6G9iV8n07IgY2B9wJrJe0Bngp1WFmZjWkwh/8raGzszO6urpq3Qwzs4YiaXdEdJ4qn4+UNzOzLBxQzMwsCwcUM7MG1nPsBF99YDs9x0/UuikOKGZmjWzdlm527T/Cuue7a92UU+/yMjOz+jN/9Ub6+k9++PzRHQd4dMcB2tsmsHfNF2vSJo9QzMwa0It3LOSai2cxaWLhZ3zSxAksvXgWL965sGZtckAxM2tAM86cxOT2Nvr6T9LeNoG+/pNMbm9jxuRJNWuTp7zMzBrU4ff7uOGyC7h+wfk8vvMAvTVemPeBjWZmNiIf2GhmZlXlgGJmZlk4oJiZWRYOKGZmloUDipmZZeGAYmZmWbTUtmFJvcDfD/PyORQuL1zv3M68GqWd0DhtdTvzqod2XhAR00+VqaUCykgkdZWzz7rW3M68GqWd0DhtdTvzapR2gqe8zMwsEwcUMzPLwgHlIw/WugFlcjvzapR2QuO01e3Mq1Ha6TUUMzPLwyMUMzPLomkDiqSHJfVIeq0o7Z9L2i7pVUn/U9KZKX2ipEdS+huSVhWV2SZpr6SX021GDdt5uqTvp/RXJF1ZVObSlL5P0jpJytnOzG2tWJ9KOk/S1vT/uEfSbSl9qqTNkrrT/ZSiMqtSv+2VtLgovaJ9mrmtddOnkqal/O9Luq+kror1aeZ21lN/Xi1pd+q33ZKuKqqr4t/7UYmIprwB/wr4LeC1orRdwL9Oj38fuDs9vh5Ynx7/BrAf6EjPtwGdddLOW4Hvp8czgN3AhPR8J/B5QMBG4It13NaK9SkwE/it9Hgy8HfAhcB/BVam9JXA2vT4QuAVoB2YC7wJnFaNPs3c1nrq0zOAfwH8AXBfSV0V69PM7ayn/rwEmJUefxb4h2r051huTTtCiYifAUdKkucDP0uPNwO/O5AdOENSG/AJ4B+BY3XYzguBLalcD/Au0ClpJnBmRGyPwqfsB8C19djW3G0aoo2HIuL/pMfHgTeA2cBS4JGU7RE+6p+lFP6Y6IuIXwD7gAXV6NNcbc3ZphztjIhfRcRfA4Ou9lTpPs3VzkobQztfioi3U/oeYJKk9mp970ejaQPKMF4DrkmPvwKclx7/CPgVcAg4APy3iCj+4fx+Gvb+pyoNKYdr5yvAUkltkuYCl6bXZgMHi8ofTGnVMNq2Dqh4n0rqoPDX3Q7g3Ig4BIUvNIVRExT66a2iYgN9V9U+HWdbB9RLnw6nan06znYOqMf+/F3gpYjoo7bf+yG1WkD5feBWSbspDDX/MaUvAD4AZlGYSvgjSf8kvXZDRHwO+Jfp9rUatvNhCh+aLuBPgf8F9FMY7paq1va90bYVqtCnkj4J/CXwhxEx0mhzuL6rWp9maCvUV58OW8UQadn7NEM7oQ77U9JFwFrg5oGkIbLVdNtuSwWUiPh5RCyKiEuBJyjMQUNhDeW5iPh1mp75G9L0TET8Q7o/DjxOdaYYhmxnRPRHxH+IiIsjYilwNtBN4Yd7TlEVc4C3S+utk7ZWvE8lTaTwRX0sIn6ckt9JUwQDUy89Kf0gg0dOA31XlT7N1NZ669PhVLxPM7Wz7vpT0hzgaeDGiBj43arZ9344LRVQBnZqSJoArAb+PL10ALhKBWcAlwM/T9M156QyE4EvUZjiqUk7Jf1Gah+Srgb6I+L1NDw+LunyNDS/EXim0u0cS1sr3afp3/8Q8EZEfKfopQ3A8vR4OR/1zwZgWZqTngvMA3ZWo09ztbUO+3RIle7TXO2st/6UdDbwLLAqIv5mIHMtv/fDyr3KXy83Cn8tHwJ+TSGS3wTcRmFHxd8B9/DRgZ2fBP4HhQWv14H/GB/tAtkN/G167c9Iu2pq1M4OYC+FRbznKZwBdKCeTgof+jeB+wbK1FtbK92nFHbtRKr/5XT7bWAahU0C3el+alGZb6Z+20vRLplK92muttZpn+6nsIHj/fRZubDSfZqrnfXWnxT+UPtVUd6XgRnV+t6P5uYj5c3MLIuWmvIyM7PKcUAxM7MsHFDMzCwLBxQzM8vCAcXMzLJwQDEzsywcUMzMLAsHFDMzy+L/A9t1yP3IuE0bAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_incidence.plot(style='*')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Une liste triée permet de plus facilement répérer les valeurs les plus élevées (à la fin)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "2021 743449\n",
+ "2014 1600941\n",
+ "1991 1659249\n",
+ "1995 1840410\n",
+ "2020 2010315\n",
+ "2022 2060304\n",
+ "2012 2175217\n",
+ "2003 2234584\n",
+ "2019 2254386\n",
+ "2006 2307352\n",
+ "2017 2321583\n",
+ "2001 2529279\n",
+ "1992 2574578\n",
+ "1993 2703886\n",
+ "2018 2705325\n",
+ "1988 2765617\n",
+ "2007 2780164\n",
+ "1987 2855570\n",
+ "2016 2856393\n",
+ "2011 2857040\n",
+ "2008 2973918\n",
+ "1998 3034904\n",
+ "2002 3125418\n",
+ "2009 3444020\n",
+ "1994 3514763\n",
+ "1996 3539413\n",
+ "2004 3567744\n",
+ "1997 3620066\n",
+ "2015 3654892\n",
+ "2000 3826372\n",
+ "2005 3835025\n",
+ "1999 3908112\n",
+ "2010 4111392\n",
+ "2013 4182691\n",
+ "1986 5115251\n",
+ "1990 5235827\n",
+ "1989 5466192\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "yearly_incidence.sort_values()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Enfin, un histogramme montre bien que les épidémies fortes, qui touchent environ 10% de la population\n",
+ " française, sont assez rares: il y en eu trois au cours des 35 dernières années."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 17,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEKCAYAAAAyx7/DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAE6lJREFUeJzt3XuQZGV5x/Hvk10uC8MtWRl0QcZbjMjKbVCRiLNoeWFRo1KCgrqUuJgoEFwrWSmVqCHiBVNqvGS9lyJTCiQqGC+BDCoaZBfUFVfRglVYBAQEXSDCypM/3jOhazOz07tMT/fb/f1UTVV3n9N93uftnl+f855z+kRmIkmqx590uwGSpK1jcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqM78TL7pw4cIcGRnpxEvP6O6772bnnXfuyrJ7xaD3waDXD/ZBjfWvWbPmtsx8WDvzdiS4R0ZGWL16dSdeekYTExOMjY11Zdm9YtD7YNDrB/ugxvoj4pftzutQiSRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyHTkBR5rJyMqLO/baKxZvYtk0r7/+7KUdW640V1zjlqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFXG4JakyhjcklQZg1uSKmNwS1JlDG5JqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkirTVnBHxOkRcU1E/DgizouIHTvdMEnS1GYM7ohYBJwKjGbm/sA84LhON0ySNLV2h0rmAwsiYj6wE3BT55okSdqSyMyZZ4o4DTgLuBf4RmYeP8U8y4HlAMPDw4eMj4/PclPbs3HjRoaGhrqy7F5RQx+s3XBXx157eAHccu/U0xYv2q1jy+0lNXwGOqnG+pcsWbImM0fbmXfG4I6IPYALgGOBO4EvAudn5ueme87o6GiuXr26/RbPoomJCcbGxrqy7F5RQx+MrLy4Y6+9YvEmzlk7f8pp689e2rHl9pIaPgOdVGP9EdF2cLczVPIs4PrM/E1m3g9cCDztoTRQkrTt2gnuXwFPjYidIiKAZwLrOtssSdJ0ZgzuzLwCOB+4CljbPGdVh9slSZrG1AOBm8nMM4EzO9wWSVIbPHNSkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFXG4JakyhjcklQZg1uSKtPWFXDUnzp5pXVJneMatyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFXG4JakyhjcklSZtoI7InaPiPMj4qcRsS4iDut0wyRJU2v3YsHvB76WmcdExPbATh1skyRpC2YM7ojYFTgCWAaQmfcB93W2WZKk6URmbnmGiAOBVcBPgAOANcBpmXn3ZvMtB5YDDA8PHzI+Pt6RBs9k48aNDA0NdWXZvaLdPli74a45aM3cG14At9w79bTFi3ab28Z0yaD/H9RY/5IlS9Zk5mg787YT3KPAfwOHZ+YVEfF+4HeZ+ZbpnjM6OpqrV6/emjbPmomJCcbGxrqy7F7Rbh+MrLy4843pghWLN3HO2qk3JtefvXSOW9Mdg/5/UGP9EdF2cLezc/JG4MbMvKK5fz5w8LY2TpL00MwY3Jl5M3BDRDy+eeiZlGETSVIXtHtUySnAuc0RJdcBJ3auSZKkLWkruDPzB0BbYy+SpM7yzElJqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqTLuXLpP6Qr9e2X5zKxZvYllT66Bc2X6QuMYtSZUxuCWpMga3JFXG4JakyhjcklQZg1uSKmNwS1JlDG5JqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVabt4I6IeRFxdURc1MkGSZK2bGvWuE8D1nWqIZKk9rQV3BGxN7AU+HhnmyNJmklk5swzRZwPvBPYBXhjZh49xTzLgeUAw8PDh4yPj89yU9uzceNGhoaGurLsXtFuH6zdcNcctGbuDS+AW+7tdiu6q7UPFi/arbuN6YIac2DJkiVrMnO0nXnnzzRDRBwN3JqZayJibLr5MnMVsApgdHQ0x8amnbWjJiYm6Naye0W7fbBs5cWdb0wXrFi8iXPWzvjR7mutfbD++LHuNqYL+j0H2hkqORx4QUSsB8aBIyPicx1tlSRpWjMGd2a+KTP3zswR4Djg0sw8oeMtkyRNyeO4JakyWzUQmJkTwERHWiJJaotr3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFXG4JakyhjcklSZwb4Udo8YmeWrra9YvKlvr+AutWPthru68j+w/uylc7Ic17glqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFXG4JakyswY3BGxT0T8V0Ssi4hrIuK0uWiYJGlq7VwseBOwIjOviohdgDUR8c3M/EmH2yZJmsKMa9yZ+evMvKq5/XtgHbCo0w2TJE0tMrP9mSNGgG8B+2fm7zabthxYDjA8PHzI+Pj47LVyK2zcuJGhoaGtft7aDXd1oDXdMbwAbrm3263onkGvH3qjDxYv2q1ry771jru6Uv9DqXnJkiVrMnO0nXnbDu6IGAIuA87KzAu3NO/o6GiuXr26rdedbRMTE4yNjW3180ZWXjz7jemSFYs3cc7adkbB+tOg1w+90Qfrz17atWV/8NwvdaX+h1JzRLQd3G0dVRIR2wEXAOfOFNqSpM5q56iSAD4BrMvM93W+SZKkLWlnjftw4BXAkRHxg+bvqA63S5I0jRkHgTLzO0DMQVskSW3wzElJqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqTM9dCvuhXm19xeJNLOujK7ZL0uZc45akyhjcklQZg1uSKmNwS1JlDG5JqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5Iq01ZwR8RzI+JnEfGLiFjZ6UZJkqY3Y3BHxDzgQ8DzgP2Al0XEfp1umCRpau2scT8Z+EVmXpeZ9wHjwAs72yxJ0nQiM7c8Q8QxwHMz86Tm/iuAp2Tm6zebbzmwvLn7eOBns9/ctiwEbuvSsnvFoPfBoNcP9kGN9e+bmQ9rZ8b5bcwTUzz2/9I+M1cBq9pZaCdFxOrMHO12O7pp0Ptg0OsH+6Df629nqORGYJ+W+3sDN3WmOZKkmbQT3FcCj4uIR0XE9sBxwJc72yxJ0nRmHCrJzE0R8Xrg68A84JOZeU3HW7btuj5c0wMGvQ8GvX6wD/q6/hl3TkqSeotnTkpSZQxuSaqMwS1JlTG4NxMRiyJiUbfb0S0R8eiIOD0ijux2W7rB+ge7fqijDwzuRkSMRMRlwNeA90TE07vdprkWEX8JfJPymzSvjYi/7nKT5pT1D3b9UE8fDHRwR8SOLXcPBq7MzMWUQx9PjYjFzXxTnT1avYg4MiIe1dwO4EjgzMx8DXAOcFREjLVM7yvWP9j1Q719MHDBHRG7RsRHI+Ja4L0RsW8z6UXAr5rb48AvgJMmnzbHzeyoiNgvIn4E/APwqYg4MstxofsBewFk5hXAd4ETJ5/WjbZ2gvUPdv1Qfx8MXHADzwV2pLxB9wFvjYgFlM2j5wNk5h+A84GnN/cf6E5TZ0dE7B0Ru7Y8dCxwQWYeQfmSenlEPA74PE0fNP4N2D8idqi5D6x/sOuH/uuDvgzuKOZHxKsj4tsRcVpEPKaZ/FjgvszcBPwz8FvgBOAbwMMj4k+b+a4FboiIw+a8gFkSEU+IiK8C3wHeHhGTP8f7P8BOze0vADcDSylrF3/WshVyB+VXHg+Yu1bPHusf7Pqhf/ugL4O72eR5BvBK4N3ADsDHmsk3A7c236A3UN6Ux1DeyJ/w4E/Tbgfc3jxejYjYueXugcCNmTkCXAq8t3n8DuAPEbFLZt4B/Bx4BKXW7wJvaObbHvgjsL7zLZ8d1j/Y9cNg9EFfBHdEHBYR74qIZc39AJ4AfC0zv5KZ7wb2jYinARso37RPaJ6+DhhqHvsXys6I51NCfxj44ZwWsw0iYo+I+HREXAmcHREPa/pgMXB5RERmfhm4MyKWUrYmdmmm09zfE3iAshWyZ0R8DDgP2JSZt851TVvD+ge7fhi8Pqg+uCPiicBHgN8DL42IN1DqWgT8vmVP8KeBl1OCeBPwtObxqyh7ku/JzG8BK4FlwOHAOzLzgV7amzyNIyg1HUXZgXIGsCvlR8H2ygd/kOYzlD74PqW/ngeQmd9rXmN+Zq4DTgauAf4pM0+k91n/YNcPg9YHmVnNH2XN+CTK5s/85rH3Aac1t0eBDwDHAM8Cvt7y3H0om0xQgvpqypV6DgK+BDy8Zd7odq3T1D+P8oG6jDKks7B5/AvAqc3tRwFnN9MPpYztzWvpv980r7OIsrXxeuBTwIeBnbtdo/Vbv30w8181a9wRcQBlB+ILgTOBNzeTNlCuiwnlG/Jy4CXAJcBeEfGkiNguy3j2hoh4emZeSvnZx3cBFwLnZeavJ5eVzTvcg44GXgC8DTiMMn4P5YiYyS2IG4BvA8/LzCspax9LADJzI3AFcGhmbgBeQRkOuhl4c2bePUd1bCvrH+z6wT4A2rt0WVdExEHA3Zl5bfPQk4FrM3NZRBwMnBURo8AE8JyI2Ckz74mIHwIvpRyL+XngNcAHIuJeYC1wffN6HwU+n5l3zV1VM2vG4jIiDqVs0n0buDjLIYp/DlyXmZdGxPWUMzyfDawBXhQRCzPztoj4OXB3RDwS+CBwQkTsSbl60e2UzUQyczWwes6L3ALrH+z6wT5oR8+tcUfEYyPiO5Qx6bdGxCubSQ8A65u156somziHAffw4KE8APdTNoX2oqxV/7h5rcuA2zLzRihr1T0c2kcAn6Ts4X4W8M5mlgeAayNiQWZeT+mDJ1HG6m6iHJsKZS/4PMr7ewGlH44HDgFWZQ8dj9oqIuY19T+Dsuk6aPUvaOofYwDffygnyA16H7Sl22M1wM7AYS33jwbe39x+CuXbcF/gVZTNo0XNtGMo49mT0y5rHt+RMkyysOU1DwK273at09S/E/BaHtw62A74W+B1zfQ9gB81NRxLGbsbaemrVZQrWh9N2aLYjTKG/9XWmoE/6XatW3j/T6L8c62g7FAamPqbtu0CXEy5uhTA6QNW/07N//AllJNiBq4Ptvavq2vcEXEGcB3w1YgYbh5+DuXYarKccvp94BTKMZj7UI65hjKWfSDlaJDPAL+NiM9Sdjr+DPi/sarMvDoz7+t8RVsnIvYCLgLGgM9Sdqa8mLIlsQkgM39L2Xl6KmUcb08ePJTxW5Tj1e/LzIuAT1DO+PwQZe/5/ZPLyh5cw2iOt72E8k/2MeDZlP0Th1LWrPq6/hYLKOcaPCYiFlI+4/Og/+uPiO0o+6aOAd6TmS9pJh00OU+/98E26fI37RhlM+fjwIrmsTdQxrMm59kPuKG5fRbw9pZpVwIHNbd3oBwKdGi3vw23ov4FwFNa7i+j7Gx5FfD9lscfAdzU3H4d5RTdPZrnfwV4ZMu8C+ei7bPYB7u33P47yj/n8YNSf9PmVwHvAd4CvJpyyvWVA1T/hcDxmz12LHDFoPTBVvdZl9+wyUN0juXBoY7dgTuBHVvmu5LyDbw78EXKptF/UL5Rd+h2Jz6E+mPyr7l/cEs/3E45/nRy3m9Ohjzwj5QjbG4H/r7bdcxCP+xK2Q9xC/D25v7twHA/19/yvp9IGS57MXBu89ht/V5/S21HU06AOYdysMFbKUOgdwB7DkIfbO1fV4dKMvOPzc3/BHaJiAMy807KuPbJLbNeBezSTDuFMhzy78DyLHuaq5SNlodOo6x9QBmfOx0gyu+n/BKYPGTxbZQtk0WZ+a45am7HZObvKENiT6XsVH4pZbjr5Cj6sv6W9/4oylDRJcDeEfFmyg735TAQ7/9FlKO9bqccnvdE4K8on4HX9vNnYFv1zFXeI+LDlPHqNzZHVfwNJcD3oJxYc1RL0PediNibMj53SmZeG+VHsZZTPsSLgB9kL57BNcsi4kDKl/b3KOOY+1MO4erL+iNiiDJMsgOl3r+gnDByBmVN/HH0cf2TJg/nbW4fQPnsX045Jb2vPwPbopeC+0DKUSLPpHyA76Gcfn4v8NHMvKaLzeu4KL+P8gzgTZQxzxspm4bHAj/Ncghk34uIfShfYC/LzNsj4gTgmsy8ustN64goF/P4V8pOtPMoh7GdkZnPbqb3df1TifLLfB8Hjs3MOwaxD2bSS8F9HOWQuHuAd1D2MPfPXuAZRMTlwKMpv0J2E/C2zPxRVxs1RyJiN8oX9sspO6NXAR/KzPu3+MQ+1Jww8mJgPDNv7nZ75kpE7ED5rfzJoZKPAB/O8vPL2kxPBHdEPIly+vn5lJ0zVf2U6kPVHBJ1JmWc73M1j9tvi4iYTxke+QOl/oF6/6GcfAQ8kL3wD9klEXEy5TDQzw7iZ2Br9ERwS5La13OnvEuStszglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZX5XwHKcVej17E2AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_incidence.hist(xrot=20)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.4"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}
diff --git a/module3/exo2/exercice.ipynb b/module3/exo2/exercice.ipynb
index 0bbbe37..a316fed 100644
--- a/module3/exo2/exercice.ipynb
+++ b/module3/exo2/exercice.ipynb
@@ -1,5 +1,2535 @@
{
- "cells": [],
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Incidence du syndrome grippal"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pandas as pd\n",
+ "import isoweek"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Les données de l'incidence du syndrome grippal sont disponibles du site Web du [Réseau Sentinelles](http://www.sentiweb.fr/). Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1984 et se termine avec une semaine récente."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Pour nous protéger contre une éventuelle disparition ou modification du serveur du Réseau Sentinelles, nous faisons une copie locale de ce jeux de données que nous préservons avec notre analyse. Il est inutile et même risquée de télécharger les données à chaque exécution, car dans le cas d'une panne nous pourrions remplacer nos données par un fichier défectueux. Pour cette raison, nous téléchargeons les données seulement si la copie locale n'existe pas."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data_file = \"incidence-PAY-3.csv\"\n",
+ "\n",
+ "import os\n",
+ "import urllib.request\n",
+ "if not os.path.exists(data_file):\n",
+ " urllib.request.urlretrieve(data_url, data_file)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Voici l'explication des colonnes données [sur le site d'origine](https://ns.sentiweb.fr/incidence/csv-schema-v1.json):\n",
+ "\n",
+ "| Nom de colonne | Libellé de colonne |\n",
+ "|----------------|-----------------------------------------------------------------------------------------------------------------------------------|\n",
+ "| week | Semaine calendaire (ISO 8601) |\n",
+ "| indicator | Code de l'indicateur de surveillance |\n",
+ "| inc | Estimation de l'incidence de consultations en nombre de cas |\n",
+ "| inc_low | Estimation de la borne inférieure de l'IC95% du nombre de cas de consultation |\n",
+ "| inc_up | Estimation de la borne supérieure de l'IC95% du nombre de cas de consultation |\n",
+ "| inc100 | Estimation du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
+ "| inc100_low | Estimation de la borne inférieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
+ "| inc100_up | Estimation de la borne supérieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
+ "| geo_insee | Code de la zone géographique concernée (Code INSEE) http://www.insee.fr/fr/methodes/nomenclatures/cog/ |\n",
+ "| geo_name | Libellé de la zone géographique (ce libellé peut être modifié sans préavis) |\n",
+ "\n",
+ "La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant `skiprows=1`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 202344 \n",
+ " 3 \n",
+ " 58340 \n",
+ " 48804.0 \n",
+ " 67876.0 \n",
+ " 88 \n",
+ " 74.0 \n",
+ " 102.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 202343 \n",
+ " 3 \n",
+ " 46200 \n",
+ " 39090.0 \n",
+ " 53310.0 \n",
+ " 70 \n",
+ " 59.0 \n",
+ " 81.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 202342 \n",
+ " 3 \n",
+ " 56842 \n",
+ " 49277.0 \n",
+ " 64407.0 \n",
+ " 86 \n",
+ " 75.0 \n",
+ " 97.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 202341 \n",
+ " 3 \n",
+ " 58357 \n",
+ " 51032.0 \n",
+ " 65682.0 \n",
+ " 88 \n",
+ " 77.0 \n",
+ " 99.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 202340 \n",
+ " 3 \n",
+ " 68894 \n",
+ " 60069.0 \n",
+ " 77719.0 \n",
+ " 104 \n",
+ " 91.0 \n",
+ " 117.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202339 \n",
+ " 3 \n",
+ " 72003 \n",
+ " 63452.0 \n",
+ " 80554.0 \n",
+ " 108 \n",
+ " 95.0 \n",
+ " 121.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 202338 \n",
+ " 3 \n",
+ " 63218 \n",
+ " 55227.0 \n",
+ " 71209.0 \n",
+ " 95 \n",
+ " 83.0 \n",
+ " 107.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 202337 \n",
+ " 3 \n",
+ " 49085 \n",
+ " 42079.0 \n",
+ " 56091.0 \n",
+ " 74 \n",
+ " 63.0 \n",
+ " 85.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 202336 \n",
+ " 3 \n",
+ " 38247 \n",
+ " 32237.0 \n",
+ " 44257.0 \n",
+ " 58 \n",
+ " 49.0 \n",
+ " 67.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 202335 \n",
+ " 3 \n",
+ " 31695 \n",
+ " 26013.0 \n",
+ " 37377.0 \n",
+ " 48 \n",
+ " 39.0 \n",
+ " 57.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 202334 \n",
+ " 3 \n",
+ " 26663 \n",
+ " 21057.0 \n",
+ " 32269.0 \n",
+ " 40 \n",
+ " 32.0 \n",
+ " 48.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 202333 \n",
+ " 3 \n",
+ " 19144 \n",
+ " 13161.0 \n",
+ " 25127.0 \n",
+ " 29 \n",
+ " 20.0 \n",
+ " 38.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 202332 \n",
+ " 3 \n",
+ " 14641 \n",
+ " 10285.0 \n",
+ " 18997.0 \n",
+ " 22 \n",
+ " 15.0 \n",
+ " 29.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 202331 \n",
+ " 3 \n",
+ " 15286 \n",
+ " 10705.0 \n",
+ " 19867.0 \n",
+ " 23 \n",
+ " 16.0 \n",
+ " 30.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 202330 \n",
+ " 3 \n",
+ " 13205 \n",
+ " 8647.0 \n",
+ " 17763.0 \n",
+ " 20 \n",
+ " 13.0 \n",
+ " 27.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 202329 \n",
+ " 3 \n",
+ " 11122 \n",
+ " 7113.0 \n",
+ " 15131.0 \n",
+ " 17 \n",
+ " 11.0 \n",
+ " 23.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 202328 \n",
+ " 3 \n",
+ " 9179 \n",
+ " 5703.0 \n",
+ " 12655.0 \n",
+ " 14 \n",
+ " 9.0 \n",
+ " 19.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 202327 \n",
+ " 3 \n",
+ " 8999 \n",
+ " 5763.0 \n",
+ " 12235.0 \n",
+ " 14 \n",
+ " 9.0 \n",
+ " 19.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 202326 \n",
+ " 3 \n",
+ " 9023 \n",
+ " 5934.0 \n",
+ " 12112.0 \n",
+ " 14 \n",
+ " 9.0 \n",
+ " 19.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 202325 \n",
+ " 3 \n",
+ " 10090 \n",
+ " 6739.0 \n",
+ " 13441.0 \n",
+ " 15 \n",
+ " 10.0 \n",
+ " 20.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 202324 \n",
+ " 3 \n",
+ " 11308 \n",
+ " 7639.0 \n",
+ " 14977.0 \n",
+ " 17 \n",
+ " 11.0 \n",
+ " 23.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 202323 \n",
+ " 3 \n",
+ " 14300 \n",
+ " 10661.0 \n",
+ " 17939.0 \n",
+ " 22 \n",
+ " 17.0 \n",
+ " 27.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 202322 \n",
+ " 3 \n",
+ " 18303 \n",
+ " 13822.0 \n",
+ " 22784.0 \n",
+ " 28 \n",
+ " 21.0 \n",
+ " 35.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 202321 \n",
+ " 3 \n",
+ " 16460 \n",
+ " 12188.0 \n",
+ " 20732.0 \n",
+ " 25 \n",
+ " 19.0 \n",
+ " 31.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 202320 \n",
+ " 3 \n",
+ " 16162 \n",
+ " 11963.0 \n",
+ " 20361.0 \n",
+ " 24 \n",
+ " 18.0 \n",
+ " 30.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 202319 \n",
+ " 3 \n",
+ " 16901 \n",
+ " 12577.0 \n",
+ " 21225.0 \n",
+ " 25 \n",
+ " 18.0 \n",
+ " 32.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 202318 \n",
+ " 3 \n",
+ " 19929 \n",
+ " 15402.0 \n",
+ " 24456.0 \n",
+ " 30 \n",
+ " 23.0 \n",
+ " 37.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 202317 \n",
+ " 3 \n",
+ " 27007 \n",
+ " 21779.0 \n",
+ " 32235.0 \n",
+ " 41 \n",
+ " 33.0 \n",
+ " 49.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 202316 \n",
+ " 3 \n",
+ " 27875 \n",
+ " 22767.0 \n",
+ " 32983.0 \n",
+ " 42 \n",
+ " 34.0 \n",
+ " 50.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 202315 \n",
+ " 3 \n",
+ " 37455 \n",
+ " 30993.0 \n",
+ " 43917.0 \n",
+ " 56 \n",
+ " 46.0 \n",
+ " 66.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 2006 \n",
+ " 198521 \n",
+ " 3 \n",
+ " 26096 \n",
+ " 19621.0 \n",
+ " 32571.0 \n",
+ " 47 \n",
+ " 35.0 \n",
+ " 59.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2007 \n",
+ " 198520 \n",
+ " 3 \n",
+ " 27896 \n",
+ " 20885.0 \n",
+ " 34907.0 \n",
+ " 51 \n",
+ " 38.0 \n",
+ " 64.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2008 \n",
+ " 198519 \n",
+ " 3 \n",
+ " 43154 \n",
+ " 32821.0 \n",
+ " 53487.0 \n",
+ " 78 \n",
+ " 59.0 \n",
+ " 97.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2009 \n",
+ " 198518 \n",
+ " 3 \n",
+ " 40555 \n",
+ " 29935.0 \n",
+ " 51175.0 \n",
+ " 74 \n",
+ " 55.0 \n",
+ " 93.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2010 \n",
+ " 198517 \n",
+ " 3 \n",
+ " 34053 \n",
+ " 24366.0 \n",
+ " 43740.0 \n",
+ " 62 \n",
+ " 44.0 \n",
+ " 80.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2011 \n",
+ " 198516 \n",
+ " 3 \n",
+ " 50362 \n",
+ " 36451.0 \n",
+ " 64273.0 \n",
+ " 91 \n",
+ " 66.0 \n",
+ " 116.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2012 \n",
+ " 198515 \n",
+ " 3 \n",
+ " 63881 \n",
+ " 45538.0 \n",
+ " 82224.0 \n",
+ " 116 \n",
+ " 83.0 \n",
+ " 149.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2013 \n",
+ " 198514 \n",
+ " 3 \n",
+ " 134545 \n",
+ " 114400.0 \n",
+ " 154690.0 \n",
+ " 244 \n",
+ " 207.0 \n",
+ " 281.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2014 \n",
+ " 198513 \n",
+ " 3 \n",
+ " 197206 \n",
+ " 176080.0 \n",
+ " 218332.0 \n",
+ " 357 \n",
+ " 319.0 \n",
+ " 395.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2015 \n",
+ " 198512 \n",
+ " 3 \n",
+ " 245240 \n",
+ " 223304.0 \n",
+ " 267176.0 \n",
+ " 445 \n",
+ " 405.0 \n",
+ " 485.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2016 \n",
+ " 198511 \n",
+ " 3 \n",
+ " 276205 \n",
+ " 252399.0 \n",
+ " 300011.0 \n",
+ " 501 \n",
+ " 458.0 \n",
+ " 544.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2017 \n",
+ " 198510 \n",
+ " 3 \n",
+ " 353231 \n",
+ " 326279.0 \n",
+ " 380183.0 \n",
+ " 640 \n",
+ " 591.0 \n",
+ " 689.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2018 \n",
+ " 198509 \n",
+ " 3 \n",
+ " 369895 \n",
+ " 341109.0 \n",
+ " 398681.0 \n",
+ " 670 \n",
+ " 618.0 \n",
+ " 722.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2019 \n",
+ " 198508 \n",
+ " 3 \n",
+ " 389886 \n",
+ " 359529.0 \n",
+ " 420243.0 \n",
+ " 707 \n",
+ " 652.0 \n",
+ " 762.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2020 \n",
+ " 198507 \n",
+ " 3 \n",
+ " 471852 \n",
+ " 432599.0 \n",
+ " 511105.0 \n",
+ " 855 \n",
+ " 784.0 \n",
+ " 926.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2021 \n",
+ " 198506 \n",
+ " 3 \n",
+ " 565825 \n",
+ " 518011.0 \n",
+ " 613639.0 \n",
+ " 1026 \n",
+ " 939.0 \n",
+ " 1113.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2022 \n",
+ " 198505 \n",
+ " 3 \n",
+ " 637302 \n",
+ " 592795.0 \n",
+ " 681809.0 \n",
+ " 1155 \n",
+ " 1074.0 \n",
+ " 1236.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2023 \n",
+ " 198504 \n",
+ " 3 \n",
+ " 424937 \n",
+ " 390794.0 \n",
+ " 459080.0 \n",
+ " 770 \n",
+ " 708.0 \n",
+ " 832.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2024 \n",
+ " 198503 \n",
+ " 3 \n",
+ " 213901 \n",
+ " 174689.0 \n",
+ " 253113.0 \n",
+ " 388 \n",
+ " 317.0 \n",
+ " 459.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2025 \n",
+ " 198502 \n",
+ " 3 \n",
+ " 97586 \n",
+ " 80949.0 \n",
+ " 114223.0 \n",
+ " 177 \n",
+ " 147.0 \n",
+ " 207.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2026 \n",
+ " 198501 \n",
+ " 3 \n",
+ " 85489 \n",
+ " 65918.0 \n",
+ " 105060.0 \n",
+ " 155 \n",
+ " 120.0 \n",
+ " 190.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2027 \n",
+ " 198452 \n",
+ " 3 \n",
+ " 84830 \n",
+ " 60602.0 \n",
+ " 109058.0 \n",
+ " 154 \n",
+ " 110.0 \n",
+ " 198.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2028 \n",
+ " 198451 \n",
+ " 3 \n",
+ " 101726 \n",
+ " 80242.0 \n",
+ " 123210.0 \n",
+ " 185 \n",
+ " 146.0 \n",
+ " 224.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2029 \n",
+ " 198450 \n",
+ " 3 \n",
+ " 123680 \n",
+ " 101401.0 \n",
+ " 145959.0 \n",
+ " 225 \n",
+ " 184.0 \n",
+ " 266.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2030 \n",
+ " 198449 \n",
+ " 3 \n",
+ " 101073 \n",
+ " 81684.0 \n",
+ " 120462.0 \n",
+ " 184 \n",
+ " 149.0 \n",
+ " 219.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2031 \n",
+ " 198448 \n",
+ " 3 \n",
+ " 78620 \n",
+ " 60634.0 \n",
+ " 96606.0 \n",
+ " 143 \n",
+ " 110.0 \n",
+ " 176.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2032 \n",
+ " 198447 \n",
+ " 3 \n",
+ " 72029 \n",
+ " 54274.0 \n",
+ " 89784.0 \n",
+ " 131 \n",
+ " 99.0 \n",
+ " 163.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2033 \n",
+ " 198446 \n",
+ " 3 \n",
+ " 87330 \n",
+ " 67686.0 \n",
+ " 106974.0 \n",
+ " 159 \n",
+ " 123.0 \n",
+ " 195.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2034 \n",
+ " 198445 \n",
+ " 3 \n",
+ " 135223 \n",
+ " 101414.0 \n",
+ " 169032.0 \n",
+ " 246 \n",
+ " 184.0 \n",
+ " 308.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2035 \n",
+ " 198444 \n",
+ " 3 \n",
+ " 68422 \n",
+ " 20056.0 \n",
+ " 116788.0 \n",
+ " 125 \n",
+ " 37.0 \n",
+ " 213.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
2036 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202344 3 58340 48804.0 67876.0 88 74.0 \n",
+ "1 202343 3 46200 39090.0 53310.0 70 59.0 \n",
+ "2 202342 3 56842 49277.0 64407.0 86 75.0 \n",
+ "3 202341 3 58357 51032.0 65682.0 88 77.0 \n",
+ "4 202340 3 68894 60069.0 77719.0 104 91.0 \n",
+ "5 202339 3 72003 63452.0 80554.0 108 95.0 \n",
+ "6 202338 3 63218 55227.0 71209.0 95 83.0 \n",
+ "7 202337 3 49085 42079.0 56091.0 74 63.0 \n",
+ "8 202336 3 38247 32237.0 44257.0 58 49.0 \n",
+ "9 202335 3 31695 26013.0 37377.0 48 39.0 \n",
+ "10 202334 3 26663 21057.0 32269.0 40 32.0 \n",
+ "11 202333 3 19144 13161.0 25127.0 29 20.0 \n",
+ "12 202332 3 14641 10285.0 18997.0 22 15.0 \n",
+ "13 202331 3 15286 10705.0 19867.0 23 16.0 \n",
+ "14 202330 3 13205 8647.0 17763.0 20 13.0 \n",
+ "15 202329 3 11122 7113.0 15131.0 17 11.0 \n",
+ "16 202328 3 9179 5703.0 12655.0 14 9.0 \n",
+ "17 202327 3 8999 5763.0 12235.0 14 9.0 \n",
+ "18 202326 3 9023 5934.0 12112.0 14 9.0 \n",
+ "19 202325 3 10090 6739.0 13441.0 15 10.0 \n",
+ "20 202324 3 11308 7639.0 14977.0 17 11.0 \n",
+ "21 202323 3 14300 10661.0 17939.0 22 17.0 \n",
+ "22 202322 3 18303 13822.0 22784.0 28 21.0 \n",
+ "23 202321 3 16460 12188.0 20732.0 25 19.0 \n",
+ "24 202320 3 16162 11963.0 20361.0 24 18.0 \n",
+ "25 202319 3 16901 12577.0 21225.0 25 18.0 \n",
+ "26 202318 3 19929 15402.0 24456.0 30 23.0 \n",
+ "27 202317 3 27007 21779.0 32235.0 41 33.0 \n",
+ "28 202316 3 27875 22767.0 32983.0 42 34.0 \n",
+ "29 202315 3 37455 30993.0 43917.0 56 46.0 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "2006 198521 3 26096 19621.0 32571.0 47 35.0 \n",
+ "2007 198520 3 27896 20885.0 34907.0 51 38.0 \n",
+ "2008 198519 3 43154 32821.0 53487.0 78 59.0 \n",
+ "2009 198518 3 40555 29935.0 51175.0 74 55.0 \n",
+ "2010 198517 3 34053 24366.0 43740.0 62 44.0 \n",
+ "2011 198516 3 50362 36451.0 64273.0 91 66.0 \n",
+ "2012 198515 3 63881 45538.0 82224.0 116 83.0 \n",
+ "2013 198514 3 134545 114400.0 154690.0 244 207.0 \n",
+ "2014 198513 3 197206 176080.0 218332.0 357 319.0 \n",
+ "2015 198512 3 245240 223304.0 267176.0 445 405.0 \n",
+ "2016 198511 3 276205 252399.0 300011.0 501 458.0 \n",
+ "2017 198510 3 353231 326279.0 380183.0 640 591.0 \n",
+ "2018 198509 3 369895 341109.0 398681.0 670 618.0 \n",
+ "2019 198508 3 389886 359529.0 420243.0 707 652.0 \n",
+ "2020 198507 3 471852 432599.0 511105.0 855 784.0 \n",
+ "2021 198506 3 565825 518011.0 613639.0 1026 939.0 \n",
+ "2022 198505 3 637302 592795.0 681809.0 1155 1074.0 \n",
+ "2023 198504 3 424937 390794.0 459080.0 770 708.0 \n",
+ "2024 198503 3 213901 174689.0 253113.0 388 317.0 \n",
+ "2025 198502 3 97586 80949.0 114223.0 177 147.0 \n",
+ "2026 198501 3 85489 65918.0 105060.0 155 120.0 \n",
+ "2027 198452 3 84830 60602.0 109058.0 154 110.0 \n",
+ "2028 198451 3 101726 80242.0 123210.0 185 146.0 \n",
+ "2029 198450 3 123680 101401.0 145959.0 225 184.0 \n",
+ "2030 198449 3 101073 81684.0 120462.0 184 149.0 \n",
+ "2031 198448 3 78620 60634.0 96606.0 143 110.0 \n",
+ "2032 198447 3 72029 54274.0 89784.0 131 99.0 \n",
+ "2033 198446 3 87330 67686.0 106974.0 159 123.0 \n",
+ "2034 198445 3 135223 101414.0 169032.0 246 184.0 \n",
+ "2035 198444 3 68422 20056.0 116788.0 125 37.0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 102.0 FR France \n",
+ "1 81.0 FR France \n",
+ "2 97.0 FR France \n",
+ "3 99.0 FR France \n",
+ "4 117.0 FR France \n",
+ "5 121.0 FR France \n",
+ "6 107.0 FR France \n",
+ "7 85.0 FR France \n",
+ "8 67.0 FR France \n",
+ "9 57.0 FR France \n",
+ "10 48.0 FR France \n",
+ "11 38.0 FR France \n",
+ "12 29.0 FR France \n",
+ "13 30.0 FR France \n",
+ "14 27.0 FR France \n",
+ "15 23.0 FR France \n",
+ "16 19.0 FR France \n",
+ "17 19.0 FR France \n",
+ "18 19.0 FR France \n",
+ "19 20.0 FR France \n",
+ "20 23.0 FR France \n",
+ "21 27.0 FR France \n",
+ "22 35.0 FR France \n",
+ "23 31.0 FR France \n",
+ "24 30.0 FR France \n",
+ "25 32.0 FR France \n",
+ "26 37.0 FR France \n",
+ "27 49.0 FR France \n",
+ "28 50.0 FR France \n",
+ "29 66.0 FR France \n",
+ "... ... ... ... \n",
+ "2006 59.0 FR France \n",
+ "2007 64.0 FR France \n",
+ "2008 97.0 FR France \n",
+ "2009 93.0 FR France \n",
+ "2010 80.0 FR France \n",
+ "2011 116.0 FR France \n",
+ "2012 149.0 FR France \n",
+ "2013 281.0 FR France \n",
+ "2014 395.0 FR France \n",
+ "2015 485.0 FR France \n",
+ "2016 544.0 FR France \n",
+ "2017 689.0 FR France \n",
+ "2018 722.0 FR France \n",
+ "2019 762.0 FR France \n",
+ "2020 926.0 FR France \n",
+ "2021 1113.0 FR France \n",
+ "2022 1236.0 FR France \n",
+ "2023 832.0 FR France \n",
+ "2024 459.0 FR France \n",
+ "2025 207.0 FR France \n",
+ "2026 190.0 FR France \n",
+ "2027 198.0 FR France \n",
+ "2028 224.0 FR France \n",
+ "2029 266.0 FR France \n",
+ "2030 219.0 FR France \n",
+ "2031 176.0 FR France \n",
+ "2032 163.0 FR France \n",
+ "2033 195.0 FR France \n",
+ "2034 308.0 FR France \n",
+ "2035 213.0 FR France \n",
+ "\n",
+ "[2036 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data = pd.read_csv(data_file, skiprows=1)\n",
+ "raw_data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Y a-t-il des points manquants dans ce jeux de données ? Oui, la semaine 19 de l'année 1989 n'a pas de valeurs associées."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1799 \n",
+ " 198919 \n",
+ " 3 \n",
+ " - \n",
+ " NaN \n",
+ " NaN \n",
+ " - \n",
+ " NaN \n",
+ " NaN \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n",
+ "1799 198919 3 - NaN NaN - NaN NaN \n",
+ "\n",
+ " geo_insee geo_name \n",
+ "1799 FR France "
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data[raw_data.isnull().any(axis=1)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nous éliminons ce point, ce qui n'a pas d'impact fort sur notre analyse qui est assez simple."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 202344 \n",
+ " 3 \n",
+ " 58340 \n",
+ " 48804.0 \n",
+ " 67876.0 \n",
+ " 88 \n",
+ " 74.0 \n",
+ " 102.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 202343 \n",
+ " 3 \n",
+ " 46200 \n",
+ " 39090.0 \n",
+ " 53310.0 \n",
+ " 70 \n",
+ " 59.0 \n",
+ " 81.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 202342 \n",
+ " 3 \n",
+ " 56842 \n",
+ " 49277.0 \n",
+ " 64407.0 \n",
+ " 86 \n",
+ " 75.0 \n",
+ " 97.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 202341 \n",
+ " 3 \n",
+ " 58357 \n",
+ " 51032.0 \n",
+ " 65682.0 \n",
+ " 88 \n",
+ " 77.0 \n",
+ " 99.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 202340 \n",
+ " 3 \n",
+ " 68894 \n",
+ " 60069.0 \n",
+ " 77719.0 \n",
+ " 104 \n",
+ " 91.0 \n",
+ " 117.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202339 \n",
+ " 3 \n",
+ " 72003 \n",
+ " 63452.0 \n",
+ " 80554.0 \n",
+ " 108 \n",
+ " 95.0 \n",
+ " 121.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 202338 \n",
+ " 3 \n",
+ " 63218 \n",
+ " 55227.0 \n",
+ " 71209.0 \n",
+ " 95 \n",
+ " 83.0 \n",
+ " 107.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 202337 \n",
+ " 3 \n",
+ " 49085 \n",
+ " 42079.0 \n",
+ " 56091.0 \n",
+ " 74 \n",
+ " 63.0 \n",
+ " 85.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 202336 \n",
+ " 3 \n",
+ " 38247 \n",
+ " 32237.0 \n",
+ " 44257.0 \n",
+ " 58 \n",
+ " 49.0 \n",
+ " 67.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 202335 \n",
+ " 3 \n",
+ " 31695 \n",
+ " 26013.0 \n",
+ " 37377.0 \n",
+ " 48 \n",
+ " 39.0 \n",
+ " 57.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 202334 \n",
+ " 3 \n",
+ " 26663 \n",
+ " 21057.0 \n",
+ " 32269.0 \n",
+ " 40 \n",
+ " 32.0 \n",
+ " 48.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 202333 \n",
+ " 3 \n",
+ " 19144 \n",
+ " 13161.0 \n",
+ " 25127.0 \n",
+ " 29 \n",
+ " 20.0 \n",
+ " 38.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 202332 \n",
+ " 3 \n",
+ " 14641 \n",
+ " 10285.0 \n",
+ " 18997.0 \n",
+ " 22 \n",
+ " 15.0 \n",
+ " 29.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 202331 \n",
+ " 3 \n",
+ " 15286 \n",
+ " 10705.0 \n",
+ " 19867.0 \n",
+ " 23 \n",
+ " 16.0 \n",
+ " 30.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 202330 \n",
+ " 3 \n",
+ " 13205 \n",
+ " 8647.0 \n",
+ " 17763.0 \n",
+ " 20 \n",
+ " 13.0 \n",
+ " 27.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 202329 \n",
+ " 3 \n",
+ " 11122 \n",
+ " 7113.0 \n",
+ " 15131.0 \n",
+ " 17 \n",
+ " 11.0 \n",
+ " 23.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 202328 \n",
+ " 3 \n",
+ " 9179 \n",
+ " 5703.0 \n",
+ " 12655.0 \n",
+ " 14 \n",
+ " 9.0 \n",
+ " 19.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 202327 \n",
+ " 3 \n",
+ " 8999 \n",
+ " 5763.0 \n",
+ " 12235.0 \n",
+ " 14 \n",
+ " 9.0 \n",
+ " 19.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 202326 \n",
+ " 3 \n",
+ " 9023 \n",
+ " 5934.0 \n",
+ " 12112.0 \n",
+ " 14 \n",
+ " 9.0 \n",
+ " 19.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 202325 \n",
+ " 3 \n",
+ " 10090 \n",
+ " 6739.0 \n",
+ " 13441.0 \n",
+ " 15 \n",
+ " 10.0 \n",
+ " 20.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 202324 \n",
+ " 3 \n",
+ " 11308 \n",
+ " 7639.0 \n",
+ " 14977.0 \n",
+ " 17 \n",
+ " 11.0 \n",
+ " 23.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 202323 \n",
+ " 3 \n",
+ " 14300 \n",
+ " 10661.0 \n",
+ " 17939.0 \n",
+ " 22 \n",
+ " 17.0 \n",
+ " 27.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 202322 \n",
+ " 3 \n",
+ " 18303 \n",
+ " 13822.0 \n",
+ " 22784.0 \n",
+ " 28 \n",
+ " 21.0 \n",
+ " 35.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 202321 \n",
+ " 3 \n",
+ " 16460 \n",
+ " 12188.0 \n",
+ " 20732.0 \n",
+ " 25 \n",
+ " 19.0 \n",
+ " 31.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 202320 \n",
+ " 3 \n",
+ " 16162 \n",
+ " 11963.0 \n",
+ " 20361.0 \n",
+ " 24 \n",
+ " 18.0 \n",
+ " 30.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 202319 \n",
+ " 3 \n",
+ " 16901 \n",
+ " 12577.0 \n",
+ " 21225.0 \n",
+ " 25 \n",
+ " 18.0 \n",
+ " 32.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 202318 \n",
+ " 3 \n",
+ " 19929 \n",
+ " 15402.0 \n",
+ " 24456.0 \n",
+ " 30 \n",
+ " 23.0 \n",
+ " 37.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 202317 \n",
+ " 3 \n",
+ " 27007 \n",
+ " 21779.0 \n",
+ " 32235.0 \n",
+ " 41 \n",
+ " 33.0 \n",
+ " 49.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 202316 \n",
+ " 3 \n",
+ " 27875 \n",
+ " 22767.0 \n",
+ " 32983.0 \n",
+ " 42 \n",
+ " 34.0 \n",
+ " 50.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 202315 \n",
+ " 3 \n",
+ " 37455 \n",
+ " 30993.0 \n",
+ " 43917.0 \n",
+ " 56 \n",
+ " 46.0 \n",
+ " 66.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 2006 \n",
+ " 198521 \n",
+ " 3 \n",
+ " 26096 \n",
+ " 19621.0 \n",
+ " 32571.0 \n",
+ " 47 \n",
+ " 35.0 \n",
+ " 59.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2007 \n",
+ " 198520 \n",
+ " 3 \n",
+ " 27896 \n",
+ " 20885.0 \n",
+ " 34907.0 \n",
+ " 51 \n",
+ " 38.0 \n",
+ " 64.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2008 \n",
+ " 198519 \n",
+ " 3 \n",
+ " 43154 \n",
+ " 32821.0 \n",
+ " 53487.0 \n",
+ " 78 \n",
+ " 59.0 \n",
+ " 97.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2009 \n",
+ " 198518 \n",
+ " 3 \n",
+ " 40555 \n",
+ " 29935.0 \n",
+ " 51175.0 \n",
+ " 74 \n",
+ " 55.0 \n",
+ " 93.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2010 \n",
+ " 198517 \n",
+ " 3 \n",
+ " 34053 \n",
+ " 24366.0 \n",
+ " 43740.0 \n",
+ " 62 \n",
+ " 44.0 \n",
+ " 80.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2011 \n",
+ " 198516 \n",
+ " 3 \n",
+ " 50362 \n",
+ " 36451.0 \n",
+ " 64273.0 \n",
+ " 91 \n",
+ " 66.0 \n",
+ " 116.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2012 \n",
+ " 198515 \n",
+ " 3 \n",
+ " 63881 \n",
+ " 45538.0 \n",
+ " 82224.0 \n",
+ " 116 \n",
+ " 83.0 \n",
+ " 149.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2013 \n",
+ " 198514 \n",
+ " 3 \n",
+ " 134545 \n",
+ " 114400.0 \n",
+ " 154690.0 \n",
+ " 244 \n",
+ " 207.0 \n",
+ " 281.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2014 \n",
+ " 198513 \n",
+ " 3 \n",
+ " 197206 \n",
+ " 176080.0 \n",
+ " 218332.0 \n",
+ " 357 \n",
+ " 319.0 \n",
+ " 395.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2015 \n",
+ " 198512 \n",
+ " 3 \n",
+ " 245240 \n",
+ " 223304.0 \n",
+ " 267176.0 \n",
+ " 445 \n",
+ " 405.0 \n",
+ " 485.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2016 \n",
+ " 198511 \n",
+ " 3 \n",
+ " 276205 \n",
+ " 252399.0 \n",
+ " 300011.0 \n",
+ " 501 \n",
+ " 458.0 \n",
+ " 544.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2017 \n",
+ " 198510 \n",
+ " 3 \n",
+ " 353231 \n",
+ " 326279.0 \n",
+ " 380183.0 \n",
+ " 640 \n",
+ " 591.0 \n",
+ " 689.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2018 \n",
+ " 198509 \n",
+ " 3 \n",
+ " 369895 \n",
+ " 341109.0 \n",
+ " 398681.0 \n",
+ " 670 \n",
+ " 618.0 \n",
+ " 722.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2019 \n",
+ " 198508 \n",
+ " 3 \n",
+ " 389886 \n",
+ " 359529.0 \n",
+ " 420243.0 \n",
+ " 707 \n",
+ " 652.0 \n",
+ " 762.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2020 \n",
+ " 198507 \n",
+ " 3 \n",
+ " 471852 \n",
+ " 432599.0 \n",
+ " 511105.0 \n",
+ " 855 \n",
+ " 784.0 \n",
+ " 926.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2021 \n",
+ " 198506 \n",
+ " 3 \n",
+ " 565825 \n",
+ " 518011.0 \n",
+ " 613639.0 \n",
+ " 1026 \n",
+ " 939.0 \n",
+ " 1113.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2022 \n",
+ " 198505 \n",
+ " 3 \n",
+ " 637302 \n",
+ " 592795.0 \n",
+ " 681809.0 \n",
+ " 1155 \n",
+ " 1074.0 \n",
+ " 1236.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2023 \n",
+ " 198504 \n",
+ " 3 \n",
+ " 424937 \n",
+ " 390794.0 \n",
+ " 459080.0 \n",
+ " 770 \n",
+ " 708.0 \n",
+ " 832.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2024 \n",
+ " 198503 \n",
+ " 3 \n",
+ " 213901 \n",
+ " 174689.0 \n",
+ " 253113.0 \n",
+ " 388 \n",
+ " 317.0 \n",
+ " 459.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2025 \n",
+ " 198502 \n",
+ " 3 \n",
+ " 97586 \n",
+ " 80949.0 \n",
+ " 114223.0 \n",
+ " 177 \n",
+ " 147.0 \n",
+ " 207.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2026 \n",
+ " 198501 \n",
+ " 3 \n",
+ " 85489 \n",
+ " 65918.0 \n",
+ " 105060.0 \n",
+ " 155 \n",
+ " 120.0 \n",
+ " 190.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2027 \n",
+ " 198452 \n",
+ " 3 \n",
+ " 84830 \n",
+ " 60602.0 \n",
+ " 109058.0 \n",
+ " 154 \n",
+ " 110.0 \n",
+ " 198.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2028 \n",
+ " 198451 \n",
+ " 3 \n",
+ " 101726 \n",
+ " 80242.0 \n",
+ " 123210.0 \n",
+ " 185 \n",
+ " 146.0 \n",
+ " 224.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2029 \n",
+ " 198450 \n",
+ " 3 \n",
+ " 123680 \n",
+ " 101401.0 \n",
+ " 145959.0 \n",
+ " 225 \n",
+ " 184.0 \n",
+ " 266.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2030 \n",
+ " 198449 \n",
+ " 3 \n",
+ " 101073 \n",
+ " 81684.0 \n",
+ " 120462.0 \n",
+ " 184 \n",
+ " 149.0 \n",
+ " 219.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2031 \n",
+ " 198448 \n",
+ " 3 \n",
+ " 78620 \n",
+ " 60634.0 \n",
+ " 96606.0 \n",
+ " 143 \n",
+ " 110.0 \n",
+ " 176.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2032 \n",
+ " 198447 \n",
+ " 3 \n",
+ " 72029 \n",
+ " 54274.0 \n",
+ " 89784.0 \n",
+ " 131 \n",
+ " 99.0 \n",
+ " 163.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2033 \n",
+ " 198446 \n",
+ " 3 \n",
+ " 87330 \n",
+ " 67686.0 \n",
+ " 106974.0 \n",
+ " 159 \n",
+ " 123.0 \n",
+ " 195.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2034 \n",
+ " 198445 \n",
+ " 3 \n",
+ " 135223 \n",
+ " 101414.0 \n",
+ " 169032.0 \n",
+ " 246 \n",
+ " 184.0 \n",
+ " 308.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2035 \n",
+ " 198444 \n",
+ " 3 \n",
+ " 68422 \n",
+ " 20056.0 \n",
+ " 116788.0 \n",
+ " 125 \n",
+ " 37.0 \n",
+ " 213.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
2035 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202344 3 58340 48804.0 67876.0 88 74.0 \n",
+ "1 202343 3 46200 39090.0 53310.0 70 59.0 \n",
+ "2 202342 3 56842 49277.0 64407.0 86 75.0 \n",
+ "3 202341 3 58357 51032.0 65682.0 88 77.0 \n",
+ "4 202340 3 68894 60069.0 77719.0 104 91.0 \n",
+ "5 202339 3 72003 63452.0 80554.0 108 95.0 \n",
+ "6 202338 3 63218 55227.0 71209.0 95 83.0 \n",
+ "7 202337 3 49085 42079.0 56091.0 74 63.0 \n",
+ "8 202336 3 38247 32237.0 44257.0 58 49.0 \n",
+ "9 202335 3 31695 26013.0 37377.0 48 39.0 \n",
+ "10 202334 3 26663 21057.0 32269.0 40 32.0 \n",
+ "11 202333 3 19144 13161.0 25127.0 29 20.0 \n",
+ "12 202332 3 14641 10285.0 18997.0 22 15.0 \n",
+ "13 202331 3 15286 10705.0 19867.0 23 16.0 \n",
+ "14 202330 3 13205 8647.0 17763.0 20 13.0 \n",
+ "15 202329 3 11122 7113.0 15131.0 17 11.0 \n",
+ "16 202328 3 9179 5703.0 12655.0 14 9.0 \n",
+ "17 202327 3 8999 5763.0 12235.0 14 9.0 \n",
+ "18 202326 3 9023 5934.0 12112.0 14 9.0 \n",
+ "19 202325 3 10090 6739.0 13441.0 15 10.0 \n",
+ "20 202324 3 11308 7639.0 14977.0 17 11.0 \n",
+ "21 202323 3 14300 10661.0 17939.0 22 17.0 \n",
+ "22 202322 3 18303 13822.0 22784.0 28 21.0 \n",
+ "23 202321 3 16460 12188.0 20732.0 25 19.0 \n",
+ "24 202320 3 16162 11963.0 20361.0 24 18.0 \n",
+ "25 202319 3 16901 12577.0 21225.0 25 18.0 \n",
+ "26 202318 3 19929 15402.0 24456.0 30 23.0 \n",
+ "27 202317 3 27007 21779.0 32235.0 41 33.0 \n",
+ "28 202316 3 27875 22767.0 32983.0 42 34.0 \n",
+ "29 202315 3 37455 30993.0 43917.0 56 46.0 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "2006 198521 3 26096 19621.0 32571.0 47 35.0 \n",
+ "2007 198520 3 27896 20885.0 34907.0 51 38.0 \n",
+ "2008 198519 3 43154 32821.0 53487.0 78 59.0 \n",
+ "2009 198518 3 40555 29935.0 51175.0 74 55.0 \n",
+ "2010 198517 3 34053 24366.0 43740.0 62 44.0 \n",
+ "2011 198516 3 50362 36451.0 64273.0 91 66.0 \n",
+ "2012 198515 3 63881 45538.0 82224.0 116 83.0 \n",
+ "2013 198514 3 134545 114400.0 154690.0 244 207.0 \n",
+ "2014 198513 3 197206 176080.0 218332.0 357 319.0 \n",
+ "2015 198512 3 245240 223304.0 267176.0 445 405.0 \n",
+ "2016 198511 3 276205 252399.0 300011.0 501 458.0 \n",
+ "2017 198510 3 353231 326279.0 380183.0 640 591.0 \n",
+ "2018 198509 3 369895 341109.0 398681.0 670 618.0 \n",
+ "2019 198508 3 389886 359529.0 420243.0 707 652.0 \n",
+ "2020 198507 3 471852 432599.0 511105.0 855 784.0 \n",
+ "2021 198506 3 565825 518011.0 613639.0 1026 939.0 \n",
+ "2022 198505 3 637302 592795.0 681809.0 1155 1074.0 \n",
+ "2023 198504 3 424937 390794.0 459080.0 770 708.0 \n",
+ "2024 198503 3 213901 174689.0 253113.0 388 317.0 \n",
+ "2025 198502 3 97586 80949.0 114223.0 177 147.0 \n",
+ "2026 198501 3 85489 65918.0 105060.0 155 120.0 \n",
+ "2027 198452 3 84830 60602.0 109058.0 154 110.0 \n",
+ "2028 198451 3 101726 80242.0 123210.0 185 146.0 \n",
+ "2029 198450 3 123680 101401.0 145959.0 225 184.0 \n",
+ "2030 198449 3 101073 81684.0 120462.0 184 149.0 \n",
+ "2031 198448 3 78620 60634.0 96606.0 143 110.0 \n",
+ "2032 198447 3 72029 54274.0 89784.0 131 99.0 \n",
+ "2033 198446 3 87330 67686.0 106974.0 159 123.0 \n",
+ "2034 198445 3 135223 101414.0 169032.0 246 184.0 \n",
+ "2035 198444 3 68422 20056.0 116788.0 125 37.0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 102.0 FR France \n",
+ "1 81.0 FR France \n",
+ "2 97.0 FR France \n",
+ "3 99.0 FR France \n",
+ "4 117.0 FR France \n",
+ "5 121.0 FR France \n",
+ "6 107.0 FR France \n",
+ "7 85.0 FR France \n",
+ "8 67.0 FR France \n",
+ "9 57.0 FR France \n",
+ "10 48.0 FR France \n",
+ "11 38.0 FR France \n",
+ "12 29.0 FR France \n",
+ "13 30.0 FR France \n",
+ "14 27.0 FR France \n",
+ "15 23.0 FR France \n",
+ "16 19.0 FR France \n",
+ "17 19.0 FR France \n",
+ "18 19.0 FR France \n",
+ "19 20.0 FR France \n",
+ "20 23.0 FR France \n",
+ "21 27.0 FR France \n",
+ "22 35.0 FR France \n",
+ "23 31.0 FR France \n",
+ "24 30.0 FR France \n",
+ "25 32.0 FR France \n",
+ "26 37.0 FR France \n",
+ "27 49.0 FR France \n",
+ "28 50.0 FR France \n",
+ "29 66.0 FR France \n",
+ "... ... ... ... \n",
+ "2006 59.0 FR France \n",
+ "2007 64.0 FR France \n",
+ "2008 97.0 FR France \n",
+ "2009 93.0 FR France \n",
+ "2010 80.0 FR France \n",
+ "2011 116.0 FR France \n",
+ "2012 149.0 FR France \n",
+ "2013 281.0 FR France \n",
+ "2014 395.0 FR France \n",
+ "2015 485.0 FR France \n",
+ "2016 544.0 FR France \n",
+ "2017 689.0 FR France \n",
+ "2018 722.0 FR France \n",
+ "2019 762.0 FR France \n",
+ "2020 926.0 FR France \n",
+ "2021 1113.0 FR France \n",
+ "2022 1236.0 FR France \n",
+ "2023 832.0 FR France \n",
+ "2024 459.0 FR France \n",
+ "2025 207.0 FR France \n",
+ "2026 190.0 FR France \n",
+ "2027 198.0 FR France \n",
+ "2028 224.0 FR France \n",
+ "2029 266.0 FR France \n",
+ "2030 219.0 FR France \n",
+ "2031 176.0 FR France \n",
+ "2032 163.0 FR France \n",
+ "2033 195.0 FR France \n",
+ "2034 308.0 FR France \n",
+ "2035 213.0 FR France \n",
+ "\n",
+ "[2035 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data = raw_data.dropna().copy()\n",
+ "data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nos données utilisent une convention inhabituelle: le numéro de\n",
+ "semaine est collé à l'année, donnant l'impression qu'il s'agit\n",
+ "de nombre entier. C'est comme ça que Pandas les interprète.\n",
+ " \n",
+ "Un deuxième problème est que Pandas ne comprend pas les numéros de\n",
+ "semaine. Il faut lui fournir les dates de début et de fin de\n",
+ "semaine. Nous utilisons pour cela la bibliothèque `isoweek`.\n",
+ "\n",
+ "Comme la conversion des semaines est devenu assez complexe, nous\n",
+ "écrivons une petite fonction Python pour cela. Ensuite, nous\n",
+ "l'appliquons à tous les points de nos donnés. Les résultats vont\n",
+ "dans une nouvelle colonne 'period'."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def convert_week(year_and_week_int):\n",
+ " year_and_week_str = str(year_and_week_int)\n",
+ " year = int(year_and_week_str[:4])\n",
+ " week = int(year_and_week_str[4:])\n",
+ " w = isoweek.Week(year, week)\n",
+ " return pd.Period(w.day(0), 'W')\n",
+ "\n",
+ "data['period'] = [convert_week(yw) for yw in data['week']]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Il restent deux petites modifications à faire.\n",
+ "\n",
+ "Premièrement, nous définissons les périodes d'observation\n",
+ "comme nouvel index de notre jeux de données. Ceci en fait\n",
+ "une suite chronologique, ce qui sera pratique par la suite.\n",
+ "\n",
+ "Deuxièmement, nous trions les points par période, dans\n",
+ "le sens chronologique."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sorted_data = data.set_index('period').sort_index()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nous vérifions la cohérence des données. Entre la fin d'une période et\n",
+ "le début de la période qui suit, la différence temporelle doit être\n",
+ "zéro, ou au moins très faible. Nous laissons une \"marge d'erreur\"\n",
+ "d'une seconde.\n",
+ "\n",
+ "Ceci s'avère tout à fait juste sauf pour deux périodes consécutives\n",
+ "entre lesquelles il manque une semaine.\n",
+ "\n",
+ "Nous reconnaissons ces dates: c'est la semaine sans observations\n",
+ "que nous avions supprimées !"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n"
+ ]
+ }
+ ],
+ "source": [
+ "periods = sorted_data.index\n",
+ "for p1, p2 in zip(periods[:-1], periods[1:]):\n",
+ " delta = p2.to_timestamp() - p1.end_time\n",
+ " if delta > pd.Timedelta('1s'):\n",
+ " print(p1, p2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Un premier regard sur les données !"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sorted_data['inc'] = sorted_data['inc'].astype(int)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "petite manip pour transformer la chaine de caractères en entier pour pouvoir génerer le plot"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAEKCAYAAADenhiQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXecHMWZ93/PhM0raZWFAhIgAyIZ0IlgsDmibHyHA/jwYSPb3HHmxdi+93w2OBx+4fDhBDa2webIDgQDNtiAsRA5WEIgQEhC0oLSKu1Ku5JWu9rdCfX+0VU91T3VYXpmdmZWz/fz2c/MdneFqa6up55Q1SSEAMMwDMOUklilK8AwDMOMPFi4MAzDMCWHhQvDMAxTcli4MAzDMCWHhQvDMAxTcli4MAzDMCWHhQvDMAxTcli4MAzDMCWHhQvDMAxTchKVrsBwMn78eDFz5sxKV4NhGKameO2113YIISYUkma/Ei4zZ87E0qVLK10NhmGYmoKINhSahs1iDMMwTMlh4cIwDMOUHBYuDMMwTMlh4cIwDMOUHBYuDMMwTMkJFC5EdAcRdRLR29qxsUS0kIjWys827dxVRNRORKuJ6Bzt+PFEtFyeu4mISB6vJ6L75fHFRDRTS7NAlrGWiBZox2fJa9fKtHXFNwXDMAxTKsJoLncBmO86diWARUKI2QAWyf9BRHMAXAjgCJnmZiKKyzS3ALgUwGz5p/K8BECPEOIQADcC+L7MayyAqwGcAGAegKs1IfZ9ADfK8ntkHgzDMEyVEChchBDPA+h2HT4PwN3y+90APqYdv08IMSiEWAegHcA8IpoCYJQQ4hVhvVf5HlcaldeDAM6QWs05ABYKIbqFED0AFgKYL8+dLq91lz8i6ejpxzOrOytdDYZhmNBE9blMEkJsBQD5OVEenwpgk3Zdhzw2VX53H3ekEUKkAewGMM4nr3EAdslr3XmNSM664Xl8/s5XK10NhmGY0JTaoU+GY8LneJQ0fnnlV4joUiJaSkRLu7q6vC6ravalMpWuAsMwTEFEFS7bpakL8lPZbDoATNeumwZgizw+zXDckYaIEgBGwzLDeeW1A8AYea07rzyEELcKIeYKIeZOmFDQ1jgMwzBMRKIKl0cBqOitBQAe0Y5fKCPAZsFy3C+RprNeIjpR+kwudqVReZ0P4Gnpl3kSwNlE1CYd+WcDeFKee0Ze6y6fYRiGqQICN64konsBnAZgPBF1wIrguh7AA0R0CYCNAC4AACHECiJ6AMBKAGkAlwshlE3nMliRZ40AnpB/AHA7gF8TUTssjeVCmVc3EV0LQDkbrhFCqMCCbwC4j4j+G8AymQfDMAxTJZClCOwfzJ07V9Tirsgzr3wMALD++nMrXBOGYfZHiOg1IcTcQtLwCn2GYRim5LBwYRiGYUoOCxeGYRim5LBwqSH2J/8YwzC1DQuXGoJlC8MwtQILlxoiy9KFYZgagYVLDcGihWGYWoGFSw3BmgvDMLUCC5cagmULwzC1AguXGoKFC8MwtQILlxpCsNeFYZgagYVLDZFl2cIwTI3AwqWG4EWUDMPUCixcaggWLQzD1AosXGoIka10DfK59J6lOPF7iypdDYZhqozAl4Ux1UM1OvT/unJ7pavAMEwVwppLDcEOfYZhagUWLjUEO/QZhqkVWLjUEKy5MAxTK7BwqSFYc2EYplZg4cIwDMOUHBYuNQTrLQzD1AosXBiGYZiSw8KlhmCXC8MwtQILlxqiGhdRMgzDmGDhwjAMw5QcFi41BJvFGIapFVi4MAzDMCWHhUsNwYoLwzC1AguXEcCPnlyNT97ycqWrwTAMY1OUcCGifyeiFUT0NhHdS0QNRDSWiBYS0Vr52aZdfxURtRPRaiI6Rzt+PBEtl+duIiKSx+uJ6H55fDERzdTSLJBlrCWiBcX8jlrBa/uXnz/Tjtc29AxzbRiGYbyJLFyIaCqALwOYK4Q4EkAcwIUArgSwSAgxG8Ai+T+IaI48fwSA+QBuJqK4zO4WAJcCmC3/5svjlwDoEUIcAuBGAN+XeY0FcDWAEwDMA3C1LsRGKuzQZximVijWLJYA0EhECQBNALYAOA/A3fL83QA+Jr+fB+A+IcSgEGIdgHYA84hoCoBRQohXhDU1v8eVRuX1IIAzpFZzDoCFQohuIUQPgIXICSSGYRimwkQWLkKIzQB+BGAjgK0Adgsh/gpgkhBiq7xmK4CJMslUAJu0LDrksanyu/u4I40QIg1gN4BxPnkxDMMwVUAxZrE2WJrFLAAHAGgmos/4JTEcEz7Ho6Zx1/NSIlpKREu7urp8qscwDMOUimLMYmcCWCeE6BJCpAA8DOBkANulqQvys1Ne3wFgupZ+GiwzWof87j7uSCNNb6MBdPvklYcQ4lYhxFwhxNwJEyZE/KnVAftcGIapFYoRLhsBnEhETdIPcgaAVQAeBaCitxYAeER+fxTAhTICbBYsx/0SaTrrJaITZT4Xu9KovM4H8LT0yzwJ4GwiapMa1Nny2IiG9xZjGKZWSERNKIRYTEQPAngdQBrAMgC3AmgB8AARXQJLAF0gr19BRA8AWCmvv1wIkZHZXQbgLgCNAJ6QfwBwO4BfE1E7LI3lQplXNxFdC+BVed01QojuqL+FYRiGKS2RhQsACCGuhhUSrDMIS4sxXX8dgOsMx5cCONJwfABSOBnO3QHgjgKrXNOwWYxhmFqBV+gzDMMwJYeFSw3BigvDMLUCCxeGYRim5LBwqSG89hZjGIapNli41BAjUbT8+K+rcc8r6ytdDYZhSkxR0WIMUyw/e7odAHDxSTMrWxGGYUoKay41BFvFGIapFVi4MAzDMCWHhUtNwaoLwzC1AQuXGoLNYgzD1AosXBiGYZiSw8KlhmDFhWGYWoGFC8MwDFNyWLjUEOxzYRimVmDhwjAMw5QcFi41BL+JkmGYWoGFSw3BZjGGYWoFFi4MwzBMyWHhUkOw5sIwTK3AwmUEwe97YRimWmDhUkMEOfRZtjAMUy2wcKkhgoQHyxaGYaoFFi4jiCyrLgzDVAksXEYQLFsYhqkWWLiMICq5yJKDCRiG0WHhUkME+lwqOL6Xq+zOPQNIZbLlyZxhmLLBwqUAXm7fgcXv7ax0NfYbBlIZzPveIlz18PJKV4VhmAJh4VIA/3zbYvzTrX+rWPnVHIpcjqIHUhkAwF9XbCtD7gzDlBMWLjVEcCjyyPK5qCyJqOR5MwxTXli4jCCyI0xzUXmybGGY2oOFSw0RNIBXMmKrHEWr38OyhWFqj6KECxGNIaIHiegdIlpFRCcR0VgiWkhEa+Vnm3b9VUTUTkSriegc7fjxRLRcnruJpB2EiOqJ6H55fDERzdTSLJBlrCWiBcX8jpFCJYOBy2GSy2kuLF4YptYoVnP5KYC/CCEOA3AMgFUArgSwSAgxG8Ai+T+IaA6ACwEcAWA+gJuJKC7zuQXApQBmy7/58vglAHqEEIcAuBHA92VeYwFcDeAEAPMAXK0LsZFKkGYy0kKRbZ9L6bNmGKbMRBYuRDQKwAcB3A4AQoghIcQuAOcBuFtedjeAj8nv5wG4TwgxKIRYB6AdwDwimgJglBDiFWGNnve40qi8HgRwhtRqzgGwUAjRLYToAbAQOYE0Ygkcv0foOkZWXBim9ihGczkIQBeAO4loGRHdRkTNACYJIbYCgPycKK+fCmCTlr5DHpsqv7uPO9IIIdIAdgMY55PXfs1Iew3ySPs9DLM/UYxwSQA4DsAtQohjAfRBmsA8MM0/hc/xqGmchRJdSkRLiWhpV1eXT/WqnyDTU0WjxcoZLsYwTM1RjHDpANAhhFgs/38QlrDZLk1dkJ+d2vXTtfTTAGyRx6cZjjvSEFECwGgA3T555SGEuFUIMVcIMXfChAkRfmbtUNFosTJIgpywZLsYw9QakYWLEGIbgE1EdKg8dAaAlQAeBaCitxYAeER+fxTAhTICbBYsx/0SaTrrJaITpT/lYlcaldf5AJ6WfpknAZxNRG3SkX+2PDbCCXDoD1MtjGWXoXD1CgH2uTBM7ZEoMv0VAH5LRHUA3gPweVgC6wEiugTARgAXAIAQYgURPQBLAKUBXC6EyMh8LgNwF4BGAE/IP8AKFvg1EbXD0lgulHl1E9G1AF6V110jhOgu8rfUPCNt+5csr3NhmJqlKOEihHgDwFzDqTM8rr8OwHWG40sBHGk4PgApnAzn7gBwRyH1rXX23+1fSp41wzBlhlfo1xDVHIpcXs1l/5Qut73wHmZe+Ri/coCpSVi4jCBGns/F+txfNZefPrUWANA/lAm4kmGqDxYuNURwKPLIit0dyT6X9s5erNne63/RSPzhzH5DsQ59poqoqGwp4/YvI5Ezb3geALD++nODLx7B7cCMXFhzqSEC9xYbpnqYyy6HQ1+FIvMUfrjZ1N2PtzfvrnQ1mBqGhUsNsb9tuV/uHQd270vhK/ctw+7+VHkLqkFO/cEz+OjPXqx0NZgahoXLCGLErnMpk+Jy98vr8cgbW3D7i++Vp4AiUT+b91hjahEWLjVENfsgyqE1lTtAoT5hdf+BdHWG+ipzYCX3jKtFrvnTSsy88rFKV2O/h4XLCKKS0WJl2beyRJlu6u5H1jBCK+EymKruUN+RFgVYbu54aR2AypqJGRYuNUWQeWSkvSysFLR37sWpP3gGtzz3bt65uoT1rrrBqtVcrE8WLtHYV+WThpEOC5cIVOuMqDpr5U1QO5bC57Kxuw8A8Or6/K3n6qTmMlSlwkVRpd2taqmLW/d172C6wjXZv2HhEoFMpYzgQXuL1diW+4F7pZXg56QyViaJWH5XT8QsqZWucqcGC5fCULe6Ys8pA4CFSySqVLZUVnOJUPhw/J60FC7JeL76E5fCJeogJITAolXbyybUVY3ZLFYYai86li2VhYVLBKr1Ya+1UOTARaEl+EHprGXySsT9NJdoZrEHlm7CJXcvxf2vbgq+uAii9reX2ndgU3d/iWtTO5iCOJjhg7d/iUCl1O3gMaa2FlEOh+aizGLJmJ/mEi3vrbsHAABbdu2LlkEAKhQ5qoy96DbrJbGhtpgZgVTpHHC/gTWXCGQ8eu0La7vwpzeNb1seFio5Uaten4vSXPKFS4yUcIkmXeIqfZlHsWrVlMvFhp19OPLqJ7F+R19R+fDi08rCwiUCXur2Z29fgivuXVa2ckdaKHLww1/8DxqQ4aiNybhn7lEd+rFYeW37OZ9LefKvVh59Ywv2Dqbx+9eimRtzIdwlrBRTMCxcIlCtUSgVfRNllDTDoLmotQ6NdfkWYKURRL2fSvMpt22/WkPfy0V9Ui1uLS5EfH/T+KoNFi4RKLcZxIvhGIyjUp7tX6zPYt5EOSBftNWQzO/qxVY5Pkwhr9U2l9nU3Y/egfJt9llf5OJWe082Fi4VhYVLBCKa6Ism6FGptZlasLAs/veksioU2dTVRah6eBErgc/F7zcq8041DZJCCJz6g2fw2duXlK0MNRHYU6QAqzahvL/BwiUCldJcgqg1n0uQMCz3zylecykumgsINwBW0yDZK1e9v7FpV9nKmNjaAABFh1HX2mRrpMHCJQKVip+vphlsKQh+P015y1e3MaqvKhdtFr2i/mlVwED13Pdh2SpHaWxFZlMpCwNjwcIlAtX0sOtUdFfkKNFigZqLcHxGwa8IUaxZLFa8WSzMPaum/jYsdSlRERyKXFlYuESgYosog87X2jqXoi8IU4aViWnzy2LbqxTvMAszWFeRbBmWdbqqTaL+7mIXnzKlgYVLBCo2kwwotvY0l4Dz0apixBRxVg0agd88JefQH566hGE45lWl+r3VcH/3Z1i4RCDqdiHlppKPUqSyQwrLYkKRw1Ss2HYrzqFfW2ax4TA12ZpLxPT76+LTaoOFSwQqZxar5hX6Ucxiw/d7fM1ikc0vkauTXwdT/vKzmoTLsGguJcqnmtptf4SFSwSqtdPWWjTZcJjF/PKododvNW5jMhyRknY/LrI/19rzMNJg4RKBat0VudbMYsEBCmVe+Z5V9ahoJETwJfvZIFmqn7ufNVvVwcIlAkGhp5UaDCr5/oryhCIXjyrDVJRtFSu6oDILwSoaJIdDay+6hCrU+PZHihYuRBQnomVE9Gf5/1giWkhEa+Vnm3btVUTUTkSriegc7fjxRLRcnruJZCwhEdUT0f3y+GIimqmlWSDLWEtEC4r9HYUQNIiXq1NXs+YSpfRhCUX2WShZDRpBGK0pkj+rTL9tOJqsWIe+Ox+mMpRCc/kKgFXa/1cCWCSEmA1gkfwfRDQHwIUAjgAwH8DNRKT2Qb8FwKUAZsu/+fL4JQB6hBCHALgRwPdlXmMBXA3gBADzAFytC7FyE2QWK1enrup1LmUJRS7+B/lpJ9U+9hTzut5y/bZh0VxKtP6IhUtlKUq4ENE0AOcCuE07fB6Au+X3uwF8TDt+nxBiUAixDkA7gHlENAXAKCHEK8Kabt3jSqPyehDAGVKrOQfAQiFEtxCiB8BC5ARS2Ql62CvVqSs5E4/mcwkQ0mUO+c7tABCNokKkVR1CrXMpg1YYkeHoYcUuolSwbKksxWouPwHwdQD6MDBJCLEVAOTnRHl8KgD97T8d8thU+d193JFGCJEGsBvAOJ+8hoXADRfLZhbzz/ini9aWp+AQRPrNIc18pQn5NZnFvM8VlndRyQOJprmUplLufKrBlBiEWqHPmktliSxciOijADqFEK+FTWI4JnyOR03jLJToUiJaSkRLu7q6QlU0iEqZxYJYvK67IuUC0UxYQYNmKQYylYWprGoYevzqUIx5p1R+P3fRw+Ekz/lciiusEg79/qE0bli4xn699v5MMZrLBwD8IxGtB3AfgNOJ6DcAtktTF+Rnp7y+A8B0Lf00AFvk8WmG4440RJQAMBpAt09eeQghbhVCzBVCzJ0wYUK0X+oiKFqsbA798mRbMQIXUZawDNMtK5XjuNxEES6lCq925zIs+1aWTDAO/5396aK1uGnRWvx+aUfwxSOcyMJFCHGVEGKaEGImLEf900KIzwB4FICK3loA4BH5/VEAF8oIsFmwHPdLpOmsl4hOlP6Ui11pVF7nyzIEgCcBnE1EbdKRf7Y8NiwER4vVbqROVMri0C97tFhxeZfLXJd3TaR8IyQy4O7Lw6GV269CqEGfyz755tOhdGb4C68yyrHO5XoAZxHRWgBnyf8hhFgB4AEAKwH8BcDlQgh1By6DFRTQDuBdAE/I47cDGEdE7QD+L2TkmRCiG8C1AF6Vf9fIY8NCkFlM1JhG/PjyrdjVP1RUHpGES8grSilknMeqWFprRAtFDr5my659gRMldz7Do7mU5r6zz6WyJEqRiRDiWQDPyu87AZzhcd11AK4zHF8K4EjD8QEAF3jkdQeAO6LWuRiCOm35OnXp8922ewD/57ev4+SDx+F3/3pi5Hwibbk/jIERRod+0XkWXxdfn4tyTEeYrATdj3e79uKMHz+Hb8w/DJeddrDndZXQXIotoRq2zaFSqLU1Dq/Qj0CQr66WZkxpOXKt39FXVD7VuuW+n1+l2B0NoobMFnp9JJ9LQBL1CuFX3ttZcN7lplQaZSWewxp69MsOC5cIDAbYUyu1Qj8KdXGrCwxlqu+psLfcL2IS6CcAir1PUZPr6cLc0yj1DBsuH9S0FdFcivWF2flUX5/en2DhEoH+IX/hUkudWqnvxYZOVqtD33YOG0RBsQNl1PtcaLpyLKJU7RELkC6VCUWWZZcoH6YysHCJQP9QOu+YbmKppVBkNXClixUukfYWG4ZQZPn7jOtcQs7evfOOlk6vS6i9xSKUEVZwB/kG8kORh8PnUqIw6goIF7/Xau9vsHApgLic5g2k8gdife1LLYUiqyxTFTCLBQ+AxdfJ3lbfaBYrkc+lwMEw7PU5x3T5giUKN4sVXJWCyYUil+b+MJWBhUsBxOXTbgpFzmTLL1zKQW4Fe7EmoghpiioxHH4CoFjzS277mGjpggovJuopqE5h/Vn5+QzDXSuyL/L2L9UBC5cCUAOUSbjoHblse4uV4cEu1Sr1aKabcLPrYhB5X/RztTEzLo/PxSLQLFZBzaVYKilb2CrGwqUgVGdNjyTNRX1WwLkd1ulcDH7Cs1K3SS/Xrwq5LfcLr2iposXyHPrD+JrjqPenklvu19CjX3ZYuBSA6jemTqsvdKulUGRRxZqLatNiZoG22c+kbRZ5oyIvoiywtSItogwsIpxZzN3Xh2PsLFUZHC1WWVi4RCBtcH4Pi0O/HHlG9Bt45VPKNKX4vb6LKIuMFot6nx2aS4gsIgnuoHfl2L+9sGixYd1brEbMlowZFi4FkAtrze+0aW16GdXElM0KdO4ZiFa5iJTu+SuDWSxk5YQQ+Nrv38Sr6/O3l/PbBLFYf1O50xUXLeZ/PqxDP6/sYfHnl8rpUppsIsGxyCxcCkH11bTBTlEKs9jNz7Zj3vcW2Vtz5JXv8dAl49E7ciXXFJRKcxlMZ/Hgax34zG2L8875RYsVa9uPKpyce4sFpy7HxpW5dS5BGTn/HQ5TU6m06Yr4XIa9xOqFhUsBqL5qDEUugVns+TU7AACbd+0rKF0iFv02VtIuHTiwCseHJ2p3gbhhubmfACl2PUV0n0s4co7pKGUEOPRVGYUuogxR+5fbd+DYa/5acD8upAw/KrlxJVvicrBwiYAxFFmPFou42F0NjsMRkaMo2etwI5UdlGe4XJUPzCxc1Kfhnvms3g9DKYRSmCzK8SZKVfdYgHCJsojywdc70NOfwlKDmTIMper+fu32z//7N9ywcE1pCmKMsHAJiT6QRA1Ffn1jj/0yIRMJad4y5V8uSlVSWcxiIfNUmkvCIFx8Q5Fd1xRKZLkcMl1uMWCEIkJWruBQ5BD5qslR0HuPgsqM3jdJ5uOdw8vv7sRNi9YWnPO/3P0q/vyW8aW3hhrs37BwCYneT4PMYqY+vXtfCp+4+WVcce/rnmWombfXQ+n1rBRjRiiZ5hJpnUs4000QQ7ZZLL87h3LoR/a5eOfth/67wyQth8+lnA59dR8iC5cSTXnKMUd7alUnvvS7ZYHXsT+fhUto9H4aaBYzroOxjj2/dodnGWrm7aW5eD10xciHsGmffmc7+gbzN+y08ylD2fYAGJCPMouZNBe/CD97DUxUzSXiIFiwMCqDVqjarByaSyJgkgRY7w96dnWnb5m1ubcYO10ULFxConf0KA59dX4o7e2QUZpLoTsUF9Odw8zu1u/owxfuWoqvP/iWdx3K8EwVahYz+Vz89g9TAr9YzaVQ9GR+A2gxK82D17mE87nkKS4hqhILmCQBwGk/ehafu/NVjzJLpU2XJJuaK7taYOESkiDNxelzyU8fxkmvFrR5XenZYYvRXEIk7pOvGHi3a29R+eSlCfK5uD69UGaxhCEkO8zLwvwG7+8+ugIPvtbhUUGVd2G/3RGKHCJpOTautAf+oI0rXa1fiObyyBubA681UeyGosWsD/KjkPvMsgVIVLoCtUKQz0WPEDN1wkyVTmXCVCtoFbeVUYSyA0ORw2kWb2/eDcA/WsxUwVy0mHcBd728HgBw/vHTDOmd+YQl9NXy50SZyQfVSU12gu6tu6uHEXRNdXEAwKvre4IvNlCyNZQlfuQKya+WXhhYLlhzCYk+EBqjxRxmsfz0pi1j3JA9mHjUwet4EfOkMAOj8pOXfiYYcB7hyv3GQ8sB+EeLmcLDi91XTbV7oZpF2GYszizmj+rDJquYU7Ny5xRcl1GNSQDASQeNC7zWhP17I96YoHbz8wUNpDL43+ffM5qmw0wQ/dbC7W+wcAmJ3q+MPpUgh36IjmkLFy/HfYi6FUohmovftVGqEJQm59gNl58pWiw3TuVnIlzXFEpU803BG1eWwSym+qvpNcd6X3ZnE6YuRW8I6lF2oXhVw++V3jcuXIPrHl+Fx5ZvNeQXvkYsW1i4RMKkhWSFv3Ap50ym3P1YDYZ+5UQZoIO3hQ82W+n4rnMx+lwKyz+/fs58wifMzyNMOW7e2bYHr280m56CzDIZH7OYM6zemU+Y+qr0Ube2KfS+e+GV3k+4bPTYegkobHE0m8XY5xIJk3rs0FwMnTCU5hKgIXh12GI6cph6KWHqV045HPqF+jTM0WLegjGqz0SR21qmTD4XiVf95v/kBQDA+uvPLbgM1YdNZjGn/zBcXZzXOD9965EVeYEYxYaIB+Fnot4rw+2jWh/KXfdagjWXkAQ59PVjZuETopCIC6+K6cahZqJZ7wE6bD5vbNqF465diF39Q3oq/7rJz7BKn1lz8a6fPUOOuF1PVLOafr2fUI75vFa7kDJMZNQ6F0Of0zdmdRcdpiaqXcPU2/Ss2JpyxI5tR4t5lO+nuahzQa/VCKLA1QRFk8pk8ZnbFuO1DdGCKMoBC5eQBDr0HZpLcWYx/UrnDrqlJ0ye6vfmr3kIX7efP92O7r4hLF6X228q0KFfoGbgv3GlYSaahee5MKj7XOgsNez1SrgUuu4pTBm5gdIgkHXNxXVnw7SV6uuhhIvxleGqrMDkvnj6XHzq5afNigJuw3BrLht29uPF9h34z9+/Oazl+sHCJSQOh35AtJj5gQnf2fT8i7HJhyqrgMHCz/4eNOgYo5KCqwegAM3FsM7FL/CoVO9z8avfPa+sx8adTju+c/Lgl791cihEpGFe2iDNxa60f192a3V6f/G65yrrMMLFNFErlWnJK72fsFbPnqlehdRnuH0uqrxq2naGhUtI9K5i7HiBZrHgzqb6hWfkWRn6a5hnQJlJ3JcKj+9hywvWXKzP8D4X095iPppLkYOYX96AFdb6X4+swAW/etlxPPxL0KzPKJpLkA9M9TGTSdDx4rs8zSX33atLF2QWMwjOYh36uSjDws1i6tkNmkAGMdzRYqq4oB0XhhMWLiERjtlcBLNYGIe+srF7mJv8XngVnUI0F5+yA7LJdfngmW/uyvCDFBDgczHlbw9iobI3pHd+ulH13r5n0JjOq14KNbj6DYaAub+F1VzM++B556MXFbSOJLLmYiirEIICClI+mmCxmkuhfbZUhN2IdDhh4RISp+ZieBOlbhYzPrDhNZdCtgcpl11ax/a5uGexjnz8M4piFgsavN34+VxMv1O4rimUoBl2sa9OUKmDzGIpQ38M+kmqbkYt26f/OSZ5Y/wJAAAgAElEQVRZXsJFeOedd62PFSD6xCngvvgJF+FXrxAlB2hN5UIVx5pLDRJkDtAnl0HRZEFkPByqxogn9/8enXrr7n34y9v5C8NCRYtlvE0oirA/ryCzmJ13CTQXn9DSIPNOcP3M573MWWF9VWHNYqbBMqxZzFS8bqry21vMqz8U8j4XkwBKZ/3vSxBBi1uHfNpT+AimUodhl5JqDH2OLFyIaDoRPUNEq4hoBRF9RR4fS0QLiWit/GzT0lxFRO1EtJqIztGOH09Ey+W5m0jah4ionojul8cXE9FMLc0CWcZaIloQ9XeERrt3Js0l7K7IYQh6N0wUzr/lFXzxN68bnPLRTBdW2tz3Ynfu9Rv8fZ3e2slk3MfnYkgb5HMJGhyDAgI838sT0kOlfluQWcy8qNc/bz+zmN9WRmHMYulChIuh7ur5Knb9URSHvi3QI04Qi12YGxU1JI0UzSUN4D+EEIcDOBHA5UQ0B8CVABYJIWYDWCT/hzx3IYAjAMwHcDMRxWVetwC4FMBs+TdfHr8EQI8Q4hAANwL4vsxrLICrAZwAYB6Aq3UhVg70AcG4SFJ36BvPB5dhis8Pss+HXUGt3mfufkDCLnQzllWA/8S4QWKANhjGoZ8NaJ8wmounzyRIcwkwgYQRyn4lqHN+PgLAyyzmf29sx7VRC/dOG+aNq+p4OJ9Lft3TtqZsTr951z7MvPIxvLC2y6N869Pr9r3VsTuwXlH8WFbZ8rd7XLxuRx/uXbIxOKMCUe1oiGmpGJGrIoTYKoR4XX7vBbAKwFQA5wG4W152N4CPye/nAbhPCDEohFgHoB3APCKaAmCUEOIVYfXke1xpVF4PAjhDajXnAFgohOgWQvQAWIicQCoLel8zai4BD10oh74hfaFmsSDc9Qgzi85t5+EqO0A4mNAvCzMLdpfjJmjbHb+FkkEz3KAJQVTNJ+w9C+vQD9JcjALEZwB3tqnznDOwxVyfYte5pOwdIcxplsktb7wG6dw9N2dw3eOrPOvjq7kUYBbzuvS8n7+Iqx5eXnKfjN92PpWiJHJOmquOBbAYwCQhxFbAEkAAJsrLpgLYpCXrkMemyu/u4440Qog0gN0AxvnkZarbpUS0lIiWdnWZZzphcL4sLP+8c22A4YEtyOfipbkEz6aCSnEPCKF8LioUOeQgb8K047MjCMI4U/SfBbrzMO9TBc88cosozXkHDybeggvw01z8Jwzuc0HCxXQ+vOaSf84prArXXPyCBbyudR7zN4sl5PR8KO2vGUbxe+R20fYXup7ps97pAWDPgLW9TJA2Wigpnx0XKkXRwoWIWgA8BOCrQog9fpcajgmf41HTOA8KcasQYq4QYu6ECRN8queP6itEXuGb2kBpepjDRIvJnuE1Gzeq6gXqLnmaS4jktpnCJ22UBznItxTGLOaog8+ebn4LWyP7XJRw8rgHng5931y162zh4p8icMcIk+biF4oc0ufiJTwKcuibhIvd38xpknH1pkv/9vW6r3UG35y7PkFr2bwIChJRBE0YCkW1RRXJluKECxElYQmW3wohHpaHt0tTF+SnelF2B4DpWvJpALbI49MMxx1piCgBYDSAbp+8yoaa/SVjscB3PURe56KudUSLaXmE6Nxhd8PN5R9+AHBfWZDPxfA6gWzALDjIxOBO5zdQ+q+nCNYwjOfhP5CE8bn4iZqwDv2MMTQ+v57ONN5199KcreuDNRclC6ObxdSiXXN6FbjhFVIctLj1rCMmAQDGNtd51seo6YaYFYR16BcjXG5/cR3ufGmd41ju/TzVI16KiRYjALcDWCWEuEE79SiABfL7AgCPaMcvlBFgs2A57pdI01kvEZ0o87zYlUbldT6Ap6Vf5kkAZxNRm3Tkny2PlQ3VVRJxMnYyp0M/2qzHvtZjRm96lgo3izmvKGidS8hB3oRpx+egzT7DCK+gGbptFvNxenuaxQKjxcLXzVWyb77uq/xCZwGzZhNkesut0DdoDj5C36tvOvPOOsrww2wW8xfage89UvfFo8w+n52P0z7tEk5YwjNvIFf3oHvqx7V/Xon/96eVjmNK0Jrez1Mpitly/wMAPgtgORG9IY99E8D1AB4goksAbARwAQAIIVYQ0QMAVsKKNLtcCJGR6S4DcBeARgBPyD/AEl6/JqJ2WBrLhTKvbiK6FsCr8rprhBC5HRHLgOosiRgZO0baMVDmpy9o6wiPEKhiX8JkqkchGxG6H1enoAhXvpfJxbQpoNspbdg6zJmHn+Zi2uU2QGiGjRYrRnMJI7CD7nvQDr6+wiXALOY+HbSeSz8eVXMZSGVk2V6aiX+eQdqDLVx8BEjQCv10JouEwbwWFCQSI0JGiJL7XJRArybNJbJwEUK8CG8T3xkeaa4DcJ3h+FIARxqOD0AKJ8O5OwDcEba+xaL6WjIew0AqIFos4qxHtabXmhlzNJT//27cdQvTxT13RdbzDSpY/TaPWbExvcvh77cC3ysPVZxxYastHDwGsQCBmdsa3muQLY3PJUjImUKRg8xiftqB802Uzgs2dvdpZRQvXEx+EyVcvJIHBZgECX2/aDQ/jU7/vZt69mHW+GbPazy1Lvk5lC6tzyVVhZpLFUVFVzdqAEnEKdr2LxE1Fz1VkOkoDH6ai3qo89J4RO8ERSTpqD7v0PBC+lzc13pdYzSLwWcm6jN7B0qguXjMTh2ai0/+Kt8gIWcMRQ4wF/rN7v125b53ySbtOnN9/PwWXtfqqMlblO1bgDBC3/u3q35i1lxy3/uH0ua87XvmrbkA5XToV490YeESEtUPk/EYsiK/4wZv/xK+DC9TT5iFXWG3/TCl/8lTa41pvGa5Ts3Ft9jcdR4CJUhwekYmBWkust2NUUm20Ayuq4mg9814msXC6y6yfv7XmwJMgkK00yEGWCutd7lhHPpBkw5TGw2klVnMI4w6pC8sKETcrLV5Cza93H1D5olY4I7OyudSYs0lPRJDkfcXVGdRkSr5K939hUAYf4lpxufQXAoQUF74rXPp6RuCiYxtRvAWTGE1My9nsSl5OM3FPw//0NLcdz9/jRe2Q9/jfLE+l1wwgn89TC+/CtLocusx8s8FbWUUdE43Bwb6RwwXDGpmZ2M0WUih723uDBasfuuuAGCfh5YfZBZTZqvSay5C5l890oWFS0hUv1KbI7pn0oGvOQ4x+JocuMGze4u2pmRg/kC+jVvPv7Eu7r5cphGOsvIKR/AgQoZX9urPV5A/yUs4Bwk49RCb/B9hnd5eqLNhBllHurBansifbJgwhsZ7BIXYaXxm6F5mWa/6+ZXttRYld977nnmdD/K52JqLx3m/3+43GdF/V7+H5uJncgN0s1hY7TUcuVDkkmZbFCxcQmJHi3loLqVw6BtnqgEDrJpNhZ2x5PlNtO/1SXN3sB84nwci7HYWXu0UNFOMahZT5ofghYaGtEHvUbEnA+bznj4XPcTaZ/gOimZTBIYiG8pQdQ4yi4Xd182Ut/u7CdN919vdb3sYc9nBbeu3xscvFFk/5GUWy5nkgoRLqc1iWUf+1QALl5CovqJWB5vMYkTWO0WiOvRNKrUwnNdRR8L2KXef1rOs91i5nHNyOhN7LYg0EfSWTbNZLDj/IPPPoPzBhe6hBQAX3PKKsUwbe4YcPIN3JAutufjn41dOULv4+ZucDn3nBQ3aBMR7+5es8bv5WvOEgAyRkwq/9gjjL/LzN4UNRX5+jXkrqaAX0JUrWox9LjXKpu5+PPOOtdGAbRYzaC5xIsSJzHuPhdBcTBE8ev83msXkIWV2Chq48h36uf/rk2azmDJDpDJOB60IGMBMONcD+c+Q9UNe/gu/gVAIYc8Qo2guvYPmiCC/NDpeddZnrX5ZhA3pDXoFhHlvMevTOMDqGqOW9dWPvO0Iw/dc5+LQtj2rLfPIvyCVyaJR9kXjlvw+K/hD7dqsaYTuiMew638eXrbZmHeQWQxl9rlUE8UsotxvOPOG5zAoZxqeZjEhEIsRYh57jxWyutdzLYgpDyVcAnPPz09LDgBo8BAuesdNZ4WtvQVpVTr26wQ8fk/Q7DuMQ999STorfJ3iftuchEGlCTOD9yrXD7/NJXWCzGKm4jI+moteP32GffcrGwBY2rs10TDXJ+voL4Xt6JzNWgsMRzfG0T+U8V3Bb8wvRDCBW7uxtSS93j6LbgHgg+8z71OoLvFqm7L5XNgsVpsMag+Yl0M/69Bc/Gc9QYvuHNc6znvXMWhLjFwernoL/YEKHgz1h66Q1zHb61wy5kHPLDdDzEIdeTivCXYMB+fvR1BkkJfPJXSob9As2C4nIBTZtIjSZ8t9vV38ZtheQtJLOzXh/m3K36ImOoVO1MLcU69rgnxN6lBjMo6BgFBkrzpSkZqLl6bODv0RgNJc3BOyTNbyt8RiZuHijIwy522yBQetQFcDRyysWSzPdJRfvle9AOdq8EI0F3VWN4NkPB4UU91CaS6ua/RZt3mFvlmIh0WlKXRvMYeA9nPo2wOVfz227RnwL8NQhN8iSi/NRaFm3UFmJ+u7R6VVPd33TP5YZRYzR5P5aS7BkzinEMkdd0Yyek8Qm+sTnqHIQdqm7XOJKFxSWfOESWlsYbXi4YCFS4EkPTSXpRu6sXcwjWQ8FryC38tWbbCxBw2wts8lXPV9t3/xmmnrdm+vQSuoT6t0Xn4Wsz8peBbqF1GmBsa6uHkn66BdmYMIct46BrECTEUq7yCzW33Cenw7ewfzzgWZ/OwgDeOLxjTh4jMIev9uf4e+8HkWUvKeNdWF8LkYys+EEGxe911vCz9Nt7k+7rmbRS4Kz1y28o0OeqQPIu3xLAYJ/ErAwqVA1P5W7kFavTo1EaNAe623jT5/puocwL1n37FYvh/EhJ9D39NHIPROrGsu4Qdnk2M9aCBwzirN+erXuNs9Z2KJBWsuQfuIGR28stwQvhWv3+0p0ANm0VadrM+9A/mBB6mA/qb672A6f5DT66prLk2udVChTJUB99X7nknhYijDT+A5NBev9+x4msWyxuPuejfVeWsuKp2X1qQWUX7nkRXG80E4BIpWXyWsSu3LKQYWLgWSiOe/0EsnGY8Zb7DXQGO6xmuNgl8Ei2lTR2MZEcxiYWzwgTv3KpOfh0nCz+RnpfcoVwlXMphY7FlwwjwTzfi3rbOc/GNB639MZgv38R8+udqYNswqeXXNXkNUW8YxCfCu26DB7KXfI30gb65PeF7nKDsrbNt/0CvB3YJzyK25GNKra4wTBg+fnrv8pP0c54477pePRtdc56O5KFOmp7aZE9B9AdGIJhxrgLQ6Dvq0SaVg4VIg6hWrXjfRiqSJZhYzvR42yCymnj0lXIIWM+Zt/6IP4B6Cw/OhcwgH32KNmksh2794mzisz2Q8XztRQr6xLh6ouQQLF+8Jg9dsUW/PlIc5441Nu8zlORYiGgSvyIXNBmkffvtzmQZJx2RCEz4tbuHiM3irtz2aF2l6B1qofqJ2izBNCtRAatoGRh98vX0uWfs51uunP7d+E7mm+oRxZ3TrGuenG93hHmWti952uuZiLxYucYhzMbBwKZAgzSXh4XPRO5L3jC9/9iEc5/PT2JoLhTSL5UW55b57ay5mG7p+dVizmNesNcjnsmufed8zVW6dod1Vmzck4x42dK0s39r7hzJ7aVV6mbqNXb8+yLwCmNvGy3RlOm+6NWqANg2Sjry1RpoyugEAcN77D8iro04mK1An/UFBDnl3HoPaPVN5uVF1Mg2kA452NveprMgthtbNoUGmSNvnUhfHvlTGdz86T8Hm8JMULghSafMkRbXbmx278eBrHQXnWw5YuBTIqAZrDy+9X+idPBEj40xWf0g9o7IMTrmg7U1Uhw9rFovi0Dc5DgHnoBW4+61y6HtoLkGLKDt69hnzVdckE7E85+9QxhpolIkl/y2cwrj+RjGqIeG41o2tuXjMQPXf2tOfMh73XohoHU/Gyai16QOTUbgELNRU25cMpPMHSS+HfiIewzHTRuOzJx6Yd5277irYwPT79Lrl+VzyzGKGZ8nHBKQLl0Gf9y4p4ef0J/rfF3Vpc30Cmaz5hV9B4eNpTaszmSSDcESLGYQLANy4cE3B+ZYDFi4F0tZkvXdbdZ49Aykc8q0n7PNJj8gkh+bi0fHUgJEtYDalsgobiuwWbBkfE4VC77jeDn3/cm2zmD5rDTDdZIVAqxzg9+xL5Z0HnIOw20wyJGd5XmGtmaxAUppHTO2WyujCx7tsr1169fK6tR2nw6ymVoLSesWDYfafNg8spjLc6bNZgX2pDOIxghD5Zj11i5NxcoVzZ5GMx4ybkDrT5wZQo3Bx9Gln3W1Tpm8octbxqaM0wYZkzNdcqHwf+rMapEnrmotelo7Kwtv0nbVNflE0F2dEm+bQ136r6XdXAhYuBTJrgvX2OdV5urQw0DMOm4hknDz3S1J4dbxdcnbrFZ3lFy0WVnNxd2hV13iMPO21+iZ9XppL2FXk+szLa5sRPf+W+gTiMUKvISLKSpdbF+FuV+UwbfSYBTsduy6NTggMpjO5bUh8Bknvxae54z39mnAJEdGj2qkhGQ+MmDJFT23fk+uX7tRKGKmdtAdcg5Fqi4Zk3NFfUhmBRJzsiCevW57JCiR9NBc9z0FX3dVzotrdZEL224xU9dUxjXW+b4xVe6TpE4OUj0YFOH0ugDmcOMzCWqWVRVnr4rUweCjtvE/VAAuXArjohBlo8lk5fNacSUjEY3kDuBACv9fsoF4P3E45u3WsiQiIaLKjpewn3v83uOtmP2yJmOeMum8onZtJekQhBU3G1SzLqcHp6U2/zdLIWuoT2DNg1lzUg1SfiOcN8lc+/JaxDopMVuQWxbqKT2ct27yfeSZnAjEPgnp76sLFayt+HfW7GhIx40uzgsxi9y7ZmKunK62acY+RWrjbqZ/WtAf3pCgRi+XC8f18Ln6ai9an3SvdlSmzsc4awP0maiYBMCDPjWlK5glNPT9bezBM+uoTZm1RjxYDPDQXmYeXmTiVydp9Stc+w+IU9rrmkvu+e18KvR7Py3DCwqUADp3caj9Ypmib+mTM3ndJ57UNPY7/TQ/czc+8mzvvEXvvN8DFQ66idA9E6gGt93B6A9ZscFRj/sMeZNYylePQxHxMN0DO7DaqMeFpFlP5mtay7NhrDeheAiIjNM3FdU49rKMbrdm9aSDx2rlAr5vKf/vuAWM699oROz9Zfr2H5qTasS4RC4w6cjet+i1Kc3H7JjKa5qLnnc4KaxeKMGYxP5+L1lbu96LkNBfv9LZD39DmSliNaUr6+lzUZMmpCcg295hoqUMqJNvUJ5QmZGoaSxvOYpTsU0qQFsIeTYPX28ZtGn1i+TYAVpj6zCsfw/2vbsRww8IlBGqTus+ccKCtIajBUFe9t+0eRCKW73PRnbmAeTa2bsfe3HkPB7o5Wsz6tEORDaqLPvC7VXGH5uKhpvcNpXOD7JA5GifILKbK9XKamibzanBurU96msVyA0I8z/fx+Q/MBADMPbAtr75WmcLTnLhttxVAoHxs/YY1CbpA8lrb1JiMY8roBqzZbr6/px1q3gBRDXrKMe7uMup8a30i0DHsFvz75PvfvTQX1S51iZjrfmWR0ISLn0Pf642tVt1zx9wD9JAWPg74hyKbNJec4Kwz+h6U8FICYshgCqtPxn33XGuWWpXJ7OYXbKDq3SqDgoYK1Fze2bYHC+5YYv+vt+NQOuMIc1ZWkO1ya6Drn3inoLJKAQuXEPzPJ47Cc/95GmIxsrd/UR1Dt7te+HfTjZpLv3yYrzj9EADAj//qXDiXymTxxze2AABOOmic46HQHyCVj447WszLMW1/d2su2dwD5aW59A9mMK2tCQCwobtfK9ts4jJh0lyC1pmks1kk4jG0NiS8hYvSXAxrWdIZgbamJOIea5MyQhjXOwDA/33gTQBAe5clFEwLFR3rNQyCOS0d4JNHN6BPu3eqnQ+a0OypdahBr97DDKv6X3N9wpjHmKYkxrfUA8i3lO4bcvpc3MIpnbU2Ya2Lxxzn0hkldPx39nVoLob7qgsU90u3bM1FDuAmE2JuNbq3Q99Lc1FplIBwrD/SzGJ+Dv2m+rix7kDOmW7S5JUQV1GIhfpc1moTFMDZ5wbTWXz82Kn2Pe3us3xuu6XG39Ofsr8PFyxcQjB1TCMOHGc58pUzTw30+oPS1lxn3FtMqf6d0sn6xNvbHOe/+fBy+3t90vlAK3PLuOa6PA0IyA06aqZoEhC67Tk/MkgzBRg6uxAC/akMZk9qAeDcasRvvYIbk88lyJ+UyggkYoRRjUlPn0ta07wyWef7ZgZSGTQk4/baJLf/QIjc2zfd7aaCK5SPzfRa23QIzSUeIzQm446BSLV5i4/WYQtND/OSGiSb6uLGQWrfUMY2uXmbxTw0FyEQi1nh3W4HcjIeQ13cyter7plsLhTZz+mu10UxZM/uvbUDJej98h7VaPa5DGntBpgd5PWGsHa9bmMaze2mzF6AebKlfqsyi3mFsHuxfkef43+3Q78+EcOTX/0gAGDvoFWWLlB27M3fg66csHApkBY5a1EdXK2w/s0lJwCQiyhdHVPd4DMOnwgAOGxyq+P8I1Jr+chRk1HvsqGr2dehk1vR3tmbN0tVg7IdWuljhwbyZ0tBmsuu/hQyWYGJrQ1IxsnxwAZtjqij6u3lkLznlQ2YeeVjDg0hnbFm/r6aixKOBt/EgHzgmgwOWFUftercfc9UPsqEcedL6/PK7htM25FTeW/pFALvdvUhHiM01cUdwmnvYAbJuHXcNLsGcsJMmW/cM2nVdi1yzYXTxGgNcvb6Hlfazbss7VOZxdwDfEZqLvWJmGMAVcJSCWSTxqRm7qpdTQOoEgBtTck8oa1+1/hmS+sy7ZvmJ1ysCUUMjck4UhmRJ5TdZrGUY7KTM7H6RegpE7G77vr7g0yTJSUo1Vq5QjWXH7vWr6jfv233ADp7B1GfiGPiqAbMGt9st5Huq1T1Hi5YuBSI6pQrt+4BAPzs6XYAwMRR1sPQUh/Pm2X39A2hPhHDWXMm4fApo3DAmEb73O0vrrM72b6hDOoTcXv2I4TAF3/zGgBg3qyxSGUEtuxyLib881tbAeRm4KYIlHnfW2R/dw8ImaxAjIC6uHnDTbXj7sTWejQk4p4roP1i9oUQ9oPlFUL7tHzT505tdpXOWqGvoxp8NBfXDF+vk9Jc1D3TBZc9yNjmEbPQbpEz6KdWbXec7xtMY8feIYxttgZod7uv2LIHS9Z1Y+vuAUwe3YDN2n3bsXcQ45rrrXvt0W4q0k2ZUNwba6q2s30H2n1VEwA1Q3ZrGP9+v2XyG99i1f2Py7Y4zu9LZdBYF0drfcLRZqlM1hIuCbUIMF8zUMJAmeQGDMLlT29Z5U1orc8zLSnz4fhWq26mt4H2yVm5SdPuH7LuuVrh766je5Gm7qfLTbTMG52qdhwjTU99LjP1Ls2yYNLqbLNYo7nPBXHWnEmO/9Xv/+YflsvyLT9LS30Ce+XzomsurQ3D+25IFi4Foh7mXz33HlZu2WMfP2SCZTaa1taEHXuHHOtffrt4I4YyWRCRNG/lwlKv/fNK+3tMzhaVTfmFtTvsczOlWU6fwa/e1otbn38PAFAfV3H7+TNoHXeH7h+y1nIkYuYHavX2XgDApFENaHBt2Kc/3CafhKKnP5Vz6Kd1gSQwobXeca1ehVQmi2TM0lz2DqaNTlY1eKj74thyJZ1FfTJuC5D+wfyFZvYMVvstW3fvw1YZ3fUl6Sdz8/UHrcFfObe7+53b03T05HxTbU11jtDQHXsHMb61Di31Cc+Q0Q07rfRqtum+r3dJTUoJP124qAF7omxbrzKmjLYmOQ+97twupH8wjaa6BFobEujRFn8OSKGj/Ckmk5Ua+G3hYjAnKk196pjGPK1pU3c/xrfUYWKrtdWMW3PJZoXd10wh4Ot39uGA0Y05Aeiq4yZ5X5QPMWUw09YZ9qkDrD5Tl4jZWpl748nOXqvPjGpIGDUu2yzWkC/0X2rfgeVyZ3Uv3OUpU+yLcpzYsssqv0WbFOyWAu9HFxzj2DRzOGDhUiBqoAKAL937OgCrM6oosvdPHwMAWNtpDcrLNvZg72DaVpfHNCUdMxwdInL4XPTuPVnu69Q7mEurCyk1yLiFR5fLzup26u3qT2FMUx2SCfOK5mdXd2JMUxJHTxuNhmTMMaDoA7lXqDAAnHXDcwCscGGHWSydxZjGpCNiyx3MoDQXIYC9rpli554BfOMha9amZum6rXwglUFDIoZmlynTKsdp29d/y+sbcptJnnTQOHz5jNkgcg5kKrx8xlhrkFqzrddRN72drFX2OVPbjr2DmNBSj3Etddi517xnmmK6zN89sPx1paVJTZCD+KAW1qq0hUmjrD6zZ59Z8B9xwCjj8X7przloQgu27B6whVPvQBqt9Qk0JuMY11yHd7v25qVV/VNNGtzCQ2/DyaMb80xLnXsGMbG1wTYnugWj0haU0HWbxrbtHsCMsU225uL2uyi/5fSxlmB1rhXJTTiMwiVlmVmbvYSL9KkePLHFONl6fk0XAM3nopV90W2L8Q8/fzEvjaK7bwgvv7vTcezaP6/Ev9y91J64qUhR3Yy8s28ILfUJnH/8NM+8ywULlwLRB0K1UEzNkgBgupwRqb2wPn7zy470bU05zUWf3Vp5w2EWUyGjj1z+AXu2pM+I9JdE2Q+by7S1qdtpRvvt4o3auX489HoHWuoTGNuUzJt9P7liGx5+fTMOmdCChmQ8zzGtr7XY4+ETeW1Djx0WOWNsk8MUlspkUZeIYYxmC9YH5VQmFy0GIM/v8svn3sv7/Xr+/UNpNNZpmotsz4FUBg+/vhkAbMGTcqVTJOQgJ4RzoGqT5rAjp45GPEbY0O10tupCXAUUpDJZDKQyeHvzHuzsG8L4lnrs3pfKM1Xq2uG0tsa8364L4PdNsvx3+gxd3aNJ0lTrNikePW00Tp09HmiehoYAABhuSURBVG3NdXjfpBbMP2Ky4/yufSmMakzaE5pd/Sk8+uYWDKazaK5PgIhw8MQWPPqG05wG5DQXJVzcTu9f/20DACtSrsmwdb2l1SkTcyJvkG7vtASaMi27fV2dvYOY0FpvP5Nu7eqJ5ZYZ2dxfcv4ik3DpHUhjVEMSdYkY6hKxPJOd0lwOGt9i1LR/8tRaADmNUt13r+37dZ5b05l3bPOufXhq1XZ7t4HvffwoANYYo7Yb6ujpt/vQcMPCJQL/cdb7QJQTKnonmzKmATECOrqdguMHnzwagOXE3NWfwp/e3JL3BkFlz1aDh4r4aGuqywkXraxO7fW26mFxayZKgCk7sY6KmV+9vRfjW+qxo9cpXP7t15a/R9ml12zfi7+syEW6qYHkgNENnmGOn7wlJ1yPm9HmMAUMSoe7/nCpEErAWjA2ujFpO9Xds1glGICc/0DV43eLN+LtzXswtqkub6b586fbceNTa2Qe+SGp+m+JxwgJOaFQfqEbFq7BKulz+8b8wzCtrdE2Y9l1l3k8+MWT7ElIKpO1Jx3T25owWWoWb3bkNKVVW/fgsO/8xf5fmVBU3R97aysO/bZ1/tTZ422NVdcQVHsq05JbU947mLbzbapL5PkOdvQOYmJrvT0ItnftxZfvXSbztI4tWdeNoUzWYf4FcvdoXIs5WODFdsuEs25HHxqTcfQPpR2m267eQftetjQk8gbwPy6zJgUnHjQWgPO+rdyyB7v3pTCxtd7+fe5+qWb/tlNd91XJuo5uTBp9JnsGUvZEp6U+kae5qC13DpJbRLnbVXHgOGmSk4LtOanRAMB7XXtx1cPL7fZWLJSa6ieOm5qX30Aqi6/PPxSz5URjypgGdPYOorN3ABu7+20T4HDDwiUCf3/YRAhhbW8NAH+vLYRLxmOYMroRHT377Bnkp+ZOw6f+bjqAXITOFfcuw/9Kf8lUOQsjsmbJqYxAT9+Q7ZRraUjYg4gejqxMXnWJGI6eZpnjLrptsf2wPvNOJ75y3xsAgFeuPAOfPfFAe6AEnGa3cS312JfKGNfSqAfZzR+WWbb6GeOaHYLOzl8bNL7z0TkY21yHnr4hZLMC63b04cX2HWiuT6BP04b0QXpX/xDGNCbtB/rdzpx2sH5Hnx1MURePYZyMLnpg6Sb0DqRsJ+fY5jpbCKlydO1ThePqA4U+GBMRjp1hte0jb2zBg6914KZFa+3zjXVxHDKhxQ7wACxflIrsmTtzrB0mnsoIezC+6IQZOHLqaADABb98xU7734/lfHB3fG5uXjDCA0s32ee/de7htllunQxT3bxrHz76sxft397WlMRGTat6bk0X3uvqs9ukqS6e51RXs39l4n23M2f+OungcY5r9QCT/qE0Lrl7KQDLXFeXiDmEy4adffYgedvFc9FYF0dW5EyU5/3iJWzZPWBv7d9a7/RdCCFw9yuW5nOUbLsNO63f1t03hI/c9IJVdms9xkoB1aNtqXSDFm2lJlu6xt3TP4QYWf6idFbkaZR7pEYHWKan3S5z49INPWhrSmKc1Gr1frRvKINEjPCvp87K+aOkVqUmcQBw+o+fw71LNuLRN7fYwuf5NV14XK64/9H5x+Cda+fDjWozAJg303pe71uyCR09++w+MtzUtHAhovlEtJqI2onoyuEq91BXKPHNFx3v+L+1IYGHl222VfiTDx5vn5s5PnejV8iAgNMPs0KU40T2bgB/XbnNHlCa6+O2ZnLtn1fiF8+0YyidRdeeQUwe1YDFV52Bo6eNtvNVg6g+UDXWxTGx1Xpo3pTh00rQ3POFefZsUQ1+Vhgw4cSDxuJrZx8KAA677b6hDJ5cYQ0UpxwyDnsG0nhLm4E/vnwrZl31OABgwUkH4pJTZmGcfGjf7NiFL9z1KgAraOG6jx9pm1E2So0vncmip9+aKR480QqWuPx3r9tBBKf96Fm7rDXXfdieKd/6/Hv4hbaVztiWOjQm4yDKCRBd41GLzn79ygb86U3LzON+d8zxB47FMdPHYMfeQXzt92/CzXEHtuG9rj7M/8nz6HXtkg1oa5AyWSxeZ82cJ46qx1TNXPHOtj2O9geAA8c125MKZRbTTWKHTR5lz5LVGogntTVUk0c3YGpbox2cAOS01UE7asop3PuH0tg7mMaE1npLa6xPOHwrar3X7794EoCcgxwAHng1J/jGyXbXBdeHfvis/f2MwyfZEVsDqQwG0xm7XyoNYFRjEs+t6cLR330SABzC4ZRDrGfqden70k3Mk0Y32AO8MskuXtdtTwrOOGwiRjUkkYiRHZ24qbsfv3jmXbxvUqs9mdEnHP/zxCosXtdtm7omj2qwd3FQvNu5FweOa7Y1Bb1tVm3bg3RW2JONyaMa7AmBF6ulH09pzIC1h6DyJ+no2skhck3aDQvXoH8ogwPGNORdPxzUrHAhojiAXwD4MIA5AD5NRHOGo+xkPIZnv3aa/X+ja3+od2SnUA46fRCZMyUnBNRA+gH5oBw9bTSOOMA6/42HluNHf7UepvpE3B6gAOvVuB/+6fP4wxubMXl0A9qa69CQjOPDR1q288fe2oL2zl77wb72vCMAAKdKwXXeL15C554BdO0dxEUnzMAH3zfBtq//92OrAFimslRG4FNzp9tlK3/S9x5fhSXruwFYb9b7x2MsVf2pldvtgeIZ7YH48hmzAeTs8D98crUd6nvm4RNx0QkH4tVvnYnDJrfaAlcN0Ft3D9iaHQC8tXm3cfWzEi4A8MvncsLllEPGg4jQUpdAT/8QuvuG8L3Hc1thqBX6r7y3E1fcuwztnXvtGecz2j0+fkYblm10vjVSTQTU73pnWy8+c9ti+/w/HGO9VEvZxO98eb0tBGaMbXa8L2b+T17Adx9dYQ8S45rrMHVMo206+530lam6ffVMq01bpWbz28UbIYTAMu3Nlu+b1IoJLfV4t2sv3t6822F+vOJ0K/2ohgQ2dfcjmxXYsLMPH73J6rOZjLDarSGBe5fkhIbiqKmjkYwTnl7Via279+H1jT1Yr2mdTXUJHDyhGYvf6867X5+eN11eYz03vQNpvLAmFxmp2k1plXsG0ti8a5+tqV7/iaMwobUeDckYlm/eg8F0Brc8m7vnJ8wai3FSO1Dbn/xI2xXj1ovnIhYjjG3OBVRcJ/t9Ik52IMSfpX+mbzCNX0n/nhLKY5vrHK9R+MOyDmzetQ9nzZlkm72UFj6UzuIT0vd6+GQriOKwKa14e7Nl+RjfUocjp+YHV9z/6iace9MLuOvl9QCAOz/3d/a5meOc2ojuV5nY2uCwpnhtMVRuhjfwubTMA9AuhHgPAIjoPgDnAVjpm6pEzBzf7HnusS+fgnNvykV+HD4l13Emj27ANz9ymGOAm3/kZDz+5VNx+JRWEBGOP7Atb7NLAHjlqtNx0v88DQB4t8sapHTb8PfPPxpPvL3NjqCa2FqPc4+ags+eNBNALpINyK19UdFIJx00Du+fPgYLV27HzCsfs69Tgg+AbWq49fn37BDoN/7rbHuQvOnpdtwkBwDFvf96ov2gf/SoKfjKfcvw8rs7UReP4R+OOQA/+/Sx9rUffN8E3Pr8ezjth8/Yx775kcMBAJ87eSbuenm9/ZAqLv3gQVbdmurgZum3z7RNEL2Dafzmbxvxm785N/Bzm3nOlJFtRMAs7R63uNYInD1nEn78qWMA5KKygJypFAB+8k/vBwAcI9tdDYAzxzXZ4bw3ffpY276uBhF3uwDAkvXd9n0596gp+OqZ75P1tLTPjd39+Kdf/c3WMi477WAA1iLQTd05UxlgTTYOkdrgsTPG4OFlm3HQNx93lHfxyTMBWFrZY3It1UOXnWyfb0jGcdyMNjy8bDMeln4QxT9K4fDJ46fhW39429ZgFf95zmEAcn3v1B/k7vdDl52M4+VecIdObgWkoviB65+2r/nYsVNBRBhIZfHQ6x2OUOq3/985aNIiOn/45GrUJ2L287TsO2fZZtGBVAb3L92E+zVT4/WfONqezHznj2/j7Y7d+MMbud/3tXMsLT4Zj+Hdrj586IfP4CNHTbHv7QdnT7CDDf7rkbeRzgqs3Z6LJFRC4O9mjsWzq1fb9/TT82bgcyfPQkt9HOccMRmzv/WEHfwAWD7bv5cWDgB45PJT0Nk7gP96ZAVWbdtj+9cUP/30sfj8na9i3qyxOGSi09IyXNSs5gJgKgB9StUhjw0bq66Zj1XX5Ns/jzhgND55nGVCOnbGmLx3j1/6wYPtgf6Ryz8AAJhzwCh7oLjnC/Psa+/6fG62MmV0I9qv+zAuPulA+5iawQI5J6Wis3cQx8kHVfHC1//enlkBwGw5yCTiMVz14cPyfos+cH7kyMl550c3JkFE+LcPHZR37sSDxjoG71iM8O1zLeVyKJPNWxQ2X+avZsC3XHScrRVc9ZHD8qJe/nzFKXadE/EYvnrmbHtgmDSq3hYsABxtBgBf/NDBWH/9uThgTCOWf/fsvLqfMMvpZ/rEsc6udd3Hj7IDDU45ZLytQShWXnOOPYgdLNdAKdTCS8AaiP/5hBmO8x92tfPBE5wTmWOmj3b8f9JBVhsvWd+NnX1D+NzJM/F1OQieOns83Mwan6vPOYZ7+r8Xz7XNsD//9LG46IQZuPLDh9mDvuLWz87NS/vjC47BTVIwKg1E54+Xf8D+/WoWr3PcjNwEyOTrW/ads2yz0AcOcU4Mrjj9EMezdow0FStt/DsfnWNH+QHAtz/qNHR8/5NH4cipo9HWXGeXff/STRhKWybi33/xJHxIaqsqjHvDzn7c8uy7qEvEcPNFx+GoaVb04PEHtiGVEfjOH9/GPa9swORRDVj+3bPtJQvzXe1+5uGTcP7x0zD/yCkgIvzuX0+02+Ohy062fbaK0U1JzJ7UitsWzMXT/3Fa3gasoxqSeOiyk/GN+fnP9HBBQVulVytEdAGAc4QQ/yL//yyAeUKIK1zXXQrgUgCYMWPG8Rs2bMjLqxwMpbN4+PUOnDJ7vDFaI5XJQojc61YL5fk1XThKPgg663b04fHlW7Fs4y6Makzgex8/ymijvW/JRkwf24STDx5nCzXA8gsk4jH7gdLPKTp6+tEg1zro53f1D+GaP61E31AaX/r72ZhzwCjjrsPPr+nCjr2D+MRx+bH3HT39uPOl9WhtSOCK02c70u/cO4gN3f14auV2fOSoKbZDXGcwbfmCzp4zyfG7hRAYymTRuWcQ/UOZPL8ZYJk/PviDZ/Cpv5uOK04/xDEDBqyZ7o1PrcG0tib7Vb8623YP4PHlW3H0tNGYO3NsXtr2zr14+d0dOGvOZIdWpEhlsnirYxeOP9CZNpO13hz58OsdmDSqAWfPmZR3X7bvGcAJ31uEgyY049EvneIYZDt7B/DIsi342dNr8bmTZ+KrZ74v9/4fWe/bXngPHzp0AprqEjhuxhjjfTfR2TuAnXuH8PyaLrQ11+FTc52DYN9gGqu392Lxe91YcPKBeW26qbsf/UMZDKQyOHraaEe5Qgg8uWIbGpJxbNk1gJMOHudoNyEE9uxLY18qg72DaUwf25i3UHDPQApvbdqNF9q7cNmHDrYDavQ8Hn1zC9qa6mwzJ2D5O+5+ZT3Gt9Tjo0dPwdjmOsdkRQiBGxeuwZQxjWhrskK6D9ImEbv7U/jDsg6s3LoHsye2Yv6Rk21NTfFS+w6kswLT2hrzJiCAFYQQMzw/lYCIXhNC5M8m/NLUsHA5CcB3hRDnyP+vAgAhxP94pZk7d65YunTpMNWQYRhmZBBFuNSyWexVALOJaBYR1QG4EMCjFa4TwzAMgxp26Ash0kT0JQBPAogDuEMIsaLC1WIYhmFQw8IFAIQQjwN4PPBChmEYZlipZbMYwzAMU6WwcGEYhmFKDgsXhmEYpuSwcGEYhmFKDgsXhmEYpuTU7CLKKBBRL4BtALzeJzra5xwAzACw0ed8UPpizldz3YLOc924bly36q8b4F2/Q4UQhW1SJoTYb/4ALAVwq895z3PyfFfA+aD0kc9Xc91C1J3rxnXjulV53fzqB2CpXzrT3/5oFvtTxHMAsCvgfFD6Ys5Xc92CznPdop3nukU7z3WLfj6ofqHZ38xiS0WB++OUMn054bpFg+sWDa5bNKq5boB3/aLUe3/TXG6tcPpywnWLBtctGly3aFRz3QDv+hVc7/1Kc2EYhmGGh/1Nc2EYhmGGgf1euBDRHUTUSURva8eOIaJXiGg5Ef2JiEbJ40kiulseX6XeISPPPUtEq4noDfk30VReGetWR0R3yuNvEtFpWprj5fF2IrqJwr4JanjqVtJ2I6LpRPSMvD8riOgr8vhYIlpIRGvlZ5uW5irZNquJ6BzteEnbrcR1q2i7EdE4ef1eIvq5K6+KtltA3SrdbmcR0WuyfV4jotO1vMrxnJayfoW1XaHhZSPtD8AHARwH4G3t2KsAPiS/fwHAtfL7PwO4T35vArAewEz5/7MA5lawbpcDuFN+nwjgNQAx+f8SACcBIABPAPhwFdWtpO0GYAqA4+T3VgBrAMwB8AMAV8rjVwL4vvw+B9ab2usBzALwLoB4OdqtxHWrdLs1AzgFwBcB/NyVV6Xbza9ulW63YwEcIL8fCWBzudqtDPUrqO1K0sC1/gdgJpyD5B7k/FHTAayU3z8NK5QvAWCcvFFjy9FpI9TtFwA+o123CMA82bne0Y5/GsCvqqFu5Ww3raxHAJwFYDWAKfLYFACr5ferAFylXf+kfMDL1m7F1q0a2k277nPQBvBqaDevulVTu8njBGAnrMlD2dutmPpFabv93izmwdsA/lF+vwDWQAkADwLoA7AV1irWHwkhurV0d0p18TulUGkLrNubAM4jogQRzQJwvDw3FUCHlr5DHquGuinK0m5ENBPWTGwxgElCiK0AID+VSj8VwCYtmWqfsrZbkXVTVLLdvKiGdguiWtrtkwCWCSEGMQzPaZH1U4RuOxYuZr4A4HIieg2WKjkkj88DkAFwACwzxX8Q0UHy3EVCiKMAnCr/PjvMdbsDVodcCuAnAF4GkIY1+3BTrhDBQusGlKndiKgFwEMAviqE2ON3qeGY8DleDXUDKt9unlkYjg13u/lRFe1GREcA+D6Af1OHDJeV7DktQf2AAtuOhYsBIcQ7QoizhRDHA7gXlq0bsHwufxFCpIQQnQBeAjBXptksP3sB/A6WIBq2ugkh0kKIfxdCvF8IcR6AMQDWwhrUp2lZTAOwpUrqVpZ2I6IkrAfpt0KIh+Xh7UQ0RZ6fAqBTHu+AU4tS7VOWditR3aqh3byohnbzpBrajYimAfgDgIuFEGpsKdtzWqL6Fdx2LFwMqCgIIooB+DaAX8pTGwGcThbNAE4E8I4094yXaZIAPgrLRDRsdSOiJlknENFZANJCiJVS5e0lohOlGnsxLLtrxetWjnaTv/F2AKuEEDdopx4FsEB+X4BcGzwK4EIiqpcmu9kAlpSj3UpVtyppNyNV0m5e+VS83YhoDIDHYPnSXlIXl+s5LVX9IrVdqR1GtfYHa4a9FUAK1uzhEgBfgeWsXwPgeuSc1C0Afg9gBYCVAP5THm+GFQH1ljz3U8ionmGs20xYTrpVAJ4CcKCWz1zZEd4F8HOVptJ1K0e7wYoSEjLPN+TfR2AFYCyCpTEtggzEkGm+JdtmNbQInVK3W6nqVkXtth5AN4C9sg/MqaJ2y6tbNbQbrElXn3btGwAmlvE5LUn9orQdr9BnGIZhSg6bxRiGYZiSw8KFYRiGKTksXBiGYZiSw8KFYRiGKTksXBiGYZiSw8KFYaoEIvoiEV1cwPUzSduVmmGqiUSlK8AwjLVITQjxy+ArGaY2YOHCMCVCbgz4F1gbAx4LazHpxQAOB3ADrEW4OwB8TgixlYiehbXP2gcAPEpErQD2CiF+RETvh7XDQROsRXVfEEL0ENHxsPZq6wfw4vD9OoYpDDaLMUxpORTArUKIo2G9guByAD8DcL6w9ly7A8B12vVjhBAfEkL82JXPPQC+IfNZDuBqefxOAF8WQpxUzh/BMMXCmgvDlJZNIrcn028AfBPWS5cWyh3K47C2zVHc786AiEbDEjrPyUN3A/i94fivAXy49D+BYYqHhQvDlBb3fkq9AFb4aBp9BeRNhvwZpiphsxjDlJYZRKQEyacB/A3ABHWMiJLyXRmeCCF2A+gholPloc8CeE4IsQvAbiI6RR6/qPTVZ5jSwJoLw5SWVQAWENGvYO04+zNYrye+SZq1ErBemLYiIJ8FAH5JRE0A3gPweXn88wDuIKJ+mS/DVCW8KzLDlAgZLfZnIcSRFa4Kw1QcNosxDMMwJYc1F4ZhGKbksObCMAzDlBwWLgzDMEzJYeHCMAzDlBwWLgzDMEzJYeHCMAzDlBwWLgzDMEzJ+f/uvPwidk82QAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sorted_data['inc'].plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Un zoom sur les dernières années montre mieux la situation des pics en hiver. Le creux des incidences se trouve en été."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEKCAYAAADaa8itAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztvXl4ZGWZ9/95as+eztLpJb3vC9BAswkIyLCq6MwA0zgqgzqog7vODPj6Do7KjPoqOOjPBQUBR0TABZTNZhFBmt6g6X1f00uSzp5UUuvz++OcU6kktSWpSp2qvj/Xlauqnzrn1HNOV9X33Mtz30prjSAIgiBkA0e+JyAIgiAUDyIqgiAIQtYQUREEQRCyhoiKIAiCkDVEVARBEISsIaIiCIIgZA0RFUEQBCFriKgIgiAIWUNERRAEQcgarnxPINvU1dXp2bNn53sagiAIBcXGjRtPaq3rx3ucohOV2bNns2HDhnxPQxAEoaBQSh3KxnHE/SUIgiBkDREVQRAEIWuIqAiCIAhZI62oKKVmKKVeVkrtUEptU0p91hz/qlLqqFJqk/l3bdw+dyil9iqldimlroobP1sptcV87V6llDLHvUqpX5vja5VSs+P2uVkptcf8uzmbJy8IgiBkl0wC9WHgi1rrN5VSFcBGpdRq87V7tNbfid9YKbUUWAUsA6YBLyilFmqtI8CPgFuBN4BngKuBZ4GPAh1a6/lKqVXAt4B/UErVAHcCKwFtvvdTWuuO8Z22IAiCkAvSWipa6+Na6zfN5z3ADmB6il3eBzyqtQ5orQ8Ae4FzlVJTgUqt9RptdAZ7GHh/3D4Pmc+fAC43rZirgNVa63ZTSFZjCJEgCIJgQ0YVUzHdUmcCa82hTymlNiulHlBKTTLHpgNH4nZrMsemm8+Hjw/ZR2sdBrqA2hTHEgRBEGxIxqKilCoHfgN8TmvdjeHKmgesAI4D37U2TbC7TjE+1n3i53arUmqDUmpDa2tryvMQBKHwaerw89LO5nxPQ0hARqKilHJjCMovtda/BdBaN2utI1rrKPBT4Fxz8yZgRtzujcAxc7wxwfiQfZRSLqAKaE9xrCFore/TWq/UWq+srx/3glBBEGzOT17Zz6cfeSvf0xASkEn2lwLuB3Zore+OG58at9nfAlvN508Bq8yMrjnAAmCd1vo40KOUOt885oeBJ+P2sTK7rgdeMuMuzwNXKqUmme61K80xQRBOYQ629TEQjuZ7GkICMsn+uhD4ELBFKbXJHPsycJNSagWGO+og8HEArfU2pdRjwHaMzLHbzMwvgE8CDwIlGFlfz5rj9wO/UErtxbBQVpnHaldKfR1Yb273Na11+9hOVRCEYuFwu59IVKO1xlyZINiEtKKitX6NxLGNZ1LscxdwV4LxDcDyBOMDwA1JjvUA8EC6eQqCcGoQjkQ52tEPQCii8bhEVOyErKgXBKGgON41QDhq5OuEo+ICsxsiKoIgFBSH2/2x56HwiGRQIc+IqAiCUFAcaosTFbFUbIeIiiAIBUW8pRKOiKViN0RUBEEoKA6398WehyJiqdgNERVBEAqKITEVERXbIaIiCELBoLXmUJuf2jIPQCwLTLAPIiqCIBQMPYEwPQNhZteVAWKp2BERFUEQCob+oFGcY1KpG5BAvR0RUREEoWAImvW+yrxGMRCxVOyHiIogCAVDwBSVUo8lKmKp2A0RFUEQCoaYpeJxAlKmxY6IqAiCUDAETXdXqen+kpiK/RBREQShYLAslXKvYakEJaZiO0RUBEEoGILDYipiqdgPERVBEAqGYMRIKS6VmIptEVERBKFgGG6pBKWlsO0QUREEoWAIxGIqpvtLyrTYDhEVQRAKhpilYgbqwxKotx0iKoIgFAzWYscyWfxoW0RUBEEoGILhoYF6KdNiP0RUBEEoGKx1KRJTsS8iKoIgFAxWTKVELBXbIqIiCELBYImK1+XAoWTxox0RUREEoWAIRKJ4XA6UUridDrFUbIiIiiAIBUMwHMXrNH62DFERS8VuiKgIglAwBMOGpQLgciop02JDRFQEQSgYhoiKQywVOyKikgFd/pD4bgXBBgQjg6LicSr5XtoQEZU0aK254p5X+Omr+/M9FUE45QmGo3iclvvLIWVabIiIShq6+8O09AQ40NqX76kIwilPKBLF7RyMqYRk8aPtSCsqSqkZSqmXlVI7lFLblFKfNcdrlFKrlVJ7zMdJcfvcoZTaq5TapZS6Km78bKXUFvO1e5VSyhz3KqV+bY6vVUrNjtvnZvM99iilbs7myWdCc88AAO19wYl+a0EQhhEIx7u/xFKxI5lYKmHgi1rrJcD5wG1KqaXA7cCLWusFwIvmvzFfWwUsA64GfqiUcprH+hFwK7DA/LvaHP8o0KG1ng/cA3zLPFYNcCdwHnAucGe8eE0EJ7oMUTkpoiIIeWd49pcE6u1HWlHRWh/XWr9pPu8BdgDTgfcBD5mbPQS833z+PuBRrXVAa30A2Aucq5SaClRqrddorTXw8LB9rGM9AVxuWjFXAau11u1a6w5gNYNCNCE0d1uWSmAi31YQhAQEI1G8Q7K/xFKxG6OKqZhuqTOBtUCD1vo4GMIDTDY3mw4cidutyRybbj4fPj5kH611GOgCalMca8Jo6THEpL1XLBVByDfxgXq3U0mZFhuSsagopcqB3wCf01p3p9o0wZhOMT7WfeLndqtSaoNSakNra2uKqY0ey1LpC0YYCEWyemxBEEZHvPvL7XTI4kcbkpGoKKXcGILyS631b83hZtOlhfnYYo43ATPidm8EjpnjjQnGh+yjlHIBVUB7imMNQWt9n9Z6pdZ6ZX19fSanlDGWqIAE6wUh38SvU3E5HQTFUrEdmWR/KeB+YIfW+u64l54CrGysm4En48ZXmRldczAC8utMF1mPUup885gfHraPdazrgZfMuMvzwJVKqUlmgP5Kc2zCaO4OoEx7qU1cYIKQV4a4vxxKsr9siCuDbS4EPgRsUUptMse+DHwTeEwp9VHgMHADgNZ6m1LqMWA7RubYbVpry2/0SeBBoAR41vwDQ7R+oZTai2GhrDKP1a6U+jqw3tzua1rr9jGe65ho6R5gdm0ZB0720SbBekHIKyNqf4mlYjvSiorW+jUSxzYALk+yz13AXQnGNwDLE4wPYIpSgtceAB5IN89cEI1qWnoCXLVsCgdO9on7SxDyzPCYimR/2Q9ZUZ+Ctr4g4ahmydQKQGIqgpBvApFhoiKBetshopICK0g/f3I5bqeiTURFEPKG1ppQZLCfissh7i87IqKSghazREtDpY9JpR5ZqyIIeSQc1WjNkOwvWVFvP0RUUtDcbQTmGyp91JZ7JVAvCHnE6k8vpe/tjYhKClrN1fT1FV5qyzzi/hJsz3NbT/DAawfyPY2cYImKW0rf2xoRlRQMhCK4nQq300FNmUcC9YLteXzDER74a5GKSmSopSKl7+2JiEoKAuEoXpdRYLmmTGIqgv3p7A/R5Q/lexo5Ieb+ii1+FEvFjoiopCA+J76u3ENPIEwgLPW/BPvS6Q/SEwgX5Y9tYFhMxe10ENUQEWvFVoiopCAQjsTKbFeVuAHoGQjnc0qCkJKufsNK6S7Cz6llqXjj3F+ABOtthohKCuItlVKPUXygL1B8X1ahONBa02m6vjr9xeeqHR5TcZuiEhZLxVaIqKQgEFe8rsxriYq4vwR74g9GYj+wnf3FF1cZjKkYcU6Xw/huFqOrr5ARUUlBMBzF67ZExfgg+4NiqQj2JF5IuopZVCxLxXwMiqjYChGVFMRbKpb7q1fcX4JNiXd5FWMGWGi4+8thur9kVb2tEFFJQTAupXjQUhH3l2BP4oWkGC2VwLCUYpfTcn+JqNgJEZUUBMKR2F1RmQTqBZsTLySdRWipJAvUS6VieyGikgJj8ePQQL1YKoJdiY+pdPYXYfbXsJRiq1yLpBTbCxGVFAxNKTbcXxJTEeyKZZ3UlXuK0v01PFDvkpiKLRFRSUF8mRavy4HLoST7S7Atnf1BPC4Hkyt8RRmoD5rVLGJlWsRSsSUiKikIxnWZU0pR6nHKOhXBtnT5Q1SXuKkudRfnOpUEBSVBFj/aDRGVFARCg2VawIirSKBesCtd/SGqSw1RKWb3l3u4pRIWS8VOiKikIBiJjhAVCdQLdqXTH6K6xENVibs4s79ioqKGPEr5e3shopIErbWx+DFeVDxO+iSmItiUzv4QlSVuqko8dPeH0Lq4fmwDpjtaKUNMpEyLPRFRSYLVDzveUin1iPtLsC9d/mDM/RWMROkPFZdVHQxH8ToHv4+DVYqLSzwLHRGVJAzv3QDGqnoJ1At2pbPfDNSbbRqKzQUWigz1HHgk+8uWiKgkYXChlTM2ZsRUxFIR7EcwHMUfjFBd6o71/im2YP1AaGiMM1amRVbU2woRlSRYHR49w91fEqgXbIglIFUlbqpKi9NS8QfDscoWMLj4Udxf9kJEJQnDS0KAGaiXmIpgQ7rMsixVpR6qSzxDxooFfzASq2wBgzd84v6yFyIqSUgcUzFSiqOSwijYDKvNdYXXRYXPuJsvtpbC/kAk1oICpEyLXRFRSULimIrxvNiyaoTCp990y5Z4nPjcxuc0UGSf075gOPYdhMGYilgq9kJEJQnJYiog5e8F+2Hd6JR6nPjMbqUDoeL6sfUHI5TEWSrSo96eiKgkYXhDIIByq0+9BOsFm2FVeihxD1oqA0VmqfiDYcriYipWmZaglGmxFWlFRSn1gFKqRSm1NW7sq0qpo0qpTebftXGv3aGU2quU2qWUuipu/Gyl1BbztXuVuSxWKeVVSv3aHF+rlJodt8/NSqk95t/N2TrpTLBExepRD4Pl78VSEeyGZamUeJy4nUZF7YFwkYnKsJiK2+nA43LI99FmZGKpPAhcnWD8Hq31CvPvGQCl1FJgFbDM3OeHSinr1uJHwK3AAvPPOuZHgQ6t9XzgHuBb5rFqgDuB84BzgTuVUpNGfYZjJJjAUpFGXYJd6Y+zVAB8bif9weK5g9daj4ipAFT6XPSIqNiKtKKitf4L0J7h8d4HPKq1DmitDwB7gXOVUlOBSq31Gm0UJHoYeH/cPg+Zz58ALjetmKuA1Vrrdq11B7CaxOKWEyxR8YmlIhQAgzEV48bH53YWlaUSCEeJasMSi6fc64plvgn2YDwxlU8ppTab7jHLgpgOHInbpskcm24+Hz4+ZB+tdRjoAmpTHGtCGIypDH6IB2Mq8iEW7IVlPVvrqnxuR1HFVKzzK4tzfwFU+Nz0DhTXIs9CZ6yi8iNgHrACOA581xxXCbbVKcbHus8QlFK3KqU2KKU2tLa2ppp3xgQTxVQs95fU/xJsxkAoQonbicNcu+FzO4tKVCzvQKlYKrZnTKKitW7WWke01lHgpxgxDzCsiRlxmzYCx8zxxgTjQ/ZRSrmAKgx3W7JjJZrPfVrrlVrrlfX19WM5pREEhrUuBWKZJ9KnXrAb/mB4iGuoxO0sqpRiy1IpHWGpiKjYjTGJihkjsfhbwMoMewpYZWZ0zcEIyK/TWh8HepRS55vxkg8DT8btY2V2XQ+8ZMZdngeuVEpNMt1rV5pjE0JCS8VjBerlQyzYi/5gNBakh+Jzf1ku59JhgfoKn1tu8myGK90GSqlfAZcCdUqpJoyMrEuVUisw3FEHgY8DaK23KaUeA7YDYeA2rbX1yf4kRiZZCfCs+QdwP/ALpdReDAtllXmsdqXU14H15nZf01pnmjAwbhKtU/G4HHicDlmnItiO/tBQS8XndhbVj21/0piKi26JqdiKtKKitb4pwfD9Kba/C7grwfgGYHmC8QHghiTHegB4IN0cc0EwHMXpULFSEBalXikqKdiP/mHFFr0uJyd7i6egZLKYSoXPRW8gjNY61hFSyC+yoj4JgXBkiJViUe510Ss+XMFm+IOR2Ep6MFJvi6n212BMZWSgXmupcmEnRFSSEBzWn96iwucuuuqvQuHTHxpqqfhcjqIqfGrFVOL7qYDxfQToEReYbRBRSUIgPLTLnEWF10VvQD7Agr3oD0aGBeqLK6W4P4mlYpX5F++BfRBRSUJyS0VSGAX7YVTwHer+KqaU4r5A4pTi8iLtHVPIiKgkIamlIqIi2BBr8aOFz+VgIBzByM4vfPzBMF6XA6djaDC+0rJUJHnGNoioJCEQjuJxOUeMV/jc4r8VbMfwVrtetxOtB1PjC52+Yf3pLcq9ElOxGyIqSQiEIwktlXLTUimWO0Ch8NFa0z/MUimJdX8sDlExyt4nusmTmIrdEFFJQqqYSjiqi+YOUCh8rNhJfFfEWKOuIqlUPNwSs7BiKuKStg8iKkkIRpLFVAxzW1bxCnYh1qArrqSQ1bKhv0jWb/QFwyOC9ADlHhdKifvLToioJCEQSiwqlXJnJNgMqxZdaZFbKsMbdAE4HIpyjzTqshMiKkkwLJXkPlwRFcEuWOtRfJ6RMZViSSvuCyS2VGAwzinYAxGVJATCkYQxFck2EexGrISJOz77q7jcX8MrBsRT4ZPSSXZCRCUJwXA0Ye0vyTYR7EasP/2wKsVQPO6vvkAkuaXiddEjVS5sg4hKEgLh6JBeKhbi/hLshj80UlQGU4qLQ1T8wXCsSd5wjLVj8n20CyIqSUhuqUj2l2AvBixLxZ3AUimCmEo0qpOmFIO4v+yGiEoSklkq5V6xVAR7kagsfCyluAgsFcuFV5pgRT1Yjbrk+2gXRFQSEIlqIlGNxznyzsjpUJR5nCIqgm2Iub8SrKgvhkrFVjHJVO4vqRxuH0RUEmDd3fkSWCog9b8EezGQKlBfBO6vwa6PyQP1A6EooUjhn2sxIKKSgMHFZCl8uLLYSrAJ/gQxFWvhbjG4vzr8Rlvk6lJ3wtet76m/SNKnCx0RlQQMNgRK7sMV95dgF/pDRutrV1xiiVIKn9tRFNlfnX7DKzCpzJPwdet7WixrcgodEZUEJOuHbVEu7i/BRvQHwwldtcXS/dGyVCaVJhMVy1KRGz07IKKSAH8CH3U8YqkIdsJYbT7Sqva5nEXh/mrvs0QlsfurRNxftkJEJQHp3F+VksIo2IjhrYQtfG5HUQTqO/0hHAoqfYlFpcz8noqo2AMRlQT0pQ3UD6Ywaq050u6fsLkJwnCGtxK2KCb3V3WpB8ewVsIWJeL+shUiKglIVEspnoq4FMYXdrTwzv/3MjuOd0/kFAUhRl+Srog+d3G4vzr8waSuLxi8+ZNAvT0QUUlA+kD94Kr6V3a3oDW8tuckYCycFISJpCcQitWki8fI/ip891dHXyhpkB4Gv6d9Iiq2QEQlAYmaHsXTUOkDYG9LL2v3twPwxv423jzcwdL/eI59rb0TM1FBwLi5qUgQbyhxO4uiSrHl/krGYEqxuL/sgIhKAvrTWCrvXFiP1+Xg4TUH2dPSi8flYN3Bdh7860EC4SiH2yTGIkwcvQPhJJZK8cRUasrSu78kUG8PRFQS4A9FcDsV7gRVisEoC3H5ksn8cfNxAFadM4OegTB/2HwMQFbbCxNKz0A45pKNpxhiKlprOvyp3V9WkoKIij0QUUlAfzBxNk087z19GmD4rf/54rkAaDOcIqIiTBQDoQjBSDRhuq1hqRR2TKU/FCEYjiZdTQ9Gn3qf2yHZXzZBRCUB/mDyftgWly2eTLnXxVkzJzGjppS59WXMqCkBBgvgCUKusRbhJgvUF7r7K93CR4syj0ssFZuQVlSUUg8opVqUUlvjxmqUUquVUnvMx0lxr92hlNqrlNqllLoqbvxspdQW87V7lVLKHPcqpX5tjq9VSs2O2+dm8z32KKVuztZJp6MvRUMgC5/byU8+dDb/8d6lAPz4g2fz4C3nAtJrRZg4rHJBxRpTsep+pQrUg5H+LynF9iATS+VB4OphY7cDL2qtFwAvmv9GKbUUWAUsM/f5oVLK+nX+EXArsMD8s475UaBDaz0fuAf4lnmsGuBO4DzgXODOePHKJf3BCKXe1KICcOH8OhZPqQRgYUMF8+rLKfU4xVIRJgzL1VrhTeD+cjkJRXRBp7lblkpNCvcXGMF6sVTsQVpR0Vr/BWgfNvw+4CHz+UPA++PGH9VaB7TWB4C9wLlKqalApdZ6jdZaAw8P28c61hPA5aYVcxWwWmvdrrXuAFYzUtxygj8YptSd2v2VjHKvlMUXJg7LKk4UqC/xGF/vQrZWBotJpnZ/lXhcsWZlQn4Za0ylQWt9HMB8nGyOTweOxG3XZI5NN58PHx+yj9Y6DHQBtSmOlXP6k9RSyoRyr4seERVhgkjn/oLC7qmSqfurzOPEL987W5DtQH2i4jw6xfhY9xn6pkrdqpTaoJTa0NramtFEU+HPIKaSjHKfS9xfwoRhFTZNmP3lKvyWwpb7q7oktaUi7i/7MFZRaTZdWpiPLeZ4EzAjbrtG4Jg53phgfMg+SikXUIXhbkt2rBFore/TWq/UWq+sr68f4ykNkqzqayaUe130SqBemCB6U2V/eQq/pXCnP0ilzzWkAVkiSjyuhBZZKBLlv5/ZwVNvJ/zpEHLAWEXlKcDKxroZeDJufJWZ0TUHIyC/znSR9SilzjfjJR8eto91rOuBl8y4y/PAlUqpSWaA/kpzLOcY/SnGJiplElMRJpBYTMWbqJ9KMcRUQinXqFiUeZwj1qmEIlE+++hb/OQv+/nhy3tzNUVhGGmj0UqpXwGXAnVKqSaMjKxvAo8ppT4KHAZuANBab1NKPQZsB8LAbVpr6xP9SYxMshLgWfMP4H7gF0qpvRgWyirzWO1Kqa8D683tvqa1Hp4wkBP6AunXqSSjQkRFmEB6BkKUuJ0J7+StmEohi0pnfyit6wuMlGJ/YOh5Prf1BM9sOcGSqZXsON5NW2+A2nJvrqYqmKT95dRa35TkpcuTbH8XcFeC8Q3A8gTjA5iilOC1B4AH0s0xm0SimkA4Oi5LRWIqwkTRk6TuFwy2bihk91dXf4jKDESl1OPEH4qgtcZcAkdTRz8A/+faJXzw/rWsPdDOtadNzel8BVlRPwLLLzueQL1YKsJE0RtILirFEKjv7g9RlZGouIhENcHIoIC29gQo8zg5b24NpR4na/a15XKqgomIyjAsv2zJGN1f5V4XoYgmUAQlxwX70z0QSlj2HowyLVDYKcVdGYvKyEZdrb0B6iu8uJ0Ozpldw5r9IioTgYjKMGJl79MUlEyGFTCVDDBhIkjl/ir0mIrWmq7+ENVpFj5C4vL3rT0D1FcYMZQL5tWyt6WXlp6B3ExWiCGiMox0XR/TERMVcYEJE0DPQCjhGhWIE5VwYcZU+oIRIlGdkaVieRbiM8BaewLUmYH5MxqrAdh1oicHMxXiEVEZhj9Nf/p0lImoCBNIz0A4YToxDLq/Bgp0UWBXv7GaPiP3V4KeKq09gZilMqu2FIBD0kAv54ioDMO60ylL8kVNh+WKEPeXMBGkDNQXuPuryz8KUfEOFZVAOEL3QJh601KZUunD43JwuF1EJdeIqAwjZqmMM6bSJw2DhBwTjkTxByNJA/VupwOXQxVsn3rLUskspdjqU2+c68leo7yLZak4HIqZNaUcauvLxVSFOERUhpGuP306LAtHeqoIuSZW9j6JpQJmS+FgYcZURuX+Mr+v1s1ca08AGBQVgFk1peL+mgBEVIYxGKgfn/urL1CYd4dC4ZCq66OFz+0oWEulexSiMrxPvSUqdXEr6GfWlnK43Y/WhdtfphAQURnG4DqV8QbqQ1mbkyAkIjNRKdzuj6OxVKzvXf8wUYm3VGbXluEPRmjtDWR7qkIcIirDGK/7q9TtRCkJ1Au5Z7CXSvIfXZ/bSaBAy7R09YdwOlTS7LZ4hq9TsUSltnywGOVMMwPssLjAcoqIyjD8oQhup8KdptR2MhwORbnHRa+4v4QcY8VUUv3o+tyOgl1R39lvlL23anmlwutyoBT0m56Gk70BqkvdeF2DN4ezaiSteCIQURlGz0AoozujVBjl78X9JeSWmKikcn+5Ctn9Fc7I9QWglKK2zMPxLmPFfGtPIJZObNE4qRSHQjLAcoyIyjAy7d+QCqP7Y2F+kYXCIRNLpcRTyKKSWd0vi9Mbq9l0pBMw6n7VDRMVj8vBtOoSDplrVb72h+3cdN8bsfUwQnYQURlGR1+QmjT9sNNRJn3qhQnAarGQaqGu1+Wkv4BjKlWj+C6eNbOaPS29dPWHaO4eGBKkt5hVO5hW/NreVtbsb2PVT9/gpATvs4aIyjDa+4LjtlQqvC56B+TuR8gtvQNhlEpd/NTndhAoUEsl07L3FmfOnATA7986SlNHP6dNrxqxzcyaslha8eF2PytnTeLAyV5u/MkajnX2Z23upzIiKsPo8I/fUin1OIfUIBKEXNAbiFDmceFwJA9klxR4SnFVSebxzdMbq1AK7l69G6XguhXTRmwzq7aU9r4g+0/2MRCKct2Kafzio+fR2h3gtkfezOb0s07PQIjHNxwhErX3OhsRlTi01nT4Q1SXZX53lIhyr0vKtAg5pzeQPqnE53YWZPaXVfZ+NJZKhc/NwskVdPWHuHBeHQ2VvhHbzDbTil/bcxKAGTWlnDO7ho9fMpdNRzrp9AezcwI54PENTfzrE5t5ZN3hfE8lJSIqcfiDEYLh6PgtFe/IftmCkG36AhHKvKnXU/ncjoJsJzyasvfxnDXLKHH/vgRWChjuL4BX97Sa/zZE5tw5tWgN6w92jHXKOefNw8bcvv3cTlv3hRFRiaO9z7hLGW9MpcwjLYWF3NMbCFOeYuEjmO6vcKTgSpOMZjV9PFcvn8qSqZVcvXxKwtetBZBr9rWhFDROKgEM15nH5WDdAft2h9x0pJMzGqsIhKJ8/8W9+Z5OUsa3IKPI6DBN30lZyP4KhKOEI1FcY1xEKZy6/N/fb6W61M0nL52XsgZdbyBMeRpLxet2ojUEI9EhCwHtzmjK3sdzycJ6LllYn/T1cq+LunIPJ3uDTKvyxa6Jz+1kxYxq1h1oH/ukc0hLzwBNHf380ztmM6nsJBsO2deikl+8ODrMD3LNOGMqsZIRBejLFvKLPxjmF28c4vsv7eXd9742pJPhcPoCyRt0WcR6qhRYpWLLa1BTNjIteLzMqjVcYDNM15fFeXNq2Hqs25Zehk2HjfU3Z86sZvGUSva29BCK2PP/VEQljo7MLYFoAAAgAElEQVS+7FkqMLiOQBAy5WiHkdb6ntOncuBkHy/saEm6bc9AOG0zuVj3xwKrVNzWN7J2V7awyrXMHCYq586pIRLVvGlDK2DTkU5cDsWyaVUsmVpBKKLZ19qb72klREQljsG7o2yJSmF9kYX802SKyocvmE1DpZc/vH0s6bZ9wfSWSkmBdn+0mmzV5cBSseIqw0Vl2TRjXcveFvv9WL91uJOl0yrxuZ0smVoJwM7jPXmeVWJEVOLo8AdxKKhME/xMR1msYqpYKsLoaOowVnvPqi3lPadP45VdrbGgdTxaa3pT9Ke3sNxfhZZW3N4XwOVQVI5inUqmWP3qLXGxmFTqxutycLzLfosgtx3rii3mnFNXhsfpYMeJ7jzPKjEiKnF0+INUl3pSLibLBCu4akffrGBvmjr68Tgd1Jd7ue6MaQQjUZ7femLEdoFwlHBUZ+7+KrC04rbeIDVlnowqFI+WlbNqmFtfxlnmCnwLpRTTqks41mWvdN0uf4jugTBz6oxYkNvpYEFDOTvEUrE/HX0hJpWOz0qBwQJ/slZFGC1NHf1Mn1SCw6E4vbGK+govb+wfmeaaSSthiAvUF5ilcrI3SG159l1fYAToX/ripSMC9QBTq3wct1m5lkPtRlXl+PkunlLJzuNiqdie9r7guIP0YCx+BGRVvTBqmjr8sbUTSikaJ5VwonvknXOsmGSatteF6v5q6wtQl4MgfTqmVpXEyufbBasA5qw4d92SqRW09ASG1Cv73zcO8cBrByZ8fsMRUYmjwz/+YpIw+EWXQL0wWpo6+mOiAjCl0kdzAlGxWgmn6qUCRj8VoOCKSrb1BqnNwndxtEyrNq532EbpuofNUv3xiQUXL6jH43Rw40/WsNOMrTyxsYnV25vzMsd4RFTiyEYxSSBWOkMC9cJo8AfDtPUFaZw0+OPRUOmjuXtkWfa+DHqpgNFPBQoxphLIyRqVdEytKiGqobnHPqXwD7f5qSv3DlkIu2hKBY9/4gIGQlH+86ntaG2kGM+bXJbHmRqIqJhorY2YShbujiRQL4yWLn8olk48xFKp8tEbCI/4LGXSoAsGA/WF5P4aCEXoC0ZyskYlHdOqjSKUdoqrHG73D3F9WZwxo5qrljWw7VgXrT0BegbCzK8vz8MMhzIuUVFKHVRKbVFKbVJKbTDHapRSq5VSe8zHSXHb36GU2quU2qWUuipu/GzzOHuVUvcqM+VDKeVVSv3aHF+rlJo9nvmmoi8YIRiJZiVQ73QofG6HlL8XMqJ7IMTF336Jjz60HmCIpTLFrLR7YpifvzeDBl3xr/cOFM4NTpu5XiwfMZVp1Yag2ykD7HC7f8SaGovFUyvpHgjzqll1ed7kAhcVk8u01iu01ivNf98OvKi1XgC8aP4bpdRSYBWwDLga+KFSyipG9CPgVmCB+Xe1Of5RoENrPR+4B/hWFuabkFA4ymWL6pmfpf+Ucq9LVtQLGfHq7pN0D4Q50m7cHc+Is1Ss8u3D4yqZWioVXhc+t8PWVW2H02Z2YazNi/vLXpZKIBzhWFd/UlFZMqUCgKe3HAfI2u/XeMiF++t9wEPm84eA98eNP6q1DmitDwB7gXOVUlOBSq31Gm2UUn142D7WsZ4ALle5SFzHqEz881vO5fIlDVk5XqlHREXIjBd3NlNd6ubO9y7lwvm1Q3qrT6lKbKnEYippAvVKKRoqfZxIEJexK23mavp8uL8qfG4qvC7bZIAd7ehHaxK6vwAWmqLy6p5WSj3OmGWbT8YrKhr4k1Jqo1LqVnOsQWt9HMB8nGyOTweOxO3bZI5NN58PHx+yj9Y6DHQBteOc84RQ6nHSJ+4vIQ2RqObPu1q5dGE9t1w4h19+7Pwhi28bKg2BGZ5W3GtmFqZqJTx4jMQZZHblZB4tFYCp1T7btBY+lCDzK55Kn5vGSSWEIpp59eU5WSw6WsZbA+FCrfUxpdRkYLVSameKbROdrU4xnmqfoQc2BO1WgJkzZ6ae8QRR7nVJ9peQlk1HOmjvCya1kEs9Lip8rpHuL7NESybVHxoqfWxu6szKfLPJj/68j75AmE9cOm+IG8+KqeTDUgEjA+yYTUq1HDppLHwcXlImnsVTKmnq6LeF6wvGaalorY+Zjy3A74BzgWbTpYX5aJVZbQJmxO3eCBwzxxsTjA/ZRynlAqqAEQ0PtNb3aa1Xaq1X1tcn76UwkZR6XbG7SUFIxiu7WnE6FO9M0QNkSqUvofsrXdfHwf29NHcP2KpRV18gzD2rd/ODl/dy+Xf/zKG2vthrbb0BfG5HrIXERNM4qYQj7f22uF67mnupLnVTn6K6wJKphgtsXn3+04lhHKKilCpTSlVYz4Erga3AU8DN5mY3A0+az58CVpkZXXMwAvLrTBdZj1LqfDNe8uFh+1jHuh54SdvhfzoDyjxO/BJTEdKw80QPc+rKUjajmlI10n3Vm0EvFYuGSh8DoSjd/fb5PL6+r41gJMrt1yymPxjhs49uivUHaesLUlvmzZsrZ9EUo899ovVBE82uE90saqhIeS0WTzGqFs+zQToxjM9SaQBeU0q9DawDntZaPwd8E7hCKbUHuML8N1rrbcBjwHbgOeA2rbV1K/9J4GcYwft9wLPm+P1ArVJqL/AFzEyyQqDM65KUYiEt+1p7mVuX+g7TCLSPT1QAmm2UAfbyrhbKPE4+cuEc/uvvTmPTkU5+/Od9ALT25KdEi4X1I53vKsDRqGZ3cy+LzWB8Mi5dVM8nLpmX0tqdSMYcU9Fa7wfOSDDeBlyeZJ+7gLsSjG8AlicYHwBuGOsc80mZxymLH4WUhCJRDrf7uXJZ4n7qFlMqfbT2BIhENU4zhtIbSN+gy6Ihbq3LwobUP1ATgdaaV3a1cuH8OjwuB+85fRqPrD3M01uO8+nLF7C7uYcL59flbX6LzB/xncd7uGzR5DRb546jnf30BsIsMkUuGWVeF7dfs3iCZpUeWVGfI0olUC+k4Ui7P5a1k4qGKh9RbdzBWzR3D1BfkVl21JQka13yxZ6WXo529nPZ4sEf7DNnVrOnpZcTXQM0dwdYkuaHNJdUlbiZXl0Sq6mVL3aeMErbL0pjqdgNEZUcUe51EYpoguHCqrkkTBz7Wo3g9Nw0AdY5Zk91q31sJKo50TXA9OqSVLvFmGymJdtBVHoDYf7tic14nA7eFScqy6ZVEYlqntx0FCDW3TBfLJ5SkffOirtMURNREQBimSuFtAAyEtW2yHg5VdhvisS8utSWSswdY965NncPEI5qpk/KTFR8bifVpe6EJfQnms//ehNbjnbx/Q+cGXPLASybZojIb940lqwtnprfH9IlUyvZ19pLIJy/uOjOEz3MqCnJOHZmF0RUckSs/H2BuMDaegNc/b2/cMuD6/P6RTqV2NfaS125l6o09ebqK7zUlnlid65HzYV5mVoqAA0ViasdTySBcISXdrZwyztmc9WwONKMSaWUe13sbjauSV2OGnRlyuKpFYSjOq/96ned6GFRQ34ttrEgopIjrCBqIWSA9QcjfPShDRxq8/PnXa188bG3xWKZAPa39qV1fVksmlLBLtNSORqrZpx8QdxwGhKkJU80+1v7iEQ1p8+oHvGaw6FYarq8luTZSoG4DLA8ucA6/UH2tfayfLqIimBidX8shAywR9cfZtORTu69aQWf/5uF/HHzcbYetWer0mJiX2tvxmsLFk2pYHdzL9GoHqOl4h2xgDJTOv1B7vjtFrr6Q2Pa32J3sxl4TpKBttR0gaVLoZ0I5tSVUeJ2su1YV17e/5XdrUQ1XGKTNOHRIKKSIyz3VyH0qX9+2wkWNpRz9fKpXL3ccEsciFvhLIyfJzcd5Y7fbmbDwXZOdA3wned30eEPZfwDunhKBf2hCEc6/DR19FNb5ok14MqE2XVltPQE6PQHRz33p94+xq/WHeave0+Oet94dp3oweVQzEmyLmdQVPJ/d+50KJZOq2Tr0fyIyss7W6gt83BG40irzu4UVgSogKgpM/zkVnE8u9LpD7L+YAcff+dcAGbUGHe/R8xCdsL4CUWifP2POzjZG+BX6wZrqt5wdiP/cM6MFHsOYq0v2Xmih6Od/RkH6S3OnmW0NXrzcAfvWjy6Stwv7zQqLVmJBWNld3MPc+vL8LgS38teurCeixfUcfGC/K1Riee06VU8tuHIkPVBE0EkqnlldyuXLZ6cUW03uyGikiMaJ5WiFBxqs/eP88u7WohENVcsNX5oSj0u6sq9HLb5vAuJ1dubOdkb4Ps3nUlUa3oDYWbXlo1qgZ8lKrtO9HC0wz/qRYxnNFbjcig2HhqdqPQHI7y+rw2A/SfHZ73uau5hxYxJSV+fXOnjFx89b1zvkU2WT6/iwdcPcuBkL/MnT5xLbtORDjr8oSEp14WEiEqO8LmdTKsq4aDN3UirtzczucI7xMyeWVPCYbFUssYv1x5ienUJ1542dcx3vGVeF3Pqynht70lj4eAoV3qXeJwsm1bJhoMdo9rvjf1tBMJRSj1O9reO/bPcFzCakP3DyswsMztw2vQqADY3dU2oqDy/rRmXQ3Hx/MKLp4DEVHLKrNpSW4tKIBzhlV2tXL6kYYiZPau2TEQlSxxu8/PXvW3cdO6McbtQPnj+LNYdaGcgFB21+wvgrFmTeLupM1a4MRNe3tVCidvJu0+byv7W3jFnBe4xU3PtUCYmU+bVl+FzO9gygXGVUCTKb988ymWLJ6dNNbcrIio5ZHZdma3dX6/va6MvGOHKpUPdITNqSjne1S/VALLAn7afAOB9K6an2TI9/3jezFjG12gyvyxWzqphIBRl+7HMMvu01ry0s4UL59fGeqG3940+0A+Dq8MLSVRcTgfLplVNaLD+lV2tnOwNcMPZjek3tikiKjlkdm0p7X3Bcadi5orV25sp9Ti5YN7QZpoza0qJ6sFFdsLY+dP2ZhZPqWBGks59o8HndvKvVy1CqbH9OFvB+o2HMnOB7Wvtpamjn0sXTY6tpxlrXGXtgXZqyjxJOxjalbNnTWLDoQ5ufXjDhKzzeXzjEerKPUPqohUaIio5ZJZZs+mQDV1g0ajmhe3NXLKwHt+wlrTWF3+iXWAv7mjm6c3HJ/Q9c0lHX5ANB9tjSRDZ4P1nTmfjV65gdppy+YmYUuWjvsLLtgwtlZd3tgJw2eLJsVIyY8kA01rz+t42LphXW3DZTJ+5fAGfvmw+f97Vyg9e2pvT9+oNhHlpZwvvXzEdt7Nwf5olUJ9DrHz8g21+TrdZvvnmo1209AQS/uDlQ1SiUc1Xfr+VDn+Qc+ZMYnKFL/1ONuflXS1ENfxNklbBY6WmbOy9RpZMrWTH8QxFZVcLixoqmF5dQiSq8TgdYwrW7z/Zx4nuAS6cZ49U4dFQ7nXxhSsXsfVYN6+Nc51OOtYfbCcU0QVtpYBYKjnF+nE+OM5UzGzwx83Hhpjvq7efwOlQCdMWJ1d48bgc416r4g+GMw7svnWkk+NdAwyEovzw5X3jet+JJtk5vrijhckV3lgWkR1YMrWCvS29aYP1PQMh1h9s59LFRgaS06GYVVs6plpYVkryhfNr02xpXy6aX8eBk300deTuRmvNvjY8TkfMTVmoiKjkEJ/bydQqX94zwFp6BvjUI2/x38/siI2t3t7MObMnUV068q7X4VDMrCkdlxg2dw9w8bde5q6nd6TfGHhmy3E8TgfvPm0qj6w9zPGuwojnRKOam376Bv/x5NYh41pr1h5o46L5dbZy+SydWkkwEo2V0U/Gs1tOEIpo3hWXunzBvFpe3tXCugPto3rP1/eeZHp1ScHFU+KxFmS+tid31sqafW2smFk9wh1daIio5JjZtWUcyLOlsulwJwDPbDlBW2+AQ2197G7u5YqlyTsOLptWyZuHO8ecQnrnk9to6wvy0JqDae/uolHNs1uO886Fddx+zWJC0Si/Wnt4TO870Ty95Thv7G/n4TWH2Hho8Mf2UJufk71Bzp5tr7tOq09JKhfYQCjC917YzemNVZwzuyY2/m9XL2ZmTSmf+dVbGZd7iUY1a/a38Y55tXnrOZ8N5k8up6HSy6s5coF19YfYdqyLC+YWrjVnIaKSY86aVc3mpq68lmvZdKQTh4JgJMpjG5pYvb0ZYEQqcTzvmFfLyd5Axu6OTn8wlqq6enszz207wT+9YzYKxX/+YTvffHYnD71+MGEm3Bv72zjWNcA1y6cyo6aUSxbW89iGJsKjWE+RD8KRKPe8sJsF5g/O1/6wnWjUEOENZobVylk1qQ4x4cytM8qkpKq++4s1hzjWNcDtVy8eYmWVe138z6ozOdE9wBMbmzJ6v+3Hu+n0h/LaHjgbKKW4aH49f917koFQ9uv5rTvQTlQzIhOzEBFRyTHXnTGdSFTzzJb8ZTW93dTJ0mmVnD+3hp+9up8HXz+YNs31grnGj8Ca/W0ZvcedT23juh+8xtajXfzXMztYMLmc//PuJXzgvJms3t7MT1/dz51PbeOib7405C45EtV8/ekdTKvyce1pUwFYdc5MTnQP8Mru1nGcdW7ZerSLWx5cz/7WPr545SL+9arFvN3UxZ9Mwd54qJ1Kn4sFkzOrQjxRuJwOFjaUJ7VU3jrcwXdX7+KShfW8I4EQnDGjmiVTK3l264mM3s8qQvmOIvixvHFlI53+EPe+uGfI+ImuAR5Ze5hIdOztIl7a2YzP7eDMmfZK6BkLIio5ZtGUChZPqeDJTcfy8v7RqGbzkS5WzKjmy9cuobGmlJbuAH9/VurFVTNqSpheXcKafelF5WRvgGe2HCdsxhcOnOzjjmsX43Y6uP2axfzyY+ex+c4reepTF1LicfLJ/91I94BhsTyy9hA7jnfzlfcsjVXdvXzJZOrKvdz/2gFbWitH2v3c+JM1bD3axVfevYSrljXw/hXTmFFTwk/+sg+tNRsOdnDWrEm2iqdYLJlilGtZdd8aXtrZHBs/1NbHRx5cT0Olj+/ccEbS/d992hQ2HurIKO71+r425k8uZ3Jl4WfznTe3lhvObuS+v+zn9X0n0VpzuM3P9T9+nS//bgt/3Dy273iXP8Tv3zrGdWdMw+sq7HgKiKhMCNetmMbGQx15qfy7r7WXnkCYMxqrOb2xmidvu5CdX7+afzarEidDKcX5c2t5Y39bzKWTjMc3NBGKaD512Xx6BsKcP7cmVpvK53Zy4fw6yrwuTm+s5gcfOIsjHf3c+eQ2egNh7nlhDxfMreWa5YPxHbfTwWcvn8/r+9q47ZE3bdWJUmvNl3+3BQX84dMX8bGL56KUwuV08M8Xz+Wtw508vqGJPS29rLRpFs+1p09lVm0p2491xzLtolHNvz6+mUhU89At51JfkbzzomVRPrsltbUSDEdZd6CdC4vASrH48rVLqC338IGfruWcu17gku+8TG8gzMyaUn748r6035V4wpEovYEwj288Qn8owocvmJ27iU8gIioTwHVnTMPpUNz/2oEJf++3jhhB+nizOtO75wvm1dLhD/HIusNJA/aRqOaRdYc4b04NX7xyId++/nS+e+OKpEHZc+fU8C+XzuN3bx3lc4++RXtfkH+/ZvGI7T90wWzufO9Snt/WzN2rd2c034ngyU3HeHXPSW6/ZvGIzos3nD2DmjIP//abzQBcYNN1GZctmsxzn3snH79kHhsOdXC0s59frj3EuoPtfOU9S9MurJxbX87iKRU8uv5wymoRm4500h+KJHSjFSqTyjys/sIlfOP9y3nnwno+864F/O5fLuQLVyxkV3MPL+xoTn8QjLp7tzy4nhX/+SfuXr2blbMmsdxGqefjQURlAmicVMqNKxv55dpDE15S/u0jnVT4XMytG71v/5rlUzhvTg1f+f1W/u2JzQmF5clNRznS3s/N75iNUoobV85IW5fqXy6dz/TqEl7Y0cIVSxtYkaC9LMAtF87hxpWN3P/qAXaeyH8nymA4ynf+tIvl0yv5x/NmjXi9xOPk/ptX8t0bzmD1599p+/UG7zndsDjuWb2b/3pmJxcvqMu45tSXrlzEgZN9/MNP1iRNT355VwsOBefPKR5LBaDS5+aD58/i7htX8PkrFjKnroz3mNbft5/fldayjkQ1n//1Jl7dc5LrVkxjVm0Zn/2bBRM0+9wjojJBfPbyhTgdiu+u3jWh77vpSCdnNFaPybdf5nXxyD+fz22XzePxjU187Y/b+dfH3+bvfvhX/v0Jo4vh3at3s3x6JVcvS56ePJwSj5Nv/O1yplX5+NKVi1Jue8c1S6gscfN/f791zOnN2eJX6w7T1NHPv161OOn1PHPmJP7+7EYWFEDhxFm1ZZwxo5onNjZR4XPx3RvOyDjt92+WNvDAP51DU0c/V97zF+7+09DPdSgS5YmNTbyrgKvtjgaX08FXr1vG3pbelIt3o1HN7b/ZzDNbTvCVdy/h7htX8OxnL+biBYVZ5j4RIioTxJQqHx+5cA5Pbjo2YVVP+4MRdp7oSWoJZILTofjSlYu4cWUjP//rQZ56+xguh4Nnth7n+h+voamjn39L8SObjMsWTeavt7+LRWna6U4q8/D5v1nA+oMdsTTdbLK3pXfI+pJk7DzRzfde2M15c2p4p006E2aDm86Zgdfl4EcfPGvUwfSLF9Tz8pcu5aplDdz70t4hi2Vf2tlCa0+AVefMzPaUbctliybz/hXT+OGf9/KzV/ePqFqgteZrf9zO4xub+MzlC/jYxanjmoWK1P6aQD5+yTweWXeYbz23c0I63G071kUkqjljHKICRtD+G+8/jXPn1HLxgjoaKn30DIT4ySv76Q9Fxtz+NdO74uvPnsHdq3dz31/2D1mMN152nejhhh+/Tl8wwg9uOpNrzAD0cN463ME//Xw9PreD//q70wp6Ed9wVp07k+tWTKPUM7afgvoKL3e+dxl/2tbMI+sO8+VrlwCGVddQ6eXSRcVzB54JX71uGR3+EN94egePb2jiK+9ZwoLJFfSHIjy67jAPvn6Qj100h88XkbtrOCIqE0hViZtPXTafbzy9g7tX7+aWd8xm0jiKA6ZjkxmkH4+lYuFxObg+zt9e4XPzpatSu66yRYnHyYfOn8X3X97L3paecXfhe2JjE394+xhbjnbhczuZW1/Op3/1Fj9yOjijsYpvPL2D6lI358+tJRLV/PtvNlNX7uWXHzsvKyXs7cZYBcWiodLHlcsaeGzDEb5wxUIeXnOQP+9q5bOXL8BVwNV2x0J1qYcHbzmHP21v5mt/2M6H7l835PWbzp3J/3n3kqK6MRmOyrefOtusXLlSb9iwId/TSMpAKMKnHnmTF3a0MK3Kx0tfujRntX5ue+RNNh3u5K+3vysnx59IWnsCvOs7f6a6zM2PP3g2fYEIj204wpF2P/fedCYNGbpuXt93kn/82Vpm1ZQyq7aMO65dzLTqEj70s7XsON7D5EovrT0BHErRb66cXjC5nP/92HkZv8epyOt7T/KBn62l3OuiNxDmPadP5e4bV+BxnVqiEk9/MMKftp/AH4zgdTmYXl3CObNrbLl2CUAptVFrvXLcxxFRyQ8vbG/mYw9v4NvXn86No+jb/fo+o0zEpQsnp/1wXvjNl1gxs5r/7wNnjXe6tuDtI53c/PN1dPqNNNZSc7FkQ6WP+29eydz65Blue1t6eWlnMz999QCVPhdPfeoiyryDd+hd/hAf+NkbHGrz8+At57B8ehV7mntp7R1g5ewaKn3FH2weD1prHvjrQY60+5leXcJHLpoz7vbJwsQiopKEQhEVrTVXf+9VHA7FM5+5KK05HAhH+M8/bOcRs9DigsnlfG/VCpZNG5nbHo5E+d4Le/jBy3v5j/cs5SMXzcnJOeSDgyf7eGV3K1OqfJw/t5a9LT3c/MB6+oJhLls0mQ9dMItLFtTHBDccifLo+iN87Q/bCUaizK0r44cfPIvFUypHHHsgFKEvEKa2PPnCP0EoVk4pUVFKXQ38D+AEfqa1/maybQtFVMAIZt7x2y08/JFzeefC5AFNrTVfeOxtfvfWUT5+yVyWTq3km8/upGcgzP+sWsHlZhOosFkw8mev7mf/yT5uXNnI1963vOBLaaejuXuAX649zCNrD3OyN8Cs2lKuWNLAruYe3jzUQV8wwjsX1vPtvz+dKVXiwhKERJwyoqKUcgK7gSuAJmA9cJPWenui7QtJVPqDEa645xXaeoP85/uWceH8OqZW+nA4VGxNRntfkB+/so+fvnqAL16xkE9fbmSNHO/q55afr2fniR4uXVTP2TMn8ezWE2w/3s3pjVXcdtl8rhrF2pFiIBiO8ty2E/xizUE2HOpgUUMF58yu4YJ5tVy9bIptfdmCYAdOJVG5APiq1voq8993AGit/zvR9oUkKmA00Pr4LzbyltnzxOd2UFvmpaVngLBZR0hruP7sRv7f9acPcZMNhCI8+PpBfvbqfk72BmmoNNI7r1k+paizSzIhFIkWdJ9vQZhosiUqhZBSPB04EvfvJiD3izwmiMkVPh77+AVsPNTB/tY+9rf20tYXpKHSh8epcDocXLW8IWEMwOd28olL5vGJS+YxEIrgcqhTLoUzGSIogpAfCkFUEt1yDzGvlFK3ArcCzJxZeCt43U4H58+t5fxxdH0r9riJIAiFQSHczjUB8Tm3jcCQxgVa6/u01iu11ivr60+tFbyCIAh2ohBEZT2wQCk1RynlAVYBT+V5ToIgCEICbO/+0lqHlVKfAp7HSCl+QGu9Lc/TEgRBEBJge1EB0Fo/AzyT73kIgiAIqSkE95cgCIJQIIioCIIgCFlDREUQBEHIGiIqgiAIQtawfZmW0aKU6gHG0gi+DjiZxalUAdnsG2z349n5+sm1K+7jnUrXL9tzs6gDyrTW41/op7Uuqj9gw0Tul+J4951ix7Pt9ZNrV/THO2WuX7bnlotrKO6v3PGHU+x42Sab85NrV9zHyzZ2Pl+7X7uidH9t0GOotDnW/QQDuX5jR67d+JDrN36yeQ2L0VK5b4L3Ewzk+o0duXbjQ+bSkiUAAAURSURBVK7f+MnaNSw6S0UQBEHIH8VoqQiCIAh5omhFRSk1Qyn1slJqh1Jqm1Lqs+Z4jVJqtVJqj/k4yRy/Qim1USm1xXx8V9yxzjbH9yql7lWnQFvFLF+/u5RSR5RSvfk6n4kkW9dOKVWqlHpaKbXTPM4383leE0WWP3vPKaXeNo/zY7M9edGTzWsYd8ynlFJb0755LtLT7PAHTAXOMp9XYPS5Xwp8G7jdHL8d+Jb5/Exgmvl8OXA07ljrgAswGoY9C1yT7/MrsOt3vnm83nyfVyFdO6AUuMx87gFelc/eqD97leajAn4DrMr3+RXaNTTH/g54BNia9r3zffITeJGfBK7AWBg5Ne7C70qwrQLaAK+5zc64124CfpLv8ymU6zds/JQQlVxcO/O1/wH+Od/nU4jXD3BjpOP+Q77Pp9CuIVAOvGaKUlpRKVr3VzxKqdkYSrwWaNBaHwcwHycn2OXvgbe01gFgOkb3SYsmc+yUYZzX75QmW9dOKVUNvBd4MZfztRvZuH5KqeeBFqAHeCLHU7YdWbiGXwe+C/gzeb+iFxWlVDmG2fs5rXV3BtsvA74FfNwaSrDZKZMyl4Xrd8qSrWunlHIBvwLu1Vrvz8Vc7Ui2rp/W+iqMu3IvMCJWUMyM9xoqpVYA87XWv8v0PYtaVJRSbowL+kut9W/N4Wal1FTz9akYdzDW9o3A74APa633mcNNQGPcYRuBY7meux3I0vU7JcnytbsP2KO1/l7uZ24Psv3Z01oPYLQhf1+u524XsnQNLwDOVkodxHCBLVRK/TnV+xatqJgZWvcDO7TWd8e99BRws/n8Zgxfo+VeeBq4Q2v9V2tj00TsUUqdbx7zw9Y+xUy2rt+pSDavnVLqGxhFBD+X63nbhWxdP6VUedwPqAu4FtiZ+zPIP1n8/fuR1nqa1no2cBGwW2t9aco3z3cAKYeBqYsw3FSbgU3m37VALYZfeo/5WGNu/xWgL27bTcBk87WVwFZgH/ADzEWjxfyX5ev3bQyLL2o+fjXf51cI1w7DKtbAjrjxj+X7/Aro+jUA683jbAO+D7jyfX6FdA2HHXM2GQTqZUW9IAiCkDWK1v0lCIIgTDwiKoIgCELWEFERBEEQsoaIiiAIgpA1RFQEQRCErCGiIggTjFLqE0qpD49i+9kZVYcVBBvgyvcEBOFUQinl0lr/ON/zEIRcIaIiCKPELND3HEaBvjMxyop/GFgC3I1R1fUk8E9a6+NmWYvXgQuBp5RSFRgVm79j1lb6MUaZ+33AR7TWHUqps4EHMIr4vTZxZycI40PcX4IwNhYB92mtTwe6gdswVmxfr7W2BOGuuO2rtdaXaK2/O+w4DwP/bh5nC3CnOf5z4DNa6wtyeRKCkG3EUhGEsXFED9ZI+l/gyxjNjVYbZZdwAsfjtv/18AMopaowxOYVc+gh4PEE478Arsn+KQhC9hFREYSxMby+UQ+wLYVl0TeKY6sExxeEgkDcX4IwNmYqpSwBuQl4A6i3xpRSbrM3RVK01l1Ah1LqYnPoQ8ArWutOoEspdZE5/o/Zn74g5AaxVARhbOwAblZK/QSj4uv3geeBe033lQv4HkZ13FTcDPxYKVUK7AduMcdvAR5QSvnN4wpCQSBVigVhlJjZX3/UWi/P81QEwXaI+0sQBEHIGmKpCIIgCFlDLBVBEAQha4ioCIIgCFlDREUQBEHIGiIqgiAIQtYQUREEQRCyhoiKIAiCkDX+f3VsauotQQXjAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sorted_data['inc'][-200:].plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Etude de l'incidence annuelle"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Etant donné que le pic de l'épidémie se situe en hiver, à cheval\n",
+ "entre deux années civiles, nous définissons la période de référence\n",
+ "entre deux minima de l'incidence, du 1er août de l'année $N$ au\n",
+ "1er août de l'année $N+1$.\n",
+ "\n",
+ "Notre tâche est un peu compliquée par le fait que l'année ne comporte\n",
+ "pas un nombre entier de semaines. Nous modifions donc un peu nos périodes\n",
+ "de référence: à la place du 1er août de chaque année, nous utilisons le\n",
+ "premier jour de la semaine qui contient le 1er août.\n",
+ "\n",
+ "Comme l'incidence de syndrome grippal est très faible en été, cette\n",
+ "modification ne risque pas de fausser nos conclusions.\n",
+ "\n",
+ "Encore un petit détail: les données commencent an octobre 1984, ce qui\n",
+ "rend la première année incomplète. Nous commençons donc l'analyse en 1985."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n",
+ " for y in range(1985,\n",
+ " sorted_data.index[-1].year)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "En partant de cette liste des semaines qui contiennent un 1er août, nous obtenons nos intervalles d'environ un an comme les périodes entre deux semaines adjacentes dans cette liste. Nous calculons les sommes des incidences hebdomadaires pour toutes ces périodes.\n",
+ "\n",
+ "Nous vérifions également que ces périodes contiennent entre 51 et 52 semaines, pour nous protéger contre des éventuelles erreurs dans notre code."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "year = []\n",
+ "yearly_incidence = []\n",
+ "for week1, week2 in zip(first_august_week[:-1],\n",
+ " first_august_week[1:]):\n",
+ " one_year = sorted_data['inc'][week1:week2-1]\n",
+ " assert abs(len(one_year)-52) < 2\n",
+ " yearly_incidence.append(one_year.sum())\n",
+ " year.append(week2.year)\n",
+ "yearly_incidence = pd.Series(data=yearly_incidence, index=year)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Voici les incidences annuelles."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAD8CAYAAABQFVIjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAG2JJREFUeJzt3X2Q1dWd5/H3BxubjEEFBMOD2myFZaLJro5daMp9ELMCmUmJ2TFZRjdSNVbhGFPlrFOrUGHLbGR2ZGsrzrBWHK1oxsQHdDOxZMcgQYSKM8sCzaqjaJjGDYOMxG4WFEwVPWn57h/3tN6+dje3u899/ryqbt17zz3n3MPh3vvt8/D7/RQRmJmZjdeEWjfAzMyagwOKmZll4YBiZmZZOKCYmVkWDihmZpaFA4qZmWXhgGJmZlk4oJiZWRYOKGZmlkVbrRtQTeecc050dHTUuhlmZg1l9+7dhyNi+qnytVRA6ejooKurq9bNMDNrKJL+vpx8nvIyM7MsHFDMzCwLBxQzM8vCAcXMzLJwQDEzsywcUOpEz7ETfPWB7fQcP1HrppiZjYkDSp1Yt6WbXfuPsO757lo3xcxsTFrqOJR6NH/1Rvr6T374/NEdB3h0xwHa2yawd80Xa9gyM7PR8Qilxl68YyHXXDyLSRML/xWTJk5g6cWzePHOhTVumZnZ6Dig1NiMMycxub2Nvv6TtLdNoK//JJPb25gxeVKtm2ZmNiqe8qoDh9/v44bLLuD6Befz+M4D9Hph3swakCKi1m2oms7OzvC5vMzMRkfS7ojoPFU+T3mZmVkWDihmZpaFA4qZmWXhgNJAfDS9mdUzB5QG4qPpzayeedtwA/DR9GbWCDxCaQA+mt7MGoEDSgPw0fRm1ggcUMpQD4vhA0fTP/31K7jhsgvofb+vZm0xMxuKj5Qvw+qnX+WxnQe4YcH5rPny5yrQMjOz+lXukfJelB+BF8PNzMrnKa8ReDHczKx8ZQUUSfslvSrpZUldKW2qpM2SutP9lKL8qyTtk7RX0uKi9EtTPfskrZOklN4u6cmUvkNSR1GZ5ek9uiUtL0qfm/J2p7Knj787BvNiuJlZ+UYzQlkYERcXzaOtBLZExDxgS3qOpAuBZcBFwBLgu5JOS2XuB1YA89JtSUq/CTgaEZ8G7gXWprqmAncBlwELgLuKAtda4N70/kdTHdl5MdzMrDxlLcpL2g90RsThorS9wJURcUjSTGBbRMyXtAogIv4k5dsEfAvYD2yNiN9M6b+Xyt88kCcitktqA34JTKcQmK6MiJtTmQeAbcB6oBf4VET0S/p8Kv/haGgoPn29mdno5T59fQA/lbRb0oqUdm5EHAJI9zNS+mzgraKyB1Pa7PS4NH1QmYjoB94Dpo1Q1zTg3ZS3tC4zM6uBcnd5XRERb0uaAWyW9PMR8mqItBghfSxlRqprcGMKAXAFwPnnnz9UFjMzy6CsEUpEvJ3ue4CnKaxnvJOmukj3PSn7QeC8ouJzgLdT+pwh0geVSVNeZwFHRqjrMHB2yltaV2nbH4yIzojonD59ejn/XDMzG4NTBhRJZ0iaPPAYWAS8BmwABnZdLQeeSY83AMvSzq25FBbfd6ZpseOSLk+7u24sKTNQ13XAC1FY3NkELJI0JS3GLwI2pde2pryl729mZjVQzpTXucDTaYdvG/B4RDwnaRfwlKSbgAPAVwAiYo+kp4DXgX7g1oj4INV1C/AXwCeAjekG8BDwQ0n7KIxMlqW6jki6G9iV8n07Io6kx3cC6yWtAV5KdZiZWY341CtmZjai3Lu8zMzMRuSAYmZmWTigmJlZFg4oZmaWhQOKmZll4YBiZmZZOKCYmVkWDihmZpaFA4qZmWXhgGJmZlk4oJiZWRYOKGZmloUDipmZZeGAYmZmWTigmJlZFg4oZmaWhQOKmZll4YBiZmZZOKCYmVkWDihmZpaFA4qZmWXhgGJmZlk4oJiZWRYOKGZmloUDipmZZeGAYmZmWTigmFlD6Tl2gq8+sJ2e4ydq3RQr4YBiZg1l3ZZudu0/wrrnu2vdFCvRVusGmJmVY/7qjfT1n/zw+aM7DvDojgO0t01g75ov1rBlNsAjFDPLppLTUS/esZBrLp7FpImFn61JEyew9OJZvHjnwuzvZWPjgGJm2VRyOmrGmZOY3N5GX/9J2tsm0Nd/ksntbcyYPCn7e9nYeMrLzMatWtNRh9/v44bLLuD6Befz+M4D9Hphvq4oImrdhqrp7OyMrq6uWjfDrOn0HDvBmp+8wU/3/JITvz7JpIkTWHzRp/jm73zGI4gmIGl3RHSeKl/ZU16STpP0kqS/Ss+nStosqTvdTynKu0rSPkl7JS0uSr9U0qvptXWSlNLbJT2Z0ndI6igqszy9R7ek5UXpc1Pe7lT29HL/LWaWl6ejDEa3hnIb8EbR85XAloiYB2xJz5F0IbAMuAhYAnxX0mmpzP3ACmBeui1J6TcBRyPi08C9wNpU11TgLuAyYAFwV1HgWgvcm97/aKrDzGpkYDrq6a9fwQ2XXUDv+321bpJVWVlTXpLmAI8AfwzcHhFfkrQXuDIiDkmaCWyLiPmSVgFExJ+kspuAbwH7ga0R8Zsp/fdS+ZsH8kTEdkltwC+B6RQC05URcXMq8wCwDVgP9AKfioh+SZ9P5T8cDQ3FU15mZqOXe8rrT4E7gJNFaedGxCGAdD8jpc8G3irKdzClzU6PS9MHlYmIfuA9YNoIdU0D3k15S+syM7MaOGVAkfQloCcidpdZp4ZIixHSx1JmpLoGN0ZaIalLUldvb+9QWaxJ+RQdZtVVzgjlCuAaSfspTDVdJelR4J001UW670n5DwLnFZWfA7yd0ucMkT6oTJryOgs4MkJdh4GzU97SugaJiAcjojMiOqdPn17GP9eahU/RYVZdpwwoEbEqIuZERAeFNY0XIuLfAxuAgV1Xy4Fn0uMNwLK0c2suhcX3nWla7Liky9PurhtLygzUdV16jwA2AYskTUmL8YuATem1rSlv6ftbi5u/eiMdK5/l0R0HiCgcE9Gx8lnmr95Y66aZNbXxHCl/D3C1pG7g6vSciNgDPAW8DjwH3BoRH6QytwDfA/YBbwID3/CHgGmS9gG3k3aMRcQR4G5gV7p9O6UB3AncnspMS3WY+RQdZjUyqiPlI2IbhV1WRMT/A74wTL4/prAjrDS9C/jsEOkngK8MU9fDwMNDpP9fCluJzQYp95iInmMn+MYTL3Hf9ZfU/fESjdRWa10+l5c1pXKOiWikNZZGaqu1Lp96xVpO6XmnBtTjadAbqa3WvLKfesWsWTTSGksjtdXMAcVaTiOdd6qR2mrm09dbS2qk06A3UluttXkNxczMRuQ1FDOzYfi0PJXhgGJmLcfbsCvDayhWl3wgn1VCtS5V3Ko8QrG65L8grRK8DbuyPEKxutKKf0F6NFY93oZdWR6hWE0Mtyjain9BejRWXb5UceV4hGKjluMv6uIf0TVf/tyH6a30F2QrjsbqwQNf+2j365prP3auWhsHBxQbteGCQTnK+RFtlQP5XrxjIWt+8gY/3fNLTvz6JJMmTmDxRZ/im7/zmVo3zWxMHFCsbDn+oi7nR7RV/oJspdGYtQavoVjZcqxv+Ed0sEaaz/fBgHYqHqFY2XIFg1aZ0ipHI43GxjPVaa3B5/KyUbn5h11MnzxpUDAo/lG05uNrsli55/JyQDGzEfUcOzHsulerTlW2Gp8c0syy8LqXlctrKGZ2Sl73snJ4ysvMzEbkKS8zM6sqBxQzM8vCAcXMzLJwQDEzsywcUMzMLAsHFDMzy8IBxWwcfMJEs484oJiNg6+2aPYRHylvNga+2qLZx3mEYjYGOa4NY9ZsHFCsIdV67cInTDT7uFMGFEmTJO2U9IqkPZL+c0qfKmmzpO50P6WozCpJ+yTtlbS4KP1SSa+m19ZJUkpvl/RkSt8hqaOozPL0Ht2Slhelz015u1PZ0/N0iTWCeli7aKSrLZpVwylPDpl+9M+IiPclTQT+GrgN+LfAkYi4R9JKYEpE3CnpQuAJYAEwC3ge+KcR8YGknans/wZ+AqyLiI2Svg78s4j4A0nLgC9HxL+TNBXoAjqBAHYDl0bEUUlPAT+OiPWS/hx4JSLuH+nf4pNDNj5f7Mms+rKdHDIK3k9PJ6ZbAEuBR1L6I8C16fFSYH1E9EXEL4B9wAJJM4EzI2J7FKLYD0rKDNT1I+ALKZAtBjZHxJGIOApsBpak165KeUvf35qY1y4qp9bTiNb4ylpDkXSapJeBHgo/8DuAcyPiEEC6n5GyzwbeKip+MKXNTo9L0weViYh+4D1g2gh1TQPeTXlL6ypt+wpJXZK6ent7y/nnWh3z2kXl1MM0ojW2srYNR8QHwMWSzgaelvTZEbJrqCpGSB9LmZHqGpwY8SDwIBSmvIbKY43FF3vKy1ugLZdRHYcSEe9K2gYsAd6RNDMiDqXprJ6U7SBwXlGxOcDbKX3OEOnFZQ5KagPOAo6k9CtLymwDDgNnS2pLo5TiuqzJPfC1j6Zy11w70t82Vo4X71g47DXjzUajnF1e09PIBEmfAP4N8HNgAzCw62o58Ex6vAFYlnZuzQXmATvTtNhxSZenNZAbS8oM1HUd8EJaZ9kELJI0Je0iWwRsSq9tTXlL39/MRqGa04iNtE7TSG2tF+WsocwEtkr6W2AXhTWUvwLuAa6W1A1cnZ4TEXuAp4DXgeeAW9OUGcAtwPcoLNS/CWxM6Q8B0yTtA24HVqa6jgB3p/fdBXw7pQHcCdyeykxLddSEP3jW6Kq1BbqR1mkaqa31wteUz2D106/y2M4D3LDgfNZ8+XPZ6zdrdI203buR2lot5W4bdkAZB3/wzMrTc+zEsOs09bZDr5HaWi3ZjkOx4Y3mmAhPi1mt1fIz2EjbvRuprfXGAWUcRvPB83ys1VqtP4ONdKqaRmprPfGU1zjd/MMupk+eNOiYiOJtrZ4Ws1rzZ9DGy2soQ6jFubwabT6259gJvvHES9x3/SV12T4bvUb7DDaTZvk+eQ2lTjTafGytp0Usv0b7DDaTVvs++YqNVdAIpwrx6TeaWyN8BptJq36fPOVlgKdFzHJqtu+Tp7xsVDwtYpZPq36fHFBazEjHInirpFk+rfh98pRXi/FpYsxstMqd8vKifIto1UXC8WqWbZ9m1eAprxbhS+eOTatt+zQbD49QWkSrLhKOlUd0ZqPnEUoLacVFwrHyiM5s9DxCaSG+dG75PKIzGz0HFLNh+Ohys9HxtmEzMxuRj5Q3M7OqckAxM7MsHFDMmoAvMV197vOPc0AxawI+ALP63Ocf50V5swbmy/tWXyv2uRflzVqAD8Csvpx93mzTZg4oZhVWyR8NH4BZfTn7vNmmzXxgo1mFFf9oVOKSAT4As/rG2+fNeq44r6GYVUgrzrXn0AqXDGi0SwR7DcWsxry+MTbNNg00lGadqvSUl1mFNOuPRqU06zTQcJpxqtIBxayCmvFHo1JevGPhsNNAzagZz/7tgGJWQc34o1EpHtE1Pq+hmFnd8EXg8qvmsS7e5WVm1sRWP/0qj+08wA0Lzh/ztvVsu7wknSdpq6Q3JO2RdFtKnypps6TudD+lqMwqSfsk7ZW0uCj9UkmvptfWSVJKb5f0ZErfIamjqMzy9B7dkpYXpc9NebtT2dPL7Rwzs0YwntHF/NUb6Vj5LI/uOEBEYZNDx8pnmb96YwVaWlDOlFc/8EcR8RngcuBWSRcCK4EtETEP2JKek15bBlwELAG+K+m0VNf9wApgXrotSek3AUcj4tPAvcDaVNdU4C7gMmABcFdR4FoL3Jve/2iqw8ysaYxnC3Uttq2fclE+Ig4Bh9Lj45LeAGYDS4ErU7ZHgG3AnSl9fUT0Ab+QtA9YIGk/cGZEbAeQ9APgWmBjKvOtVNePgPvS6GUxsDkijqQym4ElktYDVwHXF73/tygELDOzhpZjC3UtNjmMalE+TUVdAuwAzk3BZiDozEjZZgNvFRU7mNJmp8el6YPKREQ/8B4wbYS6pgHvpryldZW2eYWkLkldvb29o/nnmpnVRK7RRbU3OZS9bVjSJ4G/BP4wIo6l5Y8hsw6RFiOkj6XMSHUNTox4EHgQCovyQ+UxM6snuUYX1d62XtYIRdJECsHksYj4cUp+R9LM9PpMoCelHwTOKyo+B3g7pc8ZIn1QGUltwFnAkRHqOgycnfKW1mVm1vAacQv1KUcoaS3jIeCNiPhO0UsbgOXAPen+maL0xyV9B5hFYfF9Z0R8IOm4pMspTJndCPz3krq2A9cBL0RESNoE/JeihfhFwKr02taUd33J+5uZNbxGPCi2nBHKFcDXgKskvZxuv00hkFwtqRu4Oj0nIvYATwGvA88Bt0bEB6muW4DvAfuANyksyEMhYE1LC/i3k3aMpcX4u4Fd6fbtgQV6ChsAbk9lpqU6rA4020WDzKw8PrDRsstxIJWZ1Y9yD2z0ubwsm1Y7W6yZDeZzeVk2vv6HWWtzQLFsfLZYs9bmKS/Lytf/MGtdXpQ3M7MR+ZryZmZWVQ4oTcTHf5hZLTmgNJHxnOrazGy8vCjfBHz8h9lgPcdO8I0nXuK+6y/xLsMq8gilCfj4D7PBPFqvDY9QmoCP/zAr8Gi9tjxCaRKNeKprs9w8Wq8tj1CaRCOe6tosN4/Wa8sBxcyais/WUDs+Ut7MzEbkI+XNzKyqHFDMzCwLBxQzM8vCAcXMzLJwQDEzsywcUMzMLAsHFDMzy8IBxczMsnBAMTOzLBxQzMwsCwcUMzPLwgHFzMyycEAxM7MsHFDMzCwLBxQzM8vCAcXMzLJwQDEzsywcUMzMLItTBhRJD0vqkfRaUdpUSZsldaf7KUWvrZK0T9JeSYuL0i+V9Gp6bZ0kpfR2SU+m9B2SOorKLE/v0S1peVH63JS3O5U9ffxdYWZm41HOCOUvgCUlaSuBLRExD9iSniPpQmAZcFEq811Jp6Uy9wMrgHnpNlDnTcDRiPg0cC+wNtU1FbgLuAxYANxVFLjWAvem9z+a6jAzsxo6ZUCJiJ8BR0qSlwKPpMePANcWpa+PiL6I+AWwD1ggaSZwZkRsj4gAflBSZqCuHwFfSKOXxcDmiDgSEUeBzcCS9NpVKW/p+5uZWY2MdQ3l3Ig4BJDuZ6T02cBbRfkOprTZ6XFp+qAyEdEPvAdMG6GuacC7KW9pXR8jaYWkLkldvb29o/xnmplZuXIvymuItBghfSxlRqrr4y9EPBgRnRHROX369OGymZnZOI01oLyTprFI9z0p/SBwXlG+OcDbKX3OEOmDykhqA86iMMU2XF2HgbNT3tK6zMysRsYaUDYAA7uulgPPFKUvSzu35lJYfN+ZpsWOS7o8rYHcWFJmoK7rgBfSOssmYJGkKWkxfhGwKb22NeUtfX8zM6uRtlNlkPQEcCVwjqSDFHZe3QM8Jekm4ADwFYCI2CPpKeB1oB+4NSI+SFXdQmHH2CeAjekG8BDwQ0n7KIxMlqW6jki6G9iV8n07IgY2B9wJrJe0Bngp1WFmZjWkwh/8raGzszO6urpq3Qwzs4YiaXdEdJ4qn4+UNzOzLBxQzMwsCwcUM7MG1nPsBF99YDs9x0/UuikOKGZmjWzdlm527T/Cuue7a92UU+/yMjOz+jN/9Ub6+k9++PzRHQd4dMcB2tsmsHfNF2vSJo9QzMwa0It3LOSai2cxaWLhZ3zSxAksvXgWL965sGZtckAxM2tAM86cxOT2Nvr6T9LeNoG+/pNMbm9jxuRJNWuTp7zMzBrU4ff7uOGyC7h+wfk8vvMAvTVemPeBjWZmNiIf2GhmZlXlgGJmZlk4oJiZWRYOKGZmloUDipmZZeGAYmZmWbTUtmFJvcDfD/PyORQuL1zv3M68GqWd0DhtdTvzqod2XhAR00+VqaUCykgkdZWzz7rW3M68GqWd0DhtdTvzapR2gqe8zMwsEwcUMzPLwgHlIw/WugFlcjvzapR2QuO01e3Mq1Ha6TUUMzPLwyMUMzPLomkDiqSHJfVIeq0o7Z9L2i7pVUn/U9KZKX2ipEdS+huSVhWV2SZpr6SX021GDdt5uqTvp/RXJF1ZVObSlL5P0jpJytnOzG2tWJ9KOk/S1vT/uEfSbSl9qqTNkrrT/ZSiMqtSv+2VtLgovaJ9mrmtddOnkqal/O9Luq+kror1aeZ21lN/Xi1pd+q33ZKuKqqr4t/7UYmIprwB/wr4LeC1orRdwL9Oj38fuDs9vh5Ynx7/BrAf6EjPtwGdddLOW4Hvp8czgN3AhPR8J/B5QMBG4It13NaK9SkwE/it9Hgy8HfAhcB/BVam9JXA2vT4QuAVoB2YC7wJnFaNPs3c1nrq0zOAfwH8AXBfSV0V69PM7ayn/rwEmJUefxb4h2r051huTTtCiYifAUdKkucDP0uPNwO/O5AdOENSG/AJ4B+BY3XYzguBLalcD/Au0ClpJnBmRGyPwqfsB8C19djW3G0aoo2HIuL/pMfHgTeA2cBS4JGU7RE+6p+lFP6Y6IuIXwD7gAXV6NNcbc3ZphztjIhfRcRfA4Ou9lTpPs3VzkobQztfioi3U/oeYJKk9mp970ejaQPKMF4DrkmPvwKclx7/CPgVcAg4APy3iCj+4fx+Gvb+pyoNKYdr5yvAUkltkuYCl6bXZgMHi8ofTGnVMNq2Dqh4n0rqoPDX3Q7g3Ig4BIUvNIVRExT66a2iYgN9V9U+HWdbB9RLnw6nan06znYOqMf+/F3gpYjoo7bf+yG1WkD5feBWSbspDDX/MaUvAD4AZlGYSvgjSf8kvXZDRHwO+Jfp9rUatvNhCh+aLuBPgf8F9FMY7paq1va90bYVqtCnkj4J/CXwhxEx0mhzuL6rWp9maCvUV58OW8UQadn7NEM7oQ77U9JFwFrg5oGkIbLVdNtuSwWUiPh5RCyKiEuBJyjMQUNhDeW5iPh1mp75G9L0TET8Q7o/DjxOdaYYhmxnRPRHxH+IiIsjYilwNtBN4Yd7TlEVc4C3S+utk7ZWvE8lTaTwRX0sIn6ckt9JUwQDUy89Kf0gg0dOA31XlT7N1NZ669PhVLxPM7Wz7vpT0hzgaeDGiBj43arZ9344LRVQBnZqSJoArAb+PL10ALhKBWcAlwM/T9M156QyE4EvUZjiqUk7Jf1Gah+Srgb6I+L1NDw+LunyNDS/EXim0u0cS1sr3afp3/8Q8EZEfKfopQ3A8vR4OR/1zwZgWZqTngvMA3ZWo09ztbUO+3RIle7TXO2st/6UdDbwLLAqIv5mIHMtv/fDyr3KXy83Cn8tHwJ+TSGS3wTcRmFHxd8B9/DRgZ2fBP4HhQWv14H/GB/tAtkN/G167c9Iu2pq1M4OYC+FRbznKZwBdKCeTgof+jeB+wbK1FtbK92nFHbtRKr/5XT7bWAahU0C3el+alGZb6Z+20vRLplK92muttZpn+6nsIHj/fRZubDSfZqrnfXWnxT+UPtVUd6XgRnV+t6P5uYj5c3MLIuWmvIyM7PKcUAxM7MsHFDMzCwLBxQzM8vCAcXMzLJwQDEzsywcUMzMLAsHFDMzy+L/A9t1yP3IuE0bAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_incidence.plot(style='*')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Une liste triée permet de plus facilement répérer les valeurs les plus élevées (à la fin)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "2021 743449\n",
+ "2014 1600941\n",
+ "1991 1659249\n",
+ "1995 1840410\n",
+ "2020 2010315\n",
+ "2022 2060304\n",
+ "2012 2175217\n",
+ "2003 2234584\n",
+ "2019 2254386\n",
+ "2006 2307352\n",
+ "2017 2321583\n",
+ "2001 2529279\n",
+ "1992 2574578\n",
+ "1993 2703886\n",
+ "2018 2705325\n",
+ "1988 2765617\n",
+ "2007 2780164\n",
+ "1987 2855570\n",
+ "2016 2856393\n",
+ "2011 2857040\n",
+ "2008 2973918\n",
+ "1998 3034904\n",
+ "2002 3125418\n",
+ "2009 3444020\n",
+ "1994 3514763\n",
+ "1996 3539413\n",
+ "2004 3567744\n",
+ "1997 3620066\n",
+ "2015 3654892\n",
+ "2000 3826372\n",
+ "2005 3835025\n",
+ "1999 3908112\n",
+ "2010 4111392\n",
+ "2013 4182691\n",
+ "1986 5115251\n",
+ "1990 5235827\n",
+ "1989 5466192\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "yearly_incidence.sort_values()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Enfin, un histogramme montre bien que les épidémies fortes, qui touchent environ 10% de la population\n",
+ " française, sont assez rares: il y en eu trois au cours des 35 dernières années."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 17,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEKCAYAAAAyx7/DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAE6lJREFUeJzt3XuQZGV5x/Hvk10uC8MtWRl0QcZbjMjKbVCRiLNoeWFRo1KCgrqUuJgoEFwrWSmVqCHiBVNqvGS9lyJTCiQqGC+BDCoaZBfUFVfRglVYBAQEXSDCypM/3jOhazOz07tMT/fb/f1UTVV3n9N93uftnl+f855z+kRmIkmqx590uwGSpK1jcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqM78TL7pw4cIcGRnpxEvP6O6772bnnXfuyrJ7xaD3waDXD/ZBjfWvWbPmtsx8WDvzdiS4R0ZGWL16dSdeekYTExOMjY11Zdm9YtD7YNDrB/ugxvoj4pftzutQiSRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyHTkBR5rJyMqLO/baKxZvYtk0r7/+7KUdW640V1zjlqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFXG4JakyhjcklQZg1uSKmNwS1JlDG5JqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkirTVnBHxOkRcU1E/DgizouIHTvdMEnS1GYM7ohYBJwKjGbm/sA84LhON0ySNLV2h0rmAwsiYj6wE3BT55okSdqSyMyZZ4o4DTgLuBf4RmYeP8U8y4HlAMPDw4eMj4/PclPbs3HjRoaGhrqy7F5RQx+s3XBXx157eAHccu/U0xYv2q1jy+0lNXwGOqnG+pcsWbImM0fbmXfG4I6IPYALgGOBO4EvAudn5ueme87o6GiuXr26/RbPoomJCcbGxrqy7F5RQx+MrLy4Y6+9YvEmzlk7f8pp689e2rHl9pIaPgOdVGP9EdF2cLczVPIs4PrM/E1m3g9cCDztoTRQkrTt2gnuXwFPjYidIiKAZwLrOtssSdJ0ZgzuzLwCOB+4CljbPGdVh9slSZrG1AOBm8nMM4EzO9wWSVIbPHNSkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFXG4JakyhjcklQZg1uSKtPWFXDUnzp5pXVJneMatyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFXG4JakyhjcklSZtoI7InaPiPMj4qcRsS4iDut0wyRJU2v3YsHvB76WmcdExPbATh1skyRpC2YM7ojYFTgCWAaQmfcB93W2WZKk6URmbnmGiAOBVcBPgAOANcBpmXn3ZvMtB5YDDA8PHzI+Pt6RBs9k48aNDA0NdWXZvaLdPli74a45aM3cG14At9w79bTFi3ab28Z0yaD/H9RY/5IlS9Zk5mg787YT3KPAfwOHZ+YVEfF+4HeZ+ZbpnjM6OpqrV6/emjbPmomJCcbGxrqy7F7Rbh+MrLy4843pghWLN3HO2qk3JtefvXSOW9Mdg/5/UGP9EdF2cLezc/JG4MbMvKK5fz5w8LY2TpL00MwY3Jl5M3BDRDy+eeiZlGETSVIXtHtUySnAuc0RJdcBJ3auSZKkLWkruDPzB0BbYy+SpM7yzElJqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqTLuXLpP6Qr9e2X5zKxZvYllT66Bc2X6QuMYtSZUxuCWpMga3JFXG4JakyhjcklQZg1uSKmNwS1JlDG5JqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVabt4I6IeRFxdURc1MkGSZK2bGvWuE8D1nWqIZKk9rQV3BGxN7AU+HhnmyNJmklk5swzRZwPvBPYBXhjZh49xTzLgeUAw8PDh4yPj89yU9uzceNGhoaGurLsXtFuH6zdcNcctGbuDS+AW+7tdiu6q7UPFi/arbuN6YIac2DJkiVrMnO0nXnnzzRDRBwN3JqZayJibLr5MnMVsApgdHQ0x8amnbWjJiYm6Naye0W7fbBs5cWdb0wXrFi8iXPWzvjR7mutfbD++LHuNqYL+j0H2hkqORx4QUSsB8aBIyPicx1tlSRpWjMGd2a+KTP3zswR4Djg0sw8oeMtkyRNyeO4JakyWzUQmJkTwERHWiJJaotr3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFXG4JakyhjcklSZwb4Udo8YmeWrra9YvKlvr+AutWPthru68j+w/uylc7Ic17glqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFXG4JakyswY3BGxT0T8V0Ssi4hrIuK0uWiYJGlq7VwseBOwIjOviohdgDUR8c3M/EmH2yZJmsKMa9yZ+evMvKq5/XtgHbCo0w2TJE0tMrP9mSNGgG8B+2fm7zabthxYDjA8PHzI+Pj47LVyK2zcuJGhoaGtft7aDXd1oDXdMbwAbrm3263onkGvH3qjDxYv2q1ry771jru6Uv9DqXnJkiVrMnO0nXnbDu6IGAIuA87KzAu3NO/o6GiuXr26rdedbRMTE4yNjW3180ZWXjz7jemSFYs3cc7adkbB+tOg1w+90Qfrz17atWV/8NwvdaX+h1JzRLQd3G0dVRIR2wEXAOfOFNqSpM5q56iSAD4BrMvM93W+SZKkLWlnjftw4BXAkRHxg+bvqA63S5I0jRkHgTLzO0DMQVskSW3wzElJqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqTM9dCvuhXm19xeJNLOujK7ZL0uZc45akyhjcklQZg1uSKmNwS1JlDG5JqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5Iq01ZwR8RzI+JnEfGLiFjZ6UZJkqY3Y3BHxDzgQ8DzgP2Al0XEfp1umCRpau2scT8Z+EVmXpeZ9wHjwAs72yxJ0nQiM7c8Q8QxwHMz86Tm/iuAp2Tm6zebbzmwvLn7eOBns9/ctiwEbuvSsnvFoPfBoNcP9kGN9e+bmQ9rZ8b5bcwTUzz2/9I+M1cBq9pZaCdFxOrMHO12O7pp0Ptg0OsH+6Df629nqORGYJ+W+3sDN3WmOZKkmbQT3FcCj4uIR0XE9sBxwJc72yxJ0nRmHCrJzE0R8Xrg68A84JOZeU3HW7btuj5c0wMGvQ8GvX6wD/q6/hl3TkqSeotnTkpSZQxuSaqMwS1JlTG4NxMRiyJiUbfb0S0R8eiIOD0ijux2W7rB+ge7fqijDwzuRkSMRMRlwNeA90TE07vdprkWEX8JfJPymzSvjYi/7nKT5pT1D3b9UE8fDHRwR8SOLXcPBq7MzMWUQx9PjYjFzXxTnT1avYg4MiIe1dwO4EjgzMx8DXAOcFREjLVM7yvWP9j1Q719MHDBHRG7RsRHI+Ja4L0RsW8z6UXAr5rb48AvgJMmnzbHzeyoiNgvIn4E/APwqYg4MstxofsBewFk5hXAd4ETJ5/WjbZ2gvUPdv1Qfx8MXHADzwV2pLxB9wFvjYgFlM2j5wNk5h+A84GnN/cf6E5TZ0dE7B0Ru7Y8dCxwQWYeQfmSenlEPA74PE0fNP4N2D8idqi5D6x/sOuH/uuDvgzuKOZHxKsj4tsRcVpEPKaZ/FjgvszcBPwz8FvgBOAbwMMj4k+b+a4FboiIw+a8gFkSEU+IiK8C3wHeHhGTP8f7P8BOze0vADcDSylrF3/WshVyB+VXHg+Yu1bPHusf7Pqhf/ugL4O72eR5BvBK4N3ADsDHmsk3A7c236A3UN6Ux1DeyJ/w4E/Tbgfc3jxejYjYueXugcCNmTkCXAq8t3n8DuAPEbFLZt4B/Bx4BKXW7wJvaObbHvgjsL7zLZ8d1j/Y9cNg9EFfBHdEHBYR74qIZc39AJ4AfC0zv5KZ7wb2jYinARso37RPaJ6+DhhqHvsXys6I51NCfxj44ZwWsw0iYo+I+HREXAmcHREPa/pgMXB5RERmfhm4MyKWUrYmdmmm09zfE3iAshWyZ0R8DDgP2JSZt851TVvD+ge7fhi8Pqg+uCPiicBHgN8DL42IN1DqWgT8vmVP8KeBl1OCeBPwtObxqyh7ku/JzG8BK4FlwOHAOzLzgV7amzyNIyg1HUXZgXIGsCvlR8H2ygd/kOYzlD74PqW/ngeQmd9rXmN+Zq4DTgauAf4pM0+k91n/YNcPg9YHmVnNH2XN+CTK5s/85rH3Aac1t0eBDwDHAM8Cvt7y3H0om0xQgvpqypV6DgK+BDy8Zd7odq3T1D+P8oG6jDKks7B5/AvAqc3tRwFnN9MPpYztzWvpv980r7OIsrXxeuBTwIeBnbtdo/Vbv30w8181a9wRcQBlB+ILgTOBNzeTNlCuiwnlG/Jy4CXAJcBeEfGkiNguy3j2hoh4emZeSvnZx3cBFwLnZeavJ5eVzTvcg44GXgC8DTiMMn4P5YiYyS2IG4BvA8/LzCspax9LADJzI3AFcGhmbgBeQRkOuhl4c2bePUd1bCvrH+z6wT4A2rt0WVdExEHA3Zl5bfPQk4FrM3NZRBwMnBURo8AE8JyI2Ckz74mIHwIvpRyL+XngNcAHIuJeYC1wffN6HwU+n5l3zV1VM2vG4jIiDqVs0n0buDjLIYp/DlyXmZdGxPWUMzyfDawBXhQRCzPztoj4OXB3RDwS+CBwQkTsSbl60e2UzUQyczWwes6L3ALrH+z6wT5oR8+tcUfEYyPiO5Qx6bdGxCubSQ8A65u156somziHAffw4KE8APdTNoX2oqxV/7h5rcuA2zLzRihr1T0c2kcAn6Ts4X4W8M5mlgeAayNiQWZeT+mDJ1HG6m6iHJsKZS/4PMr7ewGlH44HDgFWZQ8dj9oqIuY19T+Dsuk6aPUvaOofYwDffygnyA16H7Sl22M1wM7AYS33jwbe39x+CuXbcF/gVZTNo0XNtGMo49mT0y5rHt+RMkyysOU1DwK273at09S/E/BaHtw62A74W+B1zfQ9gB81NRxLGbsbaemrVZQrWh9N2aLYjTKG/9XWmoE/6XatW3j/T6L8c62g7FAamPqbtu0CXEy5uhTA6QNW/07N//AllJNiBq4Ptvavq2vcEXEGcB3w1YgYbh5+DuXYarKccvp94BTKMZj7UI65hjKWfSDlaJDPAL+NiM9Sdjr+DPi/sarMvDoz7+t8RVsnIvYCLgLGgM9Sdqa8mLIlsQkgM39L2Xl6KmUcb08ePJTxW5Tj1e/LzIuAT1DO+PwQZe/5/ZPLyh5cw2iOt72E8k/2MeDZlP0Th1LWrPq6/hYLKOcaPCYiFlI+4/Og/+uPiO0o+6aOAd6TmS9pJh00OU+/98E26fI37RhlM+fjwIrmsTdQxrMm59kPuKG5fRbw9pZpVwIHNbd3oBwKdGi3vw23ov4FwFNa7i+j7Gx5FfD9lscfAdzU3H4d5RTdPZrnfwV4ZMu8C+ei7bPYB7u33P47yj/n8YNSf9PmVwHvAd4CvJpyyvWVA1T/hcDxmz12LHDFoPTBVvdZl9+wyUN0juXBoY7dgTuBHVvmu5LyDbw78EXKptF/UL5Rd+h2Jz6E+mPyr7l/cEs/3E45/nRy3m9Ohjzwj5QjbG4H/r7bdcxCP+xK2Q9xC/D25v7twHA/19/yvp9IGS57MXBu89ht/V5/S21HU06AOYdysMFbKUOgdwB7DkIfbO1fV4dKMvOPzc3/BHaJiAMy807KuPbJLbNeBezSTDuFMhzy78DyLHuaq5SNlodOo6x9QBmfOx0gyu+n/BKYPGTxbZQtk0WZ+a45am7HZObvKENiT6XsVH4pZbjr5Cj6sv6W9/4oylDRJcDeEfFmyg735TAQ7/9FlKO9bqccnvdE4K8on4HX9vNnYFv1zFXeI+LDlPHqNzZHVfwNJcD3oJxYc1RL0PediNibMj53SmZeG+VHsZZTPsSLgB9kL57BNcsi4kDKl/b3KOOY+1MO4erL+iNiiDJMsgOl3r+gnDByBmVN/HH0cf2TJg/nbW4fQPnsX045Jb2vPwPbopeC+0DKUSLPpHyA76Gcfn4v8NHMvKaLzeu4KL+P8gzgTZQxzxspm4bHAj/Ncghk34uIfShfYC/LzNsj4gTgmsy8ustN64goF/P4V8pOtPMoh7GdkZnPbqb3df1TifLLfB8Hjs3MOwaxD2bSS8F9HOWQuHuAd1D2MPfPXuAZRMTlwKMpv0J2E/C2zPxRVxs1RyJiN8oX9sspO6NXAR/KzPu3+MQ+1Jww8mJgPDNv7nZ75kpE7ED5rfzJoZKPAB/O8vPL2kxPBHdEPIly+vn5lJ0zVf2U6kPVHBJ1JmWc73M1j9tvi4iYTxke+QOl/oF6/6GcfAQ8kL3wD9klEXEy5TDQzw7iZ2Br9ERwS5La13OnvEuStszglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZX5XwHKcVej17E2AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_incidence.hist(xrot=20)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
@@ -16,10 +2546,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.6.3"
+ "version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
-
--
2.18.1