diff --git a/module3/exo1/analyse-syndrome-grippal.ipynb b/module3/exo1/analyse-syndrome-grippal.ipynb
index 59d72b5b58a3ae26346460dd39e62a39c55243d7..b1dfbd3b84cbd0287f82f39dc5b165c559da6b48 100644
--- a/module3/exo1/analyse-syndrome-grippal.ipynb
+++ b/module3/exo1/analyse-syndrome-grippal.ipynb
@@ -9,7 +9,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
@@ -28,10 +28,8 @@
},
{
"cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": true
- },
+ "execution_count": 2,
+ "metadata": {},
"outputs": [],
"source": [
"data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\""
@@ -61,9 +59,976 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 3,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 202136 \n",
+ " 3 \n",
+ " 13068 \n",
+ " 9214.0 \n",
+ " 16922.0 \n",
+ " 20 \n",
+ " 14.0 \n",
+ " 26.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 202135 \n",
+ " 3 \n",
+ " 12672 \n",
+ " 9277.0 \n",
+ " 16067.0 \n",
+ " 19 \n",
+ " 14.0 \n",
+ " 24.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 202134 \n",
+ " 3 \n",
+ " 13013 \n",
+ " 9481.0 \n",
+ " 16545.0 \n",
+ " 20 \n",
+ " 15.0 \n",
+ " 25.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 202133 \n",
+ " 3 \n",
+ " 10392 \n",
+ " 7042.0 \n",
+ " 13742.0 \n",
+ " 16 \n",
+ " 11.0 \n",
+ " 21.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 202132 \n",
+ " 3 \n",
+ " 15586 \n",
+ " 11009.0 \n",
+ " 20163.0 \n",
+ " 24 \n",
+ " 17.0 \n",
+ " 31.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202131 \n",
+ " 3 \n",
+ " 18855 \n",
+ " 13664.0 \n",
+ " 24046.0 \n",
+ " 29 \n",
+ " 21.0 \n",
+ " 37.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 202130 \n",
+ " 3 \n",
+ " 13991 \n",
+ " 9695.0 \n",
+ " 18287.0 \n",
+ " 21 \n",
+ " 14.0 \n",
+ " 28.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 202129 \n",
+ " 3 \n",
+ " 13626 \n",
+ " 9618.0 \n",
+ " 17634.0 \n",
+ " 21 \n",
+ " 15.0 \n",
+ " 27.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 202128 \n",
+ " 3 \n",
+ " 8636 \n",
+ " 5430.0 \n",
+ " 11842.0 \n",
+ " 13 \n",
+ " 8.0 \n",
+ " 18.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 202127 \n",
+ " 3 \n",
+ " 10693 \n",
+ " 6838.0 \n",
+ " 14548.0 \n",
+ " 16 \n",
+ " 10.0 \n",
+ " 22.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 202126 \n",
+ " 3 \n",
+ " 7086 \n",
+ " 4109.0 \n",
+ " 10063.0 \n",
+ " 11 \n",
+ " 6.0 \n",
+ " 16.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 202125 \n",
+ " 3 \n",
+ " 7942 \n",
+ " 5540.0 \n",
+ " 10344.0 \n",
+ " 12 \n",
+ " 8.0 \n",
+ " 16.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 202124 \n",
+ " 3 \n",
+ " 4855 \n",
+ " 3011.0 \n",
+ " 6699.0 \n",
+ " 7 \n",
+ " 4.0 \n",
+ " 10.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 202123 \n",
+ " 3 \n",
+ " 6710 \n",
+ " 4455.0 \n",
+ " 8965.0 \n",
+ " 10 \n",
+ " 7.0 \n",
+ " 13.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 202122 \n",
+ " 3 \n",
+ " 7879 \n",
+ " 5495.0 \n",
+ " 10263.0 \n",
+ " 12 \n",
+ " 8.0 \n",
+ " 16.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 202121 \n",
+ " 3 \n",
+ " 7827 \n",
+ " 5403.0 \n",
+ " 10251.0 \n",
+ " 12 \n",
+ " 8.0 \n",
+ " 16.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 202120 \n",
+ " 3 \n",
+ " 10278 \n",
+ " 7540.0 \n",
+ " 13016.0 \n",
+ " 16 \n",
+ " 12.0 \n",
+ " 20.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 202119 \n",
+ " 3 \n",
+ " 9539 \n",
+ " 6860.0 \n",
+ " 12218.0 \n",
+ " 14 \n",
+ " 10.0 \n",
+ " 18.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 202118 \n",
+ " 3 \n",
+ " 12135 \n",
+ " 9165.0 \n",
+ " 15105.0 \n",
+ " 18 \n",
+ " 14.0 \n",
+ " 22.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 202117 \n",
+ " 3 \n",
+ " 12058 \n",
+ " 8891.0 \n",
+ " 15225.0 \n",
+ " 18 \n",
+ " 13.0 \n",
+ " 23.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 202116 \n",
+ " 3 \n",
+ " 16505 \n",
+ " 12735.0 \n",
+ " 20275.0 \n",
+ " 25 \n",
+ " 19.0 \n",
+ " 31.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 202115 \n",
+ " 3 \n",
+ " 19306 \n",
+ " 15398.0 \n",
+ " 23214.0 \n",
+ " 29 \n",
+ " 23.0 \n",
+ " 35.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 202114 \n",
+ " 3 \n",
+ " 21073 \n",
+ " 17099.0 \n",
+ " 25047.0 \n",
+ " 32 \n",
+ " 26.0 \n",
+ " 38.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 202113 \n",
+ " 3 \n",
+ " 26413 \n",
+ " 22094.0 \n",
+ " 30732.0 \n",
+ " 40 \n",
+ " 33.0 \n",
+ " 47.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 202112 \n",
+ " 3 \n",
+ " 30658 \n",
+ " 25919.0 \n",
+ " 35397.0 \n",
+ " 46 \n",
+ " 39.0 \n",
+ " 53.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 202111 \n",
+ " 3 \n",
+ " 24988 \n",
+ " 20718.0 \n",
+ " 29258.0 \n",
+ " 38 \n",
+ " 32.0 \n",
+ " 44.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 202110 \n",
+ " 3 \n",
+ " 19539 \n",
+ " 15951.0 \n",
+ " 23127.0 \n",
+ " 30 \n",
+ " 25.0 \n",
+ " 35.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 202109 \n",
+ " 3 \n",
+ " 17572 \n",
+ " 13926.0 \n",
+ " 21218.0 \n",
+ " 27 \n",
+ " 21.0 \n",
+ " 33.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 202108 \n",
+ " 3 \n",
+ " 20882 \n",
+ " 16907.0 \n",
+ " 24857.0 \n",
+ " 32 \n",
+ " 26.0 \n",
+ " 38.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 202107 \n",
+ " 3 \n",
+ " 22393 \n",
+ " 18303.0 \n",
+ " 26483.0 \n",
+ " 34 \n",
+ " 28.0 \n",
+ " 40.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 1894 \n",
+ " 198521 \n",
+ " 3 \n",
+ " 26096 \n",
+ " 19621.0 \n",
+ " 32571.0 \n",
+ " 47 \n",
+ " 35.0 \n",
+ " 59.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1895 \n",
+ " 198520 \n",
+ " 3 \n",
+ " 27896 \n",
+ " 20885.0 \n",
+ " 34907.0 \n",
+ " 51 \n",
+ " 38.0 \n",
+ " 64.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1896 \n",
+ " 198519 \n",
+ " 3 \n",
+ " 43154 \n",
+ " 32821.0 \n",
+ " 53487.0 \n",
+ " 78 \n",
+ " 59.0 \n",
+ " 97.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1897 \n",
+ " 198518 \n",
+ " 3 \n",
+ " 40555 \n",
+ " 29935.0 \n",
+ " 51175.0 \n",
+ " 74 \n",
+ " 55.0 \n",
+ " 93.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1898 \n",
+ " 198517 \n",
+ " 3 \n",
+ " 34053 \n",
+ " 24366.0 \n",
+ " 43740.0 \n",
+ " 62 \n",
+ " 44.0 \n",
+ " 80.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1899 \n",
+ " 198516 \n",
+ " 3 \n",
+ " 50362 \n",
+ " 36451.0 \n",
+ " 64273.0 \n",
+ " 91 \n",
+ " 66.0 \n",
+ " 116.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1900 \n",
+ " 198515 \n",
+ " 3 \n",
+ " 63881 \n",
+ " 45538.0 \n",
+ " 82224.0 \n",
+ " 116 \n",
+ " 83.0 \n",
+ " 149.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1901 \n",
+ " 198514 \n",
+ " 3 \n",
+ " 134545 \n",
+ " 114400.0 \n",
+ " 154690.0 \n",
+ " 244 \n",
+ " 207.0 \n",
+ " 281.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1902 \n",
+ " 198513 \n",
+ " 3 \n",
+ " 197206 \n",
+ " 176080.0 \n",
+ " 218332.0 \n",
+ " 357 \n",
+ " 319.0 \n",
+ " 395.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1903 \n",
+ " 198512 \n",
+ " 3 \n",
+ " 245240 \n",
+ " 223304.0 \n",
+ " 267176.0 \n",
+ " 445 \n",
+ " 405.0 \n",
+ " 485.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1904 \n",
+ " 198511 \n",
+ " 3 \n",
+ " 276205 \n",
+ " 252399.0 \n",
+ " 300011.0 \n",
+ " 501 \n",
+ " 458.0 \n",
+ " 544.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1905 \n",
+ " 198510 \n",
+ " 3 \n",
+ " 353231 \n",
+ " 326279.0 \n",
+ " 380183.0 \n",
+ " 640 \n",
+ " 591.0 \n",
+ " 689.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1906 \n",
+ " 198509 \n",
+ " 3 \n",
+ " 369895 \n",
+ " 341109.0 \n",
+ " 398681.0 \n",
+ " 670 \n",
+ " 618.0 \n",
+ " 722.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1907 \n",
+ " 198508 \n",
+ " 3 \n",
+ " 389886 \n",
+ " 359529.0 \n",
+ " 420243.0 \n",
+ " 707 \n",
+ " 652.0 \n",
+ " 762.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1908 \n",
+ " 198507 \n",
+ " 3 \n",
+ " 471852 \n",
+ " 432599.0 \n",
+ " 511105.0 \n",
+ " 855 \n",
+ " 784.0 \n",
+ " 926.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1909 \n",
+ " 198506 \n",
+ " 3 \n",
+ " 565825 \n",
+ " 518011.0 \n",
+ " 613639.0 \n",
+ " 1026 \n",
+ " 939.0 \n",
+ " 1113.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1910 \n",
+ " 198505 \n",
+ " 3 \n",
+ " 637302 \n",
+ " 592795.0 \n",
+ " 681809.0 \n",
+ " 1155 \n",
+ " 1074.0 \n",
+ " 1236.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1911 \n",
+ " 198504 \n",
+ " 3 \n",
+ " 424937 \n",
+ " 390794.0 \n",
+ " 459080.0 \n",
+ " 770 \n",
+ " 708.0 \n",
+ " 832.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1912 \n",
+ " 198503 \n",
+ " 3 \n",
+ " 213901 \n",
+ " 174689.0 \n",
+ " 253113.0 \n",
+ " 388 \n",
+ " 317.0 \n",
+ " 459.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1913 \n",
+ " 198502 \n",
+ " 3 \n",
+ " 97586 \n",
+ " 80949.0 \n",
+ " 114223.0 \n",
+ " 177 \n",
+ " 147.0 \n",
+ " 207.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1914 \n",
+ " 198501 \n",
+ " 3 \n",
+ " 85489 \n",
+ " 65918.0 \n",
+ " 105060.0 \n",
+ " 155 \n",
+ " 120.0 \n",
+ " 190.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1915 \n",
+ " 198452 \n",
+ " 3 \n",
+ " 84830 \n",
+ " 60602.0 \n",
+ " 109058.0 \n",
+ " 154 \n",
+ " 110.0 \n",
+ " 198.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1916 \n",
+ " 198451 \n",
+ " 3 \n",
+ " 101726 \n",
+ " 80242.0 \n",
+ " 123210.0 \n",
+ " 185 \n",
+ " 146.0 \n",
+ " 224.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1917 \n",
+ " 198450 \n",
+ " 3 \n",
+ " 123680 \n",
+ " 101401.0 \n",
+ " 145959.0 \n",
+ " 225 \n",
+ " 184.0 \n",
+ " 266.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1918 \n",
+ " 198449 \n",
+ " 3 \n",
+ " 101073 \n",
+ " 81684.0 \n",
+ " 120462.0 \n",
+ " 184 \n",
+ " 149.0 \n",
+ " 219.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1919 \n",
+ " 198448 \n",
+ " 3 \n",
+ " 78620 \n",
+ " 60634.0 \n",
+ " 96606.0 \n",
+ " 143 \n",
+ " 110.0 \n",
+ " 176.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1920 \n",
+ " 198447 \n",
+ " 3 \n",
+ " 72029 \n",
+ " 54274.0 \n",
+ " 89784.0 \n",
+ " 131 \n",
+ " 99.0 \n",
+ " 163.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1921 \n",
+ " 198446 \n",
+ " 3 \n",
+ " 87330 \n",
+ " 67686.0 \n",
+ " 106974.0 \n",
+ " 159 \n",
+ " 123.0 \n",
+ " 195.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1922 \n",
+ " 198445 \n",
+ " 3 \n",
+ " 135223 \n",
+ " 101414.0 \n",
+ " 169032.0 \n",
+ " 246 \n",
+ " 184.0 \n",
+ " 308.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1923 \n",
+ " 198444 \n",
+ " 3 \n",
+ " 68422 \n",
+ " 20056.0 \n",
+ " 116788.0 \n",
+ " 125 \n",
+ " 37.0 \n",
+ " 213.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
1924 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202136 3 13068 9214.0 16922.0 20 14.0 \n",
+ "1 202135 3 12672 9277.0 16067.0 19 14.0 \n",
+ "2 202134 3 13013 9481.0 16545.0 20 15.0 \n",
+ "3 202133 3 10392 7042.0 13742.0 16 11.0 \n",
+ "4 202132 3 15586 11009.0 20163.0 24 17.0 \n",
+ "5 202131 3 18855 13664.0 24046.0 29 21.0 \n",
+ "6 202130 3 13991 9695.0 18287.0 21 14.0 \n",
+ "7 202129 3 13626 9618.0 17634.0 21 15.0 \n",
+ "8 202128 3 8636 5430.0 11842.0 13 8.0 \n",
+ "9 202127 3 10693 6838.0 14548.0 16 10.0 \n",
+ "10 202126 3 7086 4109.0 10063.0 11 6.0 \n",
+ "11 202125 3 7942 5540.0 10344.0 12 8.0 \n",
+ "12 202124 3 4855 3011.0 6699.0 7 4.0 \n",
+ "13 202123 3 6710 4455.0 8965.0 10 7.0 \n",
+ "14 202122 3 7879 5495.0 10263.0 12 8.0 \n",
+ "15 202121 3 7827 5403.0 10251.0 12 8.0 \n",
+ "16 202120 3 10278 7540.0 13016.0 16 12.0 \n",
+ "17 202119 3 9539 6860.0 12218.0 14 10.0 \n",
+ "18 202118 3 12135 9165.0 15105.0 18 14.0 \n",
+ "19 202117 3 12058 8891.0 15225.0 18 13.0 \n",
+ "20 202116 3 16505 12735.0 20275.0 25 19.0 \n",
+ "21 202115 3 19306 15398.0 23214.0 29 23.0 \n",
+ "22 202114 3 21073 17099.0 25047.0 32 26.0 \n",
+ "23 202113 3 26413 22094.0 30732.0 40 33.0 \n",
+ "24 202112 3 30658 25919.0 35397.0 46 39.0 \n",
+ "25 202111 3 24988 20718.0 29258.0 38 32.0 \n",
+ "26 202110 3 19539 15951.0 23127.0 30 25.0 \n",
+ "27 202109 3 17572 13926.0 21218.0 27 21.0 \n",
+ "28 202108 3 20882 16907.0 24857.0 32 26.0 \n",
+ "29 202107 3 22393 18303.0 26483.0 34 28.0 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "1894 198521 3 26096 19621.0 32571.0 47 35.0 \n",
+ "1895 198520 3 27896 20885.0 34907.0 51 38.0 \n",
+ "1896 198519 3 43154 32821.0 53487.0 78 59.0 \n",
+ "1897 198518 3 40555 29935.0 51175.0 74 55.0 \n",
+ "1898 198517 3 34053 24366.0 43740.0 62 44.0 \n",
+ "1899 198516 3 50362 36451.0 64273.0 91 66.0 \n",
+ "1900 198515 3 63881 45538.0 82224.0 116 83.0 \n",
+ "1901 198514 3 134545 114400.0 154690.0 244 207.0 \n",
+ "1902 198513 3 197206 176080.0 218332.0 357 319.0 \n",
+ "1903 198512 3 245240 223304.0 267176.0 445 405.0 \n",
+ "1904 198511 3 276205 252399.0 300011.0 501 458.0 \n",
+ "1905 198510 3 353231 326279.0 380183.0 640 591.0 \n",
+ "1906 198509 3 369895 341109.0 398681.0 670 618.0 \n",
+ "1907 198508 3 389886 359529.0 420243.0 707 652.0 \n",
+ "1908 198507 3 471852 432599.0 511105.0 855 784.0 \n",
+ "1909 198506 3 565825 518011.0 613639.0 1026 939.0 \n",
+ "1910 198505 3 637302 592795.0 681809.0 1155 1074.0 \n",
+ "1911 198504 3 424937 390794.0 459080.0 770 708.0 \n",
+ "1912 198503 3 213901 174689.0 253113.0 388 317.0 \n",
+ "1913 198502 3 97586 80949.0 114223.0 177 147.0 \n",
+ "1914 198501 3 85489 65918.0 105060.0 155 120.0 \n",
+ "1915 198452 3 84830 60602.0 109058.0 154 110.0 \n",
+ "1916 198451 3 101726 80242.0 123210.0 185 146.0 \n",
+ "1917 198450 3 123680 101401.0 145959.0 225 184.0 \n",
+ "1918 198449 3 101073 81684.0 120462.0 184 149.0 \n",
+ "1919 198448 3 78620 60634.0 96606.0 143 110.0 \n",
+ "1920 198447 3 72029 54274.0 89784.0 131 99.0 \n",
+ "1921 198446 3 87330 67686.0 106974.0 159 123.0 \n",
+ "1922 198445 3 135223 101414.0 169032.0 246 184.0 \n",
+ "1923 198444 3 68422 20056.0 116788.0 125 37.0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 26.0 FR France \n",
+ "1 24.0 FR France \n",
+ "2 25.0 FR France \n",
+ "3 21.0 FR France \n",
+ "4 31.0 FR France \n",
+ "5 37.0 FR France \n",
+ "6 28.0 FR France \n",
+ "7 27.0 FR France \n",
+ "8 18.0 FR France \n",
+ "9 22.0 FR France \n",
+ "10 16.0 FR France \n",
+ "11 16.0 FR France \n",
+ "12 10.0 FR France \n",
+ "13 13.0 FR France \n",
+ "14 16.0 FR France \n",
+ "15 16.0 FR France \n",
+ "16 20.0 FR France \n",
+ "17 18.0 FR France \n",
+ "18 22.0 FR France \n",
+ "19 23.0 FR France \n",
+ "20 31.0 FR France \n",
+ "21 35.0 FR France \n",
+ "22 38.0 FR France \n",
+ "23 47.0 FR France \n",
+ "24 53.0 FR France \n",
+ "25 44.0 FR France \n",
+ "26 35.0 FR France \n",
+ "27 33.0 FR France \n",
+ "28 38.0 FR France \n",
+ "29 40.0 FR France \n",
+ "... ... ... ... \n",
+ "1894 59.0 FR France \n",
+ "1895 64.0 FR France \n",
+ "1896 97.0 FR France \n",
+ "1897 93.0 FR France \n",
+ "1898 80.0 FR France \n",
+ "1899 116.0 FR France \n",
+ "1900 149.0 FR France \n",
+ "1901 281.0 FR France \n",
+ "1902 395.0 FR France \n",
+ "1903 485.0 FR France \n",
+ "1904 544.0 FR France \n",
+ "1905 689.0 FR France \n",
+ "1906 722.0 FR France \n",
+ "1907 762.0 FR France \n",
+ "1908 926.0 FR France \n",
+ "1909 1113.0 FR France \n",
+ "1910 1236.0 FR France \n",
+ "1911 832.0 FR France \n",
+ "1912 459.0 FR France \n",
+ "1913 207.0 FR France \n",
+ "1914 190.0 FR France \n",
+ "1915 198.0 FR France \n",
+ "1916 224.0 FR France \n",
+ "1917 266.0 FR France \n",
+ "1918 219.0 FR France \n",
+ "1919 176.0 FR France \n",
+ "1920 163.0 FR France \n",
+ "1921 195.0 FR France \n",
+ "1922 308.0 FR France \n",
+ "1923 213.0 FR France \n",
+ "\n",
+ "[1924 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"raw_data = pd.read_csv(data_url, skiprows=1)\n",
"raw_data"
@@ -78,9 +1043,73 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 4,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1687 \n",
+ " 198919 \n",
+ " 3 \n",
+ " 0 \n",
+ " NaN \n",
+ " NaN \n",
+ " 0 \n",
+ " NaN \n",
+ " NaN \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n",
+ "1687 198919 3 0 NaN NaN 0 NaN NaN \n",
+ "\n",
+ " geo_insee geo_name \n",
+ "1687 FR France "
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"raw_data[raw_data.isnull().any(axis=1)]"
]
@@ -94,9 +1123,976 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 5,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 202136 \n",
+ " 3 \n",
+ " 13068 \n",
+ " 9214.0 \n",
+ " 16922.0 \n",
+ " 20 \n",
+ " 14.0 \n",
+ " 26.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 202135 \n",
+ " 3 \n",
+ " 12672 \n",
+ " 9277.0 \n",
+ " 16067.0 \n",
+ " 19 \n",
+ " 14.0 \n",
+ " 24.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 202134 \n",
+ " 3 \n",
+ " 13013 \n",
+ " 9481.0 \n",
+ " 16545.0 \n",
+ " 20 \n",
+ " 15.0 \n",
+ " 25.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 202133 \n",
+ " 3 \n",
+ " 10392 \n",
+ " 7042.0 \n",
+ " 13742.0 \n",
+ " 16 \n",
+ " 11.0 \n",
+ " 21.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 202132 \n",
+ " 3 \n",
+ " 15586 \n",
+ " 11009.0 \n",
+ " 20163.0 \n",
+ " 24 \n",
+ " 17.0 \n",
+ " 31.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202131 \n",
+ " 3 \n",
+ " 18855 \n",
+ " 13664.0 \n",
+ " 24046.0 \n",
+ " 29 \n",
+ " 21.0 \n",
+ " 37.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 202130 \n",
+ " 3 \n",
+ " 13991 \n",
+ " 9695.0 \n",
+ " 18287.0 \n",
+ " 21 \n",
+ " 14.0 \n",
+ " 28.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 202129 \n",
+ " 3 \n",
+ " 13626 \n",
+ " 9618.0 \n",
+ " 17634.0 \n",
+ " 21 \n",
+ " 15.0 \n",
+ " 27.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 202128 \n",
+ " 3 \n",
+ " 8636 \n",
+ " 5430.0 \n",
+ " 11842.0 \n",
+ " 13 \n",
+ " 8.0 \n",
+ " 18.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 202127 \n",
+ " 3 \n",
+ " 10693 \n",
+ " 6838.0 \n",
+ " 14548.0 \n",
+ " 16 \n",
+ " 10.0 \n",
+ " 22.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 202126 \n",
+ " 3 \n",
+ " 7086 \n",
+ " 4109.0 \n",
+ " 10063.0 \n",
+ " 11 \n",
+ " 6.0 \n",
+ " 16.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 202125 \n",
+ " 3 \n",
+ " 7942 \n",
+ " 5540.0 \n",
+ " 10344.0 \n",
+ " 12 \n",
+ " 8.0 \n",
+ " 16.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 202124 \n",
+ " 3 \n",
+ " 4855 \n",
+ " 3011.0 \n",
+ " 6699.0 \n",
+ " 7 \n",
+ " 4.0 \n",
+ " 10.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 202123 \n",
+ " 3 \n",
+ " 6710 \n",
+ " 4455.0 \n",
+ " 8965.0 \n",
+ " 10 \n",
+ " 7.0 \n",
+ " 13.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 202122 \n",
+ " 3 \n",
+ " 7879 \n",
+ " 5495.0 \n",
+ " 10263.0 \n",
+ " 12 \n",
+ " 8.0 \n",
+ " 16.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 202121 \n",
+ " 3 \n",
+ " 7827 \n",
+ " 5403.0 \n",
+ " 10251.0 \n",
+ " 12 \n",
+ " 8.0 \n",
+ " 16.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 202120 \n",
+ " 3 \n",
+ " 10278 \n",
+ " 7540.0 \n",
+ " 13016.0 \n",
+ " 16 \n",
+ " 12.0 \n",
+ " 20.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 202119 \n",
+ " 3 \n",
+ " 9539 \n",
+ " 6860.0 \n",
+ " 12218.0 \n",
+ " 14 \n",
+ " 10.0 \n",
+ " 18.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 202118 \n",
+ " 3 \n",
+ " 12135 \n",
+ " 9165.0 \n",
+ " 15105.0 \n",
+ " 18 \n",
+ " 14.0 \n",
+ " 22.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 202117 \n",
+ " 3 \n",
+ " 12058 \n",
+ " 8891.0 \n",
+ " 15225.0 \n",
+ " 18 \n",
+ " 13.0 \n",
+ " 23.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 202116 \n",
+ " 3 \n",
+ " 16505 \n",
+ " 12735.0 \n",
+ " 20275.0 \n",
+ " 25 \n",
+ " 19.0 \n",
+ " 31.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 202115 \n",
+ " 3 \n",
+ " 19306 \n",
+ " 15398.0 \n",
+ " 23214.0 \n",
+ " 29 \n",
+ " 23.0 \n",
+ " 35.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 202114 \n",
+ " 3 \n",
+ " 21073 \n",
+ " 17099.0 \n",
+ " 25047.0 \n",
+ " 32 \n",
+ " 26.0 \n",
+ " 38.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 202113 \n",
+ " 3 \n",
+ " 26413 \n",
+ " 22094.0 \n",
+ " 30732.0 \n",
+ " 40 \n",
+ " 33.0 \n",
+ " 47.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 202112 \n",
+ " 3 \n",
+ " 30658 \n",
+ " 25919.0 \n",
+ " 35397.0 \n",
+ " 46 \n",
+ " 39.0 \n",
+ " 53.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 202111 \n",
+ " 3 \n",
+ " 24988 \n",
+ " 20718.0 \n",
+ " 29258.0 \n",
+ " 38 \n",
+ " 32.0 \n",
+ " 44.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 202110 \n",
+ " 3 \n",
+ " 19539 \n",
+ " 15951.0 \n",
+ " 23127.0 \n",
+ " 30 \n",
+ " 25.0 \n",
+ " 35.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 202109 \n",
+ " 3 \n",
+ " 17572 \n",
+ " 13926.0 \n",
+ " 21218.0 \n",
+ " 27 \n",
+ " 21.0 \n",
+ " 33.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 202108 \n",
+ " 3 \n",
+ " 20882 \n",
+ " 16907.0 \n",
+ " 24857.0 \n",
+ " 32 \n",
+ " 26.0 \n",
+ " 38.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 202107 \n",
+ " 3 \n",
+ " 22393 \n",
+ " 18303.0 \n",
+ " 26483.0 \n",
+ " 34 \n",
+ " 28.0 \n",
+ " 40.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 1894 \n",
+ " 198521 \n",
+ " 3 \n",
+ " 26096 \n",
+ " 19621.0 \n",
+ " 32571.0 \n",
+ " 47 \n",
+ " 35.0 \n",
+ " 59.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1895 \n",
+ " 198520 \n",
+ " 3 \n",
+ " 27896 \n",
+ " 20885.0 \n",
+ " 34907.0 \n",
+ " 51 \n",
+ " 38.0 \n",
+ " 64.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1896 \n",
+ " 198519 \n",
+ " 3 \n",
+ " 43154 \n",
+ " 32821.0 \n",
+ " 53487.0 \n",
+ " 78 \n",
+ " 59.0 \n",
+ " 97.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1897 \n",
+ " 198518 \n",
+ " 3 \n",
+ " 40555 \n",
+ " 29935.0 \n",
+ " 51175.0 \n",
+ " 74 \n",
+ " 55.0 \n",
+ " 93.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1898 \n",
+ " 198517 \n",
+ " 3 \n",
+ " 34053 \n",
+ " 24366.0 \n",
+ " 43740.0 \n",
+ " 62 \n",
+ " 44.0 \n",
+ " 80.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1899 \n",
+ " 198516 \n",
+ " 3 \n",
+ " 50362 \n",
+ " 36451.0 \n",
+ " 64273.0 \n",
+ " 91 \n",
+ " 66.0 \n",
+ " 116.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1900 \n",
+ " 198515 \n",
+ " 3 \n",
+ " 63881 \n",
+ " 45538.0 \n",
+ " 82224.0 \n",
+ " 116 \n",
+ " 83.0 \n",
+ " 149.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1901 \n",
+ " 198514 \n",
+ " 3 \n",
+ " 134545 \n",
+ " 114400.0 \n",
+ " 154690.0 \n",
+ " 244 \n",
+ " 207.0 \n",
+ " 281.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1902 \n",
+ " 198513 \n",
+ " 3 \n",
+ " 197206 \n",
+ " 176080.0 \n",
+ " 218332.0 \n",
+ " 357 \n",
+ " 319.0 \n",
+ " 395.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1903 \n",
+ " 198512 \n",
+ " 3 \n",
+ " 245240 \n",
+ " 223304.0 \n",
+ " 267176.0 \n",
+ " 445 \n",
+ " 405.0 \n",
+ " 485.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1904 \n",
+ " 198511 \n",
+ " 3 \n",
+ " 276205 \n",
+ " 252399.0 \n",
+ " 300011.0 \n",
+ " 501 \n",
+ " 458.0 \n",
+ " 544.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1905 \n",
+ " 198510 \n",
+ " 3 \n",
+ " 353231 \n",
+ " 326279.0 \n",
+ " 380183.0 \n",
+ " 640 \n",
+ " 591.0 \n",
+ " 689.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1906 \n",
+ " 198509 \n",
+ " 3 \n",
+ " 369895 \n",
+ " 341109.0 \n",
+ " 398681.0 \n",
+ " 670 \n",
+ " 618.0 \n",
+ " 722.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1907 \n",
+ " 198508 \n",
+ " 3 \n",
+ " 389886 \n",
+ " 359529.0 \n",
+ " 420243.0 \n",
+ " 707 \n",
+ " 652.0 \n",
+ " 762.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1908 \n",
+ " 198507 \n",
+ " 3 \n",
+ " 471852 \n",
+ " 432599.0 \n",
+ " 511105.0 \n",
+ " 855 \n",
+ " 784.0 \n",
+ " 926.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1909 \n",
+ " 198506 \n",
+ " 3 \n",
+ " 565825 \n",
+ " 518011.0 \n",
+ " 613639.0 \n",
+ " 1026 \n",
+ " 939.0 \n",
+ " 1113.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1910 \n",
+ " 198505 \n",
+ " 3 \n",
+ " 637302 \n",
+ " 592795.0 \n",
+ " 681809.0 \n",
+ " 1155 \n",
+ " 1074.0 \n",
+ " 1236.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1911 \n",
+ " 198504 \n",
+ " 3 \n",
+ " 424937 \n",
+ " 390794.0 \n",
+ " 459080.0 \n",
+ " 770 \n",
+ " 708.0 \n",
+ " 832.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1912 \n",
+ " 198503 \n",
+ " 3 \n",
+ " 213901 \n",
+ " 174689.0 \n",
+ " 253113.0 \n",
+ " 388 \n",
+ " 317.0 \n",
+ " 459.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1913 \n",
+ " 198502 \n",
+ " 3 \n",
+ " 97586 \n",
+ " 80949.0 \n",
+ " 114223.0 \n",
+ " 177 \n",
+ " 147.0 \n",
+ " 207.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1914 \n",
+ " 198501 \n",
+ " 3 \n",
+ " 85489 \n",
+ " 65918.0 \n",
+ " 105060.0 \n",
+ " 155 \n",
+ " 120.0 \n",
+ " 190.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1915 \n",
+ " 198452 \n",
+ " 3 \n",
+ " 84830 \n",
+ " 60602.0 \n",
+ " 109058.0 \n",
+ " 154 \n",
+ " 110.0 \n",
+ " 198.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1916 \n",
+ " 198451 \n",
+ " 3 \n",
+ " 101726 \n",
+ " 80242.0 \n",
+ " 123210.0 \n",
+ " 185 \n",
+ " 146.0 \n",
+ " 224.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1917 \n",
+ " 198450 \n",
+ " 3 \n",
+ " 123680 \n",
+ " 101401.0 \n",
+ " 145959.0 \n",
+ " 225 \n",
+ " 184.0 \n",
+ " 266.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1918 \n",
+ " 198449 \n",
+ " 3 \n",
+ " 101073 \n",
+ " 81684.0 \n",
+ " 120462.0 \n",
+ " 184 \n",
+ " 149.0 \n",
+ " 219.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1919 \n",
+ " 198448 \n",
+ " 3 \n",
+ " 78620 \n",
+ " 60634.0 \n",
+ " 96606.0 \n",
+ " 143 \n",
+ " 110.0 \n",
+ " 176.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1920 \n",
+ " 198447 \n",
+ " 3 \n",
+ " 72029 \n",
+ " 54274.0 \n",
+ " 89784.0 \n",
+ " 131 \n",
+ " 99.0 \n",
+ " 163.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1921 \n",
+ " 198446 \n",
+ " 3 \n",
+ " 87330 \n",
+ " 67686.0 \n",
+ " 106974.0 \n",
+ " 159 \n",
+ " 123.0 \n",
+ " 195.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1922 \n",
+ " 198445 \n",
+ " 3 \n",
+ " 135223 \n",
+ " 101414.0 \n",
+ " 169032.0 \n",
+ " 246 \n",
+ " 184.0 \n",
+ " 308.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1923 \n",
+ " 198444 \n",
+ " 3 \n",
+ " 68422 \n",
+ " 20056.0 \n",
+ " 116788.0 \n",
+ " 125 \n",
+ " 37.0 \n",
+ " 213.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
1923 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202136 3 13068 9214.0 16922.0 20 14.0 \n",
+ "1 202135 3 12672 9277.0 16067.0 19 14.0 \n",
+ "2 202134 3 13013 9481.0 16545.0 20 15.0 \n",
+ "3 202133 3 10392 7042.0 13742.0 16 11.0 \n",
+ "4 202132 3 15586 11009.0 20163.0 24 17.0 \n",
+ "5 202131 3 18855 13664.0 24046.0 29 21.0 \n",
+ "6 202130 3 13991 9695.0 18287.0 21 14.0 \n",
+ "7 202129 3 13626 9618.0 17634.0 21 15.0 \n",
+ "8 202128 3 8636 5430.0 11842.0 13 8.0 \n",
+ "9 202127 3 10693 6838.0 14548.0 16 10.0 \n",
+ "10 202126 3 7086 4109.0 10063.0 11 6.0 \n",
+ "11 202125 3 7942 5540.0 10344.0 12 8.0 \n",
+ "12 202124 3 4855 3011.0 6699.0 7 4.0 \n",
+ "13 202123 3 6710 4455.0 8965.0 10 7.0 \n",
+ "14 202122 3 7879 5495.0 10263.0 12 8.0 \n",
+ "15 202121 3 7827 5403.0 10251.0 12 8.0 \n",
+ "16 202120 3 10278 7540.0 13016.0 16 12.0 \n",
+ "17 202119 3 9539 6860.0 12218.0 14 10.0 \n",
+ "18 202118 3 12135 9165.0 15105.0 18 14.0 \n",
+ "19 202117 3 12058 8891.0 15225.0 18 13.0 \n",
+ "20 202116 3 16505 12735.0 20275.0 25 19.0 \n",
+ "21 202115 3 19306 15398.0 23214.0 29 23.0 \n",
+ "22 202114 3 21073 17099.0 25047.0 32 26.0 \n",
+ "23 202113 3 26413 22094.0 30732.0 40 33.0 \n",
+ "24 202112 3 30658 25919.0 35397.0 46 39.0 \n",
+ "25 202111 3 24988 20718.0 29258.0 38 32.0 \n",
+ "26 202110 3 19539 15951.0 23127.0 30 25.0 \n",
+ "27 202109 3 17572 13926.0 21218.0 27 21.0 \n",
+ "28 202108 3 20882 16907.0 24857.0 32 26.0 \n",
+ "29 202107 3 22393 18303.0 26483.0 34 28.0 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "1894 198521 3 26096 19621.0 32571.0 47 35.0 \n",
+ "1895 198520 3 27896 20885.0 34907.0 51 38.0 \n",
+ "1896 198519 3 43154 32821.0 53487.0 78 59.0 \n",
+ "1897 198518 3 40555 29935.0 51175.0 74 55.0 \n",
+ "1898 198517 3 34053 24366.0 43740.0 62 44.0 \n",
+ "1899 198516 3 50362 36451.0 64273.0 91 66.0 \n",
+ "1900 198515 3 63881 45538.0 82224.0 116 83.0 \n",
+ "1901 198514 3 134545 114400.0 154690.0 244 207.0 \n",
+ "1902 198513 3 197206 176080.0 218332.0 357 319.0 \n",
+ "1903 198512 3 245240 223304.0 267176.0 445 405.0 \n",
+ "1904 198511 3 276205 252399.0 300011.0 501 458.0 \n",
+ "1905 198510 3 353231 326279.0 380183.0 640 591.0 \n",
+ "1906 198509 3 369895 341109.0 398681.0 670 618.0 \n",
+ "1907 198508 3 389886 359529.0 420243.0 707 652.0 \n",
+ "1908 198507 3 471852 432599.0 511105.0 855 784.0 \n",
+ "1909 198506 3 565825 518011.0 613639.0 1026 939.0 \n",
+ "1910 198505 3 637302 592795.0 681809.0 1155 1074.0 \n",
+ "1911 198504 3 424937 390794.0 459080.0 770 708.0 \n",
+ "1912 198503 3 213901 174689.0 253113.0 388 317.0 \n",
+ "1913 198502 3 97586 80949.0 114223.0 177 147.0 \n",
+ "1914 198501 3 85489 65918.0 105060.0 155 120.0 \n",
+ "1915 198452 3 84830 60602.0 109058.0 154 110.0 \n",
+ "1916 198451 3 101726 80242.0 123210.0 185 146.0 \n",
+ "1917 198450 3 123680 101401.0 145959.0 225 184.0 \n",
+ "1918 198449 3 101073 81684.0 120462.0 184 149.0 \n",
+ "1919 198448 3 78620 60634.0 96606.0 143 110.0 \n",
+ "1920 198447 3 72029 54274.0 89784.0 131 99.0 \n",
+ "1921 198446 3 87330 67686.0 106974.0 159 123.0 \n",
+ "1922 198445 3 135223 101414.0 169032.0 246 184.0 \n",
+ "1923 198444 3 68422 20056.0 116788.0 125 37.0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 26.0 FR France \n",
+ "1 24.0 FR France \n",
+ "2 25.0 FR France \n",
+ "3 21.0 FR France \n",
+ "4 31.0 FR France \n",
+ "5 37.0 FR France \n",
+ "6 28.0 FR France \n",
+ "7 27.0 FR France \n",
+ "8 18.0 FR France \n",
+ "9 22.0 FR France \n",
+ "10 16.0 FR France \n",
+ "11 16.0 FR France \n",
+ "12 10.0 FR France \n",
+ "13 13.0 FR France \n",
+ "14 16.0 FR France \n",
+ "15 16.0 FR France \n",
+ "16 20.0 FR France \n",
+ "17 18.0 FR France \n",
+ "18 22.0 FR France \n",
+ "19 23.0 FR France \n",
+ "20 31.0 FR France \n",
+ "21 35.0 FR France \n",
+ "22 38.0 FR France \n",
+ "23 47.0 FR France \n",
+ "24 53.0 FR France \n",
+ "25 44.0 FR France \n",
+ "26 35.0 FR France \n",
+ "27 33.0 FR France \n",
+ "28 38.0 FR France \n",
+ "29 40.0 FR France \n",
+ "... ... ... ... \n",
+ "1894 59.0 FR France \n",
+ "1895 64.0 FR France \n",
+ "1896 97.0 FR France \n",
+ "1897 93.0 FR France \n",
+ "1898 80.0 FR France \n",
+ "1899 116.0 FR France \n",
+ "1900 149.0 FR France \n",
+ "1901 281.0 FR France \n",
+ "1902 395.0 FR France \n",
+ "1903 485.0 FR France \n",
+ "1904 544.0 FR France \n",
+ "1905 689.0 FR France \n",
+ "1906 722.0 FR France \n",
+ "1907 762.0 FR France \n",
+ "1908 926.0 FR France \n",
+ "1909 1113.0 FR France \n",
+ "1910 1236.0 FR France \n",
+ "1911 832.0 FR France \n",
+ "1912 459.0 FR France \n",
+ "1913 207.0 FR France \n",
+ "1914 190.0 FR France \n",
+ "1915 198.0 FR France \n",
+ "1916 224.0 FR France \n",
+ "1917 266.0 FR France \n",
+ "1918 219.0 FR France \n",
+ "1919 176.0 FR France \n",
+ "1920 163.0 FR France \n",
+ "1921 195.0 FR France \n",
+ "1922 308.0 FR France \n",
+ "1923 213.0 FR France \n",
+ "\n",
+ "[1923 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"data = raw_data.dropna().copy()\n",
"data"
@@ -122,7 +2118,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
@@ -152,10 +2148,8 @@
},
{
"cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": true
- },
+ "execution_count": 7,
+ "metadata": {},
"outputs": [],
"source": [
"sorted_data = data.set_index('period').sort_index()"
@@ -179,9 +2173,17 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 8,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n"
+ ]
+ }
+ ],
"source": [
"periods = sorted_data.index\n",
"for p1, p2 in zip(periods[:-1], periods[1:]):\n",
@@ -199,9 +2201,32 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 9,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXmcHGWd/z/fPuaeyZ2QA0iAcAZQyIZDRQXlUFdYV3bxAHRxWfyxq6vuKuC6uBwKu7p4oCgCCl6AiMKKHCHcCIGEK4QQEiB3SCbMJJnMZI7ufn5/1PNUP1X9PFXV1dXT3Znv+/WaV9dU1XPUU1XP9/kez1MkhADDMAzDVEqq1hVgGIZh9gxYoDAMwzCJwAKFYRiGSQQWKAzDMEwisEBhGIZhEoEFCsMwDJMILFAYhmGYRGCBwjAMwyQCCxSGYRgmETK1rsBoMnnyZDF79uxaV4NhGKahWLp06TYhxJSw88aUQJk9ezaWLFlS62owDMM0FES0Nsp5bPJiGIZhEoEFCsMwDJMILFAYhmGYRGCBwjAMwyQCCxSGYRgmEUIFChHdRERbiehlbd9EIlpIRKvk7wTt2MVEtJqIVhLRKdr+o4lomTz2AyIiub+ZiG6T+xcT0WwtzbmyjFVEdK62f448d5VM21R5UzAMwzCVEEVD+QWAU337LgKwSAgxF8Ai+T+I6FAAZwE4TKb5MRGlZZrrAJwPYK78U3meB6BXCHEAgGsAXC3zmgjgUgDHAFgA4FJNcF0N4BpZfq/Mg2EYhqkhoQJFCPEYgB7f7tMB3Cy3bwZwhrb/ViHEkBDiTQCrASwgoukAuoQQTwnnm8O3+NKovO4AcJLUXk4BsFAI0SOE6AWwEMCp8tiJ8lx/+Xs0K9/qw7Nr/LeCYRimPog7sXGaEGIzAAghNhPRVLl/JoCntfM2yH0jctu/X6VZL/PKEdEOAJP0/b40kwBsF0LkDHnt0ZzyvccAAGuu+nCNa8IwDFNK0k55MuwTAfvjpAnKq7RCROcT0RIiWtLd3W07jWEYhqmQuAJlizRjQf5ulfs3ANhbO28WgE1y/yzDfk8aIsoAGAfHxGbLaxuA8fJcf14lCCGuF0LMF0LMnzIldCkahmEYJiZxBcrdAFTU1bkA7tL2nyUjt+bAcb4/I81jfUR0rPSBnONLo/L6OICHpJ/lfgAnE9EE6Yw/GcD98tjD8lx/+QzDMEyNCPWhENFvAbwPwGQi2gAn8uoqALcT0XkA1gE4EwCEEMuJ6HYArwDIAbhQCJGXWX0eTsRYK4B75R8A3Ajgl0S0Go5mcpbMq4eILgfwrDzvMiGE8kh/DcCtRHQFgOdlHgzDMEwNIWfAPzaYP3++aOTVhmdfdA8AdsozDDO6ENFSIcT8sPN4pjzDMAyTCCxQGIZhmERggcIwDMMkAgsUhmEYJhFYoDAMwzCJwAKFYRiGSQQWKAzDMEwisEBhGIZhEoEFCsMwDJMILFAYhmGYRGCBwjAMwyQCCxSGYRgmEVigMAzDMInAAoVhGIZJBBYoTKJ85/6V7jL7DMOMLVigMIly7cOra10FhmFqBAsUhmEYJhFYoDAMwzCJwAKFYRiGSQQWKAzDMEwisEBhGIZhEoEFCsMwDJMILFAYhmGYRGCBwlQFIUStq8AwzCjDAoWpCixPGGbswQKFqQosTxhm7MEChakKbPJimLEHCxSmKrA4YZixBwsUpiqwgsIwYw8WKA2IzZy0YvNO7HfxPdi4ffco16gUwToKw4w5KhIoRPQlIlpORC8T0W+JqIWIJhLRQiJaJX8naOdfTESriWglEZ2i7T+aiJbJYz8gIpL7m4noNrl/MRHN1tKcK8tYRUTnVnIdewq/WbwOBQEsWrGl1lVhDYVhxiCxBQoRzQTwBQDzhRDzAKQBnAXgIgCLhBBzASyS/4OIDpXHDwNwKoAfE1FaZncdgPMBzJV/p8r95wHoFUIcAOAaAFfLvCYCuBTAMQAWALhUF1x7OmGdNXfmDMPUgkpNXhkArUSUAdAGYBOA0wHcLI/fDOAMuX06gFuFEENCiDcBrAawgIimA+gSQjwlHFvOLb40Kq87AJwktZdTACwUQvQIIXoBLERRCO3x2OSFo9fVByzUGGbsEVugCCE2AvgOgHUANgPYIYR4AMA0IcRmec5mAFNlkpkA1mtZbJD7Zspt/35PGiFEDsAOAJMC8mLAIbsMw9SGSkxeE+BoEHMAzADQTkSfDkpi2CcC9sdN46/n+US0hIiWdHd3B1SvcbAJjDpSUNgpzzBjkEpMXh8A8KYQolsIMQLgTgDHA9gizViQv1vl+RsA7K2lnwXHRLZBbvv3e9JIs9o4AD0BeZUghLheCDFfCDF/ypQpMS+VKRdWkhhm7FGJQFkH4FgiapN+jZMArABwNwAVdXUugLvk9t0AzpKRW3PgON+fkWaxPiI6VuZzji+NyuvjAB6Sfpb7AZxMRBOkpnSy3DcmaIS+uhHqyDBMsmTiJhRCLCaiOwA8ByAH4HkA1wPoAHA7EZ0HR+icKc9fTkS3A3hFnn+hECIvs/s8gF8AaAVwr/wDgBsB/JKIVsPRTM6SefUQ0eUAnpXnXSaE6Il7LY1GI4z+2Y/DMGOP2AIFAIQQl8IJ39UZgqOtmM6/EsCVhv1LAMwz7B+EFEiGYzcBuKnMKo8J6qErr4c6MAwzuvBM+QbE5vCW80HrQoOphzowDDO6sEBpQBqis26EOjIMkygsUJiqwGHDDDP2YIGyB1IPXXlDaFEMwyQKC5Q9iLpaeqWCtNc98jque+T1xOrCMMzoUFGUF1MbGmH0X0nY8NX3vQoA+Pz79k+qOgzDjAKsoTQgjeCfqP8aMgyTNCxQmKrQCFoUwzDJwgKlAQn/Hgr35gzDjD4sUPYgqI7WG24EsxzDMMnCAqUBaYQPbLE8YZixBwuUBqQRTFr1X0OGYZKGBQpTFRpA5jEMkzAsUBqQsL66Hjpz9qEwzNiDBcoeRF25UFieMMyYgwVKA9IInXUDVJFhmIRhgdKINEBv3QiBAwzDJAsLlD0IFTZcD/4LlicMM/ZggdKANMIXGxmGGXuwQGlAGkFgNEIdGYZJFhYoTFWoB7MbwzCjCwuUBqQRumrWUBhm7MECZQ+E+3KGYWoBC5QGxBaSW1cTG2tdAYZhRh0WKA1II3TWPA+FYcYeLFD2QOqhL69mFYZyeXT3DVWxBIZh4sACpQxe2rAdD76ypdbVsAuMOrJ5VVOo/b9fPYe/uvLB6hXAMEwsMrWuQCPx0WufBACsuerDNa5JMPURslu9Oix6dWvV8mYYJj6soTQg1pnydaSi1IPZjWGY0YUFSiPSAJ11A1SRYZiEYYHCJIq7QCVLFIYZc1QkUIhoPBHdQUSvEtEKIjqOiCYS0UIiWiV/J2jnX0xEq4loJRGdou0/moiWyWM/ILnKIRE1E9Ftcv9iIpqtpTlXlrGKiM6t5DoaDf5ioyyjHi6UYRiXSjWU7wO4TwhxMIAjAawAcBGARUKIuQAWyf9BRIcCOAvAYQBOBfBjIkrLfK4DcD6AufLvVLn/PAC9QogDAFwD4GqZ10QAlwI4BsACAJfqgmtPx9aPUv24UEZFqLE8YZj6IrZAIaIuACcAuBEAhBDDQojtAE4HcLM87WYAZ8jt0wHcKoQYEkK8CWA1gAVENB1AlxDiKeEMOW/xpVF53QHgJKm9nAJgoRCiRwjRC2AhikKIqSFKpo2KQKl+EQzDlEElGsp+ALoB/JyInieiG4ioHcA0IcRmAJC/U+X5MwGs19JvkPtmym3/fk8aIUQOwA4AkwLyGhPUR1hwMGzyYpixRyUCJQPgKADXCSHeCaAf0rxlwWSQEQH746bxFkp0PhEtIaIl3d3dAdWrb6J0nnVk8WINhWHGIJUIlA0ANgghFsv/74AjYLZIMxbk71bt/L219LMAbJL7Zxn2e9IQUQbAOAA9AXmVIIS4XggxXwgxf8qUKTEus/4I66zHysh9jFwmwzQMsQWKEOItAOuJ6CC56yQArwC4G4CKujoXwF1y+24AZ8nIrTlwnO/PSLNYHxEdK/0j5/jSqLw+DuAh6We5H8DJRDRBOuNPlvv2WPTO07rySj2pKKNAI5j+GGYsUenSK/8C4NdE1ATgDQCfhSOkbiei8wCsA3AmAAghlhPR7XCETg7AhUKIvMzn8wB+AaAVwL3yD3Ac/r8kotVwNJOzZF49RHQ5gGfleZcJIXoqvBYmAYgIEIKjvBhmDFKRQBFCvABgvuHQSZbzrwRwpWH/EgDzDPsHIQWS4dhNAG4qp75JIYQAjbI6oPedjWDSGh2nfNWLYBimDHimfAwK3JGFMjpOeb4RL2/cgdkX3YOXN+6odVUYhgVKHPI1kCi6VhLulK9yZQJw56GMQlmsoQAPyM8pLKyDzyowDAuUGBRq0JNFKVGtNlwP/exomOXq4TqryeOrutE3OBJ4zhiLw2DqHBYoMaiFhhKFeoryGh0NpT7vQxJ09w3h7BufwRdvfSHS+XtuSzCNBAuUGORroaEI83a9MZqrDddxM1TM4IgTAPnalr7A8+phELG+Z4B9OAwAFiixKNSphqKoD4EzCiavQvXy3rh9N758+wsYyuXDT64CZQvmGt709/z3w/jID5+oWflM/cACJQY1ccprHbT9i421x/XjNHiU16V3Lcedz23EIytrs1yPar8ws149faWTYVigxKAWJi+d+tBAgmn0KK/mrPNqDOWqqAYFMJJ3yo2soFSvKmOGE/77YZz+oydrXY2GptKZ8mOS2oQNj3qRFdEIPpT+oRwGR/KY1NFccqwl43yqZ2ikNiavnHzGwtqxHnwoewrregawrmeg1tVoaFhDiUGto7zqWra4tv/6X77+A//7KI6+4kHjMaWhDNZIQxmW5dYiRJ1h4sICJQaF2vQxLtaOlNQ8lBp2QsLzMxpFxWbzjkHrsaa082oM10igKA0lxSoI00CwQIlBrcOGbYzm1xLrgWpeZybltGa+RqMHVW5UeTJW7jlT37BAiUG9mrxEyPFRYTTnoVSxkHTauZBcBfe6fyiHJ1dvi5W2GOUVfB7rL0w9wQIlBrVZeiVCmVF7oVFgVFYbrmLe2ZTzauTy8Uv56h0v4VM3LMbG7bvLTqtKjfqsVdLeL6zfjhWbd8ZOzzAKjvKKQc01FEvx9aChuCPmBv8eSjpVuYayaqszy33XYK7stO7YIOS8JFwsZ8hQ2TVXfbjyzJgxDWsoMbAJFCEErln4Gt4KcPbGxdt52so3nVsbRscpX71SkvChKId6nAGI0kyi3st6uOe15LHXujH/igexe7g2Yd6MAwuUGNjMEMs37cT3F63CF377fOJlRukvVAdbD6Gmjf7FxoyM8qpEQ1ECJc79iDxTnqPAAABX3/cqtu0awuqtu2pdlTENC5QY2DUU57d/uHwTRzlYTV6jGLJrw12DqsF9KFKeIF+BDyWdiq+hlDs4qP0Qora0ZJ2JqIM1WnuNcWCBEgPbS17NlXajRDS5PpQ66F0aPcoriW/LpJRAiVNPmaTO1yENZWA4hze39Ve9nOaMnIhao5UNGAcWKDHIW8zqSqBU2+QUlns9fCek0dfySmJwkK5g1YDi4CCihlL7W27kkz9bjPd/55Gql6M0lJ27q2sdYIJhgRIDmwmjmiu/6iXWtcnLXW14NJZeqXoRFVH0oZSfNvI8lDp3obywfvuolLPPxDYAwNqe6mtDjB0WKDEIM3nVyinu2t3rwE4StwblCKKaLjETgdSo+lDquy2qjdJQmNrCAiUGtg6i3FDPcvB8sdHWedSDhuKu/xIvfTltV+/fXElXEDYceR5Kg8yVHy0zbL1rrXs6LFBiYBUo0rdSFQ0lykR5VY86eKvidsTlpKr9VQZTiTmq7HtZ541R68nAzOjAAqUMVAdheznyVdRQdOw+lNEpPwpx61CWyauKF1pNbbMRyk+aasuTevcljRVYoJSBO/PZ8paXu0JsOXg+ARzmlG/gXmi0NJSwNkqyCWPlVQfmyySpB62ZqT4sUMogpZzuNg1FmrxqNXtZ+H5rSXwNpZxz419pWNIk2rCSSZ4qTdiT1Cgj82qbvBqkGfZ4WKCUAYVqKNE6gThEcspL6mE0GLcG5dS9kssMK6docqq8LWPNaywzTe3veDCj9Uw2sna+J8ACpQxSIT4U9dJU+yt74SavqhYfSPEjX6MwD6WCtGED5iTn9FSyllfYo9QoI/Nqf6csyVeOhVJ8WKCUQdhif2ohwer4UKKco+YuJF9+ucSfh1Kdc/2EdfJJdioVrLxSRhl1cNMDGD0NpT7yGKtULFCIKE1EzxPRn+T/E4loIRGtkr8TtHMvJqLVRLSSiE7R9h9NRMvksR+QtC0RUTMR3Sb3Lyai2Vqac2UZq4jo3EqvIwrF5cjNx2s9obD4ItSuHsosGNuHUkbdK5kjEupDSVDbi+VDEcp8Gjw6qScfSpBQq/Zns5NYe01RDybjRiUJDeWLAFZo/18EYJEQYi6ARfJ/ENGhAM4CcBiAUwH8mIjU9NbrAJwPYK78O1XuPw9ArxDiAADXALha5jURwKUAjgGwAMCluuCqFhTqlK/eg1jOCLRGn0H3EXMeSr1oKPGzdlGdXJz7Ub6GUn4ZSRNUh2p30kmuUlEPGn6jUpFAIaJZAD4M4AZt9+kAbpbbNwM4Q9t/qxBiSAjxJoDVABYQ0XQAXUKIp4TTa97iS6PyugPASVJ7OQXAQiFEjxCiF8BCFIVQ1QgNG66iD0UvMXQeSh24aONrKNUvAyjDKZ9AW1bXh1I/KkrQVY7WICcJYcAaSnwq1VC+B+CrAPTHZZoQYjMAyN+pcv9MAOu18zbIfTPltn+/J40QIgdgB4BJAXlVlTCnfL6KPhQdWyen9t6+ZAO29iX/1cgoVLjyyqit5RXZKV9B31IcNZeftmjyinh++UUkTlBHXO1OutZReYxDbIFCRB8BsFUIsTRqEsM+EbA/bhpvoUTnE9ESIlrS3d0dqaI2wpzy1RQoUR5y/Zxv//nV5CtRBvWuoYRObPT9xisjWllB5TfSFxmDLrPa81BU2cmYvGonUZ5cvQ0LX9lSs/IrpRIN5V0APkpEawDcCuBEIvoVgC3SjAX5u1WevwHA3lr6WQA2yf2zDPs9aYgoA2AcgJ6AvEoQQlwvhJgvhJg/ZcqUeFcqoZDF/gruqLI2YcP1ROy1vMowjVRm8grLO8ERb5w0ERPV0xItQR1xtetXEN7fyvKqXWN+6obF+MdbltSs/EqJLVCEEBcLIWYJIWbDcbY/JIT4NIC7Aaioq3MB3CW37wZwlozcmgPH+f6MNIv1EdGx0j9yji+NyuvjsgwB4H4AJxPRBOmMP1nuqyq1NHlF6aDrwXeiZGn9R3kJ43Zxn/Nbie2/Ekdx1JnydXDHI1HtKK9yl/sPgp3y8clUIc+rANxOROcBWAfgTAAQQiwnotsBvAIgB+BCIYT6XufnAfwCQCuAe+UfANwI4JdEtBqOZnKWzKuHiC4H8Kw87zIhRE8VrsVDKkRDyVVxpryO7XnX36W4dViypgddrVkcOK0zZg6yLnHTjVqUlzcf/yAgWad8+WnK1lCqKFoGR/LoG8xhSmdzpLqUeywJEg3zrgd1r0FJRKAIIR4B8IjcfhvASZbzrgRwpWH/EgDzDPsHIQWS4dhNAG6KW+c4pEO+Ee6GE1d5ZqPtgU/iNfj4T54CAKy56sOx0lc6U74sH0qsEmRaXUMxHE/ShFKJDyU877KzLpuzb1yMZ9f0hj4TQW1V7TlaKv8kymENJT48U74MQuehlBmZUw5RnvF6GFhVWoXRWr5ev4Wm0bPKu1ZOXvfaQh6m0fhkwbNreiOdF3Q/qt1Jq+wb3YfS6LBAKQOloQzlzIZ1JWhSVQ8bjnCkcYKDPIyWhqJ3Gqb+I0lndzX7p3rq+4I682pHeRUqHADowpAFSnxYoMSgfyhv3F9cy6sKExuFedt2Tq0omrzipS/Ph1KJhqKbvErzKZq8amNCKUTUduvKPBNk8ho1H0pcgWLeZsqDBUoZqAdtYDhnPF7N5eujUE8vQvxPAJdj8opVREnaIA2lViaU4kz54KepLiL7JLV1yld2v/RkrKHEhwVKGaiXd/eIWUNxR5VVDxu2OeXr50UYFQ0lXhEAwk1eSUyUKy6UWYlACT6vnjSUoKqMng8lXkF6unpq00aDBUoZqGcuZ52H4vzWw/pKtapDxasNl2XyilcG4AsbNpq8lA+lNiavyEkSDB6olKA6jJ4PpbL0QO1XDW9kWKCUQXGym02guBKlamX7t23n1Jq4VSnP5JWMD8V0O90OKoFFDeNUM+paXkn6esIIXa4m4HC153awD6U+YIESg3ANJXnCDV71MWva/Y56Ai926LmxSlDlCOO2IlmnfAyTV+TzkvP1hBGmZQR+D6XqGor6rfy5qwdtr1FhgRID69IrNX4QPTPla2x1i6+hlHFuYiYvU97JddSxhGtEp7yqXzKr7AbnEbr+WQVpKydBkxcLlNiwQCkD9cLZNBRlCqvG4+gdUVvOqQsdRRLbhxKsOdjOLZfQeSiFystQoiCeDyVaoqIZtvwybHnZiPoNmThpK0Vdf2wNRc+rjl6jRoMFShmo5yxveXuVoKl0tLhj9wh2D5sjyQKpgxeh+D2U6tuyo5RwxZ9ewYOG5cD1W2g2eSXn7K4obDj0vOTqGaZhh37lMuBw1cOGod69eOkLZQxkGDssUMpAPWdhy9dXai8+8r8ewAevedRYtrNtzr+eXoNEZpgnUMYNT7yJzxmWAw8NG3bPCy8jjHgTG53fMNNlsvWszORV2yiv8DoE4fWhJFChMQoLlDJQo6Cw5euTeCA39O4OqIdlfx2NrOLWpJwOobLl6/V87PVIokXjLQ4ZLU0hIa3YySP4eLhTPt6xu17YiPlXLLROGI5CpWHD3sVC6+c9ajRYoJRB+DyU5F7uSqmVTz7JeSiVhKkCQC5vdyyEOWErDUMF9Ii38tMW04TNlHdIYg2rUBNjBfcjSBhd/9gb2LZrOHAQFUqFGopnsdAAf9S1D63C38kVuZlSWKCUQdGHEl9DeWH9dvQPlT8SizQPpexc6w9h2Q4718SgZRFPIPrikPUeNlz5yFwvs3omr6Bjw/I+DQfcrzAqnYgadXHI7zzwGp5ZE+/TS1++7QX8ZvG6WGkbBRYoZeBqKHmLQAnphAZH8jjjR09W7ROf9RU2XPsR85BliRwgykx5+ZtA9FSszl5NbAxdvl6VEXdkrnekweeGmrwiluNHreI9EqBRhuFqajGz8H9wrRrc+fxGXPKHZdXJvE5ggVIWwQKjEKKhKFPZX15/O0bJ4Tbe0dJQhnMF3L/8rcBzYpu8PNsVmrwCOkDhHZqX0Cgaint+Au0dHsUVpsEEaSj2dEWBEny/bn92vTX6sXKnfDQNhQmGBUoZhPlQwsKGE4t0sZm8yhjdV8J3H1iJf/rlUjy5epv1nLjFl1PvMIETZELxfmDLVA91L6PXJ0mihg1XKvjCTH86YWHFcX0oGSlQgu7XY6u24au/fwnfvneFpewKTX/aNguU+LBAKYMwH4rSUMKOxyo7QlLvSxG7qFCU87Snf7jkmNsBxn4pyzF5BR8P0lBCv4cSYaLck6u34fO/WmodQLgTG2PcjKi+gGLwQNlFlKSreKZ8TB+Ksuvdt3yz9ZRdg47fsbtvyFJ2eB2CKHe1YV5A0gwLlDIozpQ3j6TCfChJLc1izaUMB2tFqOilgFPill7Oexqm8b26eScA8xc0k3DKn3vTM7j35bcCTTVOHoGHjagk4cvXJ2eaC8vC1Il6w20D0gZk3tmcAQDc93LpBNSoiBBzdBheH0p4HiNJONcCqIdI0TiwQCkDV0OxOeVdk5c5fUUair5tM3l5JUrVSEX4zkcyI+bgc8M6j8//+jkARRu9rRxTPkWbvD1/1dlXsiSJPY0sI3LYcNlFyHTRfQdB7RSWPsjfPmdyOwDg+P0nWc8JC8EuapT2coLw+lDCzzcNIl7asN24KkMcqj0RtFpkal2BRkI9czZNoxg2nLyGUu6IpZp24KDP/Fa82nAZkjDIpKWTMgzzwz+wJTy/ceqh9sb7wFZUk1f0eprTa9sh55ouU9fWg6oQJaQ4qBMNXYKmQg0lbIDhx3TOR699EgCw5qoPx6qDN/+Ks6gJrKGUgQh58MPmodjCjcuuhy3KK0EFJaiDSrkmrwANJXa5eh7BuUQdxZk0lKhzKgI1FNnN2ZficX4ruRdJhA0/sPwtbNtl9j1UrKEUgo8Xz6tMoChsz0Rx1eXQLMz5lilQRHUtXg0bGMACpQzULbauNhzyYlTykERJWY65qJy8/KjZ8GYzcpIz5YPPjdqeZoES3JFGCkOV2drudyULN0ZNEib4hnMFnP/LpfjE9U+by7H+YyjLUEh0DSUoX5VXgIYyivNxomQRVE7QCg1B7AmhyyxQykGZvEJ8KFaTV0J6bBQfSqUlBZnniisK24lS/k8ffR2f/Jm3oyvnGqJqfGYfSnAHEkVDUdnagjSKnVykanrTyqsPX23Y+Q0bxKzauiswvXNucFnGL1t6Vm22pw16ntQx2yreOtZnvwwtx0S530Pxn6M/T3FN22Gh7I0A+1DKIExDUfuroqFEMGeVEwIaRpSRebBTPrz8b9/7qiFd9DwiaygmH4reERrSqKyD6hBm8qrErh9dQ3F+bbPMy/nKYhwTo0dDCTKBRvGhBBYvNV9b/m45QXnY0ZNF6cz9QkNvG1M7RXkfwvJoBFhDKQN3FGR5OMJCOCtYWQJRxvz6GZVqzEGDxVTAApCjueRLZKe8SUPRt40mr3BhoK7VpikVP9Jlr9tfVm/DohWlkUEqSdgXG1UnbhUoIQ9CmIYSZobJe47bywnqIIvzt+wPXbXDp8s1N/lPGdba33Stkea2eLTmxhQorKGUgbrFYU5523GbaSQKUeLky3UsBpcXbvIKXqW38nLDsogahp0J9aHY6xHlOsI0lKDO4ZM3LAZQGhkUtf3Ueba5MGHO47BOTL82U528x4O0kKA6OL+VBK1UuvRKufNQ/OXos/xNz0MUjUPPkzWUMYBurzaOakOci1HkSRRhEZC6zPPtBI1slYYyErRWVuzFIc3bJqK+dKawYW89msjoAAAgAElEQVQ720eUUQSrXWP1/pZD9E8AV6ihePIKTm/KS78HwY53+8GwCcG2unmPqzyCz4uSf5T31P/s6RqK6f2P5pcxbzcSLFDKQH/Jg2LybS9PFGed7UGK4qz2+lkqeyKDRrZFU0/pScXJfjHLtf5TSlSTV1jYsOm2RFnLS5mjbCPrJKK8wk09zu9wTB9KaLRbSFhw0KeUo5qR1PsSdD/DJg1H8XkFUa5TvsTkpWkopvc/Sp5Rtb16hgVKGej32GS+Uv1K2MTHIOzrgOkVCc0msCN8bUsfnlhlX9gRCInykp2caVQcZA6LQjm27KhlxDN5RS/Ddk4l5j/VDlE/AWzTUEI7phDB6vGRhDrlveinB0Z5hZiKvenN56jrT0RDiZCH/57rdTdrKFHqEKwNNgKxBQoR7U1EDxPRCiJaTkRflPsnEtFCIlolfydoaS4motVEtJKITtH2H01Ey+SxH5Ac+hFRMxHdJvcvJqLZWppzZRmriOjcuNdRDvotNjreVNiwZXRfUedUplM+6AE++ZrH8OkbF8eqh4N9uXFXQ4n5ZnuvITiPqEEOTZnSx9yjoRhNXtFNKGFRfaMxD2UkF08rDmtvPUQ+yNcElN7zqHM7VPsF+VDCQopVJ57MPJRgjdM533tMfxfi+lCimg/rmUo0lByArwghDgFwLIALiehQABcBWCSEmAtgkfwf8thZAA4DcCqAHxNRWuZ1HYDzAcyVf6fK/ecB6BVCHADgGgBXy7wmArgUwDEAFgC4VBdcVUMATWmnyUyjEHekVYGGEqbSO9UIf+AjqTEBBAmEYA1FTnoso3i9rHJGilHmLQBASzZdss/TORiySURDCTluq4+eNmwtL3Vi3LDhsCAIbxSXSUOxp48aBhtFGORDIuZyETSU4769CF++7QXjsSjPnb66tv96wq41ygDL40OxnL/u7QH88um1oXnVitgCRQixWQjxnNzuA7ACwEwApwO4WZ52M4Az5PbpAG4VQgwJId4EsBrAAiKaDqBLCPGUcN6qW3xpVF53ADhJai+nAFgohOgRQvQCWIiiEKoaBSGQTatZ4gECJSQKLAibMIrirPaIkwpHOEFVVXmbRpRRF0zU8XRKZZi8omoocWbKR/GhhDmC1f44kWLlaig2H0qYzA2LbvKMmkNG3v52jOqXUMcCPzcQ8u4oDSHIxLd5xyDufH6j8ZjXP2rO48Yn3iye7ztHN/3Fd8qH1+ETP3sa3/jjy9YPjdWaRHwo0hT1TgCLAUwTQmwGHKEDYKo8bSaA9VqyDXLfTLnt3+9JI4TIAdgBYFJAXqa6nU9ES4hoSXd3d7wLlBSEQCZIQwmxN5cbOqgTFhAAJBs2HGzzdl6eoE+2lqOh2EZ3tmtQQiuqnTnMmWyeNxDdhBK+9Ep4Hf3PU/QoL+fXdi9C/VAhYcFhvibPtfuORxlxA8WBSRQtxn5caSjxnvtChHdHb2N/dcKe22gBOeHv+I7dIwCCP0ZWSyoWKETUAeD3AP5VCLEz6FTDPhGwP24a704hrhdCzBdCzJ8yZUpA9cIRgKuhhKm1xhDLKKYPS9SMx8Fp68As23GI0gGYfChxom300Z0nTNXaUavj9pcqbDly/eU1jigjfGDLlJepnpG+r+ETCCpJ1Al9tnkoYc9cOQLD2FEG2P2j+gSKS68EDGJCrkM9k3F9D1H8PePbmor18RWkP0MmzT2KdTbKO56R/c9gbg/UUIgoC0eY/FoIcafcvUWasSB/t8r9GwDsrSWfBWCT3D/LsN+ThogyAMYB6AnIq2oIISAEkJUaitHxFtIZRrOjmvOIYgoq95sOwenDR4umUbEaWZczMcs2ec5UBU8kTMBL6s3HLvj85StG2ynv74Sitp46L18QsZ45T9sbSvVojyECxZ8+bIDlzyNQoMibbTtjpEINJYp236wFdwRFeQU9T05ZlufF8r7rqIjFwZE9TKBIX8aNAFYIIf5XO3Q3gHPl9rkA7tL2nyUjt+bAcb4/I81ifUR0rMzzHF8aldfHATwk/Sz3AziZiCZIZ/zJcl/VUPc3SKDkPBExwS+fDdtEMj1lNOd++S+Wnm2UOQGm0OmiMzt6uTnLy2heE0mvR5DJLfheeDUUg2CMoF2oI2EaSpS2KPkCYAQfjr9+JgEfVrbXLFV6PGxuRJAWEtWHEvQ8ueeE3I9cPlp72YgyGOuTnyE2laO3fZjgHbKYq6KYvNKuQKlPk1clS6+8C8DZAJYRkQqduATAVQBuJ6LzAKwDcCYACCGWE9HtAF6BEyF2oRBCidnPA/gFgFYA98o/wBFYvySi1XA0k7NkXj1EdDmAZ+V5lwkheiq4llDUzVYqZ5jjLRHHnNX8FfOtKavsIA3FqdiwIVQ1jsnLNpINEwRBGkpYRxlmXijO3raXEZS/kzZ6J+fXUKIK5DBNq7woL3s7OHmVpg8SOGE+RX8egfcz5DrUiD22hqKXZclj11DOeo53IGQfoADAzt0jxsjDKFFx5Ibs72ECRQjxBOyra59kSXMlgCsN+5cAmGfYPwgpkAzHbgJwU9T6Voq6v9mU0lAMExtDImKizOz2dBAWu26Yb8G/HZUwgegv3zyiVB1x9ArkLO1m9n3o2/YyytNQDMcL0a8jfAHG8DxKTV7C82vDI2BDrjMsvdEpX4az2X/YM3s8oBrFVbrtnaQ6x5bN7goFiud9tWSRC9BCvFp2aVr9/Ne7+zG1q6W0DhGebeVTs0X11RqeKR8R9WJnM8opX3pO2OJulSwQp6cMW4zQvx0V/Rl+vdv8/Qyg6AA2+lBkHtWK8tKvK8hEEtZRenwxBieqOzciyj1LwIfiN3lF7Rc9I+sYWnHY4o+2kG7jcd8zd+1Dq43llNTRHaBEGyCY0isTkFVbDNXUwssKagv9GTKuoqGlHRjOlRz3l2u7XDWCH9lTo7zGCn4fiumhyRWEa+OMM1oE7FpO2EhRr6M/n6jo+f7zb54PraMpskjlUU75Ocu1meeH6PWw5+kxaRnvhV6+vQMIugqVbdgngKM0hc0pH/bIhJruQgoPc0Z7hb2hfM8z6j225u1+rRx7PcLWwAOCZ9EPeTQh83klPiofUcLyg/xFNj+gm79WrwHLHJIwbRPQ1o+LE3UzCrBAiYi62UWTl/nlK058LM0jipZqNXlFyEcIYFxrFgBw4sFTzSdplC6VEV4/oNgBmKO8VF2iP/C6qUPPMixaJsp3yv3bCk+YZ0A5US4jLOoukoZiCRsOI2z9p7I0FMPxctoxqKQgs6DKItDMGuDTGtJCaG3XW6lg9devNGw4ZPl6LU/bpMQoc7AUbPJqcNS9zoTMQ3GjwEwvd5kmL5sKbJ1ND4G9pG02kwq/tf58otqfg9ZeimPysmkoZlOVOV3JeSGfpg37fkU5a0OFzkOx1THAj1P8lkpw2Z6OMGQQE/QhMf92MX3w8SDNWV82JtiHUigpy1aO6R2K4quxzdMpptOfu3ChVHbYsHYfbCYv770Mrm8l346pJixQIqIesrB5KGqtrzCnfKSH1hblFeCUL+eLiXGX+1DXYRolxVmy3RZuHaqhBJQRFi2md0LmiWjh16EcwVaNUf1a8vCY3fyZRGy+sHki5bRneFhw2DPtPaYGX0CINikvPUiLUeWYzJPK5NWcSVnLMX1qQSfKJMyga82FLA6pt11/JA3FXAc1TqzXKC8WKBFRNzgbEDacLwh3Zds4Ex/1cvzn62cHzZRXNtYo/VGpQClXQ7GbvMoRKLZOzxydVdyO6sQ1CpR88aWOEzb84CtbSs611cFmvtc7Bf8IOqoPKiw0V98Xtqy66TJsA5xiens7nzB3ivWYjhISQoQHOJjaRQ1sWrLp2CavsDlkTh52X02YhqLvu+sF83piUQZL9R42zAIlAut7BtzvfmcDNJB8GSYvW2do00Si2HiBYhRIFOFQavIKTQJAj/IqTeCavMp43m22aWN9IpoFbPN5FB4NxXQvQxYbfHjlVnc77CubUTo5/8jbDZMNuY+FsI5MS2/qhMLaO0wDynmim4rbL6zfjiv/vAIAMKEtG+g/zEd4L1Q5puPqXrZm01bBEfR1UX++Vg0lQAuJ6pMDgNe2mCMoo/oHgXATXq3gb8pH4EPffxx9clKTbXFIIQQKApFWIwYCOpkIo3XraEuUZ/IK+n7FgjkTremCFoeMY/KyXWf4xEZ7GXpSU6fs9aGYPpYWrKF4ZkaHjKqjdFB+s1tQSLSpnnp53joUt4Oi8gCLyauM43qbPvRqUeC2ZNOBgjHKexGooeSUhpJC/5ClDF0DKQikfCtQh60IUHqO91guQHvx75sxrnQOinOOeVsn6NMR9QBrKBHo02bIZi1hwepha8o4M2DjzKQHfKMgm8krwClv+n66DX8dPC9CgDwIXstL5RW5Gr6Rn1afmG3o5BM84hzOF1zzZNC3bWwdXJhTH9A7Hcu9LugmL29bRglb9pcd5jQ3mihDOrGwkbtevt4mbU3FmeBNmVQk/4h/23uOGsQYBIpm8rKVo4cNm0KIwwSCqpuSQ/5zggYHzvnO794TW63XGKYNAkULRJhPqFawQCkTNc/E39mpByDQh+KxR9sfWtM51XDK+/PRn+GguP3iTPnSeriRTQloKKaXSt8TZaZ8JkXGfIZyBbfTC7pXQpivZSSCzT1s+fogU09Uk0bYPBH9+KYdgyXHgyYmAhFMah6BUvRLtWsCJU0UOMAoFLT5W7ZVk+W1mTrSooZi96GEOc2jOMQ9Ju0Sk1dI2LDc19GctYYNR/KhyBd8uE5NXixQyiRjeaAGhpyHpDlg1BtlJOaZk+ExN+jnmOsmoDnlIzxvQWHDQeYkd/l6w2xd1zRRTpSXZXRoyqJck1c2nbKaSVrlekqmzjtoSRF/PWzVUPuj2PWtGkpIM4aGq2oZbNlpEChauaaywibs5T3XUNxubSpa04mCfQK5QjE60hrgEKAVq3kordl0rAAIVQe3LKuGUihGcQr/seCBUMEVKGk3OrD0nOK2bUCmxot73GrDYxXXR+K74d+462UAwKotfQAsK79G0VAsIyl99Bj0iWG1vHWUpVf8HUSYvd2fzuToVHvKMXnZOkXzjGNzOj/q/jRlUtZRbauroXiPFwrOpwpUW4bPILd0ggF2f8A7GvebSdTz85ZBCPjLCKqnvm/XYOn8B/0+GwWnxaSl8GgoWjtnNB9FOkWh2mTR/GiWCG6ouqEOrlO+ya6hDHnCxIOvw1bVfEEgK+tZ8sVGS3CCQu1qa8ogVxCWlaGDtU2d/7l/ZfAJNYIFSplk3Jny3v2rZOSGeiSMETUR7P+2B1t/z+wmL4F0iM0r6FvqYfZ291jQFxtlFnGd8uFhw9E0lKJPK2WODMoXTV7+4+o+ZdzBQ2n+UcwTxSVqzG2pmxX9Hal+bVsDhEqQGcbZV9zuGxyx1hEwX0fOIjBM6YcskXMpomCNtxAcbq/XzWTqGdKjvCL4vMKsB0Hm6KzlmdDfF2NAjqxXR4ujuZm0lLAACz/q6431BAuUMnFnyvtuuPqCWqd8YIxmlAij2hHLOfrZVg1FCHfik+151Iv1d2LCcyy4AwAsM+XdGd7BL4TNNl/OTPkoy3k0pc0CZSRfQHMmjRSV3gv1vxsibihH7xCsGogIFig2c5H//56BYWN6p27aV0RDorBM3+HQnwHTVdgEhil/W+RcKsCHorTB5hCBotrQ1Jaq3OZsyurzGvaYvErzGIkw2z5oWoD+3gYF5HRIU6DJjyI8z75dqCm27bKEtNUQFihlYgsLVg9IZ7OzlpbRzBIh1NTuQwkfQRUKxaABG97vYnvzUf8TBYclKlONeaZ8sS6B9SiYR4zlrOXV22/vaFV7BZm8mtIpZFKlAscvUEzvdqv2PQtrBxQwdwLwtrG/g9Gfg6CPKemTaU3Phd5RmsxFYcEFuq0+yOTVnEl5jqt8957YilQqPEw+TEMpfnba/l6pe2LKYki7DtNAyDtAsJjd8sW2Lllt2PMM283dbc1OHU0CxfvsG6uAXL7gDlqH6vAjWyxQIqD30V0tjsDwP/jqxWtvVo5e+0gKsI+uPTN2LZEnQWaBVMhM+aCoINfvYHFku3V0NZT4TvkRi68o6mrDHc0ZrOsZsOavaygFUdrZDuecsOFMutQco+qeDvBNdLVmA5fZAYLt/oD3uv1aiC6EhgIcsGEmL13oGzUMjye4NH99ZdwggdLalDauPvCH//cupANMXq5p0jK/SxFkZtWjvADz/dLbweSnGRzJg8gRjIMBX1RssrT1SL5Q1BQDou06mu0mryhm1JGCcPOoxwUiWaCUSbu8mXqH+bmbl2CndHiOb2sCYImXjzB3wdbRRolR9zjlLf25N9LMbLdvyaatTnkhhBtVUxCl1yG084IY8YxmzfbnIIEytasZQ7mCNdrF1TIy5qVyhqRASaeo9GuJvk7OdCXDuQImdTj3OsgEaSpboe/v2eUTKFqdgjqOsNUZ9LY15ROmoaiOr6M54xEY/mtozaZ9GoqznU2nQGR3yrsajhIGlrYadjUUYRwcqDroeZrOUXn4GRjOoy2bRmtT2vpM5QrCFVolE1HzAi0Zc5AHUBzgqP7DtIR9lE9U5PLFYBLbQKWWsECJgP58vnOf8c4+beeDK4rrOn35gwcCiKChWF4cfaRqWzYjaL2jMJNXLm9/sXKuQElZo22GcgUUhO4rMvthAhQcJ50lVNjrmCxNp86dIAX3ToOjGSgKS1sn88a2fqSJnHkqlmVPMpaIPsBph6AOTN9vMx/mAvwkevsHmTZG8sV6BC0xkyKzpqPb4U2XsXs4jxRJgWIKEy84z1yTz+Slrj2TosAoL9XWzWEaiv7c+i5Uj/Ky5eGN8jILztamNFoydoGSLwi3rf3COVcooDlrDtgBis+QEiimMvRqB7VXu/TD6Mv21wssUMrgr4+cgckdzQDMo8FpXc3oalU+lNJR7++WbnD/t3VCK9/aqaUp7vcs9WGL1RfQTF7BnRxQOsJRdW7Jpq3LY/cPKU0sW1Kvcr57P2IJswybSKfyVd992bnbvBT4iHYtgLcT2jWUw3CugPuWv4W0wYdS0DpDwLsUvmI4V3Dt4ebwZlGcAGppSyU00ilCT3+AyStgJDqcL6Ala9dQVMfX0Zwx5vO9B1d56uxnYDiPtqYMmjIpi1PfiSxsSqd8ZqWiUE6R3afmaoMRfShA6UBoOF8AUXGQY+qsPRqKoTK7h6VAyaasPqtcoagd+AcJI3nHHEZk01CUySvAhxIQgVksp+Ca1VlDaXAOm9HldtgmLWHLziF3aRb/COaxVd2e/22d0K+eXlc8xxJmbLOARNFQRoIEinyKWzJp66i6X07gHN/qaAi2eTOhGopFWwsLnVR7xkuBYgudLDqLZaev1XNAW0onYzB5qToERXkN5fJoy2bQlE6ZzRdaEpvJSpU7tbMZm7fvNh5TZdkYyRcCzUUjOWdfZ0s2tAMyaigjObQ2pUs0kGIaJ7LQf1zVP5NKOWHDIRpKmEDxLJ3iq4cKsFDag6mzDvtcwe7hPFqzabRk7RrKSE5YBUq+IJBOE9JEgUv5KO3C5EMJ+mY94PQPgyMFdzDFAqVBee+BzjLc//ie/YpLRFgefHfxSN8Dpzq+CXJkbzIpve0fpeojPrmdSZHV5JUvFBe9sykInqidvD+yqGjysl1fv/w4kHqoRwyjUiB4ZrRzrvkF934QypBOnjuxPcTk5a7v5NwPvUNSL/NFpx3s+FB8dVVl2ASKEAJPv9GDnoFhtDenXa3Nfn3BTvkDpnZg045Bz7XkCsWPpQVqKLlCYMjtSL6AdIrQkjVrGF7sHW1T2ixQcnmBTCpVosHkC47WkE6REzZcoVM+yBek/GGqszcJBF0om+7HwEgerU0ZNGfTVqf8cL6AzmbztICRfAHZlOOTC/oujeuUNwg9vf1M2qI6rt698Ps5+rBAicC3PnY4Hv339yGdIteubnLszRzf6kZ6+I+rkf0lHzoEAPDvv3upJP0Nj78JAPjSBxw/jK56K6fkuNYsdlm++FbQnPI2dnuidmw+lDRyBWExgThlT5Od3eruXSXpgXCTl162dS0vSwcJABOlQ3ynRUNRmpjJz6HaddaEVhnl5X0x3XXALJPYNvQ62sTqrbvQ3pwxChSvuTJ4dL7PxDYA8OSTyxcwe3KbrK/dpl8Qeris2eSVTROaMmljB7TPxDYcMr3LeJ2AMnml0WwRSE5kIUoEzoj2LDZlUtbl41XnW/Q/mM8LijYbzjtC1dVQDO2lv0umugwO59GaTaElk7K2t766gr8tcnmBTNrxF5nWI1ODlPaAKK8hT+hyafnq3WUNpcGZOb4V+05qB1BUWfsNnfr3znqHO6r122lVR6xGP29s6/cc7+0fxk8efR0A8A7p+DeNqqZ0NmO7ZaJbQRRH1Ta7vZ6nf6SnR3kB5tHiLikYj9x7HACvD8MzWzhEoHhW2rWsuhs0c3uSq6GYhWtRQymNylEdRksmjWw6ZQ1OsI389cUIOpozntWoFcOaRmk3eTn7ld9N7zTzHuerOf2I7xptX6ZsSqfQnEkZTWcDw3l3IUfTLVPO6s6WrHGmfa5QQCbtaCj+eVZqVYnmTMoa+qw6X1s4rlsPKdiAUgEbxeS1a8j8nCoGRnJoa8qgJZu21lWtUN2UTpWYvHKFAjJSQ7GtzAAUfY9GgZILfvZVGldD4bDhxiedIrQ1pd11kZQqP7WzGX81e2JRoPhG/70Dw0inCO/c2xEWfkVCj7bZf4ojvPQHTI2wDpnehWUbdli/TZGVoySbD2T3sKb1lPhQvB2pSSht63PqufeE0tGzNwTVWLx2rtb56CGyWp1e2rADsy+6B8+t6y3WUWko7U5whFVDkXmaIn9UnVub0mhrSpcMDlRUVUdzqVkPKC7ACQBvdPdj4StbSjpC1YFNaG+ymry2yrZUzmS1wKhKr0LQbVFeSgC5oeyG00ZkJ9hscaoPjuTRJtObOrHFb/SgOZPC+Nas0V+VLziBII7vwTswUBpKsy+k2FO+FHJqSRKb8B0YzrtmTr/TfDjn+JFamuwaSp828DBpjEUfitkpL4RwykmnkE1TiR8nV3A0lIwlok3dQzWPzeR3CzN5uQLFfS44ymuPIJtO4S+vvw2gaPJRnYMSOH7bfk//MCa0ZTFv5ji898ApOHRGl3vsrR2D+OA1j7n/q5Gp6vg279iNax58DQBwxKxx2DmYK4kKenZND7r7hpCSobAmgbJrKIdP37jY/b80yss74jVFw6jFCved5AgU/eWN4jdQ9A/p6fQIngImS3PW759zouLuX/6WdlyZDhxHcVjYcEum1KeltMSWbAodBpOV28lZJqnqeakO8DfPrPOc89pbziKhk9qbzPN1hMCldy8HAMyW2u/6XmeiZr4gsG3XEKaPa0EmRVan/HWPrAZQHLEao7zk6N3kVBdCYGA45wo0v1/vlU07MZwv4Ok3erBrKIc1bw+UCJXdwzm0NaXR2ZzxaDC5vOOkBmAVZkBxfTFlQjVpFz39w9ixe8Rq0uofynlMXiaTVd/giDuIM/kvi1Feaff+66jnrimTQjZj0FDywg2RDgpbbm1KG585dR3+8/11BDSTl1aHFZt34vrHXi/rsxHVgAVKDHbsHsErm3eit38YF/xyKQDg304+0D2+94Q2LN+0w5Pmt8+sdyPEJnc0eyayna118kCxQ1cP1eduXuIeK86/8D6QZ/7kKQDOaLHJYMYBgHVve2eW+1+KfvnAdrXKEa8hj1c270RnSwaTpIagdwC6RtNnMUUp3tRMfv5Q5ramDNqb0u4oTl/mRJ8wN641aw0bVqNMNXrXX3JV5+ZMGu3NmZK6uhpKS2laIQT+/qdPA3A+InXl38xz9+t89hfPAgCmy6/z+ddd6tfabeb4VgDFzrWnfxgF4Uze7GjJWIXmz6TPTZms/EJ8cCSP3y3dgE07BtFs8KEM5505RZPlyN8/atYHLeoLjLpwV9fR1pRGV2sWvf3DrsauJgoCjkCxLdmu7t+0rma3zn6UKXjVVmfw5s/r1bf6MHdap+vwNj0Tu4Zy7rvj17z7h3LYvHMQsya0WuehrH3beV6ndrUgm06VLFI5kndMf2lL0IwaFDSlnUGMaeVnNYAiMptyB30mL32A8K+3voBv/flV6+eFRwsWKBWwausu1xdy/AGT3f1H7TsBK+UIFQBuf3Y9gKIWM7E965nI5l9CRJmc1AOkJlNOam9yXxrvaLD4YLVkzSMopxyv38ZvE1e+GVt0kRACi1ZswQcPmYaWJqeOXg2laDILWwlVjc7TKfJ0ZCN5x2ynzD2AV6Co0WUmRehqyRhNXpu278a//e5FAEWbtSkMtyUrR4t+k5eroZS+uDsHc66W9j8fPxIfe+csAF6NS+e4/ScBcEaQOrofrDjidOq4tc/Jf0pHM6Z0NGNbn33NMgAYLwXCLt+o96k33na3nbW2vHUcHPaaD/3agbLsHT5zHM54xwwARZONYmA4h/bmDPaf2oH+4byrZe0aGkGnPHefiW3o6R9Gd1/pYoZKWE7rlBqKoTNX78MVZzjC22tmLWDj9t3Yf0o7pnW1gAjYtGN3SR59gznj3CnA0bqFcDRFm8mrd8Cp58zxrUYfyqCMtrOFDQ+OOMERqRShoyVTcq8AYJscZHY0ZYz+qoVyAnV7UxrZNHnez5Xysxm1XjCSBUoMVOivPoKboHWA+05qQ+/AiPuyfPX33oiuCe1NGBwpuC+wv+NOpRwtQ+1vyTjmncWXnOSaJ/RR9TZN22lryjg2XoNAWevTUL7zwGvudv9QDv95l9PJz5ncIfMtPpxCCJxz0zMYHCngiFnj0JROIUWlLzfgaGA2gSKEwG8WF81De3W1eDpXx/GZxoT2Ysel5igAxeiwbDqFrtascfT+Xe26lGDSzQOq829rSsuw3+I1bNy+G4+sdOYMmVYD0OuaSTvhuCkqBl34mTutEwCwxheEsXP2nykAABjYSURBVH2gWG/llFd2+dvkAGRKZzOmdDYbOwldIzpKDji8foKC6+9Sa1T5n7OBEed8FTHnF4qq0/v2xw7HBe/bv6RcAOjtH8H41qz7nfTegRG80b0L9y/f4i57c/hMJ4Bj6dpe+FEj8alyEOPXknYN5fDDhxzT3vzZEwB4nzl1zeNbs2jKOKN/vW1VW6zc0oe9ZTSdv8NXHx6b2tWMlqz5A1hPrt4GANY5ObuHc2hvyiBtWBsOcKwaShi3WwI5mjMpfOyomehsKdWaAeCnj74BwOk/bGHcO3aPYNdQDn/3k6dKrCSjAQuUGPz07PkAgJc2bHf3TdQFinxw1/cMeOyit51/LIBihNJdL2y0rpjrRMY4D8yuoRzGt2aRSadcM4z+wOkfYcqmCdl0Cj39wyUv/1qpCb3/oCkl5ekf7NnLYKbZ2jeEx1c5L9WsCW1yfSbgF39Z456jrnXm+FbrOlsrt/Thkj8sA+B0hJM6mjza2uBI3h3pKXq1DkJpJONas+hqyRo1FCUIACdYAigKgqVre3DLU06dJ7Y3ob3ZO1o8/don3GsyfYpAr0u+INx2UJ3eUC6Pv/7hE+457ztwCtqb0ljjE+ZK4H7m+NnuCFwJLtXuB0/vwl7jWrBkba+nLd/c1o9D//N+9//DZjgCXj0TQgj89Q+fwL/f4Qxknr74JLQ0lc6XKa6QncH4tiy6d3m/u6LMMp0tGdev5x9Zb+0bxNSuFtcH8tqWPlz2p1cAOAELQFGoX/CrpfCj7t9Ui8lLfz9Uh6xrUuq+KqHc1ZIt6Ywfe60bw7kC5u/rCCSPP20kj8Vv9Dh16GzBuDZnAqhfW/v+ImdFgXY5YPN35iq82hkIlj73O3ePuJpoZ3MGuwZLhd5QroB9J7ZbI+oUe3W1eITa0rU97rE/vbQJ8y69H8+s6cHX//CyNY9qwQIlBkfLB/PHj7zu7hvXVhxRq5HQurcHXBPAxacdjGP2c8wfSpu56M5lOO/mZ41ltDWn3ZFT32DOFSTqpdK1I/3TrgdM7cSG3t144JUtbicHAN99YCV+s3gdjt53An7+2QU4bd5ert0a8EZLqU5YN1HoI+x5csSp6qa472XHvq4c9qZPzm7oKZojfvEPCzChrcntNFZt6cPjq7ahoznjCavWy1bCZ2J7E5ozKbzoi3h7fl2vKxBasil3qZzfLF6HoVwef3vdU3j1rT50Njshoh1NzhpV6uXUtT3VEeodca8m/N7o9tqr1/cM4JI7X8ayjc7I8DPHzwYR4dAZXSWj88tlp3veu+cUIwNlR0dE2G9yOzqaM5g3w2nrT/7saTftDxatckfR3/jIoQAgR7XOPXy9ux+vaibXaV0tmC21ZtXW63sGcOJ3HwXgjLpnTWh159cAjpnvK9Js2NGcMS5qOJIvYNuuYUztbMah07vQnEnhtbf6MH2c4xP64klzAcCjbeq83r3LHch0NmeQTpHPJ1fAe/77Yfd/v1N+685B9xqUmVZvB8V50gf57rlT0JRO4fXu4vN0w+NvuMJiWlczJkvz39v9zrMvhMBtzxY16kkdTehq8Ua8FQoCOwZG0NmSkQ73UoGyY/dIUei1lmpRSvhO7GjCuNZsyfG35SDjSx84EO3NGcdnJZ/FL9/+onven5cVfVzbB5xB5c1/WYMdA8Em6KRoaIFCRKcS0UoiWk1EF41WuekU4exj93X/v/aT7/Qc30d2qF/7/UuuI1zZ0gFgzuR2d/u5ddvRlE7hn967nyePEw+ehntf3oyRfAE7B4v2aBU6eckfluH7D67C4Eje/aLfn7/wHpw6by83D+XkA4oj6IP3ckwwM8a3YsvOIbdTVKaHy04/zO2Edd+O6uB/ds58V4M5bEaX61AezhXw08cclfx9B00FADwsHbmAM5o/40dP4nO3OC/3E197vyscX9ywAwPDOXxCdppPrN6Gn3z6aDRnHIGgHKIA8MybzmisrSmNKVLwKX8MAPzNj//ibr96+WnuOYte3Yr/+r9X3GMqxFQJaiU01KoIQFHTvPXZdbhDrsOmm7w+9x7nnt38DwsAACdf85inzWdNcNrmqH0nYNnGHfjYj5/EwHAOsy+6x+3wZ00oToZVPpSHX93qjtjVuk3PrdvudmJ6h3nA1A73OpRwVz4YoPi8qPPUfbxn2Wb3nL26WjBzvFeg6G3a2ZJ154Do/qa3djjlTOtqQSpF2HdSG9a8PYDfyoi3f5TtM31cKw6Y2oH9tOceAL582wvuNhGhLesN4f7Wn191t3/x2b9CV2sWmRS5A537XykuyjpTtnVHcwYPvLIFR/7XAwCAB7VzDprWiWP2m4hn1+gj+mI7dDRn3PZ6Ww4sXtuyC1/7/TL3nEntTSVmyK/9/iX0DeVw5N7j0dZUGsH1zbuX44nV29x1CGaMa8WmHbs9AyEVGn/IXp2YNbG1xK/60gZnkHLMfhMBAHOnduD5ddshhPAM8HTWvD2AR1/rxqV3L8eRlz0QunpFEjSsQCGiNIAfATgNwKEAPkFEh45W+ZdLByFQjNJRqI5y52AO58soMDUbGvAKFMCx7+8v/RaK4/efhIIA5n79Xjy+aptrJlMjRQC45sHX8I7LHnAXnTxICounLz4JgBNt9uTqbR5N46unHAwAeLcMIjjt+49j847d2No3iPfMnYxzjpuN1qY0xrVm8cOHVrud19K1vehszuCkg6e6eR00rRPdfUP40cOrsWxj0fz3ocP3wszxrXh81TbsGBjB4Egeb/cP4YX1zjknHzoNs+Q8FtVR/fH5Ta5t+5TDpuFdB0zGyitOw6nzpuG1LbuweziPXy9e60YbEREufP8BAIBbnloLwPzBrRbNoa/7bj546DQAxaUwegaG8fQbb+PR14prrilN8/7lW/Bvv3sRS9b0oLffaY+fnn20m/dfSdu+3/auOvEpUkA/t247vq8txqiug8jxxdz6zDq8uH47BobzbhTdkXLeEgAc+61F+P6Dq1yfUoqK/okZ41px94ubsHNwxB3dHjStE7/+3DEAitrWgyu2QAiBJWuKGtMRs8Zh1oQ2rO8ZwBOrtkEIgd8tWe+2k5rH0pRJ4c3ufgghsHrrLld7UEJ5xvhWz8rbKW2y1UeOmI43tvVjQ+8AlqzpwdadgyW+jDlT2vGcpsnd9OSb7vb7DpqKdIqw17gWbNq+G/mCwB+f3+geV4McZabcsXsE2weG3QHMuw+YjNamNGZPaseabf3YtmsIQghXsP/LiQeAiNwByGbp2L/inuIg5JlLTgIRYXJHM7qlQOnuG3Lfv/cfNBUT25uwZG2vO/BY3zPgasxKC57U0YzBkYLr/O/tH8bFdy5DW1MaR+87AftNbsfmHYOuX65vcMSNGlTTDU44cAo2bt+NGx5/E/e8tBmHTO9yLSdPXnQi/uPDzoocn/l50QKiNOdqkgk/pW5ZAGC1EOINACCiWwGcDuCVwFQJcu5x++Lmp9a6DkWdfz/lII9fQtlPAWe9r++f9Q588dbiCO3wWePwzNdPcv/XNQ0AnjDDv1x0Io6/6iEATvSIGr2odcb2GteCj71zJu58fiOeWL0NR8xyOp0fffIo1zT3fikYhnIFHPdtJ69PH7uPW8a/nXwgvnHXchz+zQfcfXOndng6iYntTRjOFzzX+ezXPwAiwpzJ7Vj06lYceVkxPQCcePBUXP23R7j//8+ZR+Lel9/CJX9YhpZsCp9YsA++/bHD3eMnHTwNv3p6HQ75z/vcfV840REkKiQXAGZfdI+nnItPOxg2/vvjR+DMo53orP2mOJ3+SdJ0ouhozqCrxft6fFyGZgPABw6Z5m63NZW+Rt/6m8NdTW0vrZ5KiwOAlVec6m5P62rB2rcHcPqPnnTqc4iT9uC9uvCBQ6bhwRVbsHsk785HOm3eXrju00e76dVkuiO0+3XH549zNVt1Ldc98jpGcgX85XXHH3bBe/cHEbl+L32e0kHTOvGzcxx/IRFh9qQ2/G7pBs+q2YAzAACAd+0/2Q1oUMsH6e31vQdX4d1XPww/yjT2ocOn46p7Xy25l98980h3uzmTwh9f2IQ/vrDJ3ffmtz/kTjY9aK8uPCzr8I7LFrrn/M+ZzjM3pbMZ/cN5zL/iQffYzPGt+MrJBwEA9peDgAt+9Ryu/Jt5rt/wpW+e7A4Up3U1Y/vAiKeeB+/ViQntTTjt8L1wz7LNOPV7j2PBnIm4+8ViPS/5kPNMqr7gkP+8D//x4UNwvXwmFsyZKN8dpw7/8ceXceLBU11TMlAcrC6Y42gqV/55BQBnAHrJhw5xv+B59nH74op7VrjprvvUUZ7BSbVoWA0FwEwA67X/N8h9o8Y3P3oYnv/GB0s0FADu6Bkojn50Tn/HTFz4fidy5ooz5uGQ6V2Y2tmCqTJ8MptO4fZ/Os49/4eaWW3G+Fa88a0P4aunHuTu+4J8KRVHydEKUFSX1ZIuikf+7X2YN7M4wfIgGZEEAJ88Zl+PVuW/JgA4a8E+8KNGeBe8d/+SY4BjUpvQXgxg6GjO4O/n7w3AEY6qc1IsmDPR07Efu99EfFm+/ESE//vnd5eU8ezXP4B/0sq/8m/m4TPHz3b///Dh0937ccj0Tn9y/O6C4/Dyf52CTDqFZd88uUSwAKWfWl4we6K7PaEti08eU2ybUw7by12kUvHQV97rroQMAF840Xv/dC32Z+cc7WqUir8+cobn/08Y7kVnS6lfDwBueOJNDAzn8YUTD8DX5DN0woGlgRrTxnkHSsqEpfPgl4vX8Y8n7IeLTjsYn1iwD774Ae/1zJs5Dl+X69jpPPSV9+JL8htCuhlZcc3fH4m/lcLfVM9LPnSw5906dr+J8LPwSye4fp33+QJSsmnCHy483v2/Q7MAKKf2xacd7AmX/vARM1w/oeJP/+I8hx85wrkvb+0cdIVJazaN+/71PXjPXKdstWwRAFxxzwps7RvCJxbsje9IwXnCgc69vvO5jfjn3zyPP720GQvmTMSrlxcHIAdN63Tf1+njWnDBe/d3v0sDOHOsFl9yEo6ZMxFPfO39OO3w6SXtUg2o1jMr40JEZwI4RQjxOfn/2QAWCCH+xXfe+QDOB4B99tnn6LVr145aHbcPDOOPz2/EmfP39piqFIWCcD7U1JQ2pI7G0rU9mNrZ4ukwAMeZeMtTa9HWlMb1j72Bfz7xAJz+DrO8/cPzG9DZnMWJB0/1aCDqmx5q+XHlPPaz9u1+dLZkMaEt63m5hRC49qHVWN29C4fPHIdPH7uvxwSlc89Lm5FOAafOK33wd+wewSMrt2Lxmz244IT9XR+V4o3uXXhr5yCeWLUNnzl+tlFjBBzfxEF7dWKGbwAwlMujKZ3Cc+t6sf+UDs8cGEW+IPCxHz+JvSe24fLT53mEouKtHYO46M6XcPFph7jmR50tOwexaMVWzJzQ6vHVKNb3DGBdzwA29A7g7/+qVECour68cadr3tAZHMlj+aadeOr1bfjUMfsa6/jalj6cfM1jWDB7Im45b4HnfvT2D+OFDdtx9b2vYmpXC6762OElbbV0bS+WrOnBuw6YjJQMOCiH59b1YlpXC254/A189MgZeOc+3usYGM5hXc8A7n95C845rvQahnJ5vL61H6mUE3Fleu7vffktjG/NYl3PAI7ce7y7+KUiXxB4c9suTOtqQW//SMnzpNpi2cYdePL1bbjghP2Nbfl69y4882YPPnjoNNfvCDh+mydWb8OUzmb89REz0NmSKUl///K38Ny6Xhy/vyM8Tpg72fPurNi8E4++1o31PQM4YGoHPnbULI+VQ6E+ZV1tiGipEGJ+6HkNLFCOA/BNIcQp8v+LAUAI8W1bmvnz54slS5bYDjMMwzAGogqURjZ5PQtgLhHNIaImAGcBuLvGdWIYhhmzNKxTXgiRI6J/BnA/gDSAm4QQy0OSMQzDMFWiYQUKAAgh/gzgz7WuB8MwDNPYJi+GYRimjmCBwjAMwyQCCxSGYRgmEVigMAzDMInAAoVhGIZJhIad2BgHItoNICi0eByAoBXU9gGwLuB4lDyqfRwIr+do1KHStkyijEqP8/2OXodq3+/ReB74mbQfP0gIUbr8gx8hxJj5A9Adcvz6StJHzKOqxxO6ziTqUFFbJlRGpcf5ftfJ/R6l54GfSctxAEvCyhVCjDmT1/aQ4/9XYfooeVT7OFD5dSZRh0rbMokyKj3O9zt6Hap9v0fjeeBnMtpxK2PN5LVERFiPplrpR4tGqCfXMTkaoZ5cx2SoVR2jljvWNJTra5x+tGiEenIdk6MR6sl1TIZa1TFSuWNKQ2EYhmGqx1jTUBiGYZgqMeYFChHdRERbiehlbd+RRPQUES0jov8joi65P0tEN8v9K9Q3WOSxR4hoJRG9IP+mmsobhTo2EdHP5f4Xieh9Wpqj5f7VRPQD8n9Gsj7qWM123JuIHpb3bjkRfVHun0hEC4lolfydoKW5WLbXSiI6RdtfzbZMsp5Vac9y60hEk+T5u4joWl9eVWnLhOtYL+34QSJaKttrKRGdqOVVtWcyMlFCwfbkPwAnADgKwMvavmcBvFdu/wOAy+X2JwHcKrfbAKwBMFv+/wiA+XVQxwsB/FxuTwWwFEBK/v8MgOMAEIB7AZxWh3WsZjtOB3CU3O4E8BqAQwH8N4CL5P6LAFwttw8F8CKAZgBzALwOID0KbZlkPavSnjHq2A7g3QAuAHCtL6+qtGXCdayXdnwngBlyex6AjdVux3L+xryGIoR4DECPb/dBAB6T2wsB/K06HUA7EWUAtAIYBrCzzup4KIBFMt1WOGGG84loOoAuIcRTwnn6bgFwRj3VMam6BNRxsxDiObndB2AFgJkATgdwszztZhTb5XQ4A4ghIcSbAFYDWDAKbZlIPZOqTxJ1FEL0CyGeADCo51PNtkyqjtUkRh2fF0JskvuXA2ghouZqP5NRGfMCxcLLAD4qt88EsLfcvgNAP4DNcGarfkcIoXeiP5fq8DdGQd201fFFAKcTUYaI5gA4Wh6bCWCDln6D3FdPdVRUvR2JaDac0d5iANOEEJsB5wWHozUBTvus15KpNhu1tqywnoqqtmfEOtoYlbassI6KemvHvwXwvBBiCLV5v0tggWLmHwBcSERL4aihw3L/AgB5ADPgmBa+QkT7yWOfEkIcDuA98u/sGtXxJjgP0xIA3wPwFwA5OGqwn2qH+JVbR2AU2pGIOgD8HsC/CiGCNExbm41KWyZQT6DK7VlGHa1ZGPYl2pYJ1BGos3YkosMAXA3gn9Quw2mjHsLLAsWAEOJVIcTJQoijAfwWjk0acHwo9wkhRqSp5klIU40QYqP87QPwG1Tf5GCsoxAiJ4T4khDiHUKI0wGMB7AKTgc+S8tiFoBN/nxrXMeqtyMRZeG8uL8WQtwpd2+RJgNlgtkq92+AV3NSbVb1tkyonlVtzzLraKOqbZlQHeuqHYloFoA/ADhHCKH6plF/v02wQDGgIjiIKAXgPwD8RB5aB+BEcmgHcCyAV6XpZrJMkwXwETjmnlGvIxG1ybqBiD4IICeEeEWqzX1EdKxU188BcFc91bHa7Siv+0YAK4QQ/6sduhvAuXL7XBTb5W4AZ0kb9RwAcwE8U+22TKqe1WzPGHU0Us22TKqO9dSORDQewD0ALhZCPKlOrsX7bSRpL3+j/cEZOW8GMAJHyp8H4Itwoi1eA3AVihNAOwD8Do4z7BUA/y6K0SFLAbwkj30fMsqmBnWcDWAlHOfegwD21fKZD+dFeB3AtSpNvdRxFNrx3XDMAC8BeEH+fQjAJDhBAqvk70Qtzddle62EFjVT5bZMpJ7VbM+YdVwDJ3Bjl3xGDq1mWyZVx3pqRzgDs37t3BcATK32Mxn1j2fKMwzDMInAJi+GYRgmEVigMAzDMInAAoVhGIZJBBYoDMMwTCKwQGEYhmESgQUKw9QJRHQBEZ1TxvmzSVvdmWFqTabWFWAYxpk8J4T4SfiZDFO/sEBhmISQi/vdB2dxv3fCmdB5DoBDAPwvnImx2wB8RgixmYgegbOO2bsA3E1EnQB2CSG+Q0TvgLOyQBuciWr/IIToJaKj4ayFNgDgidG7OoYJh01eDJMsBwG4XghxBJxPG1wI4IcAPi6cNc1uAnCldv54IcR7hRDf9eVzC4CvyXyWAbhU7v85gC8IIY6r5kUwTBxYQ2GYZFkvimss/QrAJXA+hLRQrniehrNEjeI2fwZENA6OoHlU7roZwO8M+38J4LTkL4Fh4sEChWGSxb+WUR+A5QEaRX8ZeZMhf4apG9jkxTDJsg8RKeHxCQBPA5ii9hFRVn7LwooQYgeAXiJ6j9x1NoBHhRDbAewgonfL/Z9KvvoMEx/WUBgmWVYAOJeIfgpnpdgfArgfwA+kySoD56Niy0PyORfAT4ioDcAbAD4r938WwE1ENCDzZZi6gVcbZpiEkFFefxJCzKtxVRimJrDJi2EYhkkE1lAYhmGYRGANhWEYhkkEFigMwzBMIrBAYRiGYRKBBQrDMAyTCCxQGIZhmERggcIwDMMkwv8HwTCkVoci3y0AAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
"source": [
"sorted_data['inc'].plot()"
]
@@ -215,9 +2240,32 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 10,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xt8XHWZ+PHPM7fc0yZpek1LoS2lpWKhpYCAiijlsiu4ws+6q1RFUcTV9bfrKrv+FlcXV1wv6O6Ki1Ip6MpVpSqKFUTupS0UCpTeaKFp0yZt7re5Pr8/zpl0kk5mziSTZJI+79crr0y+c75nzhzKPPN8r6KqGGOMMV74xvoCjDHGjB8WNIwxxnhmQcMYY4xnFjSMMcZ4ZkHDGGOMZxY0jDHGeGZBwxhjjGcWNIwxxnhmQcMYY4xngbG+gHybMmWKzp07d6wvwxhjxpXNmzcfVtXabMdNuKAxd+5cNm3aNNaXYYwx44qIvOHlOGueMsYY45kFDWOMMZ55Dhoi4heRF0TkN+7f1SKyXkR2ur+rUo69QUR2ich2EVmZUr5MRLa6z31fRMQtLxKRe9zyDSIyN6XOavc1dorI6ny8aWOMMUOTS6bxOWBbyt9fAh5R1QXAI+7fiMhiYBVwKnAx8AMR8bt1bgWuBRa4Pxe75dcALao6H/gucLN7rmrgRuAsYAVwY2pwMsYYM7o8BQ0RqQMuA36cUnw5sNZ9vBa4IqX8blUNq+oeYBewQkRmAJWq+ow6m3jcOaBO8lz3Axe6WchKYL2qNqtqC7Ceo4HGGGPMKPOaadwC/COQSCmbpqoNAO7vqW75LGBfynH1btks9/HA8n51VDUGtAE1Gc7Vj4hcKyKbRGRTU1OTx7dkjDEmV1mDhoj8BdCoqps9nlPSlGmG8qHWOVqgepuqLlfV5bW1WYcZG2OMGSIvmca5wHtFZC9wN/AuEfkpcMhtcsL93egeXw/MTqlfBxxwy+vSlPerIyIBYBLQnOFcZoJKJJR7N+4jHIuP9aUYY9LIGjRU9QZVrVPVuTgd3I+q6oeAdUByNNNq4EH38TpglTsi6kScDu/n3CasDhE52+2vuHpAneS5rnRfQ4GHgYtEpMrtAL/ILTMT1Iv1rfzjAy/xxI7DY30pxpg0hjMj/BvAvSJyDfAmcBWAqr4iIvcCrwIx4HpVTX5tvA64AygBfuf+ANwO3CUiu3AyjFXuuZpF5GvARve4r6pq8zCu2RS4I50RALoisTG+EmNMOjkFDVV9DHjMfXwEuHCQ424CbkpTvglYkqa8FzfopHluDbAml+s041dzlxM0wtFEliONMWPBZoSbgtLc7QSNXuvTMKYgWdAwBaXFzTR6oxY0jClEFjRMQWnuCxrWPGVMIbKgYQpKS7dlGsYUMgsapqAcsUzDmIJmQcMUlL4+DesIN6YgWdAwBaXZOsKNKWgWNEzBiMYTtPc6k/psnoYxhcmChikYyU5wsEzDmEJlQcMUjJauaN9j69MwpjBZ0DAFI9mf4feJjZ4ypkBZ0DAFI9k8Nb2y2JqnjClQFjRMwUjO0Zg52YKGMYXKgoYpGMk5GtMnlVjzlDEFyoKGKRjNXREqigJUFAds5z5jCpQFDVMwWrojVJWFKAr4LNMwpkBlDRoiUiwiz4nIiyLyioj8q1v+FRHZLyJb3J9LU+rcICK7RGS7iKxMKV8mIlvd577vbvuKuzXsPW75BhGZm1JntYjsdH9WYyaslu4oVaVBioN+69MwpkB52bkvDLxLVTtFJAg8KSLJbVq/q6rfSj1YRBbjbNd6KjAT+KOInOxu+XorcC3wLPAQcDHOlq/XAC2qOl9EVgE3Ax8QkWrgRmA5oMBmEVmnqi3De9umEPVG4xQH/RQH/MQSSiyeIOC3ZNiYQpL1/0h1dLp/Bt0fzVDlcuBuVQ2r6h5gF7BCRGYAlar6jKoqcCdwRUqdte7j+4EL3SxkJbBeVZvdQLEeJ9CYCSgSSxAK+CgOOv8swzFrojKm0Hj6GicifhHZAjTifIhvcJ/6jIi8JCJrRKTKLZsF7EupXu+WzXIfDyzvV0dVY0AbUJPhXAOv71oR2SQim5qamry8JVOAIrEERQEfxUE/YEuJGFOIPAUNVY2r6lKgDidrWILT1DQPWAo0AN92D5d0p8hQPtQ6qdd3m6ouV9XltbW1Gd+LKVyReIKg/2im0WuZhjEFJ6cGY1VtBR4DLlbVQ24wSQA/Ala4h9UDs1Oq1QEH3PK6NOX96ohIAJgENGc4l5mAovFk85RlGsYUKi+jp2pFZLL7uAR4N/Ca20eR9D7gZffxOmCVOyLqRGAB8JyqNgAdInK2219xNfBgSp3kyKgrgUfdfo+HgYtEpMpt/rrILTMTUCSWIOT3URSwoGFMofIyemoGsFZE/DhB5l5V/Y2I3CUiS3Gai/YCnwRQ1VdE5F7gVSAGXO+OnAK4DrgDKMEZNZUchXU7cJeI7MLJMFa552oWka8BG93jvqqqzcN4v6aADewIt7kaxhSerEFDVV8CTk9T/uEMdW4CbkpTvglYkqa8F7hqkHOtAdZku04z/h0NGk6mEbZMw5iCY4PgTcEIx53mqb4+DVtKxJiCY0HDFARVTekIt+YpYwqVBQ1TEGIJRRUn07COcGMKlgUNUxAi7pyM/kNuLdMwptBY0DAFIRk0+k3us0zDmIJjQcMUhEg8TaZhHeHGFBwLGqYgpDZPFQWsI9yYQmVBwxSEZKZRFPAhIoQCPpunYUwBsqBhCkJfpuHun1Ec8FmfhjEFyIKGKQipHeGAu3ufNU8ZU2gsaJiCEE3pCAc3aFhHuDEFx4KGKQipHeEAxUFrnjKmEFnQMAUhnCbTsO1ejSk8FjRMQTi2I9xvmYYxBciChikIA5unioI+6wg3pgBZ0DAFoa8jvN/oKcs0jCk0XrZ7LRaR50TkRRF5RUT+1S2vFpH1IrLT/V2VUucGEdklIttFZGVK+TIR2eo+931321fcrWHvccs3iMjclDqr3dfYKSKrMRPSMZlGwNc34c8YUzi8ZBph4F2q+lZgKXCxiJwNfAl4RFUXAI+4fyMii3G2az0VuBj4gbtVLMCtwLU4+4YvcJ8HuAZoUdX5wHeBm91zVQM3AmcBK4AbU4OTmTgiAzrCg35fX/ZhjCkcWYOGOjrdP4PujwKXA2vd8rXAFe7jy4G7VTWsqnuAXcAKEZkBVKrqM6qqwJ0D6iTPdT9woZuFrATWq2qzqrYA6zkaaMwEMnByX9AvRGM6lpdkjEnDU5+GiPhFZAvQiPMhvgGYpqoNAO7vqe7hs4B9KdXr3bJZ7uOB5f3qqGoMaANqMpxrzNz5zF427m0ey0uYkFLXngIneMQSlmkYU2g8BQ1VjavqUqAOJ2tYkuFwSXeKDOVDrXP0BUWuFZFNIrKpqakpw6UN37f/sIN7N+7LfqDJycAht0G/r6/MGFM4cho9paqtwGM4TUSH3CYn3N+N7mH1wOyUanXAAbe8Lk15vzoiEgAmAc0ZzjXwum5T1eWqury2tjaXt5Sznkic7oiN6sm3SCxBwCf4fM73hFDARzRuzVPGFBovo6dqRWSy+7gEeDfwGrAOSI5mWg086D5eB6xyR0SdiNPh/ZzbhNUhIme7/RVXD6iTPNeVwKNuv8fDwEUiUuV2gF/klo2JaDxBJJ6gKxIbq0uYsCKxRF8nOEDAJ9YRbkwBCng4Zgaw1h0B5QPuVdXfiMgzwL0icg3wJnAVgKq+IiL3Aq8CMeB6VU1+Nb8OuAMoAX7n/gDcDtwlIrtwMoxV7rmaReRrwEb3uK+q6ph1KCQzjO6wZRr5Fokn+jrBIdmnoagq7shsY0wByBo0VPUl4PQ05UeACwepcxNwU5ryTcAx/SGq2osbdNI8twZYk+06R0OPGzQs08i/aLx/ppF8HI0roYAFDWMKhc0Iz0G3Gyy6whY08i0cS/R1goMz5BawJipjCowFjRx092Ua1jyVb5FYom+4LUDAl8w0LGgYU0gsaOSgJ5rs07BMI98GdoQH3ce2lIgxhcWCRg6SzVLd0TiJhA0HzaeBHeGhvuYpu8/GFBILGjlIdoSrHs06TH4M7AhPBpCYZRrGFBQLGjlIndRnI6jyK3JMR7j1aRhTiCxo5KA7JbuwuRr5dUyfhts8FbFFC40pKBY0ctCTkl1YppFf4dixk/vAMg1jCo0FjRykNk/Z+lP5FY33H3Lb16dhK90aU1AsaOQgNVB02rDbvIoM0hFuzVPGFBYLGjnoTmmSsj6N/BrYEZ5cOsSap4wpLBY0ctAdieOu3G19Gnl27Cq31qdhTCGyoJGDnkic6rIiwGaF51vEOsKNGRcsaOSgOxJnSnkIsPWn8s1ZzTZd85T1aRhTSCxo5KAnEmdyaZCAT2yl2zxS1UE7wi3TMKawWNDIQVckRmkoQFlRwIbc5lFyUcJ0Q24taBhTWLxs9zpbRP4kIttE5BUR+Zxb/hUR2S8iW9yfS1Pq3CAiu0Rku4isTClfJiJb3ee+7277irs17D1u+QYRmZtSZ7WI7HR/VjOGeiJxSkJ+ykJ+yzTyKBJzAkPq6KlAcka4NU8ZU1C8bPcaA/5eVZ8XkQpgs4isd5/7rqp+K/VgEVmMs13rqcBM4I8icrK75eutwLXAs8BDwMU4W75eA7So6nwRWQXcDHxARKqBG4HlgLqvvU5VW4b3toemOxKnNOintChgo6fyKNlvkVw6BI4GkGjMMg1jCknWTENVG1T1efdxB7ANmJWhyuXA3aoaVtU9wC5ghYjMACpV9RlVVeBO4IqUOmvdx/cDF7pZyEpgvao2u4FiPU6gGRPdkRhlRQE307DmqXzpyzQC/r4ymxFuTGHKqU/DbTY6HdjgFn1GRF4SkTUiUuWWzQL2pVSrd8tmuY8Hlvero6oxoA2oyXCuMdETdZunigL9JvqZ4TkaNNL1aVjzlDGFxHPQEJFy4AHg71S1HaepaR6wFGgAvp08NE11zVA+1Dqp13atiGwSkU1NTU0Z38dQRWIJonF1mqdCAcs08igSd+5l+lVuLdMwppB4ChoiEsQJGD9T1V8AqOohVY2ragL4EbDCPbwemJ1SvQ444JbXpSnvV0dEAsAkoDnDufpR1dtUdbmqLq+trfXylnKW3IDJyTT81qeRR+G+jvCj3xFEhIBPbPSUMQXGy+gpAW4Htqnqd1LKZ6Qc9j7gZffxOmCVOyLqRGAB8JyqNgAdInK2e86rgQdT6iRHRl0JPOr2ezwMXCQiVW7z10Vu2ajrjjpBojQUsEwjz5JNUKmZBjhNVBY0jCksXkZPnQt8GNgqIlvcsn8CPigiS3Gai/YCnwRQ1VdE5F7gVZyRV9e7I6cArgPuAEpwRk39zi2/HbhLRHbhZBir3HM1i8jXgI3ucV9V1eahvdXhSc7LKA35KS/yW59GHh0dcuvvVx70i/VpGFNgsgYNVX2S9H0LD2WocxNwU5ryTcCSNOW9wFWDnGsNsCbbdY60npSgURpyJvclEorPl+7WmFyk6whP/m2ZhjGFxWaEe3Q00whQVuR8I07d/tUMXTjm3MfiYP9/jgGfBQ1jCo0FDY+SzVElbqYB2KzwPOmNJpcRGdA8FbDmKWMKjQUNj1L7NCpLggC090TH8pImjGSmUWQd4cYUPAsaHqUGjZoyZ3n0I12RsbykCSM55LY42D/TCFnQMKbgWNDwqCelearaDRotFjTyojeaKdOw5iljCokFDY+S7e4lwaNBwzKN/EhmGkUDO8L9NrnPmELjZZ6GIbXd3d/XYdtsQSMvwoN1hPt9toyIMQXGMg2PwrEEIs6Es1DAR0VxwIJGnvTG4gT9gn/AnJeQ30csYc1TxhQSCxoehWMJigI+3H2jqCkLWfNUnoSjiWOyDEjOCLdMw5hCYkHDo0is/wdbdVmI5q7wGF7RxBGOxY/pBAdrnjKmEFnQ8GjgB1t1WRHNXTZPIx/CscQxw23B5mkYU4gsaHgUjib6rY1UY5lG3vRGB8s0bEa4MYXGgoZHyT6NpKqyEM1dEZwV3M1whGOJYxYrBCfTiFmmYUxBsaDhkdM8dbQJpaYsRDSudNj6U8M2aPNUwEfEMg1jCooFDY/CsUS/yWfJCX7NnTaCargGbZ6ynfuMKTgWNDwa2DxVXW6zwvPFCcjWEZ4PneGYLW9jRpSX7V5ni8ifRGSbiLwiIp9zy6tFZL2I7HR/V6XUuUFEdonIdhFZmVK+TES2us993932FXdr2Hvc8g0iMjelzmr3NXaKyGrGiNPu3r95CmxWeD6Eo3GK02UatglTzv7lwZdZ/ZPnxvoyzATmJdOIAX+vqouAs4HrRWQx8CXgEVVdADzi/o373CrgVOBi4Acikvy0vRW4Fmff8AXu8wDXAC2qOh/4LnCze65q4EbgLGAFcGNqcBpN4ejAIbe2aGG+ZM401AYb5OCl+ja2H+wgYTPpzQjJGjRUtUFVn3cfdwDbgFnA5cBa97C1wBXu48uBu1U1rKp7gF3AChGZAVSq6jPqfArcOaBO8lz3Axe6WchKYL2qNqtqC7Ceo4FmVEUGNE/VlBUB1jyVDwMDclLI78y+t6VEvInGE+w93EU4lqCp04aDm5GRU5+G22x0OrABmKaqDeAEFmCqe9gsYF9KtXq3bJb7eGB5vzqqGgPagJoM5xp14QEzwktCfoqDPpurkQcD+4uSAn6nzJqovHnjSFdfgH2zuXuMr8ZMVJ6DhoiUAw8Af6eq7ZkOTVOmGcqHWif12q4VkU0isqmpqSnDpQ3dwNFT4GQbR2z01LBlmhEOEI1ZpuHFzkOdfY/fPGJBw4wMT0FDRII4AeNnqvoLt/iQ2+SE+7vRLa8HZqdUrwMOuOV1acr71RGRADAJaM5wrn5U9TZVXa6qy2tra728pZyFY3FC/v63a1ZViX2jy4PBhtwmm6eiCcs0vNjZ6AQNEcs0zMjxMnpKgNuBbar6nZSn1gHJ0UyrgQdTyle5I6JOxOnwfs5twuoQkbPdc149oE7yXFcCj7r9Hg8DF4lIldsBfpFbNurSZRrzast5/XDXWFzOhBGLJ4gldJBVbq15Khe7GjupqyphRmUx+yxomBHiZROmc4EPA1tFZItb9k/AN4B7ReQa4E3gKgBVfUVE7gVexRl5db2qxt161wF3ACXA79wfcILSXSKyCyfDWOWeq1lEvgZsdI/7qqo2D/G9DpmqHrPKLcC82jKauyK0dEWockdTmdxE4sn9wdMvIwLWPOXVzsZOFkwtpzsSZ1+LBQ0zMrIGDVV9kvR9CwAXDlLnJuCmNOWbgCVpyntxg06a59YAa7Jd50jq2450QBPKSbVlALx+uJNlZdWjfl0TQW80/b0FZ7tXOBpYzODiCWV3Uyfnza+htTvK4ztHpm/PGJsR7kHyQ2vgB9u82nIAdjdaE9VQ9W2jm6YjPGTNU57Vt3QTiSWYP7WcOdWlHGoP0xuNZ69oTI4saHjQt4f1gA+2uqpSQn4fuw93pqtmPAhnyDSSzVMxW7Qwq8PuKL5plcXMqSkFnEBiTL5Z0PCg79vwgNFTfp8wd0qpZRrD0Ove28FWuQVrnvKiO+KstlxWFGB2tRM0bASVGQleOsKPe319Gmk6a0+aUs6Oxo7RvqQJI3Om4Q65taCRVVfYCb6lIX/fagUNbb1jeUlmgrJMw4NMH2wn1Zbx5pFu+2AboqODDGzI7XD0ZRqhAJNLgwC0dtt2xCb/LGh4cLQj/NgPtvlTy4kllPWvHhrty5oQwn3NUxmG3FrQyKo74mYaRX6Kg35KQ35bTNOMCAsaHoTdUSjpMo2LTp3OaXWT+OzPX+D3Lx8c7Usb944OuU2XaSSbp6wjPJvUTAOgqjREc7cFDZN/FjQ8SDahpNvHurwowM8+fhZzp5Txwz/vHu1LG/eODrlNt4yIZRpeJfs0StwBBVVlQWueMiPCgoYHmdrdASqKg5w7r4adhzps74ccJfuLijP0aURiFjSy6Y7EKA358fmc7KyqNGQbhJkRYUHDg0zfhpNOnl5BVyTO/tae0bqsCaE3w71NloUtaGTVFYlTGjoaeKtKQ7Ra85QZARY0PIgMsoxIqoXTKgDYcciG3+Yi08i0ZPZhM5uz6w7HKA0dHUFfVRq0TMOMCAsaHmRrngIn0wDYftBmh+ci071NTvjrsaCR1TGZRlmI9t4YMesPMnlmQcOD5OipdB3hSZXFQWZOKmb7wUz7U5mBejOMTEuWJUdYmcF1R2KUFaVmGs6qy6091hlu8suChgeDrXI70MnTK9h+yDKNXIRjCUJ+X18HbiqfTygK+PqCthlcV/jYTAOwfg2TdxY0PPAaNBZOq2B3Y6c1CeQgHEu/a19ScdBvfRoe9ETifXM0AKrdTKO5yzINk18WNDyIxBL4fULAnyVoTK8gEk+w94gtYOiVsyPi4H1FJUG/9Wl40BWJUVp09D4mlxJpsUzD5JmX7V7XiEijiLycUvYVEdkvIlvcn0tTnrtBRHaJyHYRWZlSvkxEtrrPfd/d8hV3W9h73PINIjI3pc5qEdnp/iS3gx112b4NJy2Y6nSG77QmKs8G2x88qTjosz4ND7oHZhpu85QtJWLyzUumcQdwcZry76rqUvfnIQARWYyzVeupbp0fiEjy68+twLU4e4YvSDnnNUCLqs4Hvgvc7J6rGrgROAtYAdzo7hM+6sKxRMZO8KR5U52d/HY3WdDwKt3e66msecqbrnDsmHkaAC02K9zkWdZPQlV9HGffbi8uB+5W1bCq7gF2AStEZAZQqarPqDNl+k7gipQ6a93H9wMXulnISmC9qjaraguwnvTBa8SFowlPmUZpKMCsySXsarSg4VU4mkg7GzypKOin1yb3ZRSLJwjHEv3maZSE/BQHfdY8ZfJuOH0anxGRl9zmq2QGMAvYl3JMvVs2y308sLxfHVWNAW1ATYZzjTqneWrwD7ZU86aWs8syDc/CsXjGTKMk6KM3YplGJt1uJlZW1P/faFVpyJqnTN4NNWjcCswDlgINwLfd8mPHTYJmKB9qnX5E5FoR2SQim5qamjJd95CEY94yDYD5teXsbuwikbA1qLzIlsUVB/19S42Y9Lr7NmDqv6daVWnIMg2Td0MKGqp6SFXjqpoAfoTT5wBONjA75dA64IBbXpemvF8dEQkAk3CawwY7V7rruU1Vl6vq8tra2qG8pYwiWdrdU82fWk5PNM6BNluDyoveLFlcccD6NLLp6tvqdUCmURa0Pg2Td0MKGm4fRdL7gOTIqnXAKndE1Ik4Hd7PqWoD0CEiZ7v9FVcDD6bUSY6MuhJ41O33eBi4SESq3Oavi9yyUZecgObF/KnlANav4VH3gOUvBrLRU9llzDSsecrkWdY9wkXk58A7gSkiUo8zoumdIrIUp7loL/BJAFV9RUTuBV4FYsD1qpr8mngdzkisEuB37g/A7cBdIrILJ8NY5Z6rWUS+Bmx0j/uqqnrtkM+rXPo0UoNGTVkRS2ZV4o4uNmn0ROKUZAgaJSHLNLLpyzQG3MeashCHO8NjcUlmAssaNFT1g2mKb89w/E3ATWnKNwFL0pT3AlcNcq41wJps1zjSwrEEZWVZbxXgjI+vLgvx7T/soCca53urlnL50jHpvx8XeqKZM42igE3uy6bHHSgwMPhOKS+ivTeW05ceY7KxGeEeeB1ym7RoRgWxRIKKogC/ealhBK9s/HM2Dxo8IBcH/X3Lp5v0jvZp9L+PtRVFABzptCYqkz/evj4f5yLxRE7f1P7jyrcSjiW485m9/GzDm3SGY5QX2a0eKJFQeqOJvi1K0ykO+ojEE8QTij/NooYmtU/j2EwDoKkjzMzJJaN+XWZiskzDg3CWpS4Gmjm5hBOnlHHpW2YQiSV49LXGEby68SvZ7JSpeSoZUMI27HZQR/s00mca1q9h8smChgdelxEZaNmcKqZWFPGQNVGl1T1IW3yqvo2YbILfoJL3sXTAkNtk0GjqsKBh8seChgfO5L7cOxJ9PuG8+VPYsq91BK5q/OvrwM3SPAXYUiIZdIVjBHxyzLDwmnJn/SkLGiafLGh40BvNvNRFJnNqSjnU0WvNK2l0R51mlWwd4WD7hGeSnOsycGh3UcDPpJKgNU+ZvLKgkUUkliCW0CF3ZM+pLkUV9rfYDPGB+ppVPDRPWdAYXFc4dszIqaQp5SGaLGiYPLKgkUW328mYqQklk9nVpQC82dydt2uaKHpz6NOwoDG47gwTJGsrijjcYUNuTf5Y0MiiK5J+BVGv5rhBY59lGsfwlGm4AxBsKZHBOXNdBgsaxZZpmLyyoJFFdzh7u3smteVFhAI+9lmmcYxuD0NuLdPIrr03RmVxMO1zU8pDHLaOcJNHFjSyGG6m4fMJdVUlFjTS6Ek2/WUIyMlmF8s0BtfaHenbE3yg2ooiOsIxG7Js8saCRhbDzTTAaaKyPo1j9TVPZRpy6w51tvWnBtfWE2VSSSjtc8lZ4TaCyuSLBY0s+jKNYQSN2VWllmmk4W1yX7JPw4JGOqpKW080Y6YB9PVrdPRGcXYeMGZoLGhkkRw9NXC2bS7mVJfS3hujzTbE6acnEkeEjEu0FFmfRkbdkTjRuDKpZJCgkbL+VFt3lLd941G+u37HaF6imWAsaGThZYRPNrOrncXi9rVYtpGqOxKnNHjspLRUR9eesj6NdFp7nC8ikwcJGlPdTGPP4S5+tWU/Hb0xbnvidQ629Y7aNZqJxYJGFl156NOwuRrp9URjGTvBAYJ+wSe29tRgWt09wDM1Ty0/oYofP7GHnz77BnNrSoknlC//aiv//add7D3cNZqXayaArEFDRNaISKOIvJxSVi0i60Vkp/u7KuW5G0Rkl4hsF5GVKeXLRGSr+9z33W1fcbeGvcct3yAic1PqrHZfY6eIJLeEHVX5yDTm1Zbj9wnbGtrzdVkTQk+WrV4BRITioO3eN5g2N9MYrCNcRLjh0kUc7gyzs7GTj59/ElefM5c/bmvkPx7eztpn9o7exZoJwUumcQdw8YCyLwGPqOoC4BH3b0RkMc52rae6dX4gIslPhVuBa3H2DV+Qcs5rgBZVnQ98F7jZPVc1ztayZwErgBtTg9No6YrECAV8BD3uEZ5OcdDPgqnlvFTflscrG/+y7Q+eVBz002trd6WV7CcbrE8DYNk+EfW9AAAgAElEQVQJVVz2lhmUhfy8d+lMvnTJKTzy9+9gTnUph22DJpOjrJ+Eqvo4zt7dqS4H1rqP1wJXpJTfraphVd0D7AJWiMgMoFJVn1Fn6MadA+okz3U/cKGbhawE1qtqs6q2AOs5NniNuO5w/Ji9l4fitLpJbN3fZiNXUvREM+8PnlQS9Ns8jUH09WkM0jyV9B9XncZDnzufyuIgQb+PebXl1FYU0dxlQ3FNbob69XmaqjYAuL+nuuWzgH0px9W7ZbPcxwPL+9VR1RjQBtRkONeocr4ND3/XvbfUTaa5K8L+VltOJMlrplEU9Nk8jUG0dnsLGqWhACfUlPUrqy4L2VawJmf57ghPNwxGM5QPtU7/FxW5VkQ2icimpqYmTxfqVXckNuTZ4KlOmzUJgK3WRNWnOxKnJJg9IBcH/IQtaKTV1hMl5PcNaUHNKeUha54yORtq0DjkNjnh/k7uZ1oPzE45rg444JbXpSnvV0dEAsAknOawwc51DFW9TVWXq+ry2traIb6l9Loi8awjfLw4ZUYFQb+wdb8FjaSeDAvtpSoO+qx5ahBtPREqS4IZhy0PpqasiJbuCImENZka74YaNNYBydFMq4EHU8pXuSOiTsTp8H7ObcLqEJGz3f6KqwfUSZ7rSuBRt9/jYeAiEalyO8AvcstGVXc4lpc+jaKAn5OnVVjQSOG1eaokZKOnBtPaPfhs8Gyqy0LEE9o3AssYL7J+hRaRnwPvBKaISD3OiKZvAPeKyDXAm8BVAKr6iojcC7wKxIDrVTX5f/t1OCOxSoDfuT8AtwN3icgunAxjlXuuZhH5GrDRPe6rqjqwQ37EdUXiTC5NP5wxV6fOrOTR1/LbfDae9UTifavYZlIc8Pe13Zv+Wrujg07syya5HeyRrjBVZfn5N24mvqxBQ1U/OMhTFw5y/E3ATWnKNwFL0pT34gadNM+tAdZku8aRlK8+DYCZk0s43BkmEksQyrB0xvFAVemO5jDk1jKNtNp6osycXDykujVlzmzxI50R5k/NcrAxruP7k8uDrnB+Rk8BzJjk/M/d2GFLOETjSjyhnkdPWZ9Gem09USqHnWlYZ7jxzoJGFj2R/PRpAEyrdIKGrftzdFkQL4MMKouDdPRa81Q6rd0RJg8yGzwbCxpmKCxoZJBIuE0oRfnJNKa7mcbBdgsa3dHkml7ZA3J1WYj23hjRuGUbqaLxhNvnNrRMo8rtqztie22YHFjQyKA3Fkd1eOtOpZpR6ax2a5lGbmt6JTtpW7rtG3GqNo+zwQcT9PuYXBq0CX4mJxY0MugKJzdgyk/QqCwJUBz0WdAgpXnKw+ipavcbcUuXNVGlavWw7lQ21WUhmq15yuTAgkYGfRsw5akjXESYMamEBmueSsk0st/bqjLnQ9E+3Ppr63Hux3CCxpSyItsK1uTEgkYGfZlGnobcAkyrLOKQZRp9AdnLgoXV1jyV1qF258M+uaXrUFSXhawj3OTEgkYG+c40ACfTsKBBR69zb8s9DDJINk/Zh1t/+1ucxS/rqkqHfI6acmueMrmxoJFBsgklv5lGMY0dvcf9ej8H3NV+Z3iYmNbXEW4fbv3Ut3RTURQYVvNUTbmz/lTMRqYZjyxoZDAymUYx0bge99+a97f2UFEcoLI4+wde0O+jojhg34gH2N/aw6yqkmGdY0p5CFVotqY/45EFjQySfRr5GnILRyf4HTrOO8P3t/Qwa7L3D7zqspD1aQxQ39JD3TCDxlS3P6Sx3TrDjTcWNDIYiUwjOcHveO/X2N+a2wdeVam1vQ+Ua+BNp7bC+ffY1GFBw3hjQSODrhHo05jpBo36lu68nXM82t+ae6ZhQeOotp4oHeHYsDrBwRnNB5b5Gu8saGTQ1hMl4BOKA/kLGrUVRUytKGLLvta8nXO8ae+N0tEbY2YOQaOqNGQd4SmSXzqG26eRHK7baJmG8ciCRgYNrT1Mn1SMz5f7rmiDERGWz61i096WvJ1zvEkOFc3lA6+6LGidtSmODrcdXtAoCvipKg3aysvGMwsaGRxo7c3p27BXy06oZn9rDw1tPXk/93jQFzRyap4qojea6Ft+5HhXP4R7OJipFcV9EwWNycaCRgYH2nr6+iDy6cy5VQDHbbaxv3VomQbY0NCk/a09FAd9fbPlh2NqZZE1TxnPhhU0RGSviGwVkS0issktqxaR9SKy0/1dlXL8DSKyS0S2i8jKlPJl7nl2icj33X3Ecfcav8ct3yAic4dzvbmIJ5SDbSOTaSyaUUlJ0M/mN47PoHGgtYdQwMeUMu/LXySX8W62FVkBp0+jrqoU93+VYZlaUUyjdYQbj/KRaVygqktVdbn795eAR1R1AfCI+zcishhn/+9TgYuBH4hIsof5VuBaYIH7c7Fbfg3Qoqrzge8CN+fhej1p6ggTS+iIBI2g38fpcyaz6Y1R3/K8INS3OhlcLn1FyW/Ulmk43jjSPez+jKRplUU0dYSP+1UKjDcj0Tx1ObDWfbwWuCKl/G5VDavqHmAXsEJEZgCVqvqMqipw54A6yXPdD1wo+fhq5cEBt79hqPsvZ7N09mS2NXQQiR1/yzfsb8l9JrMtJXJUNJ5gd1MnC6dX5OV8UyuKiCXUArLxZLhBQ4E/iMhmEbnWLZumqg0A7u/klvWzgH0pdevdslnu44Hl/eqoagxoA2oGXoSIXCsim0RkU1NT0zDfkiO5NtJIZBoAC6aVE08obzYfX/M1ovEEOw51MK+2PKd6U8qdpizb9RB2N3USjSuLZ1Tm5XzJVQpsVrjxYrhB41xVPQO4BLheRN6e4dh0GYJmKM9Up3+B6m2qulxVl9fW1ma7Zk9GOmgkPzR3NXaOyPkL1cv72+iOxDnrxGNif0aTSoLUVhSx89Dxdb/Sea2hA4BTpucnaEytTM7VsIBsshvW+hiqesD93SgivwRWAIdEZIaqNrhNT43u4fXA7JTqdcABt7wuTXlqnXoRCQCTgFHpCDjQ2ktFkbcF9YbiJDdo7G46vj4EN+xx/vOtOLE657onTytnV2NHvi9p3NnW0E7I7+Ok2rK8nG9qxfjKNNa/eoiHtjYQTyhfWLmQ2dXDmxVvcjPkTENEykSkIvkYuAh4GVgHrHYPWw086D5eB6xyR0SdiNPh/ZzbhNUhIme7/RVXD6iTPNeVwKNuv8eIO9Da42nZ7qEqLwowY1Lx8Rc0Xj/CvNqyIW0ctGBqBTsbO4/7DtttBzuYP7WcoD8/XZJHZ4UXfqbx2sF2PnHnJh7f0cQj2w5x8S2Ps2nv8TmgZKwM51/dNOBJEXkReA74rar+HvgG8B4R2Qm8x/0bVX0FuBd4Ffg9cL2qJmdqXQf8GKdzfDfwO7f8dqBGRHYB/xd3JNZoONDWM2JNU0nzasvZfZw0T4VjcSKxBJv2tnDWSbk1TSUtmFZOdyTeN8/jeLWtoZ1FeerPACgO+plcGhwXi2j+6oUD+H3CHz7/dh7+/NsREda9eCB7RZM3Q26eUtXXgbemKT8CXDhInZuAm9KUbwKWpCnvBa4a6jUOR0NrL6fVTR7R15hXW8YDz+9HVfMy3r5QqSqXfO8JWrudRfbOGkLTFMDJ05zRQjsbO47bJonDnWGaOsIsmpGfkVNJJ00pK/j+tURC+fWLBzh/wRRq3IERC6dX8NpBa7IcTTYjPI22nihHuiJ5WaIhk/lTy+kMxyb8bNxdjZ283tRFachPRXGAt82bMqTznDzV+aDccRx3hr96oB0gr5kGwCkzKnntYAej1Po7JJvfbGF/aw9XLJ3VV3bytAp2HCrs655oLGiksdmddHfGnKosRw5PcgTVRG+ienLXYQB+/omz2fqVlUPqzwCYVBpkakUROw4dP98s79u0r9/KAQ+/cpDioI+ls/ObBS+aXkFbT7SghzT/4vn9FAd9vGfxtL6yhdPKae2O2n4go8iCRhob9jQT9Aunzxnh5qmpTtDYOcGDxlO7jjCnujQvTUonT6s4bobdHu4M86VfbOWTd23iSGeYaDzBQ1sbePeiaZQV5W9jMDiauWxraM/refOlvTfKg1v285enzez33k92JzhuP46+SIw1CxppPLenmdPqJlMczN8+GulMrShi5qRint59eERfZyzF4gmeff0I584fWpPUQAunO80Rx8Nqt7958QDxhNLaHeWGX2zlse1NtHRHuTyleSZfkh++2xoK88P3l8/vpzsS58PnnNCvfKHbz7V9lPs1nn+zhc/+/AXae6Oj+rqFwILGAN2RGFvr24Y0jyBXIsKFi6bx+I7D9EYn5ofgi/VtdIZjnJenoHHBwqmEYwn+vCM/M/8L2a+2HGDRjEr+8eKF/OHVQ1z3081MKgnyjpPzM4E1VWVxkLqqkoLsVFZVfvrsG5xWN+mYwSk15UVMKQ+NapNlPKHc8MBW1r14gH/51cuj9rqFwoLGAC+82UosoaMSNADevXgaPdE4z+w+MiqvN9r+uO0QPoFz5g1tmO1AZ51UzeTSIL9/uSEv5ytUew93sWVfK1csncknzj+J2z68jIXTK1h9zgmEAiPzv+0p0yt5rQCap9q6o/3WGNuwp5mdjZ186OwT0h5/8rQKtg+zyfJgWy87PQaeB56vZ/uhDs45qYZfbTnAg1v2D+u1xxsLGgNs2NOMT2DZCSPbCZ509knVlIX8rN92aFRebzTFE8ovnq/nnQun5mXfB3BWCH7Pomk8sq2RcGxiZmeRWIJ/WfcKfp/wl2+diYhw0anT+e1nz+f/XrRwxF530YwKXj/cNeZZ78fWbuT9tz5NNO4s5nnXs28wqSTIX542M+3xJ0+rYMfBjiFfd2t3hPff+jR/8Z9PsnFvM6o66ATSnkic7/xhB0tnT+aua1awdPZk/u232+gMx4b02uORBY0Bnt51mCWzJo3Y8iEDFQX8vP3kWh7Zdoj4BJvp/MTOJg61h7lqWV32g3NwyVum0xGO8fSuiZedJRLKP9z3Io/vaOLr71sy4hNMUy07oYp4Qnlo69hlcS+82cLmN1p4/XAX922qp7Gjl4dfPshVy+ooCaXvY1x56nR6onHWPr037fNHOsN9fWDxhLL9YAd/2t5IPOEEh7+/90UaO3qprSjioz/ZyJk3PcKpNz7M1Wue46GtDf0CyJqn9nCwvZd/unQRAb+Pr7z3VJo6wtz62K6834tCZUEjRVc4xpZ9rXnrtPXq8qWzONQe5rdj+D9rPsUTyov7Wrnj6b1UlQa5cNG07JVycO78KdSUhfjRE69PuPH533tkJ+tePMAXLz6FD5w5Z1Rf++0Lalk0o5L/fHQXsfjYLNl/x9N7qSgKcFrdJL73yA5ueGArsYTyN4M0TYHT9HnBwlr+60+7jlk6v6UrwspbnuBvfvwssXiCv/7Rs6y85XE++pON/PDPu/nphjd45LVG/vnSRfz8E2ez7IQqzptfw5XL6thzuJNP/+x53veDp2jtjnCkM8ytj+3mPYun9TVfL509mfedPosfPb6H2x7ffVxsdWBBI8Vze5qJJZRzhzj5bKguWjyNebVl/OBPu8b9ukqJhPKZ/32ey//7KR7b3sT7z6jLext8UcDP9RfM5+ndR3hi58QZeXbvpn1875GdXLmsjk+946RRf32fT/jchQvYc7iLnz/35qi/fmN7L799qYGrls/my5ctprEjzFO7D3PNeSdy4pTMizPecOkiusIxvv/ozn7lNz20jcOdYZ5/s5WP/GQjG/Y08/fvOZmLFk/jlj/u4OsPbeMdJ9ey+m1zmV1dytqPreCWVafztSuW8Ng/XMC3rnor2xo6WL3mOT5w27P0RON88eJT+r3Gly9bxHkLpvD1h17j//zPMyO258vGvc2suu0Z9hzuGpHze2VBI8VTuw4TCvhYPnd0+jOSfD7h0++cz2sHO3jktcbsFQrYzQ+/xu9ePshnL1zAr64/l38c8D9YvvzN2XOoqyrh33/3Wl/b93j2X4/u5B/vf4lz59dw0/uWjNmyMhctnsYZcybz/x58hY/dsXFU2+ofeH4/sYTy4XNOYMWJ1Wz853fz8ldW8v/+YnHWuidPq+ADZ87hrmfeYK/7ofrY9kbu31zPde+cx+lzJvPkrsO8c2Etn3nXfL7x/tOYVBIi5Pdx8/tPS3u//T7hymV1fG/VUrbub6MnEucnHzmT+VP77wVTU17Emo+cyX//9Rm82tDO//mfZ2jN84ZWvdE4X7jvRZ59vZkP/XgDDW1jt/6aBY0UT+0+wvITqkZ8fkY67106kynlReN68bXHdzTxP39+nQ+dPYfPv3sBS2dPHrGRPkUBP/986SK2NbRz02+3jchrjJbn32zhW3/YweVLZ/KTj6ygKDD6//6SfD7hfz9xNl+65BT+tL2Rb/7+tVF5XVXlvs37OHNuVV9WMaW8iEAOK/l+/j0LCAV8/Ntvt7H9YAd/d88WTplewecuXMDX3/cW3rmwln+7wgnI1WUhHrjuHB647m1Mn5R5NetL3jKDP3z+Hfzh82/n7RmGO1922gzu+MiZ7Dncxb88+Irn684kkVCe3n2Yf3nwZfYe6ebLly2ivSfK3/7vC2mbZkejXzS/00rHscOdYbY1tPOFlSM3OiWToN/H+Qum8PiOJhIJzWn/7ELQ0etMQJtXW8aXL1s8Kt+UL3nLDD527omseWoPZ86t5rLTZoz4a46Eb/9hOzVlIb7+vreMWJDNRXHQz6feMY+Dbb3c8fRe/vKtMzlz7sgOQX9hXyuvN3XxqbfPG/I5plYUc/0F8/mPh7fzx22HqCgKcOuHllEc9LNoRiV3fHRFv+NPqPG+H8nA7GIwb5s/hc9euIDvrN9BTXmIWZNL+MCZs6kY4sCab/z+NW57/HUAPrhiDh8//yQqigN88YGt3PnMGzyx8zDbGtqpKgvS2B7mpNoy7r72nCG9llcWNFwlQT+3fGApb83zmj65eNu8Gn75wn62H+rI+4J0I+VgWy9//aNnef1wFyJw/6fOGdVM7YZLT+GZ14/wnfXbuWTJ9HERbKPxBLG4UhLy8/iOJp7adYQvX7Yo70uDDNcXVi7kj9sO8fG1m7hl1VIuWDg1e6UchWNx1m05wH2b6ykJ+rl0mIH/0++cx7ITqnhy52HOnT8la1/ISPj0O+fx7OtH+MlTewG4b1M9n75gHvUtPfzVGbOYMSnziLg/bW/kl8/v5y9Om8HtT+7hr06fxeffczJ1VU69q5bN5mcb3uTGda8Q9AsrT51OR2+MRdMreUvdpJF+e8hEG32yfPly3bRp01hfxpAcaO3hbd94lC9ftoiPnz/6HaGp4gmlMxyjNOSnvSfK64e72H6wg9KQn1OmV7J4ZiWqykd+spHn9jTzyXecxBlzqjKm7yPlwS37+dzdW1jzkeW865T8jtQaDlXlmd1HeOjlBs6bX8vyuVU8sbOJbz28g8OdYf7itJn85qUDTKss5g+ff/uYNItms/dwF5/66Wa2H+rgm+8/jauWz85aR1X58RN72PxGC93ROPNqy/jw2Sf07VaZetw/3PcSDzxfT1HAx9++az6fedeCkXoro0pVCccSbNzbzKd/9jwdvU7f0JTyEF9YuZCyogBnnVjTt3jnkc4wL9W3URz087E7NtLjzjmpLgvxyP99B1UD5jltrW/jxnUv88WLTxny/jQDichmVV2e9TgLGoXlXd9+jDnVpcek0qPptYPtfOquzew90j3oMafOrKSiOMCzrzfz1ctP5epz5o7eBQ4QjSd4+zf/xOzqUu659uyC2JvkQGsP/3Dfizy9+wh+n/Rra140o5J5tWX85qUGzps/hVtWLWVK+dBW/h0NPZE4n7hzE0/vPswtq07nvW9NP8kuae3Te7lx3SucOKWMsiI/Ow91MqW8iF//7XlsP9jBG0e6iMQTvN7UxR1P7+Vv3zWfz7/75HGRJQ5FY3svB9p6Cfl9XP+/z/eNfgr4hIuXTOej587l7+7Zwr5mp3N71uQSbv3QGdzx9F4ue8uMvA9ZH8yEChoicjHwPcAP/FhVvzHYseM9aPzLgy9z36Z61n3mXE6cUkZXOM6k0sztoY0dvfzs2Tdp7AhzzrwalsysZE51aU6diOA0Fax9ei/fXb+TiuIAHz33RKLxBJXFAeqqSlk8s5LeaJwndh5m3YsH6I3GWXZCFV/5y1PH/H/4nzy1h3/99aucv2AKX1i5kEUzKvu2Qx3NTa5i8QR3b9zHfzy8nWg8wRcvPoUrl9Xx5x1N7G/pYcmsSaw4sRq/T2hs72VKedGY3zsvuiMxVq95jk1vtPDZdy1gxqRiAn4fF506jcriIG09Uf746iEOd4b59vodnDuvhjUfORMR4aX6Vq784TMUB3y09/YfjXXJkun891+fMS7uQT70RuPsa+6mJxrnNy81cOcze+mNJqgoDvBvVyyhvqWHi5dM79s2YTRNmKAhIn5gB87WsfXARuCDqvpquuPHe9DYfrCDv/nxs3SGY5QE/bT2RPnCyoXUVZXywOZ6gn6hoa2Xfc3dXHPeSQQDwi1/3Ek0nqA8FKDDHSJZW1HE9e+cx4zJJbT1pF+JsyjgY9GMSsqKAjz/RgvffPg19jX3cMHCWm5+/2lMrRy5PdLzTVX56YY3+fpvt9ETjVNRHOAzF8znQGsPP9+4j4qiAFMri5laUcS0yiKmVhQzY3IxFyycyvTKYvYe6eJQe5i9R7rY1tDOshOqWDp7Ms++foRIXEGV/a29zJhUzJJZk/AJJFQJ+n2cPK2CVxvauX9zPX96rZGGtl5WnFjNze8/bUza1EdKbzTOF+5/iV+njPAL+X3UVhRxpCtMb9QZ+lxXVcIvP31uv31TfvXCfn7w2C6uPmcuF5wylZDfRyjgo7I4UBCZ4Vipb+nmx0/s4a/OmDXiO4VmM5GCxjnAV1R1pfv3DQCq+u/pjh/vQQOczOHfH3oNVaUnGufhV5x1qU6oKaUsFKCqLEhRwM+j7pyOi0+dzhcvOYU51aW8eqCd1w62c9/mep7b05zT654yvYJ/vmwR5y8Y/X6JfGnqCPPs60d44Pl6HtvehE/gitNnURTw09TRy6H2MI0dvTR1hEkoiEBZKNBvPkIo4Es7s3dgM1OSE0CgLOTn/AW1vO+MWVy0eNqE/DBUVZ5/s5WashCtPVF+//JBGjt6qSwO8r7TZzG3pozSIn9flmfGj4kUNK4ELlbVj7t/fxg4S1U/k3LMtcC1AHPmzFn2xhtvjMm1jgRV5Wcb3qSsyM973zoLf0oa/9j2RmJx5d2Lj23zVFVe3t+OCEwqCZLu86szHGNbQzuRWILaiiLecfLUfucf7za/0UxFcbBvb/FU8YTyxpEu1r14gMOdYU6rm0zd5BJmTi5hdnUpT+46zN7DXZw7v4bKkiCoM29gf2sPOw514BPB5xN6IjFe3t/O9EnFXHH6LMoLbASUMV5NpKBxFbByQNBYoap/m+74iZBpGGPMaPMaNMZDDlkPpI7zqwPG77RpY4wZx8ZD0NgILBCRE0UkBKwC1o3xNRljzHGp4BtgVTUmIp8BHsYZcrtGVfOzsIsxxpicFHzQAFDVh4CHxvo6jDHmeDcemqeMMcYUCAsaxhhjPLOgYYwxxjMLGsYYYzwr+Ml9uRKRDmD7gOJJQFueX2oKkK8NqvN9fSPxfvN9znzePyj8e5jP89m9Gx67f8eaApSpavY1hFR1Qv0Am9KU3TYarzOMc+X1+kbo/eb7GvN2/8bDPczn+eze2f3L9/lyuSfHS/PUr8f6ArLI9/WNxPu1e1hY58unQn+vhXzvoPDfb17PNxGbpzaph/VTxsvrTFR2/4bO7t3w2P07Vi73ZCJmGrdNsNeZqOz+DZ3du+Gx+3csz/dkwmUaxhhjRs5EzDSMMcaMEAsaLhGZLSJ/EpFtIvKKiHzOLa8WkfUistP9XeWW17jHd4rIfw041wdFZKuIvCQivxeRKWPxnkZTnu/fB9x794qIfHMs3s9oGsK9e4+IbHb/jW0WkXelnGuZW75LRL4vE3H7wAHyfP9uEpF9ItI5Vu+n4OVzaNd4/gFmAGe4jytw9iVfDHwT+JJb/iXgZvdxGXAe8Cngv1LOEwAagSnu39/E2a52zN/jOLl/NcCbQK3791rgwrF+fwV2704HZrqPlwD7U871HHAOIMDvgEvG+v2Ns/t3tnu+zrF+X4X6Y5mGS1UbVPV593EHsA2YBVyO88GF+/sK95guVX0S6B1wKnF/ytxveZUcB5tG5fH+nQTsUNUm9+8/Au8f4csfU0O4dy+oavLf1CtAsYgUicgMoFJVn1HnE/DOZJ2JLF/3z33uWVVtGM3rH28saKQhInNxvo1sAKYl/xG5v6dmqquqUeA6YCtOsFgM3D6Cl1twhnP/gF3AKSIyV0QCOP+jz85SZ8IYwr17P/CCqoZxPijrU56rd8uOG8O8f8YDCxoDiEg58ADwd6raPoT6QZygcTowE3gJuCGvF1nAhnv/VLUF5/7dAzwB7AVi+bzGQpXrvRORU4GbgU8mi9IcdtwMj8zD/TMeWNBI4X7gPwD8TFV/4RYfctN+3N+NWU6zFEBVd7tNBPcCbxuhSy4oebp/qOqvVfUsVT0HZx2xnSN1zYUi13snInXAL4GrVXW3W1wP1KWcto7joGkU8nb/jAcWNFxu/8PtwDZV/U7KU+uA1e7j1cCDWU61H1gsIsmFv96D08Y6oeXx/iEiU93fVcCngR/n92oLS673TkQmA78FblDVp5IHu00wHSJytnvOq/Fwv8e7fN0/49FY98QXyg/OSB7FaU7a4v5cijOa5xGcb7uPANUpdfYCzUAnzre8xW75p3ACxUs4677UjPX7G2f37+fAq+7PqrF+b4V274AvA10px24BprrPLQdeBnYD/4U7gXci/+T5/n3T/beYcH9/ZazfX6H92IxwY4wxnlnzlDHGGM8saBhjjPHMgoYxxhjPLGgYY4zxzIKGMcYYzyxoGDPKRORTInJ1DsfPFZGXR/KajPEqMNYXYMzxRGTdjmUAAAGOSURBVEQCqvrDsb4OY4bKgoYxOXIXxfs9zqJ4p+MsxX01sAj4DlAOHAY+oqoNIvIY8DRwLrBORCpwlt7+logsBX4IlOJMyPuYqraIyDJgDdANPDl6786YzKx5ypihWQjcpqqnAe3A9cB/AleqavID/6aU4yer6jtU9dsDznMn8EX3PFuBG93ynwCfVWf9LWMKhmUaxgzNPj26btFPgX/C2dBnvbtZnh9I3ZfhnoEnEJFJOMHkz27RWuC+NOV3AZfk/y0YkzsLGsYMzcD1dzqAVzJkBl05nFvSnN+YgmDNU8YMzRwRSQaIDwLPArXJMhEJuvs1DEpV24AWETnfLfow8GdVbQXaROQ8t/xv8n/5xgyNZRrGDM02YLWI/A/OKqr/CTwMfN9tXgoAt+BsJ5rJauCHIlIKvA581C3/KLBGRLrd8xpTEGyVW2Ny5I6e+o2qLhnjSzFm1FnzlDHGGM8s0zDGGOOZZRrGGGM8s6BhjDHGMwsaxhhjPLOgYYwxxjMLGsYYYzyzoGGMMcaz/w9h9J+xz8VaswAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
"source": [
"sorted_data['inc'][-200:].plot()"
]
@@ -252,10 +2300,8 @@
},
{
"cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": true
- },
+ "execution_count": 11,
+ "metadata": {},
"outputs": [],
"source": [
"first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n",
@@ -274,7 +2320,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
@@ -298,9 +2344,32 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 13,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAD8CAYAAABQFVIjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3X+QldWd5/H3B0FxElEg6PBDhY3GCppZHLrQLfdHxB0gPyrgjJmwOkrVWEXijy1nNrWiE7fMKFMVU5M4y7ohMWNG1FF0TCzdRIa0UWucWQSaoFE0TjMrgygjWI2KUwVj43f/eL53fLhpbt9ubve9t/vzqrrVT5/nnHNPPzT9vefH8xxFBGZmZkdrTLMbYGZmI4MDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNcTYZjdgOH3sYx+LmTNnNrsZZmZtZcuWLW9FxJT+8o2qgDJz5ky6urqa3Qwzs7Yi6R/ryechLzMzawgHFDMzawgHFDMza4i6AoqkHZJekPScpK5M+7qk1zPtOUmfLeW/UdJ2Sa9IWlhKn5v1bJe0SpIy/ThJD2b6RkkzS2WWSerO17JS+qzM251ljz36y2FmZoM1kB7KhRExJyI6Smm3Z9qciHgcQNJsYClwNrAI+I6kYzL/amA5cGa+FmX6lcC+iDgDuB24LeuaBNwMnAfMA26WNDHL3JbvfyawL+swM7MmGYohr8XA2og4GBGvAtuBeZKmAhMiYkMUu3rdAywplVmTxw8DF2XvZSHQGRE9EbEP6AQW5bn5mZcsW6mrre159wC/+70N7Nl/oNlNMTMbkHoDSgA/lbRF0vJS+rWSfiHpB6Wew3TgtVKeXZk2PY+r0w8rExG9wDvA5Bp1TQbezrzVdbW1VT/rZvOOHlY90d3sppiZDUi996FcEBFvSDoZ6JT0S4rhq1spgs2twLeA3wfUR/mokc4gytSq6zAZAJcDnHbaaX1laQln3bSOg70f/Ov3923cyX0bd3Lc2DG8svIzTWyZmVl96uqhRMQb+XUP8AgwLyLejIhDEfEB8H2KOQ4oegunlorPAN7I9Bl9pB9WRtJY4ESgp0ZdbwEnZd7quqrbfmdEdEREx5Qp/d7o2TTPXH8hX5gzjfHjin+S8ePGsHjONJ5ZcWGTW2ZmVp9+A4qkj0g6oXIMLABezDmRiouBF/P4MWBprtyaRTH5vikidgP7JZ2fcyBXAI+WylRWcF0CPJnzLOuBBZIm5pDaAmB9nnsq85JlK3W1pZMnjOeE48ZysPcDjhs7hoO9H3DCcWM5+YTxzW6amVld6hnyOgV4JFf4jgXuj4i/lnSvpDkUQ007gC8DRMQ2SQ8BLwG9wDURcSjrugq4GzgeWJcvgLuAeyVtp+iZLM26eiTdCmzOfLdERE8erwDWSloJbM062tpb7x3ksvNO59J5p3H/pp3s9cS8mbURFR/2R4eOjo7ws7zMzAZG0paqW0b65DvlzcysIRxQzMysIRxQzMysIRxQzMysIRxQzMysIRxQ2pCf92VmrcgBpQ35eV9m1opG1Z7y7c7P+zKzVuYeShvx877MrJU5oLQRP+/LzFqZh7zajJ/3ZWatys/yqsOedw9w7QNbuePSc90bMLNRx8/yaiCvqjIz65+HvGrwqiozs/q5h1KDV1WZmdXPAaUGr6oyM6tfXQFF0g5JL0h6TlJXpk2S1CmpO79OLOW/UdJ2Sa9IWlhKn5v1bJe0KrcCJrcLfjDTN0qaWSqzLN+jW9KyUvqszNudZY89+svxqyqrqh65+gIuO+909r53cCjexsys7dW1ykvSDqAjIt4qpX0T6ImIb0i6AZgYESskzQYeAOYB04AngE9ExCFJm4DrgGeBx4FVEbFO0tXAb0TEVyQtBS6OiC9JmgR0AR0UWw1vAeZGxL7cZvhHEbFW0neB5yNida2fwzs2mpkN3HCs8loMrMnjNcCSUvraiDgYEa8C24F5kqYCEyJiQxRR7J6qMpW6HgYuyt7LQqAzInoiYh/QCSzKc/Mzb/X7m5lZE9QbUAL4qaQtkpZn2ikRsRsgv56c6dOB10pld2Xa9DyuTj+sTET0Au8Ak2vUNRl4O/NW12VmZk1Q77LhCyLiDUknA52Sflkjr/pIixrpgylTq67DG1MEwOUAp512Wl9ZzMysAerqoUTEG/l1D/AIxfzImzmMRX7dk9l3AaeWis8A3sj0GX2kH1ZG0ljgRKCnRl1vASdl3uq6qtt+Z0R0RETHlClT6vlxzcxsEPoNKJI+IumEyjGwAHgReAyorLpaBjyax48BS3Pl1izgTGBTDovtl3R+zoFcUVWmUtclwJM5z7IeWCBpYq4iWwCsz3NPZd7q9zczsyaoZ8jrFOCRXOE7Frg/Iv5a0mbgIUlXAjuBLwJExLZcgfUS0AtcExGHsq6rgLuB44F1+QK4C7hX0naKnsnSrKtH0q3A5sx3S0T05PEKYK2klcDWrMPMzJrED4c0M7Oa/HBIMzMbVg4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEHUHFEnHSNoq6cf5/dclvS7puXx9tpT3RknbJb0iaWEpfa6kF/Lcqtxbntx//sFM3yhpZqnMMknd+VpWSp+Vebuz7LFHdynMzOxoDKSHch3wclXa7RExJ1+PA0iaTbEn/NnAIuA7ko7J/KuB5cCZ+VqU6VcC+yLiDOB24LasaxJwM3AeMA+4WdLELHNbvv+ZwL6sw8zMmqSugCJpBvA54M/ryL4YWBsRByPiVWA7ME/SVGBCRGyIYiP7e4AlpTJr8vhh4KLsvSwEOiOiJyL2AZ3Aojw3P/OSZSt1mZlZE9TbQ/kz4Hrgg6r0ayX9QtIPSj2H6cBrpTy7Mm16HlenH1YmInqBd4DJNeqaDLydeavrMjOzJug3oEj6PLAnIrZUnVoNfByYA+wGvlUp0kc1USN9MGVq1XUYScsldUnq2rt3b19ZzMysAerpoVwAfEHSDmAtMF/SfRHxZkQciogPgO9TzHFA0Vs4tVR+BvBGps/oI/2wMpLGAicCPTXqegs4KfNW13WYiLgzIjoiomPKlCl1/LhmZjYY/QaUiLgxImZExEyKyfYnI+L3ck6k4mLgxTx+DFiaK7dmUUy+b4qI3cB+SefnHMgVwKOlMpUVXJfkewSwHlggaWIOqS0A1ue5pzIvWbZSl5mZNcHY/rMc0TclzaEYatoBfBkgIrZJegh4CegFromIQ1nmKuBu4HhgXb4A7gLulbSdomeyNOvqkXQrsDnz3RIRPXm8AlgraSWwNeswM7MmUfFhf3To6OiIrq6uZjfDzKytSNoSER395fOd8mZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGY2Kux59wC/+70N7Nl/oNlNGbEcUMxsVFj1s2427+hh1RPdzW7KiHU0z/IyM2t5Z920joO9H27ldN/Gndy3cSfHjR3DKys/08SWjTzuoZjZiPbM9RfyhTnTGD+u+HM3ftwYFs+ZxjMrLmxyy0YeBxQza5rhmNc4ecJ4TjhuLAd7P+C4sWM42PsBJxw3lpNPGD9k7zlaOaCYWdMM17zGW+8d5LLzTueRqy/gsvNOZ+97B4f0/UYrP77ezIZd9bxGhec1WpMfX29mLcvzGiOTA4qZDTvPa4xMdQcUScdI2irpx/n9JEmdkrrz68RS3hslbZf0iqSFpfS5kl7Ic6tyb3ly//kHM32jpJmlMsvyPbolLSulz8q83Vn22KO7FGY2nDyvMfLUPYci6b8BHcCEiPi8pG8CPRHxDUk3ABMjYoWk2cADwDxgGvAE8ImIOCRpE3Ad8CzwOLAqItZJuhr4jYj4iqSlwMUR8SVJk4CufN8AtgBzI2Jf7lv/o4hYK+m7wPMRsbrWz+A5FDOzgWvoHIqkGcDngD8vJS8G1uTxGmBJKX1tRByMiFeB7cA8SVMpgtGGKKLYPVVlKnU9DFyUvZeFQGdE9ETEPqATWJTn5mfe6vc3M7MmqHfI68+A64HysoxTImI3QH49OdOnA6+V8u3KtOl5XJ1+WJmI6AXeASbXqGsy8Hbmra7rMJKWS+qS1LV37946f1wzMxuofgOKpM8DeyJiS511qo+0qJE+mDK16jo8MeLOiOiIiI4pU6b0lcXMzBqgnh7KBcAXJO0A1gLzJd0HvJnDWOTXPZl/F3BqqfwM4I1Mn9FH+mFlJI0FTgR6atT1FnBS5q2uy6wmP3XWbGj0G1Ai4saImBERM4GlwJMR8XvAY0Bl1dUy4NE8fgxYmiu3ZgFnAptyWGy/pPNzDuSKqjKVui7J9whgPbBA0sRcRbYAWJ/nnsq81e9vVpOfOms2NI7macPfAB6SdCWwE/giQERsyxVYLwG9wDURcSjLXAXcDRwPrMsXwF3AvZK2U/RMlmZdPZJuBTZnvlsioiePVwBrJa0EtmYdZkfkp86aDS0/esVGjT3vHmDl4y/z023/xIH3P2D8uDEsPPvX+drnPukb6sxq8KNXzKoM5O7sdpxnacc228jigGKjSr13Z7fjPEs7ttlGFg95mZW041Nw27HN1l485GU2CO34FNx2bLONTA4oZiXt+BTcdmyzjUxHs2zYbESqzLNcOu807t+0k71tMMndjm22kcdzKGZmVpPnUMzMbFg5oJiZWUM4oJiZDYBvID0yBxQzswHwDaRH5lVe1lb2vHuAax/Yyh2XnutlsTas/HDR/rmHYm3Fnw6tWXwDaf/cQ7G2MNo/Hbpn1ny+gbR/7qFYWxjtnw7dM2sN9T5cdLRyD8VaRq1P4aP10+Fo75m1mu9d/uG9fSuXnNPElrSmfnsoksZL2iTpeUnbJP1xpn9d0uuSnsvXZ0tlbpS0XdIrkhaW0udKeiHPrcqtgMntgh/M9I2SZpbKLJPUna9lpfRZmbc7yx7bmEtiA9WoZZT9fQofjZ8OR3vPzNpLPT2Ug8D8iHhP0jjgbyVVtu69PSL+tJxZ0myKLXzPBqYBT0j6RG4DvBpYDjwLPA4sotgG+EpgX0ScIWkpcBvwJUmTgJuBDiCALZIei4h9mef2iFgr6btZx+rBXwobrHIgWHnxpwZcvt5P4aPx0+Fo7ZlZe+q3hxKF9/Lbcfmq9QCwxcDaiDgYEa8C24F5kqYCEyJiQxQPELsHWFIqsyaPHwYuyt7LQqAzInoyiHQCi/Lc/MxLlq3UZcPkrJvWMfOGn3Dfxp1EFIFg5g0/4ayb1vVfuMSfwmsbjT0za091zaFIOgbYApwB/O+I2CjpM8C1kq4AuoCv5h/96RQ9kIpdmfZ+Hlenk19fA4iIXknvAJPL6VVlJgNvR0RvH3XZMHnm+guPuEf7QPhTeG2jsWdm7amuVV4RcSgi5gAzKHob51AML30cmAPsBr6V2dVXFTXSB1OmVl2HkbRcUpekrr179/aVxQapkYHAn8JHHj+iZPQZ0CqviHhb0tPAovLciaTvAz/Ob3cBp5aKzQDeyPQZfaSXy+ySNBY4EejJ9E9XlXkaeAs4SdLY7KWU66pu853AnVA8vn4gP6/1r1H7cPhT+MhztHNr1n763Q9F0hTg/QwmxwM/pZgQ3xIRuzPPHwLnRcRSSWcD9wPzKCblfwacGRGHJG0G/iuwkWJS/n9FxOOSrgE+FRFfyUn5346I381J+S3Ab2Zzfg7MjYgeSX8F/LA0Kf+LiPhOrZ/F+6GYDT3vcT/y1LsfSj09lKnAmpxHGQM8FBE/lnSvpDkUQ007gC8DRMQ2SQ8BLwG9wDW5wgvgKuBu4HiK1V2V2du7gHslbafomSzNunok3Qpszny3RERPHq8A1kpaCWzNOsysyRo1t2btp9+AEhG/AM7tI/3yGmX+BPiTPtK7gF8Zz4iIA8AXj1DXD4Af9JH+/yh6QWbWQrzIYvTynfJm1nDe43508p7yZmZWk/eUNzOzYeWAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYjaEvCeIjSYOKGZDqLwniNlI54dDmg2B6j1B7tu4k/s27vSeIDaiuYdiNgSeuf5CvjBnGuPHFf/Fxo8bw+I503hmxYVNbpnZ0HFAMRsC3hPERiMHFBtRWmkSvLInyCNXX8Bl553O3vcONrtJZkOq34AiabykTZKel7RN0h9n+iRJnZK68+vEUpkbJW2X9IqkhaX0uZJeyHOrJCnTj5P0YKZvlDSzVGZZvke3pGWl9FmZtzvLHtuYS2LtrJUmwb93eQcrl5zD7GkTWLnkHL53eb/bSZi1tX432Mo/+h+JiPckjQP+FrgO+G2gJyK+IekGYGJErJA0G3iAYnveacATwCci4pCkTVn2WeBxYFVErJN0NfAbEfEVSUuBiyPiS5ImAV1AB8Xe9VuAuRGxL/et/1FErJX0XeD5iFhd62fxBlsjV/UkeIUnwc2OXsM22IrCe/ntuHwFsBhYk+lrgCV5vBhYGxEHI+JVYDswT9JUYEJEbIgiit1TVaZS18PARRnIFgKdEdETEfuATmBRnpufeavf30YhT4IPr1YaWrTWUdcciqRjJD0H7KH4A78ROCUidgPk15Mz+3TgtVLxXZk2PY+r0w8rExG9wDvA5Bp1TQbezrzVdVW3fbmkLklde/furefHtTbkSfDh1UpDi9Y66roPJSIOAXMknQQ8IumcGtnVVxU10gdTplZdhydG3AncCcWQV195bGSoTIJfOu807t+0k73+9Nxwvr/GahnQjY0R8bakp4FFwJuSpkbE7hzO2pPZdgGnlorNAN7I9Bl9pJfL7JI0FjgR6Mn0T1eVeRp4CzhJ0tjspZTrslGqPOm9ckmtzzw2WM9cfyErH3+Zn277Jw68/wHjx41h4dm/ztc+98lmN81aQD2rvKZkzwRJxwP/Gfgl8BhQWXW1DHg0jx8DlubKrVnAmcCmHBbbL+n8nAO5oqpMpa5LgCdznmU9sEDSxFxFtgBYn+eeyrzV729mQ8RDi1ZLPT2UqcAaScdQBKCHIuLHkjYAD0m6EtgJfBEgIrblCqyXgF7gmhwyA7gKuBs4HliXL4C7gHslbafomSzNunok3Qpszny3RERPHq8A1kpaCWzNOsxsiHlo0Y6k32XDI8lQLhve8+4Brn1gK3dceq4/rZk1UDv+32rHNtfSsGXDVh+vejEbGu34f6sd29wI7qEcJd9QZzY02vH/Vju2uR7uoQwT31BnNjTa8f9WO7a5kRxQjtJAVr347mJrB63ye9qOK8rasc2N5IDSAPU+VXa0jqtae2ml39N2fGJzO7a5UTyHMgxG6riqjSz+PbUj8RxKCxnt46rWHvx72npaZfixXg4ow6Cdx1Xb7RfaBq+df09HqlYafqzHgJ7lZYPXrncXl3+hV178qWY3x4ZYu/6ejjTt+hBOz6FYnzyebtY8e949cMSHcDajx+g5FDsqHk83a552HX70kJf1qV1/oc1GinYcfnRAsSNqx19os5GiHff38RzKKDbSnohqZkPDcyjWr3Zbkmhmrc1DXqNQuy5JbDXu4Zkdrp4tgE+V9JSklyVtk3Rdpn9d0uuSnsvXZ0tlbpS0XdIrkhaW0udKeiHPrcqtgMntgh/M9I2SZpbKLJPUna9lpfRZmbc7yx7bmEsy8nkFV2O4h2d2uHp6KL3AVyPi55JOALZI6sxzt0fEn5YzS5pNsYXv2cA04AlJn8htgFcDy4FngceBRRTbAF8J7IuIMyQtBW4DviRpEnAz0AFEvvdjEbEv89weEWslfTfrWD34SzF6eAXX0XEPz6xv/fZQImJ3RPw8j/cDLwPTaxRZDKyNiIMR8SqwHZgnaSowISI2RLES4B5gSanMmjx+GLgoey8Lgc6I6Mkg0gksynPzMy9ZtlKX1WE0PxH1aLmHZ9a3Ac2h5FDUucBG4ALgWklXAF0UvZh9FMHm2VKxXZn2fh5Xp5NfXwOIiF5J7wCTy+lVZSYDb0dEbx91WR3acUliq3APz6xvda/ykvRR4IfAH0TEuxTDSx8H5gC7gW9VsvZRPGqkD6ZMrbqq271cUpekrr179/aVxWzA3MMz+1V19VAkjaMIJn8ZET8CiIg3S+e/D/w4v90FnFoqPgN4I9Nn9JFeLrNL0ljgRKAn0z9dVeZp4C3gJEljs5dSruswEXEncCcU96HU8/Oa9cc9PLNfVc8qLwF3AS9HxLdL6VNL2S4GXszjx4CluXJrFnAmsCkidgP7JZ2fdV4BPFoqU1nBdQnwZM6zrAcWSJooaSKwAFif557KvGTZSl1mZtYE9fRQLgAuB16Q9Fym/RHwXyTNoRhq2gF8GSAitkl6CHiJYoXYNbnCC+Aq4G7geIrVXesy/S7gXknbKXomS7OuHkm3Apsz3y0R0ZPHK4C1klYCW7MOMzNrEj96xczMavKjV8zMbFg5oJiZNcFI3F7bAcVsFBmJf8Ta1Uh8dI8fDmk2ipT/iK28+FPNbs6oNJIf3eNJebNRoPqPWMVI+CPWbhq5X/xwPfHak/Jm9q/8/LHW0chH97TasJmHvMyabDg+Zfr5Y63laLfXbtVhMwcUsyYbrnmNo/0jZo1ztI/ueeb6C484bNZMDihmTTLcnzL9/LGRo1V7nJ5DMWsSz2s0zmhcDt2KT7x2D8WsSVr1U2Y7Go3LoVuxx+mAYtZEntc4Oq06OT1a+T4UM2tbjbynw47M96GY2YjnYcPW4iEvM2trHjZsHR7yMjMbwRpx46yHvMzMbFgfz1LPnvKnSnpK0suStkm6LtMnSeqU1J1fJ5bK3Chpu6RXJC0spc+V9EKeW5V7y5P7zz+Y6RslzSyVWZbv0S1pWSl9VubtzrLHNuaSmJm1v7NuWsfMG37CfRt3ElGsgJt5w08466Z1/RcepHp6KL3AVyPik8D5wDWSZgM3AD+LiDOBn+X35LmlwNnAIuA7ko7JulYDy4Ez87Uo068E9kXEGcDtwG1Z1yTgZuA8YB5wcylw3Qbcnu+/L+swMzOac+NsvwElInZHxM/zeD/wMjAdWAysyWxrgCV5vBhYGxEHI+JVYDswT9JUYEJEbIhi4uaeqjKVuh4GLsrey0KgMyJ6ImIf0AksynPzM2/1+5uZjXrNWAE3oFVeORR1LrAROCUidkMRdCSdnNmmA8+Wiu3KtPfzuDq9Uua1rKtX0jvA5HJ6VZnJwNsR0dtHXWZmxvCvgKs7oEj6KPBD4A8i4t2c/ugzax9pUSN9MGVq1XV4Y6TlFMNsnHbaaX1lMTMbkYb78Sx1rfKSNI4imPxlRPwok9/MYSzy655M3wWcWio+A3gj02f0kX5YGUljgROBnhp1vQWclHmr6zpMRNwZER0R0TFlypR6flwzMxuEelZ5CbgLeDkivl069RhQWXW1DHi0lL40V27Noph835TDY/slnZ91XlFVplLXJcCTOc+yHlggaWJOxi8A1ue5pzJv9fubmVkT1DPkdQFwOfCCpOcy7Y+AbwAPSboS2Al8ESAitkl6CHiJYoXYNRFxKMtdBdwNHA+syxcUAeteSdspeiZLs64eSbcCmzPfLRHRk8crgLWSVgJbsw4zM2sS3ylvZmY1+U55aymjcQMks9HGAcWGxXA+/sHMmsNPG7Yh5Q2QzEYP91BsSHnfdLPRwwHFhpQ3QDIbPTzkZUPOGyCZjQ5eNmxmZjV52bCZmQ0rBxQzM2sIB5QRyjcSmtlwc0AZoXwjoZkNN6/yGmF8I6GZNYt7KCOMbyQ0GzwPFR8dB5QRxjcSmg2eh4qPjoe8RiDfSGg2MB4qbgzf2Ghmo96edw+w8vGX+em2f+LA+x8wftwYFp7963ztc590754G3tgo6QeS9kh6sZT2dUmvS3ouX58tnbtR0nZJr0haWEqfK+mFPLcqtwEmtwp+MNM3SppZKrNMUne+lpXSZ2Xe7ix7bD0XxcysLx4qbox65lDuBhb1kX57RMzJ1+MAkmZTbN97dpb5jqRjMv9qYDnFHvNnluq8EtgXEWcAtwO3ZV2TgJuB84B5wM25rzyZ5/aIOBPYl3WYmQ1aZaj4kasv4LLzTmfveweb3aS20+8cSkT8TbnX0I/FwNqIOAi8mnvEz5O0A5gQERsAJN0DLKHYU34x8PUs/zBwR/ZeFgKdlT3kJXUCiyStBeYDl2aZNVl+dZ1tNDP7Fd+7/MMRnZVLzmliS9rX0azyulbSL3JIrNJzmA68VsqzK9Om53F1+mFlIqIXeAeYXKOuycDbmbe6LjMza5LBBpTVwMeBOcBu4FuZrj7yRo30wZSpVdevkLRcUpekrr179x4pm5mZHaVBBZSIeDMiDkXEB8D3KeY4oOgtnFrKOgN4I9Nn9JF+WBlJY4ETgZ4adb0FnJR5q+vqq613RkRHRHRMmTJloD+qmZnVaVABRdLU0rcXA5UVYI8BS3Pl1iyKyfdNEbEb2C/p/JwfuQJ4tFSmsoLrEuDJKNYyrwcWSJqYQ2oLgPV57qnMS5at1GVmZk3S76S8pAeATwMfk7SLYuXVpyXNoRhq2gF8GSAitkl6CHgJ6AWuiYhDWdVVFCvGjqeYjF+X6XcB9+YEfg/FKjEiokfSrcDmzHdLZYIeWAGslbQS2Jp1mJlZE/nGRjMzq6neGxtHVUCRtBf4xz5OfYxibqaduM1Dr93aC27zcGm3Nh9te0+PiH4noUdVQDkSSV31RN9W4jYPvXZrL7jNw6Xd2jxc7fXThs3MrCEcUMzMrCEcUAp3NrsBg+A2D712ay+4zcOl3do8LO31HIqZmTWEeyhmZtYQIzKgHGEPl38raUPuyfJ/JE3I9HGS1mT6y5JuLJV5Ovd1qez7cnKLtPlYSX+R6c9L+nSpTJ/7zrR4m4flOks6VdJT+e+8TdJ1mT5JUmfur9NZetjpgPf3afE2t+R1ljQ5878n6Y6qulryOvfT5iG/zoNo729J2pLXcouk+aW6GneNI2LEvYD/CPwm8GIpbTPwn/L494Fb8/hSikfuA/waxZ3/M/P7p4GOFmzzNcBf5PHJwBZgTH6ruEO0AAADpklEQVS/Cfh3FA/RXAd8pg3aPCzXGZgK/GYenwD8PTAb+CZwQ6bfANyWx7OB54HjgFnAPwDHDOd1bnCbW/U6fwT498BXgDuq6mrV61yrzUN+nQfR3nOBaXl8DvD6UFzjEdlDiYi/oXiMS9lZwN/kcSfwO5XswEdUPGzyeOBfgHeHo51lA2zzbOBnWW4P8DbQoeIZaxMiYkMUvymVfWdats1D1ba+RMTuiPh5Hu8HXqbY+mAxxb465NfKNfvX/X0i4lWgsr/PsF3nRrV5KNrWqDZHxD9HxN8CB8r1tPJ1PlKbh8sg2rs1IioP0d0GjFfxzMWGXuMRGVCO4EXgC3n8RT58kvHDwD9TPIZ/J/Cn8eEzwwD+Irut/2Moh4+O4Ehtfh5YLGmsiodwzs1ztfadGS4DbXPFsF5nFZvGnQtsBE6J4gGm5NfKEMVg9vcZMkfZ5opWvM5H0srXuT/Ddp0H0d7fAbZGsRFiQ6/xaAoovw9cI2kLRRfxXzJ9HnAImEYxRPBVSf8mz10WEZ8C/kO+Lh/eJh+xzT+g+IfvAv4M+L8UD+Mc0F4xQ2SgbYZhvs6SPgr8EPiDiKjVG23InjyN0IA2Q+te5yNW0Udaq1znWobtOg+0vZLOpthC/cuVpD6yDfoaj5qAEhG/jIgFETEXeIBibBmKOZS/joj3cyjm78ihmIh4Pb/uB+5n+IcO+mxzRPRGxB9GxJyIWAycBHRTe9+ZVm3zsF5nSeMo/gP+ZUT8KJPfzK5/ZZhlT6YPZn+fVm1zK1/nI2nl63xEw3WdB9peSTOAR4ArIqLy96+h13jUBJTKSgtJY4CbgO/mqZ3AfBU+ApwP/DKHZj6WZcYBn+fDfV+a2mZJv5ZtRdJvAb0R8VLU3nemJds8nNc5r8ldwMsR8e3SqfKePOX9dQazv09LtrnFr3OfWvw6H6meYbnOA22vpJOAnwA3RsTfVTI3/BoPdja/lV8Un4x3A+9TROArgesoVkL8PfANPryp86PAX1FMVL0E/Pf4cBXHFuAXee5/kqtlWqDNM4FXKCbinqB4Emilng6KX+B/AO6olGnVNg/ndaZYlRP5Xs/l67PAZIoFA935dVKpzNfyWr5CafXLcF3nRrW5Da7zDooFHu/l79LsNrjOv9Lm4brOA20vxYe7fy7lfQ44udHX2HfKm5lZQ4yaIS8zMxtaDihmZtYQDihmZtYQDihmZtYQDihmZtYQDihmZtYQDihmZtYQDihmZtYQ/x/rFzgxQKYDrwAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
"source": [
"yearly_incidence.plot(style='*')"
]
@@ -314,9 +2383,55 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 14,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "2014 1600941\n",
+ "1991 1659249\n",
+ "1995 1840410\n",
+ "2020 2053781\n",
+ "2012 2175217\n",
+ "2003 2234584\n",
+ "2019 2254386\n",
+ "2006 2307352\n",
+ "2017 2321583\n",
+ "2001 2529279\n",
+ "1992 2574578\n",
+ "1993 2703886\n",
+ "2018 2705325\n",
+ "1988 2765617\n",
+ "2007 2780164\n",
+ "1987 2855570\n",
+ "2016 2856393\n",
+ "2011 2857040\n",
+ "2008 2973918\n",
+ "1998 3034904\n",
+ "2002 3125418\n",
+ "2009 3444020\n",
+ "1994 3514763\n",
+ "1996 3539413\n",
+ "2004 3567744\n",
+ "1997 3620066\n",
+ "2015 3654892\n",
+ "2000 3826372\n",
+ "2005 3835025\n",
+ "1999 3908112\n",
+ "2010 4111392\n",
+ "2013 4182691\n",
+ "1986 5115251\n",
+ "1990 5235827\n",
+ "1989 5466192\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"yearly_incidence.sort_values()"
]
@@ -331,9 +2446,32 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 15,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEKCAYAAAAGvn7fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGbhJREFUeJzt3X2UJXV95/H3h5kBhmkYjAONDkr7QAjIqDgXXWQ13WhcdNCcGE5QQcVIGo0PRCdnM8v6sLrLOj5MsphgkklUiAodw8PZyBjUE2hQNEgPqA2OEBdmlSEMAjLSMAuMfPePX7XctP1wq27dvsXPz+ucPn3vrbpVn/rdut9b9auqexURmJlZPvbqdwAzM6uXC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLzNJeTnzVqlUxNDQ067AHH3yQFStW9HL2lTU5GzQ7n7NV1+R8zlZd2Xxbt269JyIO6mqmEdGzv7Vr18ZcrrrqqjmH9VuTs0U0O5+zVdfkfM5WXdl8wER0WXvdFWNmlhkXdjOzzLiwm5llxoXdzCwzLuxmZpkpVdglvUfSzZJuknSRpH17FczMzKrpuLBLWg28G2hFxNHAEuB1vQpmZmbVlO2KWQosl7QU2A+4s/5IZmbWDUWJ3zyVdBZwDrAb+GpEnDrLOKPAKMDg4ODasbGxWac1NTXFwMBAlcw91+RsUH++yR27apvW4HLYubvz8desXlnbvBfyq/a61snZqiubb2RkZGtEtLqZZ8eFXdKTgEuAU4D7gX8ALo6Iz8/1nFarFRMTE7MOGx8fZ3h4uGzeRdHkbFB/vqENW2qb1vo1e9g02fk3VWzfuK62eS/kV+11rZOzVVc2n6SuC3uZrpiXA7dHxE8i4lHgUuDF3czczMzqV6aw/wj4D5L2kyTgZcC23sQyM7OqOi7sEXEdcDFwAzBZPHdzj3KZmVlFpb62NyI+CHywR1nMzKwGvvLUzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMdF3ZJR0j6TtvfzyT9US/DmZlZeR3/NF5E3AI8H0DSEmAHcFmPcpmZWUVVu2JeBvyfiPi/dYYxM7PuKSLKP0n6DHBDRPzFLMNGgVGAwcHBtWNjY7NOY2pqioGBgdLzXgxNzgb155vcsau2aQ0uh527Ox9/zeqVtc17Ie3tVucylzHf8jZ5vXO26srmGxkZ2RoRrW7mWbqwS9obuBN4TkTsnG/cVqsVExMTsw4bHx9neHi41LwXS5OzQf35hjZsqW1a69fsYdNkxz18bN+4rrZ5L6S93epc5jLmW94mr3fOVl3ZfJK6LuxVumJeSdpan7eom5lZf1Qp7K8HLqo7iJmZ1aNUYZe0H/BbwKW9iWNmZt3qvDMUiIiHgCf3KIuZmdXAV56amWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZabsT+MdKOliST+QtE3Scb0KZmZm1ZT6aTzgXOCKiDhZ0t7Afj3IZGZmXei4sEs6AHgpcDpARDwCPNKbWGZmVpUiorMRpecDm4HvA88DtgJnRcSDM8YbBUYBBgcH146Njc06vampKQYGBqon75HJHbsYXA47dy/+vNesXtnReHW33eSOXbVNq2zbdbrMdWhvtzqXuYz5lrep7wlwtm6UzTcyMrI1IlrdzLNMYW8B/wIcHxHXSToX+FlEvH+u57RarZiYmJh12Pj4OMPDw+UT99jQhi2sX7OHTZNle6m6t33juo7Gq7vthjZsqW1aZduu02WuQ3u71bnMZcy3vE19T4CzdaNsPkldF/YyB0/vAO6IiOuK+xcDL+hm5mZmVr+OC3tE3AX8WNIRxUMvI3XLmJlZg5Ttb3gX8IXijJjbgLfUH8nMzLpRqrBHxHeArvp+zMyst3zlqZlZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmSv2CkqTtwAPAz4E93f6StpmZ1a/sb54CjETEPbUnMTOzWrgrxswsM4qIzkeWbgd+CgTw1xGxeZZxRoFRgMHBwbVjY2OzTmtqaoqBgYEqmXtqcscuBpfDzt2LP+81q1d2NF7dbTe5Y1dt0yrbdp0ucx3a263OZS5jvuVt6nsCnK0bZfONjIxs7babu2xhf2pE3CnpYOBrwLsi4pq5xm+1WjExMTHrsPHxcYaHh0vG7b2hDVtYv2YPmyar9FJ1Z/vGdR2NV3fbDW3YUtu0yrZdp8tch/Z2q3OZy5hveZv6ngBn60bZfJK6LuylumIi4s7i/93AZcALu5m5mZnVr+PCLmmFpP2nbwOvAG7qVTAzM6umTH/DIHCZpOnnXRgRV/QklZmZVdZxYY+I24Dn9TCLmZnVwKc7mpllxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWWmdGGXtETSjZIu70UgMzPrTpUt9rOAbXUHMTOzepQq7JIOBdYBf9ubOGZm1i1FROcjSxcDHwH2B/44Ik6aZZxRYBRgcHBw7djY2KzTmpqaYmBgoErmnprcsYvB5bBzd7+TzK3J+cpmW7N6Ze/CzNC+zk3u2LVo82033/I29T0BztaNsvlGRka2RkSrm3ku7XRESScBd0fEVknDc40XEZuBzQCtViuGh2cfdXx8nLmG9dPpG7awfs0eNk123DSLrsn5ymbbfupw78LM0L7Onb5hy6LNt918y9vU9wQ4Wzf6ka9MV8zxwGskbQfGgBMkfb4nqczMrLKOC3tE/JeIODQihoDXAVdGxGk9S2ZmZpX4PHYzs8xU6qiNiHFgvNYkZmZWC2+xm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMdFzYJe0r6duSvivpZkkf6mUwMzOrpswvKD0MnBARU5KWAd+Q9E8R8S89ymZmZhV0XNgjIoCp4u6y4i96EcrMzKpTqtcdjiwtAbYCzwbOi4g/mWWcUWAUYHBwcO3Y2Nis05qammJgYGDOeU3u2NVxrroNLoedu/s2+wU1OV/ZbGtWr+xdmBna17l+rV/zLe9C74l+eqJma8LrXLbtRkZGtkZEq5v5lyrsv3iSdCBwGfCuiLhprvFarVZMTEzMOmx8fJzh4eE55zG0YUvpXHVZv2YPmyYr/c73omhyvrLZtm9c18M0/177Otev9Wu+5V3oPdFPT9RsTXidy7adpK4Le6WzYiLifmAcOLGbmZuZWf3KnBVzULGljqTlwMuBH/QqmJmZVVNmf/4pwAVFP/tewBcj4vLexDIzs6rKnBXzPeCYHmYxM7Ma+MpTM7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8yU+c3Tp0m6StI2STdLOquXwczMrJoyv3m6B1gfETdI2h/YKulrEfH9HmUzM7MKOt5ij4h/i4gbitsPANuA1b0KZmZm1Sgiyj9JGgKuAY6OiJ/NGDYKjAIMDg6uHRsbm3UaU1NTDAwMzDmPyR27Sueqy+By2Lm7b7NfUJPzOVt1vc63ZvXKys9d6P3aT/Nl61cdaW/rsm03MjKyNSJa3cy/dGGXNABcDZwTEZfON26r1YqJiYlZh42PjzM8PDznc4c2bCmVq07r1+xh02SZXqrF1eR8zlZdr/Nt37iu8nMXer/203zZ+lVH2tu6bNtJ6rqwlzorRtIy4BLgCwsVdTMz648yZ8UI+DSwLSL+tHeRzMysG2W22I8H3gicIOk7xd+repTLzMwq6rhDLyK+AaiHWczMrAa+8tTMLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsM2V+8/Qzku6WdFMvA5mZWXfKbLGfD5zYoxxmZlaTjgt7RFwD3NfDLGZmVgNFROcjS0PA5RFx9DzjjAKjAIODg2vHxsZmHW9qaoqBgYE55zW5Y1fHueo2uBx27u7b7BfU5HzOVl2v861ZvbLycxd6v/bTfNn6VUfa27ps242MjGyNiFY386+9sLdrtVoxMTEx67Dx8XGGh4fnfO7Qhi0d56rb+jV72DS5tG/zX0iT8zlbdb3Ot33jusrPXej92k/zZetXHWlv67JtJ6nrwu6zYszMMuPCbmaWmTKnO14EfAs4QtIdkt7au1hmZlZVxx16EfH6XgYxM7N6uCvGzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDOlCrukEyXdIumHkjb0KpSZmVVX5jdPlwDnAa8EjgJeL+moXgUzM7NqymyxvxD4YUTcFhGPAGPAb/cmlpmZVaWI6GxE6WTgxIg4o7j/RuBFEfHOGeONAqPF3SOAW+aY5CrgniqhF0GTs0Gz8zlbdU3O52zVlc13WEQc1M0Ml5YYV7M89kufChGxGdi84MSkiYholZj/omlyNmh2Pmerrsn5nK26fuQr0xVzB/C0tvuHAnfWG8fMzLpVprBfDxwu6RmS9gZeB/xjb2KZmVlVHXfFRMQeSe8EvgIsAT4TETd3Me8Fu2v6qMnZoNn5nK26JudztuoWPV/HB0/NzOyJwVeempllxoXdzCwzLuxmZpl5QhZ2Saslre53jtlIeqak90g6od9ZZmpyNmh2Pmerrsn5mpwNqud7QhV2SUOSrgauAD4u6SX9ztRO0n8Evkb6Lp23SXp7nyP9QpOzQbPzOVt1Tc7X5GzQZb6IaPQfsG/b7dcCnyhuvxn4B2BNcV99yHYC8Izp+QMfAE4r7r8I+BIw3I98Tc7W9HzOlme+JmerO18jt9glHSDpryTdCnxC0mHFoN8BflTcHgN+CJwx/bRFzHeUpO8B/w34rKQTIrX2UcAhABFxHfBN4C2Lma/J2Zqez9nyzNfkbL3K18jCDpwI7EtasEeAD0haTtoteTVARDwMXAy8pLj/WK/CSDpU0gFtD50CXBIRLyV9wLxB0uHAhdP5CpcBR0vap1f5mpyt6fmcLc98Tc62WPn6VtiVLJX0Vklfl3SWpGcVg58NPBIRe4A/A34KnAZ8FXiKpF8rxrsV+LGk43qU8UhJXwa+AXxY0vTXFP8/YL/i9heBu4B1pE/UJ7ftYdxH+nbL5/0qZWt6PmfLM1+Tsy12vr4V9mJX4zeBNwEfA/YB/qYYfBdwd/HJ9GPSwjyL1ADf5/GvBV4G3Fs8XgtJK9ruPh+4IyKGgCuBTxSP3wc8LGn/iLgP+FfgqUWObwLvLcbbG/g5sD33bE3P52x55mtytn7mW7TCLuk4SR+VdHpxX8CRwBUR8aWI+BhwmKQXAztIn2BHFk/fBgwUj/0F8CpJryZ9KAwC3+0y25MknS/pemCjpIOKfGuAayUpIv4RuF/SOtKewv7FcIr7BwOPkfYwDpb0N8BFwJ6IuDvHbE3P52zVNTlfk7M1Jd+iFHZJzwH+EngA+D1J7y3mvRp4oFhogPOBN5AK9R7gxcXjN5COGD8UEdcAG4DTgeOB/x4Rj7VNo4qXFvN7FemgxNnAAaQvOzuk2LsAuKDI9+1iWV4JEBHfKqaxNCK2AWcCNwP/MyLeQneanK3p+Zwtz3xNztaMfHOdLlP1j7RlfQZpt2Np8difAmcVt1vAJ4GTgZcDX2l77tNIuyqQCvmNpF9hOgb438BT2sYtfTpS0bBnAleTunNWFY9/EXh3cfsZwMZi+LGk/rAlbcv2k2I6q0l7Eu8EPgt8CljRRbs1NlvT8zmbX1e33b//q3WLXdLzSQc4fxv4IPC+YtAO0m+mQvrkuRb4XeCfgUMkPVfSskj96TskvSQiriR93eVHgUuBiyLi36bnFUXLlHQS8BrgQ8BxpL59SGfbTO8d/Bj4OvDKiLie9Ik7UsxzCrgOODYidgBvJHUF3QW8LyIeLBuobU/j1U3LNoPbrprGtRu47brJ9kRouzI/jfdLJL0QOBz4akT8hLQ1fmtEnC7pBcA5klrAOPCfJO0XEQ9J+i7we6RzNC8E/gD4pKTdwCRwezGLvwIujIhdJTIpIkLSsaTdnK8DWyKdHvnrwG0RcaWk20lXr74C2Ar8jqRVEXGPpH8FHpT0dODPgdMkHUz61ah7SbtORMQEMFGh3VqkvZoHgI8DdwPP7Hc2t121bE+EdnPb5dd28ym1xa5kmaQ3SbqR1LF/IDBdeH8ObC+2vm8g7VocBzzE46fwADxK2gU5hLRVfhOpf/1q4J6IuAPSVnnFov5S4DOko8ovBz5SjPIYcKuk5RFxe5HvuaQX607S+aTTy7GE1D6XFBlPBdYCm6PiOa6SVkr6bDHN24FzI+JuSXuRPsn7mW1J0Xa/SdoVbEzbFevdgKTzaVjbFfMMScM0c53bR9KKhrbdAQ1vuwFJ+0q6gIa13YI66a8BVgAvLm4fWAT75CzjnUW6DHZ1cf9kUn/6YaSvALi6eHxfUjfMqrbnHgPs3UmeGfPcD3gbj2/5LwP+CHhHMfxJwPeK6Z9C6u8aKoadVCzLquL2JLCS1L//5fY8wF5dZLuIdMXYAKlr6cy2caaPQ7wT+B+Lla3tdT2DtLKtJx3gaUrbTWe7tFivDmpY2+0PbCH9khjAe5rQbjPyfRn46+L+x4C39bvtSO+JN5Pe/5c0re3a8l0J/H3xWGPWu07/Ftxil3Q2cBuwRdJgRNxP6he6s+gbf40ev0DoW6QDoNMXGl1LOoj6UERcAPxU0udIB0VvAX7RhxQRN0bEIwvlmZHtEOByYBj4HOkAxWtJewl7iun+lHTg9d2kvq+Defw0ymtI59I/EhGXA58mXc16HumI9aNt+Up9qs7I9nfA24tstwJHSNpYbEX9vtIFV1eQ9mB6nq3It4L05jqBdP3AK0jHPY4lbSn1s+3as20mnS3wWtI1DL/R77YrLCdde/EsSatI6/ySYpp9abdZ8u1NWteeSuriOFrSR/rVdpKWkY6xnQx8PCJ+txh0TNs0+9Z2M/J9LCKmt7gngaP62XaldfAJNkzavfhb4D3FY8eSitYdRfALgU3FsHOAD7c9/3rgmOL2PqRTgI6t41OJtPK+qO3+6aQtkzcD3257/KnAncXtd5Au231S8fwvAU9vG3dVj7K9iXSk+9eBvy/+Xg/8L9K5/IuWrW16B7bd/s+kN9Op/W67WbL9MemUsWc2qO3eTOprfT/wVtKBtOv73W6z5HsfaY9nVRPajrQHduqMx04BrmtC282R7+lFhr6vdx0vRwcLOn1qzinAeHF7GWlramVx/zDS1vqxpF3Ai0lbWv9E+qTapyfhUx+X4Be/3foCHu/uuZd0zuj0uF+jKLSk3aevFuP8ySJlOwb4xvSK2zbeMtLB5ROK++f0OtuMnAeQjm/sBD5c3L8XGOxX282S7a5ivisouvn61XZtr+dbSN1srwW+UDx2T7/bbY58Y8Vj7acL92W9I3VR3ApsKub/gaJ+3Acc3IB1rj3fVaQv5jq03+td6eUoscBPJl0o9Jzi/tIZw88HTp5egUhdD2fSo6I+x8p8AY+fL/854KPF7V8j7XE8ve2FOZq2rwRepGzvaH+suH1I0XbPXexsbRn+kHS+7WZSv/Y3izec+tl2M7KdRzqt7NlNaDvSV0YvIfWhXk3aMr4JeH+/17lZ8v0z6QyzFzSk7b5C2gN7Gmkr+CzShmFT1rn2fF8gXfp/eBPartO/6aLTEUmfAn4WERuK+3uRzrt8B/Ac4JQo2U9eF0mHkvq03hURtyp9odhokWs18J2o56qybrK9PSJuKx47htQtta7I9of9yNZO6TqEM0lvsiNJK+uh9LHt2rIdTXqz/TnpLKuT6FPbSRogdXPsQ2qn3yBdeHI2aUv5cPrYbrPkO5x0fOK3SMe8XkZqv76sdypOey5uP4/0Pr2WdEl939e5GfmOJl3pfi7pm2b7tt6VUfY89s3AucVBhiNJK/HxpBfl7H4V9cIxFOfASzqD1P9/NqkL6QeRTr/sd7YfFdluJ60ce0hb8Tf2MVu7e0kHAd8XEX8n6TTg5obku5/UT3wT6XVdRv/abg/p7IlHSVvqPyet/5PAexvQbnPle1jSa0gFv2/r3XTRLNxPOu70/oi4sAFtNzPfA6SN123Af6W/613Hym6xv450oPRh0jeOXRkRt/QoWymSriUdXNtOOof0QxHxvb6GKszIdhewoUHttpK0BfcG0vffbwbOi4hH533iIpgl26cjYlN/U/2y4sKT6b7su/qdZ6Yi38nAZyOdddLvPPuQfnPhjaQ96r8EPhXpa7r7bpZ8myPiz/qbqpyOC7uk55LO57yYdLCotq/K7VaxB/FB0pbw5yNdtdYITc4GIGkpqfvlYVK+Jr2ujc0G6aIu4LEos3W0iJqcT9KZpNNqP9e01xWan28hpbbYzcys+Zr603hmZlaRC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDP/H+KofDj+oV4qAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
"source": [
"yearly_incidence.hist(xrot=20)"
]
@@ -341,9 +2479,7 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": true
- },
+ "metadata": {},
"outputs": [],
"source": []
}
@@ -364,7 +2500,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.6.1"
+ "version": "3.6.4"
}
},
"nbformat": 4,
diff --git a/module3/exo1/analyse-syndrome-grippal_fr.ipynb b/module3/exo1/analyse-syndrome-grippal_fr.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..cecd261473be7274d1290451bd6f8ceb2c658f13
--- /dev/null
+++ b/module3/exo1/analyse-syndrome-grippal_fr.ipynb
@@ -0,0 +1,2515 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Incidence du syndrome grippal"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pandas as pd\n",
+ "import isoweek"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Les données de l'incidence du syndrome grippal sont disponibles du site Web du [Réseau Sentinelles](http://www.sentiweb.fr/). Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1984 et se termine avec une semaine récente."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\" "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Voici l'explication des colonnes données [sur le site d'origine](https://ns.sentiweb.fr/incidence/csv-schema-v1.json):\n",
+ "\n",
+ "| Nom de colonne | Libellé de colonne |\n",
+ "|----------------|-----------------------------------------------------------------------------------------------------------------------------------|\n",
+ "| week | Semaine calendaire (ISO 8601) |\n",
+ "| indicator | Code de l'indicateur de surveillance |\n",
+ "| inc | Estimation de l'incidence de consultations en nombre de cas |\n",
+ "| inc_low | Estimation de la borne inférieure de l'IC95% du nombre de cas de consultation |\n",
+ "| inc_up | Estimation de la borne supérieure de l'IC95% du nombre de cas de consultation |\n",
+ "| inc100 | Estimation du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
+ "| inc100_low | Estimation de la borne inférieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
+ "| inc100_up | Estimation de la borne supérieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
+ "| geo_insee | Code de la zone géographique concernée (Code INSEE) http://www.insee.fr/fr/methodes/nomenclatures/cog/ |\n",
+ "| geo_name | Libellé de la zone géographique (ce libellé peut être modifié sans préavis) |\n",
+ "\n",
+ "La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant `skiprows=1`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 202136 \n",
+ " 3 \n",
+ " 13068 \n",
+ " 9214.0 \n",
+ " 16922.0 \n",
+ " 20 \n",
+ " 14.0 \n",
+ " 26.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 202135 \n",
+ " 3 \n",
+ " 12672 \n",
+ " 9277.0 \n",
+ " 16067.0 \n",
+ " 19 \n",
+ " 14.0 \n",
+ " 24.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 202134 \n",
+ " 3 \n",
+ " 13013 \n",
+ " 9481.0 \n",
+ " 16545.0 \n",
+ " 20 \n",
+ " 15.0 \n",
+ " 25.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 202133 \n",
+ " 3 \n",
+ " 10392 \n",
+ " 7042.0 \n",
+ " 13742.0 \n",
+ " 16 \n",
+ " 11.0 \n",
+ " 21.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 202132 \n",
+ " 3 \n",
+ " 15586 \n",
+ " 11009.0 \n",
+ " 20163.0 \n",
+ " 24 \n",
+ " 17.0 \n",
+ " 31.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202131 \n",
+ " 3 \n",
+ " 18855 \n",
+ " 13664.0 \n",
+ " 24046.0 \n",
+ " 29 \n",
+ " 21.0 \n",
+ " 37.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 202130 \n",
+ " 3 \n",
+ " 13991 \n",
+ " 9695.0 \n",
+ " 18287.0 \n",
+ " 21 \n",
+ " 14.0 \n",
+ " 28.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 202129 \n",
+ " 3 \n",
+ " 13626 \n",
+ " 9618.0 \n",
+ " 17634.0 \n",
+ " 21 \n",
+ " 15.0 \n",
+ " 27.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 202128 \n",
+ " 3 \n",
+ " 8636 \n",
+ " 5430.0 \n",
+ " 11842.0 \n",
+ " 13 \n",
+ " 8.0 \n",
+ " 18.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 202127 \n",
+ " 3 \n",
+ " 10693 \n",
+ " 6838.0 \n",
+ " 14548.0 \n",
+ " 16 \n",
+ " 10.0 \n",
+ " 22.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 202126 \n",
+ " 3 \n",
+ " 7086 \n",
+ " 4109.0 \n",
+ " 10063.0 \n",
+ " 11 \n",
+ " 6.0 \n",
+ " 16.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 202125 \n",
+ " 3 \n",
+ " 7942 \n",
+ " 5540.0 \n",
+ " 10344.0 \n",
+ " 12 \n",
+ " 8.0 \n",
+ " 16.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 202124 \n",
+ " 3 \n",
+ " 4855 \n",
+ " 3011.0 \n",
+ " 6699.0 \n",
+ " 7 \n",
+ " 4.0 \n",
+ " 10.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 202123 \n",
+ " 3 \n",
+ " 6710 \n",
+ " 4455.0 \n",
+ " 8965.0 \n",
+ " 10 \n",
+ " 7.0 \n",
+ " 13.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 202122 \n",
+ " 3 \n",
+ " 7879 \n",
+ " 5495.0 \n",
+ " 10263.0 \n",
+ " 12 \n",
+ " 8.0 \n",
+ " 16.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 202121 \n",
+ " 3 \n",
+ " 7827 \n",
+ " 5403.0 \n",
+ " 10251.0 \n",
+ " 12 \n",
+ " 8.0 \n",
+ " 16.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 202120 \n",
+ " 3 \n",
+ " 10278 \n",
+ " 7540.0 \n",
+ " 13016.0 \n",
+ " 16 \n",
+ " 12.0 \n",
+ " 20.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 202119 \n",
+ " 3 \n",
+ " 9539 \n",
+ " 6860.0 \n",
+ " 12218.0 \n",
+ " 14 \n",
+ " 10.0 \n",
+ " 18.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 202118 \n",
+ " 3 \n",
+ " 12135 \n",
+ " 9165.0 \n",
+ " 15105.0 \n",
+ " 18 \n",
+ " 14.0 \n",
+ " 22.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 202117 \n",
+ " 3 \n",
+ " 12058 \n",
+ " 8891.0 \n",
+ " 15225.0 \n",
+ " 18 \n",
+ " 13.0 \n",
+ " 23.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 202116 \n",
+ " 3 \n",
+ " 16505 \n",
+ " 12735.0 \n",
+ " 20275.0 \n",
+ " 25 \n",
+ " 19.0 \n",
+ " 31.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 202115 \n",
+ " 3 \n",
+ " 19306 \n",
+ " 15398.0 \n",
+ " 23214.0 \n",
+ " 29 \n",
+ " 23.0 \n",
+ " 35.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 202114 \n",
+ " 3 \n",
+ " 21073 \n",
+ " 17099.0 \n",
+ " 25047.0 \n",
+ " 32 \n",
+ " 26.0 \n",
+ " 38.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 202113 \n",
+ " 3 \n",
+ " 26413 \n",
+ " 22094.0 \n",
+ " 30732.0 \n",
+ " 40 \n",
+ " 33.0 \n",
+ " 47.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 202112 \n",
+ " 3 \n",
+ " 30658 \n",
+ " 25919.0 \n",
+ " 35397.0 \n",
+ " 46 \n",
+ " 39.0 \n",
+ " 53.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 202111 \n",
+ " 3 \n",
+ " 24988 \n",
+ " 20718.0 \n",
+ " 29258.0 \n",
+ " 38 \n",
+ " 32.0 \n",
+ " 44.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 202110 \n",
+ " 3 \n",
+ " 19539 \n",
+ " 15951.0 \n",
+ " 23127.0 \n",
+ " 30 \n",
+ " 25.0 \n",
+ " 35.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 202109 \n",
+ " 3 \n",
+ " 17572 \n",
+ " 13926.0 \n",
+ " 21218.0 \n",
+ " 27 \n",
+ " 21.0 \n",
+ " 33.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 202108 \n",
+ " 3 \n",
+ " 20882 \n",
+ " 16907.0 \n",
+ " 24857.0 \n",
+ " 32 \n",
+ " 26.0 \n",
+ " 38.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 202107 \n",
+ " 3 \n",
+ " 22393 \n",
+ " 18303.0 \n",
+ " 26483.0 \n",
+ " 34 \n",
+ " 28.0 \n",
+ " 40.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 1894 \n",
+ " 198521 \n",
+ " 3 \n",
+ " 26096 \n",
+ " 19621.0 \n",
+ " 32571.0 \n",
+ " 47 \n",
+ " 35.0 \n",
+ " 59.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1895 \n",
+ " 198520 \n",
+ " 3 \n",
+ " 27896 \n",
+ " 20885.0 \n",
+ " 34907.0 \n",
+ " 51 \n",
+ " 38.0 \n",
+ " 64.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1896 \n",
+ " 198519 \n",
+ " 3 \n",
+ " 43154 \n",
+ " 32821.0 \n",
+ " 53487.0 \n",
+ " 78 \n",
+ " 59.0 \n",
+ " 97.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1897 \n",
+ " 198518 \n",
+ " 3 \n",
+ " 40555 \n",
+ " 29935.0 \n",
+ " 51175.0 \n",
+ " 74 \n",
+ " 55.0 \n",
+ " 93.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1898 \n",
+ " 198517 \n",
+ " 3 \n",
+ " 34053 \n",
+ " 24366.0 \n",
+ " 43740.0 \n",
+ " 62 \n",
+ " 44.0 \n",
+ " 80.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1899 \n",
+ " 198516 \n",
+ " 3 \n",
+ " 50362 \n",
+ " 36451.0 \n",
+ " 64273.0 \n",
+ " 91 \n",
+ " 66.0 \n",
+ " 116.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1900 \n",
+ " 198515 \n",
+ " 3 \n",
+ " 63881 \n",
+ " 45538.0 \n",
+ " 82224.0 \n",
+ " 116 \n",
+ " 83.0 \n",
+ " 149.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1901 \n",
+ " 198514 \n",
+ " 3 \n",
+ " 134545 \n",
+ " 114400.0 \n",
+ " 154690.0 \n",
+ " 244 \n",
+ " 207.0 \n",
+ " 281.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1902 \n",
+ " 198513 \n",
+ " 3 \n",
+ " 197206 \n",
+ " 176080.0 \n",
+ " 218332.0 \n",
+ " 357 \n",
+ " 319.0 \n",
+ " 395.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1903 \n",
+ " 198512 \n",
+ " 3 \n",
+ " 245240 \n",
+ " 223304.0 \n",
+ " 267176.0 \n",
+ " 445 \n",
+ " 405.0 \n",
+ " 485.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1904 \n",
+ " 198511 \n",
+ " 3 \n",
+ " 276205 \n",
+ " 252399.0 \n",
+ " 300011.0 \n",
+ " 501 \n",
+ " 458.0 \n",
+ " 544.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1905 \n",
+ " 198510 \n",
+ " 3 \n",
+ " 353231 \n",
+ " 326279.0 \n",
+ " 380183.0 \n",
+ " 640 \n",
+ " 591.0 \n",
+ " 689.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1906 \n",
+ " 198509 \n",
+ " 3 \n",
+ " 369895 \n",
+ " 341109.0 \n",
+ " 398681.0 \n",
+ " 670 \n",
+ " 618.0 \n",
+ " 722.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1907 \n",
+ " 198508 \n",
+ " 3 \n",
+ " 389886 \n",
+ " 359529.0 \n",
+ " 420243.0 \n",
+ " 707 \n",
+ " 652.0 \n",
+ " 762.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1908 \n",
+ " 198507 \n",
+ " 3 \n",
+ " 471852 \n",
+ " 432599.0 \n",
+ " 511105.0 \n",
+ " 855 \n",
+ " 784.0 \n",
+ " 926.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1909 \n",
+ " 198506 \n",
+ " 3 \n",
+ " 565825 \n",
+ " 518011.0 \n",
+ " 613639.0 \n",
+ " 1026 \n",
+ " 939.0 \n",
+ " 1113.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1910 \n",
+ " 198505 \n",
+ " 3 \n",
+ " 637302 \n",
+ " 592795.0 \n",
+ " 681809.0 \n",
+ " 1155 \n",
+ " 1074.0 \n",
+ " 1236.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1911 \n",
+ " 198504 \n",
+ " 3 \n",
+ " 424937 \n",
+ " 390794.0 \n",
+ " 459080.0 \n",
+ " 770 \n",
+ " 708.0 \n",
+ " 832.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1912 \n",
+ " 198503 \n",
+ " 3 \n",
+ " 213901 \n",
+ " 174689.0 \n",
+ " 253113.0 \n",
+ " 388 \n",
+ " 317.0 \n",
+ " 459.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1913 \n",
+ " 198502 \n",
+ " 3 \n",
+ " 97586 \n",
+ " 80949.0 \n",
+ " 114223.0 \n",
+ " 177 \n",
+ " 147.0 \n",
+ " 207.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1914 \n",
+ " 198501 \n",
+ " 3 \n",
+ " 85489 \n",
+ " 65918.0 \n",
+ " 105060.0 \n",
+ " 155 \n",
+ " 120.0 \n",
+ " 190.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1915 \n",
+ " 198452 \n",
+ " 3 \n",
+ " 84830 \n",
+ " 60602.0 \n",
+ " 109058.0 \n",
+ " 154 \n",
+ " 110.0 \n",
+ " 198.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1916 \n",
+ " 198451 \n",
+ " 3 \n",
+ " 101726 \n",
+ " 80242.0 \n",
+ " 123210.0 \n",
+ " 185 \n",
+ " 146.0 \n",
+ " 224.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1917 \n",
+ " 198450 \n",
+ " 3 \n",
+ " 123680 \n",
+ " 101401.0 \n",
+ " 145959.0 \n",
+ " 225 \n",
+ " 184.0 \n",
+ " 266.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1918 \n",
+ " 198449 \n",
+ " 3 \n",
+ " 101073 \n",
+ " 81684.0 \n",
+ " 120462.0 \n",
+ " 184 \n",
+ " 149.0 \n",
+ " 219.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1919 \n",
+ " 198448 \n",
+ " 3 \n",
+ " 78620 \n",
+ " 60634.0 \n",
+ " 96606.0 \n",
+ " 143 \n",
+ " 110.0 \n",
+ " 176.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1920 \n",
+ " 198447 \n",
+ " 3 \n",
+ " 72029 \n",
+ " 54274.0 \n",
+ " 89784.0 \n",
+ " 131 \n",
+ " 99.0 \n",
+ " 163.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1921 \n",
+ " 198446 \n",
+ " 3 \n",
+ " 87330 \n",
+ " 67686.0 \n",
+ " 106974.0 \n",
+ " 159 \n",
+ " 123.0 \n",
+ " 195.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1922 \n",
+ " 198445 \n",
+ " 3 \n",
+ " 135223 \n",
+ " 101414.0 \n",
+ " 169032.0 \n",
+ " 246 \n",
+ " 184.0 \n",
+ " 308.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1923 \n",
+ " 198444 \n",
+ " 3 \n",
+ " 68422 \n",
+ " 20056.0 \n",
+ " 116788.0 \n",
+ " 125 \n",
+ " 37.0 \n",
+ " 213.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
1924 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202136 3 13068 9214.0 16922.0 20 14.0 \n",
+ "1 202135 3 12672 9277.0 16067.0 19 14.0 \n",
+ "2 202134 3 13013 9481.0 16545.0 20 15.0 \n",
+ "3 202133 3 10392 7042.0 13742.0 16 11.0 \n",
+ "4 202132 3 15586 11009.0 20163.0 24 17.0 \n",
+ "5 202131 3 18855 13664.0 24046.0 29 21.0 \n",
+ "6 202130 3 13991 9695.0 18287.0 21 14.0 \n",
+ "7 202129 3 13626 9618.0 17634.0 21 15.0 \n",
+ "8 202128 3 8636 5430.0 11842.0 13 8.0 \n",
+ "9 202127 3 10693 6838.0 14548.0 16 10.0 \n",
+ "10 202126 3 7086 4109.0 10063.0 11 6.0 \n",
+ "11 202125 3 7942 5540.0 10344.0 12 8.0 \n",
+ "12 202124 3 4855 3011.0 6699.0 7 4.0 \n",
+ "13 202123 3 6710 4455.0 8965.0 10 7.0 \n",
+ "14 202122 3 7879 5495.0 10263.0 12 8.0 \n",
+ "15 202121 3 7827 5403.0 10251.0 12 8.0 \n",
+ "16 202120 3 10278 7540.0 13016.0 16 12.0 \n",
+ "17 202119 3 9539 6860.0 12218.0 14 10.0 \n",
+ "18 202118 3 12135 9165.0 15105.0 18 14.0 \n",
+ "19 202117 3 12058 8891.0 15225.0 18 13.0 \n",
+ "20 202116 3 16505 12735.0 20275.0 25 19.0 \n",
+ "21 202115 3 19306 15398.0 23214.0 29 23.0 \n",
+ "22 202114 3 21073 17099.0 25047.0 32 26.0 \n",
+ "23 202113 3 26413 22094.0 30732.0 40 33.0 \n",
+ "24 202112 3 30658 25919.0 35397.0 46 39.0 \n",
+ "25 202111 3 24988 20718.0 29258.0 38 32.0 \n",
+ "26 202110 3 19539 15951.0 23127.0 30 25.0 \n",
+ "27 202109 3 17572 13926.0 21218.0 27 21.0 \n",
+ "28 202108 3 20882 16907.0 24857.0 32 26.0 \n",
+ "29 202107 3 22393 18303.0 26483.0 34 28.0 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "1894 198521 3 26096 19621.0 32571.0 47 35.0 \n",
+ "1895 198520 3 27896 20885.0 34907.0 51 38.0 \n",
+ "1896 198519 3 43154 32821.0 53487.0 78 59.0 \n",
+ "1897 198518 3 40555 29935.0 51175.0 74 55.0 \n",
+ "1898 198517 3 34053 24366.0 43740.0 62 44.0 \n",
+ "1899 198516 3 50362 36451.0 64273.0 91 66.0 \n",
+ "1900 198515 3 63881 45538.0 82224.0 116 83.0 \n",
+ "1901 198514 3 134545 114400.0 154690.0 244 207.0 \n",
+ "1902 198513 3 197206 176080.0 218332.0 357 319.0 \n",
+ "1903 198512 3 245240 223304.0 267176.0 445 405.0 \n",
+ "1904 198511 3 276205 252399.0 300011.0 501 458.0 \n",
+ "1905 198510 3 353231 326279.0 380183.0 640 591.0 \n",
+ "1906 198509 3 369895 341109.0 398681.0 670 618.0 \n",
+ "1907 198508 3 389886 359529.0 420243.0 707 652.0 \n",
+ "1908 198507 3 471852 432599.0 511105.0 855 784.0 \n",
+ "1909 198506 3 565825 518011.0 613639.0 1026 939.0 \n",
+ "1910 198505 3 637302 592795.0 681809.0 1155 1074.0 \n",
+ "1911 198504 3 424937 390794.0 459080.0 770 708.0 \n",
+ "1912 198503 3 213901 174689.0 253113.0 388 317.0 \n",
+ "1913 198502 3 97586 80949.0 114223.0 177 147.0 \n",
+ "1914 198501 3 85489 65918.0 105060.0 155 120.0 \n",
+ "1915 198452 3 84830 60602.0 109058.0 154 110.0 \n",
+ "1916 198451 3 101726 80242.0 123210.0 185 146.0 \n",
+ "1917 198450 3 123680 101401.0 145959.0 225 184.0 \n",
+ "1918 198449 3 101073 81684.0 120462.0 184 149.0 \n",
+ "1919 198448 3 78620 60634.0 96606.0 143 110.0 \n",
+ "1920 198447 3 72029 54274.0 89784.0 131 99.0 \n",
+ "1921 198446 3 87330 67686.0 106974.0 159 123.0 \n",
+ "1922 198445 3 135223 101414.0 169032.0 246 184.0 \n",
+ "1923 198444 3 68422 20056.0 116788.0 125 37.0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 26.0 FR France \n",
+ "1 24.0 FR France \n",
+ "2 25.0 FR France \n",
+ "3 21.0 FR France \n",
+ "4 31.0 FR France \n",
+ "5 37.0 FR France \n",
+ "6 28.0 FR France \n",
+ "7 27.0 FR France \n",
+ "8 18.0 FR France \n",
+ "9 22.0 FR France \n",
+ "10 16.0 FR France \n",
+ "11 16.0 FR France \n",
+ "12 10.0 FR France \n",
+ "13 13.0 FR France \n",
+ "14 16.0 FR France \n",
+ "15 16.0 FR France \n",
+ "16 20.0 FR France \n",
+ "17 18.0 FR France \n",
+ "18 22.0 FR France \n",
+ "19 23.0 FR France \n",
+ "20 31.0 FR France \n",
+ "21 35.0 FR France \n",
+ "22 38.0 FR France \n",
+ "23 47.0 FR France \n",
+ "24 53.0 FR France \n",
+ "25 44.0 FR France \n",
+ "26 35.0 FR France \n",
+ "27 33.0 FR France \n",
+ "28 38.0 FR France \n",
+ "29 40.0 FR France \n",
+ "... ... ... ... \n",
+ "1894 59.0 FR France \n",
+ "1895 64.0 FR France \n",
+ "1896 97.0 FR France \n",
+ "1897 93.0 FR France \n",
+ "1898 80.0 FR France \n",
+ "1899 116.0 FR France \n",
+ "1900 149.0 FR France \n",
+ "1901 281.0 FR France \n",
+ "1902 395.0 FR France \n",
+ "1903 485.0 FR France \n",
+ "1904 544.0 FR France \n",
+ "1905 689.0 FR France \n",
+ "1906 722.0 FR France \n",
+ "1907 762.0 FR France \n",
+ "1908 926.0 FR France \n",
+ "1909 1113.0 FR France \n",
+ "1910 1236.0 FR France \n",
+ "1911 832.0 FR France \n",
+ "1912 459.0 FR France \n",
+ "1913 207.0 FR France \n",
+ "1914 190.0 FR France \n",
+ "1915 198.0 FR France \n",
+ "1916 224.0 FR France \n",
+ "1917 266.0 FR France \n",
+ "1918 219.0 FR France \n",
+ "1919 176.0 FR France \n",
+ "1920 163.0 FR France \n",
+ "1921 195.0 FR France \n",
+ "1922 308.0 FR France \n",
+ "1923 213.0 FR France \n",
+ "\n",
+ "[1924 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data = pd.read_csv(data_url, skiprows=1)\n",
+ "raw_data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Y a-t-il des points manquants dans ce jeux de données ? Oui, la semaine 19 de l'année 1989 n'a pas de valeurs associées."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1687 \n",
+ " 198919 \n",
+ " 3 \n",
+ " 0 \n",
+ " NaN \n",
+ " NaN \n",
+ " 0 \n",
+ " NaN \n",
+ " NaN \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n",
+ "1687 198919 3 0 NaN NaN 0 NaN NaN \n",
+ "\n",
+ " geo_insee geo_name \n",
+ "1687 FR France "
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data[raw_data.isnull().any(axis=1)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nous éliminons ce point, ce qui n'a pas d'impact fort sur notre analyse qui est assez simple."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 202136 \n",
+ " 3 \n",
+ " 13068 \n",
+ " 9214.0 \n",
+ " 16922.0 \n",
+ " 20 \n",
+ " 14.0 \n",
+ " 26.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 202135 \n",
+ " 3 \n",
+ " 12672 \n",
+ " 9277.0 \n",
+ " 16067.0 \n",
+ " 19 \n",
+ " 14.0 \n",
+ " 24.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 202134 \n",
+ " 3 \n",
+ " 13013 \n",
+ " 9481.0 \n",
+ " 16545.0 \n",
+ " 20 \n",
+ " 15.0 \n",
+ " 25.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 202133 \n",
+ " 3 \n",
+ " 10392 \n",
+ " 7042.0 \n",
+ " 13742.0 \n",
+ " 16 \n",
+ " 11.0 \n",
+ " 21.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 202132 \n",
+ " 3 \n",
+ " 15586 \n",
+ " 11009.0 \n",
+ " 20163.0 \n",
+ " 24 \n",
+ " 17.0 \n",
+ " 31.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202131 \n",
+ " 3 \n",
+ " 18855 \n",
+ " 13664.0 \n",
+ " 24046.0 \n",
+ " 29 \n",
+ " 21.0 \n",
+ " 37.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 202130 \n",
+ " 3 \n",
+ " 13991 \n",
+ " 9695.0 \n",
+ " 18287.0 \n",
+ " 21 \n",
+ " 14.0 \n",
+ " 28.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 202129 \n",
+ " 3 \n",
+ " 13626 \n",
+ " 9618.0 \n",
+ " 17634.0 \n",
+ " 21 \n",
+ " 15.0 \n",
+ " 27.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 202128 \n",
+ " 3 \n",
+ " 8636 \n",
+ " 5430.0 \n",
+ " 11842.0 \n",
+ " 13 \n",
+ " 8.0 \n",
+ " 18.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 202127 \n",
+ " 3 \n",
+ " 10693 \n",
+ " 6838.0 \n",
+ " 14548.0 \n",
+ " 16 \n",
+ " 10.0 \n",
+ " 22.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 202126 \n",
+ " 3 \n",
+ " 7086 \n",
+ " 4109.0 \n",
+ " 10063.0 \n",
+ " 11 \n",
+ " 6.0 \n",
+ " 16.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 202125 \n",
+ " 3 \n",
+ " 7942 \n",
+ " 5540.0 \n",
+ " 10344.0 \n",
+ " 12 \n",
+ " 8.0 \n",
+ " 16.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 202124 \n",
+ " 3 \n",
+ " 4855 \n",
+ " 3011.0 \n",
+ " 6699.0 \n",
+ " 7 \n",
+ " 4.0 \n",
+ " 10.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 202123 \n",
+ " 3 \n",
+ " 6710 \n",
+ " 4455.0 \n",
+ " 8965.0 \n",
+ " 10 \n",
+ " 7.0 \n",
+ " 13.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 202122 \n",
+ " 3 \n",
+ " 7879 \n",
+ " 5495.0 \n",
+ " 10263.0 \n",
+ " 12 \n",
+ " 8.0 \n",
+ " 16.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 202121 \n",
+ " 3 \n",
+ " 7827 \n",
+ " 5403.0 \n",
+ " 10251.0 \n",
+ " 12 \n",
+ " 8.0 \n",
+ " 16.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 202120 \n",
+ " 3 \n",
+ " 10278 \n",
+ " 7540.0 \n",
+ " 13016.0 \n",
+ " 16 \n",
+ " 12.0 \n",
+ " 20.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 202119 \n",
+ " 3 \n",
+ " 9539 \n",
+ " 6860.0 \n",
+ " 12218.0 \n",
+ " 14 \n",
+ " 10.0 \n",
+ " 18.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 202118 \n",
+ " 3 \n",
+ " 12135 \n",
+ " 9165.0 \n",
+ " 15105.0 \n",
+ " 18 \n",
+ " 14.0 \n",
+ " 22.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 202117 \n",
+ " 3 \n",
+ " 12058 \n",
+ " 8891.0 \n",
+ " 15225.0 \n",
+ " 18 \n",
+ " 13.0 \n",
+ " 23.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 202116 \n",
+ " 3 \n",
+ " 16505 \n",
+ " 12735.0 \n",
+ " 20275.0 \n",
+ " 25 \n",
+ " 19.0 \n",
+ " 31.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 202115 \n",
+ " 3 \n",
+ " 19306 \n",
+ " 15398.0 \n",
+ " 23214.0 \n",
+ " 29 \n",
+ " 23.0 \n",
+ " 35.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 202114 \n",
+ " 3 \n",
+ " 21073 \n",
+ " 17099.0 \n",
+ " 25047.0 \n",
+ " 32 \n",
+ " 26.0 \n",
+ " 38.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 202113 \n",
+ " 3 \n",
+ " 26413 \n",
+ " 22094.0 \n",
+ " 30732.0 \n",
+ " 40 \n",
+ " 33.0 \n",
+ " 47.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 202112 \n",
+ " 3 \n",
+ " 30658 \n",
+ " 25919.0 \n",
+ " 35397.0 \n",
+ " 46 \n",
+ " 39.0 \n",
+ " 53.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 202111 \n",
+ " 3 \n",
+ " 24988 \n",
+ " 20718.0 \n",
+ " 29258.0 \n",
+ " 38 \n",
+ " 32.0 \n",
+ " 44.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 202110 \n",
+ " 3 \n",
+ " 19539 \n",
+ " 15951.0 \n",
+ " 23127.0 \n",
+ " 30 \n",
+ " 25.0 \n",
+ " 35.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 202109 \n",
+ " 3 \n",
+ " 17572 \n",
+ " 13926.0 \n",
+ " 21218.0 \n",
+ " 27 \n",
+ " 21.0 \n",
+ " 33.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 202108 \n",
+ " 3 \n",
+ " 20882 \n",
+ " 16907.0 \n",
+ " 24857.0 \n",
+ " 32 \n",
+ " 26.0 \n",
+ " 38.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 202107 \n",
+ " 3 \n",
+ " 22393 \n",
+ " 18303.0 \n",
+ " 26483.0 \n",
+ " 34 \n",
+ " 28.0 \n",
+ " 40.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 1894 \n",
+ " 198521 \n",
+ " 3 \n",
+ " 26096 \n",
+ " 19621.0 \n",
+ " 32571.0 \n",
+ " 47 \n",
+ " 35.0 \n",
+ " 59.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1895 \n",
+ " 198520 \n",
+ " 3 \n",
+ " 27896 \n",
+ " 20885.0 \n",
+ " 34907.0 \n",
+ " 51 \n",
+ " 38.0 \n",
+ " 64.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1896 \n",
+ " 198519 \n",
+ " 3 \n",
+ " 43154 \n",
+ " 32821.0 \n",
+ " 53487.0 \n",
+ " 78 \n",
+ " 59.0 \n",
+ " 97.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1897 \n",
+ " 198518 \n",
+ " 3 \n",
+ " 40555 \n",
+ " 29935.0 \n",
+ " 51175.0 \n",
+ " 74 \n",
+ " 55.0 \n",
+ " 93.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1898 \n",
+ " 198517 \n",
+ " 3 \n",
+ " 34053 \n",
+ " 24366.0 \n",
+ " 43740.0 \n",
+ " 62 \n",
+ " 44.0 \n",
+ " 80.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1899 \n",
+ " 198516 \n",
+ " 3 \n",
+ " 50362 \n",
+ " 36451.0 \n",
+ " 64273.0 \n",
+ " 91 \n",
+ " 66.0 \n",
+ " 116.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1900 \n",
+ " 198515 \n",
+ " 3 \n",
+ " 63881 \n",
+ " 45538.0 \n",
+ " 82224.0 \n",
+ " 116 \n",
+ " 83.0 \n",
+ " 149.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1901 \n",
+ " 198514 \n",
+ " 3 \n",
+ " 134545 \n",
+ " 114400.0 \n",
+ " 154690.0 \n",
+ " 244 \n",
+ " 207.0 \n",
+ " 281.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1902 \n",
+ " 198513 \n",
+ " 3 \n",
+ " 197206 \n",
+ " 176080.0 \n",
+ " 218332.0 \n",
+ " 357 \n",
+ " 319.0 \n",
+ " 395.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1903 \n",
+ " 198512 \n",
+ " 3 \n",
+ " 245240 \n",
+ " 223304.0 \n",
+ " 267176.0 \n",
+ " 445 \n",
+ " 405.0 \n",
+ " 485.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1904 \n",
+ " 198511 \n",
+ " 3 \n",
+ " 276205 \n",
+ " 252399.0 \n",
+ " 300011.0 \n",
+ " 501 \n",
+ " 458.0 \n",
+ " 544.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1905 \n",
+ " 198510 \n",
+ " 3 \n",
+ " 353231 \n",
+ " 326279.0 \n",
+ " 380183.0 \n",
+ " 640 \n",
+ " 591.0 \n",
+ " 689.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1906 \n",
+ " 198509 \n",
+ " 3 \n",
+ " 369895 \n",
+ " 341109.0 \n",
+ " 398681.0 \n",
+ " 670 \n",
+ " 618.0 \n",
+ " 722.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1907 \n",
+ " 198508 \n",
+ " 3 \n",
+ " 389886 \n",
+ " 359529.0 \n",
+ " 420243.0 \n",
+ " 707 \n",
+ " 652.0 \n",
+ " 762.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1908 \n",
+ " 198507 \n",
+ " 3 \n",
+ " 471852 \n",
+ " 432599.0 \n",
+ " 511105.0 \n",
+ " 855 \n",
+ " 784.0 \n",
+ " 926.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1909 \n",
+ " 198506 \n",
+ " 3 \n",
+ " 565825 \n",
+ " 518011.0 \n",
+ " 613639.0 \n",
+ " 1026 \n",
+ " 939.0 \n",
+ " 1113.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1910 \n",
+ " 198505 \n",
+ " 3 \n",
+ " 637302 \n",
+ " 592795.0 \n",
+ " 681809.0 \n",
+ " 1155 \n",
+ " 1074.0 \n",
+ " 1236.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1911 \n",
+ " 198504 \n",
+ " 3 \n",
+ " 424937 \n",
+ " 390794.0 \n",
+ " 459080.0 \n",
+ " 770 \n",
+ " 708.0 \n",
+ " 832.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1912 \n",
+ " 198503 \n",
+ " 3 \n",
+ " 213901 \n",
+ " 174689.0 \n",
+ " 253113.0 \n",
+ " 388 \n",
+ " 317.0 \n",
+ " 459.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1913 \n",
+ " 198502 \n",
+ " 3 \n",
+ " 97586 \n",
+ " 80949.0 \n",
+ " 114223.0 \n",
+ " 177 \n",
+ " 147.0 \n",
+ " 207.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1914 \n",
+ " 198501 \n",
+ " 3 \n",
+ " 85489 \n",
+ " 65918.0 \n",
+ " 105060.0 \n",
+ " 155 \n",
+ " 120.0 \n",
+ " 190.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1915 \n",
+ " 198452 \n",
+ " 3 \n",
+ " 84830 \n",
+ " 60602.0 \n",
+ " 109058.0 \n",
+ " 154 \n",
+ " 110.0 \n",
+ " 198.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1916 \n",
+ " 198451 \n",
+ " 3 \n",
+ " 101726 \n",
+ " 80242.0 \n",
+ " 123210.0 \n",
+ " 185 \n",
+ " 146.0 \n",
+ " 224.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1917 \n",
+ " 198450 \n",
+ " 3 \n",
+ " 123680 \n",
+ " 101401.0 \n",
+ " 145959.0 \n",
+ " 225 \n",
+ " 184.0 \n",
+ " 266.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1918 \n",
+ " 198449 \n",
+ " 3 \n",
+ " 101073 \n",
+ " 81684.0 \n",
+ " 120462.0 \n",
+ " 184 \n",
+ " 149.0 \n",
+ " 219.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1919 \n",
+ " 198448 \n",
+ " 3 \n",
+ " 78620 \n",
+ " 60634.0 \n",
+ " 96606.0 \n",
+ " 143 \n",
+ " 110.0 \n",
+ " 176.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1920 \n",
+ " 198447 \n",
+ " 3 \n",
+ " 72029 \n",
+ " 54274.0 \n",
+ " 89784.0 \n",
+ " 131 \n",
+ " 99.0 \n",
+ " 163.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1921 \n",
+ " 198446 \n",
+ " 3 \n",
+ " 87330 \n",
+ " 67686.0 \n",
+ " 106974.0 \n",
+ " 159 \n",
+ " 123.0 \n",
+ " 195.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1922 \n",
+ " 198445 \n",
+ " 3 \n",
+ " 135223 \n",
+ " 101414.0 \n",
+ " 169032.0 \n",
+ " 246 \n",
+ " 184.0 \n",
+ " 308.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1923 \n",
+ " 198444 \n",
+ " 3 \n",
+ " 68422 \n",
+ " 20056.0 \n",
+ " 116788.0 \n",
+ " 125 \n",
+ " 37.0 \n",
+ " 213.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
1923 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202136 3 13068 9214.0 16922.0 20 14.0 \n",
+ "1 202135 3 12672 9277.0 16067.0 19 14.0 \n",
+ "2 202134 3 13013 9481.0 16545.0 20 15.0 \n",
+ "3 202133 3 10392 7042.0 13742.0 16 11.0 \n",
+ "4 202132 3 15586 11009.0 20163.0 24 17.0 \n",
+ "5 202131 3 18855 13664.0 24046.0 29 21.0 \n",
+ "6 202130 3 13991 9695.0 18287.0 21 14.0 \n",
+ "7 202129 3 13626 9618.0 17634.0 21 15.0 \n",
+ "8 202128 3 8636 5430.0 11842.0 13 8.0 \n",
+ "9 202127 3 10693 6838.0 14548.0 16 10.0 \n",
+ "10 202126 3 7086 4109.0 10063.0 11 6.0 \n",
+ "11 202125 3 7942 5540.0 10344.0 12 8.0 \n",
+ "12 202124 3 4855 3011.0 6699.0 7 4.0 \n",
+ "13 202123 3 6710 4455.0 8965.0 10 7.0 \n",
+ "14 202122 3 7879 5495.0 10263.0 12 8.0 \n",
+ "15 202121 3 7827 5403.0 10251.0 12 8.0 \n",
+ "16 202120 3 10278 7540.0 13016.0 16 12.0 \n",
+ "17 202119 3 9539 6860.0 12218.0 14 10.0 \n",
+ "18 202118 3 12135 9165.0 15105.0 18 14.0 \n",
+ "19 202117 3 12058 8891.0 15225.0 18 13.0 \n",
+ "20 202116 3 16505 12735.0 20275.0 25 19.0 \n",
+ "21 202115 3 19306 15398.0 23214.0 29 23.0 \n",
+ "22 202114 3 21073 17099.0 25047.0 32 26.0 \n",
+ "23 202113 3 26413 22094.0 30732.0 40 33.0 \n",
+ "24 202112 3 30658 25919.0 35397.0 46 39.0 \n",
+ "25 202111 3 24988 20718.0 29258.0 38 32.0 \n",
+ "26 202110 3 19539 15951.0 23127.0 30 25.0 \n",
+ "27 202109 3 17572 13926.0 21218.0 27 21.0 \n",
+ "28 202108 3 20882 16907.0 24857.0 32 26.0 \n",
+ "29 202107 3 22393 18303.0 26483.0 34 28.0 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "1894 198521 3 26096 19621.0 32571.0 47 35.0 \n",
+ "1895 198520 3 27896 20885.0 34907.0 51 38.0 \n",
+ "1896 198519 3 43154 32821.0 53487.0 78 59.0 \n",
+ "1897 198518 3 40555 29935.0 51175.0 74 55.0 \n",
+ "1898 198517 3 34053 24366.0 43740.0 62 44.0 \n",
+ "1899 198516 3 50362 36451.0 64273.0 91 66.0 \n",
+ "1900 198515 3 63881 45538.0 82224.0 116 83.0 \n",
+ "1901 198514 3 134545 114400.0 154690.0 244 207.0 \n",
+ "1902 198513 3 197206 176080.0 218332.0 357 319.0 \n",
+ "1903 198512 3 245240 223304.0 267176.0 445 405.0 \n",
+ "1904 198511 3 276205 252399.0 300011.0 501 458.0 \n",
+ "1905 198510 3 353231 326279.0 380183.0 640 591.0 \n",
+ "1906 198509 3 369895 341109.0 398681.0 670 618.0 \n",
+ "1907 198508 3 389886 359529.0 420243.0 707 652.0 \n",
+ "1908 198507 3 471852 432599.0 511105.0 855 784.0 \n",
+ "1909 198506 3 565825 518011.0 613639.0 1026 939.0 \n",
+ "1910 198505 3 637302 592795.0 681809.0 1155 1074.0 \n",
+ "1911 198504 3 424937 390794.0 459080.0 770 708.0 \n",
+ "1912 198503 3 213901 174689.0 253113.0 388 317.0 \n",
+ "1913 198502 3 97586 80949.0 114223.0 177 147.0 \n",
+ "1914 198501 3 85489 65918.0 105060.0 155 120.0 \n",
+ "1915 198452 3 84830 60602.0 109058.0 154 110.0 \n",
+ "1916 198451 3 101726 80242.0 123210.0 185 146.0 \n",
+ "1917 198450 3 123680 101401.0 145959.0 225 184.0 \n",
+ "1918 198449 3 101073 81684.0 120462.0 184 149.0 \n",
+ "1919 198448 3 78620 60634.0 96606.0 143 110.0 \n",
+ "1920 198447 3 72029 54274.0 89784.0 131 99.0 \n",
+ "1921 198446 3 87330 67686.0 106974.0 159 123.0 \n",
+ "1922 198445 3 135223 101414.0 169032.0 246 184.0 \n",
+ "1923 198444 3 68422 20056.0 116788.0 125 37.0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 26.0 FR France \n",
+ "1 24.0 FR France \n",
+ "2 25.0 FR France \n",
+ "3 21.0 FR France \n",
+ "4 31.0 FR France \n",
+ "5 37.0 FR France \n",
+ "6 28.0 FR France \n",
+ "7 27.0 FR France \n",
+ "8 18.0 FR France \n",
+ "9 22.0 FR France \n",
+ "10 16.0 FR France \n",
+ "11 16.0 FR France \n",
+ "12 10.0 FR France \n",
+ "13 13.0 FR France \n",
+ "14 16.0 FR France \n",
+ "15 16.0 FR France \n",
+ "16 20.0 FR France \n",
+ "17 18.0 FR France \n",
+ "18 22.0 FR France \n",
+ "19 23.0 FR France \n",
+ "20 31.0 FR France \n",
+ "21 35.0 FR France \n",
+ "22 38.0 FR France \n",
+ "23 47.0 FR France \n",
+ "24 53.0 FR France \n",
+ "25 44.0 FR France \n",
+ "26 35.0 FR France \n",
+ "27 33.0 FR France \n",
+ "28 38.0 FR France \n",
+ "29 40.0 FR France \n",
+ "... ... ... ... \n",
+ "1894 59.0 FR France \n",
+ "1895 64.0 FR France \n",
+ "1896 97.0 FR France \n",
+ "1897 93.0 FR France \n",
+ "1898 80.0 FR France \n",
+ "1899 116.0 FR France \n",
+ "1900 149.0 FR France \n",
+ "1901 281.0 FR France \n",
+ "1902 395.0 FR France \n",
+ "1903 485.0 FR France \n",
+ "1904 544.0 FR France \n",
+ "1905 689.0 FR France \n",
+ "1906 722.0 FR France \n",
+ "1907 762.0 FR France \n",
+ "1908 926.0 FR France \n",
+ "1909 1113.0 FR France \n",
+ "1910 1236.0 FR France \n",
+ "1911 832.0 FR France \n",
+ "1912 459.0 FR France \n",
+ "1913 207.0 FR France \n",
+ "1914 190.0 FR France \n",
+ "1915 198.0 FR France \n",
+ "1916 224.0 FR France \n",
+ "1917 266.0 FR France \n",
+ "1918 219.0 FR France \n",
+ "1919 176.0 FR France \n",
+ "1920 163.0 FR France \n",
+ "1921 195.0 FR France \n",
+ "1922 308.0 FR France \n",
+ "1923 213.0 FR France \n",
+ "\n",
+ "[1923 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data = raw_data.dropna().copy()\n",
+ "data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nos données utilisent une convention inhabituelle: le numéro de\n",
+ "semaine est collé à l'année, donnant l'impression qu'il s'agit\n",
+ "de nombre entier. C'est comme ça que Pandas les interprète.\n",
+ " \n",
+ "Un deuxième problème est que Pandas ne comprend pas les numéros de\n",
+ "semaine. Il faut lui fournir les dates de début et de fin de\n",
+ "semaine. Nous utilisons pour cela la bibliothèque `isoweek`.\n",
+ "\n",
+ "Comme la conversion des semaines est devenu assez complexe, nous\n",
+ "écrivons une petite fonction Python pour cela. Ensuite, nous\n",
+ "l'appliquons à tous les points de nos donnés. Les résultats vont\n",
+ "dans une nouvelle colonne 'period'."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def convert_week(year_and_week_int):\n",
+ " year_and_week_str = str(year_and_week_int)\n",
+ " year = int(year_and_week_str[:4])\n",
+ " week = int(year_and_week_str[4:])\n",
+ " w = isoweek.Week(year, week)\n",
+ " return pd.Period(w.day(0), 'W')\n",
+ "\n",
+ "data['period'] = [convert_week(yw) for yw in data['week']]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Il restent deux petites modifications à faire.\n",
+ "\n",
+ "Premièrement, nous définissons les périodes d'observation\n",
+ "comme nouvel index de notre jeux de données. Ceci en fait\n",
+ "une suite chronologique, ce qui sera pratique par la suite.\n",
+ "\n",
+ "Deuxièmement, nous trions les points par période, dans\n",
+ "le sens chronologique."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sorted_data = data.set_index('period').sort_index()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nous vérifions la cohérence des données. Entre la fin d'une période et\n",
+ "le début de la période qui suit, la différence temporelle doit être\n",
+ "zéro, ou au moins très faible. Nous laissons une \"marge d'erreur\"\n",
+ "d'une seconde.\n",
+ "\n",
+ "Ceci s'avère tout à fait juste sauf pour deux périodes consécutives\n",
+ "entre lesquelles il manque une semaine.\n",
+ "\n",
+ "Nous reconnaissons ces dates: c'est la semaine sans observations\n",
+ "que nous avions supprimées !"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n"
+ ]
+ }
+ ],
+ "source": [
+ "periods = sorted_data.index\n",
+ "for p1, p2 in zip(periods[:-1], periods[1:]):\n",
+ " delta = p2.to_timestamp() - p1.end_time\n",
+ " if delta > pd.Timedelta('1s'):\n",
+ " print(p1, p2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Un premier regard sur les données !"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXmcHGWd/z/fPuaeyZ2QA0iAcAZQyIZDRQXlUFdYV3bxAHRxWfyxq6vuKuC6uBwKu7p4oCgCCl6AiMKKHCHcCIGEK4QQEiB3SCbMJJnMZI7ufn5/1PNUP1X9PFXV1dXT3Znv+/WaV9dU1XPUU1XP9/kez1MkhADDMAzDVEqq1hVgGIZh9gxYoDAMwzCJwAKFYRiGSQQWKAzDMEwisEBhGIZhEoEFCsMwDJMILFAYhmGYRGCBwjAMwyQCCxSGYRgmETK1rsBoMnnyZDF79uxaV4NhGKahWLp06TYhxJSw88aUQJk9ezaWLFlS62owDMM0FES0Nsp5bPJiGIZhEoEFCsMwDJMILFAYhmGYRGCBwjAMwyQCCxSGYRgmEUIFChHdRERbiehlbd9EIlpIRKvk7wTt2MVEtJqIVhLRKdr+o4lomTz2AyIiub+ZiG6T+xcT0WwtzbmyjFVEdK62f448d5VM21R5UzAMwzCVEEVD+QWAU337LgKwSAgxF8Ai+T+I6FAAZwE4TKb5MRGlZZrrAJwPYK78U3meB6BXCHEAgGsAXC3zmgjgUgDHAFgA4FJNcF0N4BpZfq/Mg2EYhqkhoQJFCPEYgB7f7tMB3Cy3bwZwhrb/ViHEkBDiTQCrASwgoukAuoQQTwnnm8O3+NKovO4AcJLUXk4BsFAI0SOE6AWwEMCp8tiJ8lx/+Xs0K9/qw7Nr/LeCYRimPog7sXGaEGIzAAghNhPRVLl/JoCntfM2yH0jctu/X6VZL/PKEdEOAJP0/b40kwBsF0LkDHnt0ZzyvccAAGuu+nCNa8IwDFNK0k55MuwTAfvjpAnKq7RCROcT0RIiWtLd3W07jWEYhqmQuAJlizRjQf5ulfs3ANhbO28WgE1y/yzDfk8aIsoAGAfHxGbLaxuA8fJcf14lCCGuF0LMF0LMnzIldCkahmEYJiZxBcrdAFTU1bkA7tL2nyUjt+bAcb4/I81jfUR0rPSBnONLo/L6OICHpJ/lfgAnE9EE6Yw/GcD98tjD8lx/+QzDMEyNCPWhENFvAbwPwGQi2gAn8uoqALcT0XkA1gE4EwCEEMuJ6HYArwDIAbhQCJGXWX0eTsRYK4B75R8A3Ajgl0S0Go5mcpbMq4eILgfwrDzvMiGE8kh/DcCtRHQFgOdlHgzDMEwNIWfAPzaYP3++aOTVhmdfdA8AdsozDDO6ENFSIcT8sPN4pjzDMAyTCCxQGIZhmERggcIwDMMkAgsUhmEYJhFYoDAMwzCJwAKFYRiGSQQWKAzDMEwisEBhGIZhEoEFCsMwDJMILFAYhmGYRGCBwjAMwyQCCxSGYRgmEVigMAzDMInAAoVhGIZJBBYoTKJ85/6V7jL7DMOMLVigMIly7cOra10FhmFqBAsUhmEYJhFYoDAMwzCJwAKFYRiGSQQWKAzDMEwisEBhGIZhEoEFCsMwDJMILFAYhmGYRGCBwlQFIUStq8AwzCjDAoWpCixPGGbswQKFqQosTxhm7MEChakKbPJimLEHCxSmKrA4YZixBwsUpiqwgsIwYw8WKA2IzZy0YvNO7HfxPdi4ffco16gUwToKw4w5KhIoRPQlIlpORC8T0W+JqIWIJhLRQiJaJX8naOdfTESriWglEZ2i7T+aiJbJYz8gIpL7m4noNrl/MRHN1tKcK8tYRUTnVnIdewq/WbwOBQEsWrGl1lVhDYVhxiCxBQoRzQTwBQDzhRDzAKQBnAXgIgCLhBBzASyS/4OIDpXHDwNwKoAfE1FaZncdgPMBzJV/p8r95wHoFUIcAOAaAFfLvCYCuBTAMQAWALhUF1x7OmGdNXfmDMPUgkpNXhkArUSUAdAGYBOA0wHcLI/fDOAMuX06gFuFEENCiDcBrAawgIimA+gSQjwlHFvOLb40Kq87AJwktZdTACwUQvQIIXoBLERRCO3x2OSFo9fVByzUGGbsEVugCCE2AvgOgHUANgPYIYR4AMA0IcRmec5mAFNlkpkA1mtZbJD7Zspt/35PGiFEDsAOAJMC8mLAIbsMw9SGSkxeE+BoEHMAzADQTkSfDkpi2CcC9sdN46/n+US0hIiWdHd3B1SvcbAJjDpSUNgpzzBjkEpMXh8A8KYQolsIMQLgTgDHA9gizViQv1vl+RsA7K2lnwXHRLZBbvv3e9JIs9o4AD0BeZUghLheCDFfCDF/ypQpMS+VKRdWkhhm7FGJQFkH4FgiapN+jZMArABwNwAVdXUugLvk9t0AzpKRW3PgON+fkWaxPiI6VuZzji+NyuvjAB6Sfpb7AZxMRBOkpnSy3DcmaIS+uhHqyDBMsmTiJhRCLCaiOwA8ByAH4HkA1wPoAHA7EZ0HR+icKc9fTkS3A3hFnn+hECIvs/s8gF8AaAVwr/wDgBsB/JKIVsPRTM6SefUQ0eUAnpXnXSaE6Il7LY1GI4z+2Y/DMGOP2AIFAIQQl8IJ39UZgqOtmM6/EsCVhv1LAMwz7B+EFEiGYzcBuKnMKo8J6qErr4c6MAwzuvBM+QbE5vCW80HrQoOphzowDDO6sEBpQBqis26EOjIMkygsUJiqwGHDDDP2YIGyB1IPXXlDaFEMwyQKC5Q9iLpaeqWCtNc98jque+T1xOrCMMzoUFGUF1MbGmH0X0nY8NX3vQoA+Pz79k+qOgzDjAKsoTQgjeCfqP8aMgyTNCxQmKrQCFoUwzDJwgKlAQn/Hgr35gzDjD4sUPYgqI7WG24EsxzDMMnCAqUBaYQPbLE8YZixBwuUBqQRTFr1X0OGYZKGBQpTFRpA5jEMkzAsUBqQsL66Hjpz9qEwzNiDBcoeRF25UFieMMyYgwVKA9IInXUDVJFhmIRhgdKINEBv3QiBAwzDJAsLlD0IFTZcD/4LlicMM/ZggdKANMIXGxmGGXuwQGlAGkFgNEIdGYZJFhYoTFWoB7MbwzCjCwuUBqQRumrWUBhm7MECZQ+E+3KGYWoBC5QGxBaSW1cTG2tdAYZhRh0WKA1II3TWPA+FYcYeLFD2QOqhL69mFYZyeXT3DVWxBIZh4sACpQxe2rAdD76ypdbVsAuMOrJ5VVOo/b9fPYe/uvLB6hXAMEwsMrWuQCPx0WufBACsuerDNa5JMPURslu9Oix6dWvV8mYYJj6soTQg1pnydaSi1IPZjWGY0YUFSiPSAJ11A1SRYZiEYYHCJIq7QCVLFIYZc1QkUIhoPBHdQUSvEtEKIjqOiCYS0UIiWiV/J2jnX0xEq4loJRGdou0/moiWyWM/ILnKIRE1E9Ftcv9iIpqtpTlXlrGKiM6t5DoaDf5ioyyjHi6UYRiXSjWU7wO4TwhxMIAjAawAcBGARUKIuQAWyf9BRIcCOAvAYQBOBfBjIkrLfK4DcD6AufLvVLn/PAC9QogDAFwD4GqZ10QAlwI4BsACAJfqgmtPx9aPUv24UEZFqLE8YZj6IrZAIaIuACcAuBEAhBDDQojtAE4HcLM87WYAZ8jt0wHcKoQYEkK8CWA1gAVENB1AlxDiKeEMOW/xpVF53QHgJKm9nAJgoRCiRwjRC2AhikKIqSFKpo2KQKl+EQzDlEElGsp+ALoB/JyInieiG4ioHcA0IcRmAJC/U+X5MwGs19JvkPtmym3/fk8aIUQOwA4AkwLyGhPUR1hwMGzyYpixRyUCJQPgKADXCSHeCaAf0rxlwWSQEQH746bxFkp0PhEtIaIl3d3dAdWrb6J0nnVk8WINhWHGIJUIlA0ANgghFsv/74AjYLZIMxbk71bt/L219LMAbJL7Zxn2e9IQUQbAOAA9AXmVIIS4XggxXwgxf8qUKTEus/4I66zHysh9jFwmwzQMsQWKEOItAOuJ6CC56yQArwC4G4CKujoXwF1y+24AZ8nIrTlwnO/PSLNYHxEdK/0j5/jSqLw+DuAh6We5H8DJRDRBOuNPlvv2WPTO07rySj2pKKNAI5j+GGYsUenSK/8C4NdE1ATgDQCfhSOkbiei8wCsA3AmAAghlhPR7XCETg7AhUKIvMzn8wB+AaAVwL3yD3Ac/r8kotVwNJOzZF49RHQ5gGfleZcJIXoqvBYmAYgIEIKjvBhmDFKRQBFCvABgvuHQSZbzrwRwpWH/EgDzDPsHIQWS4dhNAG4qp75JIYQAjbI6oPedjWDSGh2nfNWLYBimDHimfAwK3JGFMjpOeb4RL2/cgdkX3YOXN+6odVUYhgVKHPI1kCi6VhLulK9yZQJw56GMQlmsoQAPyM8pLKyDzyowDAuUGBRq0JNFKVGtNlwP/exomOXq4TqryeOrutE3OBJ4zhiLw2DqHBYoMaiFhhKFeoryGh0NpT7vQxJ09w3h7BufwRdvfSHS+XtuSzCNBAuUGORroaEI83a9MZqrDddxM1TM4IgTAPnalr7A8+phELG+Z4B9OAwAFiixKNSphqKoD4EzCiavQvXy3rh9N758+wsYyuXDT64CZQvmGt709/z3w/jID5+oWflM/cACJQY1ccprHbT9i421x/XjNHiU16V3Lcedz23EIytrs1yPar8ws149faWTYVigxKAWJi+d+tBAgmn0KK/mrPNqDOWqqAYFMJJ3yo2soFSvKmOGE/77YZz+oydrXY2GptKZ8mOS2oQNj3qRFdEIPpT+oRwGR/KY1NFccqwl43yqZ2ikNiavnHzGwtqxHnwoewrregawrmeg1tVoaFhDiUGto7zqWra4tv/6X77+A//7KI6+4kHjMaWhDNZIQxmW5dYiRJ1h4sICJQaF2vQxLtaOlNQ8lBp2QsLzMxpFxWbzjkHrsaa082oM10igKA0lxSoI00CwQIlBrcOGbYzm1xLrgWpeZybltGa+RqMHVW5UeTJW7jlT37BAiUG9mrxEyPFRYTTnoVSxkHTauZBcBfe6fyiHJ1dvi5W2GOUVfB7rL0w9wQIlBrVZeiVCmVF7oVFgVFYbrmLe2ZTzauTy8Uv56h0v4VM3LMbG7bvLTqtKjfqsVdLeL6zfjhWbd8ZOzzAKjvKKQc01FEvx9aChuCPmBv8eSjpVuYayaqszy33XYK7stO7YIOS8JFwsZ8hQ2TVXfbjyzJgxDWsoMbAJFCEErln4Gt4KcPbGxdt52so3nVsbRscpX71SkvChKId6nAGI0kyi3st6uOe15LHXujH/igexe7g2Yd6MAwuUGNjMEMs37cT3F63CF377fOJlRukvVAdbD6Gmjf7FxoyM8qpEQ1ECJc79iDxTnqPAAABX3/cqtu0awuqtu2pdlTENC5QY2DUU57d/uHwTRzlYTV6jGLJrw12DqsF9KFKeIF+BDyWdiq+hlDs4qP0Qora0ZJ2JqIM1WnuNcWCBEgPbS17NlXajRDS5PpQ66F0aPcoriW/LpJRAiVNPmaTO1yENZWA4hze39Ve9nOaMnIhao5UNGAcWKDHIW8zqSqBU2+QUlns9fCek0dfySmJwkK5g1YDi4CCihlL7W27kkz9bjPd/55Gql6M0lJ27q2sdYIJhgRIDmwmjmiu/6iXWtcnLXW14NJZeqXoRFVH0oZSfNvI8lDp3obywfvuolLPPxDYAwNqe6mtDjB0WKDEIM3nVyinu2t3rwE4StwblCKKaLjETgdSo+lDquy2qjdJQmNrCAiUGtg6i3FDPcvB8sdHWedSDhuKu/xIvfTltV+/fXElXEDYceR5Kg8yVHy0zbL1rrXs6LFBiYBUo0rdSFQ0lykR5VY86eKvidsTlpKr9VQZTiTmq7HtZ541R68nAzOjAAqUMVAdheznyVdRQdOw+lNEpPwpx61CWyauKF1pNbbMRyk+aasuTevcljRVYoJSBO/PZ8paXu0JsOXg+ARzmlG/gXmi0NJSwNkqyCWPlVQfmyySpB62ZqT4sUMogpZzuNg1FmrxqNXtZ+H5rSXwNpZxz419pWNIk2rCSSZ4qTdiT1Cgj82qbvBqkGfZ4WKCUAYVqKNE6gThEcspL6mE0GLcG5dS9kssMK6docqq8LWPNaywzTe3veDCj9Uw2sna+J8ACpQxSIT4U9dJU+yt74SavqhYfSPEjX6MwD6WCtGED5iTn9FSyllfYo9QoI/Nqf6csyVeOhVJ8WKCUQdhif2ohwer4UKKco+YuJF9+ucSfh1Kdc/2EdfJJdioVrLxSRhl1cNMDGD0NpT7yGKtULFCIKE1EzxPRn+T/E4loIRGtkr8TtHMvJqLVRLSSiE7R9h9NRMvksR+QtC0RUTMR3Sb3Lyai2Vqac2UZq4jo3EqvIwrF5cjNx2s9obD4ItSuHsosGNuHUkbdK5kjEupDSVDbi+VDEcp8Gjw6qScfSpBQq/Zns5NYe01RDybjRiUJDeWLAFZo/18EYJEQYi6ARfJ/ENGhAM4CcBiAUwH8mIjU9NbrAJwPYK78O1XuPw9ArxDiAADXALha5jURwKUAjgGwAMCluuCqFhTqlK/eg1jOCLRGn0H3EXMeSr1oKPGzdlGdXJz7Ub6GUn4ZSRNUh2p30kmuUlEPGn6jUpFAIaJZAD4M4AZt9+kAbpbbNwM4Q9t/qxBiSAjxJoDVABYQ0XQAXUKIp4TTa97iS6PyugPASVJ7OQXAQiFEjxCiF8BCFIVQ1QgNG66iD0UvMXQeSh24aONrKNUvAyjDKZ9AW1bXh1I/KkrQVY7WICcJYcAaSnwq1VC+B+CrAPTHZZoQYjMAyN+pcv9MAOu18zbIfTPltn+/J40QIgdgB4BJAXlVlTCnfL6KPhQdWyen9t6+ZAO29iX/1cgoVLjyyqit5RXZKV9B31IcNZeftmjyinh++UUkTlBHXO1OutZReYxDbIFCRB8BsFUIsTRqEsM+EbA/bhpvoUTnE9ESIlrS3d0dqaI2wpzy1RQoUR5y/Zxv//nV5CtRBvWuoYRObPT9xisjWllB5TfSFxmDLrPa81BU2cmYvGonUZ5cvQ0LX9lSs/IrpRIN5V0APkpEawDcCuBEIvoVgC3SjAX5u1WevwHA3lr6WQA2yf2zDPs9aYgoA2AcgJ6AvEoQQlwvhJgvhJg/ZcqUeFcqoZDF/gruqLI2YcP1ROy1vMowjVRm8grLO8ERb5w0ERPV0xItQR1xtetXEN7fyvKqXWN+6obF+MdbltSs/EqJLVCEEBcLIWYJIWbDcbY/JIT4NIC7Aaioq3MB3CW37wZwlozcmgPH+f6MNIv1EdGx0j9yji+NyuvjsgwB4H4AJxPRBOmMP1nuqyq1NHlF6aDrwXeiZGn9R3kJ43Zxn/Nbie2/Ekdx1JnydXDHI1HtKK9yl/sPgp3y8clUIc+rANxOROcBWAfgTAAQQiwnotsBvAIgB+BCIYT6XufnAfwCQCuAe+UfANwI4JdEtBqOZnKWzKuHiC4H8Kw87zIhRE8VrsVDKkRDyVVxpryO7XnX36W4dViypgddrVkcOK0zZg6yLnHTjVqUlzcf/yAgWad8+WnK1lCqKFoGR/LoG8xhSmdzpLqUeywJEg3zrgd1r0FJRKAIIR4B8IjcfhvASZbzrgRwpWH/EgDzDPsHIQWS4dhNAG6KW+c4pEO+Ee6GE1d5ZqPtgU/iNfj4T54CAKy56sOx0lc6U74sH0qsEmRaXUMxHE/ShFKJDyU877KzLpuzb1yMZ9f0hj4TQW1V7TlaKv8kymENJT48U74MQuehlBmZUw5RnvF6GFhVWoXRWr5ev4Wm0bPKu1ZOXvfaQh6m0fhkwbNreiOdF3Q/qt1Jq+wb3YfS6LBAKQOloQzlzIZ1JWhSVQ8bjnCkcYKDPIyWhqJ3Gqb+I0lndzX7p3rq+4I682pHeRUqHADowpAFSnxYoMSgfyhv3F9cy6sKExuFedt2Tq0omrzipS/Ph1KJhqKbvErzKZq8amNCKUTUduvKPBNk8ho1H0pcgWLeZsqDBUoZqAdtYDhnPF7N5eujUE8vQvxPAJdj8opVREnaIA2lViaU4kz54KepLiL7JLV1yld2v/RkrKHEhwVKGaiXd/eIWUNxR5VVDxu2OeXr50UYFQ0lXhEAwk1eSUyUKy6UWYlACT6vnjSUoKqMng8lXkF6unpq00aDBUoZqGcuZ52H4vzWw/pKtapDxasNl2XyilcG4AsbNpq8lA+lNiavyEkSDB6olKA6jJ4PpbL0QO1XDW9kWKCUQXGym02guBKlamX7t23n1Jq4VSnP5JWMD8V0O90OKoFFDeNUM+paXkn6esIIXa4m4HC153awD6U+YIESg3ANJXnCDV71MWva/Y56Ai926LmxSlDlCOO2IlmnfAyTV+TzkvP1hBGmZQR+D6XqGor6rfy5qwdtr1FhgRID69IrNX4QPTPla2x1i6+hlHFuYiYvU97JddSxhGtEp7yqXzKr7AbnEbr+WQVpKydBkxcLlNiwQCkD9cLZNBRlCqvG4+gdUVvOqQsdRRLbhxKsOdjOLZfQeSiFystQoiCeDyVaoqIZtvwybHnZiPoNmThpK0Vdf2wNRc+rjl6jRoMFShmo5yxveXuVoKl0tLhj9wh2D5sjyQKpgxeh+D2U6tuyo5RwxZ9ewYOG5cD1W2g2eSXn7K4obDj0vOTqGaZhh37lMuBw1cOGod69eOkLZQxkGDssUMpAPWdhy9dXai8+8r8ewAevedRYtrNtzr+eXoNEZpgnUMYNT7yJzxmWAw8NG3bPCy8jjHgTG53fMNNlsvWszORV2yiv8DoE4fWhJFChMQoLlDJQo6Cw5euTeCA39O4OqIdlfx2NrOLWpJwOobLl6/V87PVIokXjLQ4ZLU0hIa3YySP4eLhTPt6xu17YiPlXLLROGI5CpWHD3sVC6+c9ajRYoJRB+DyU5F7uSqmVTz7JeSiVhKkCQC5vdyyEOWErDUMF9Ii38tMW04TNlHdIYg2rUBNjBfcjSBhd/9gb2LZrOHAQFUqFGopnsdAAf9S1D63C38kVuZlSWKCUQdGHEl9DeWH9dvQPlT8SizQPpexc6w9h2Q4718SgZRFPIPrikPUeNlz5yFwvs3omr6Bjw/I+DQfcrzAqnYgadXHI7zzwGp5ZE+/TS1++7QX8ZvG6WGkbBRYoZeBqKHmLQAnphAZH8jjjR09W7ROf9RU2XPsR85BliRwgykx5+ZtA9FSszl5NbAxdvl6VEXdkrnekweeGmrwiluNHreI9EqBRhuFqajGz8H9wrRrc+fxGXPKHZdXJvE5ggVIWwQKjEKKhKFPZX15/O0bJ4Tbe0dJQhnMF3L/8rcBzYpu8PNsVmrwCOkDhHZqX0Cgaint+Au0dHsUVpsEEaSj2dEWBEny/bn92vTX6sXKnfDQNhQmGBUoZhPlQwsKGE4t0sZm8yhjdV8J3H1iJf/rlUjy5epv1nLjFl1PvMIETZELxfmDLVA91L6PXJ0mihg1XKvjCTH86YWHFcX0oGSlQgu7XY6u24au/fwnfvneFpewKTX/aNguU+LBAKYMwH4rSUMKOxyo7QlLvSxG7qFCU87Snf7jkmNsBxn4pyzF5BR8P0lBCv4cSYaLck6u34fO/WmodQLgTG2PcjKi+gGLwQNlFlKSreKZ8TB+Ksuvdt3yz9ZRdg47fsbtvyFJ2eB2CKHe1YV5A0gwLlDIozpQ3j6TCfChJLc1izaUMB2tFqOilgFPill7Oexqm8b26eScA8xc0k3DKn3vTM7j35bcCTTVOHoGHjagk4cvXJ2eaC8vC1Il6w20D0gZk3tmcAQDc93LpBNSoiBBzdBheH0p4HiNJONcCqIdI0TiwQCkDV0OxOeVdk5c5fUUair5tM3l5JUrVSEX4zkcyI+bgc8M6j8//+jkARRu9rRxTPkWbvD1/1dlXsiSJPY0sI3LYcNlFyHTRfQdB7RSWPsjfPmdyOwDg+P0nWc8JC8EuapT2coLw+lDCzzcNIl7asN24KkMcqj0RtFpkal2BRkI9czZNoxg2nLyGUu6IpZp24KDP/Fa82nAZkjDIpKWTMgzzwz+wJTy/ceqh9sb7wFZUk1f0eprTa9sh55ouU9fWg6oQJaQ4qBMNXYKmQg0lbIDhx3TOR699EgCw5qoPx6qDN/+Ks6gJrKGUgQh58MPmodjCjcuuhy3KK0EFJaiDSrkmrwANJXa5eh7BuUQdxZk0lKhzKgI1FNnN2ZficX4ruRdJhA0/sPwtbNtl9j1UrKEUgo8Xz6tMoChsz0Rx1eXQLMz5lilQRHUtXg0bGMACpQzULbauNhzyYlTykERJWY65qJy8/KjZ8GYzcpIz5YPPjdqeZoES3JFGCkOV2drudyULN0ZNEib4hnMFnP/LpfjE9U+by7H+YyjLUEh0DSUoX5VXgIYyivNxomQRVE7QCg1B7AmhyyxQykGZvEJ8KFaTV0J6bBQfSqUlBZnniisK24lS/k8ffR2f/Jm3oyvnGqJqfGYfSnAHEkVDUdnagjSKnVykanrTyqsPX23Y+Q0bxKzauiswvXNucFnGL1t6Vm22pw16ntQx2yreOtZnvwwtx0S530Pxn6M/T3FN22Gh7I0A+1DKIExDUfuroqFEMGeVEwIaRpSRebBTPrz8b9/7qiFd9DwiaygmH4reERrSqKyD6hBm8qrErh9dQ3F+bbPMy/nKYhwTo0dDCTKBRvGhBBYvNV9b/m45QXnY0ZNF6cz9QkNvG1M7RXkfwvJoBFhDKQN3FGR5OMJCOCtYWQJRxvz6GZVqzEGDxVTAApCjueRLZKe8SUPRt40mr3BhoK7VpikVP9Jlr9tfVm/DohWlkUEqSdgXG1UnbhUoIQ9CmIYSZobJe47bywnqIIvzt+wPXbXDp8s1N/lPGdba33Stkea2eLTmxhQorKGUgbrFYU5523GbaSQKUeLky3UsBpcXbvIKXqW38nLDsogahp0J9aHY6xHlOsI0lKDO4ZM3LAZQGhkUtf3Ueba5MGHO47BOTL82U528x4O0kKA6OL+VBK1UuvRKufNQ/OXos/xNz0MUjUPPkzWUMYBurzaOakOci1HkSRRhEZC6zPPtBI1slYYyErRWVuzFIc3bJqK+dKawYW89msjoAAAgAElEQVQ720eUUQSrXWP1/pZD9E8AV6ihePIKTm/KS78HwY53+8GwCcG2unmPqzyCz4uSf5T31P/s6RqK6f2P5pcxbzcSLFDKQH/Jg2LybS9PFGed7UGK4qz2+lkqeyKDRrZFU0/pScXJfjHLtf5TSlSTV1jYsOm2RFnLS5mjbCPrJKK8wk09zu9wTB9KaLRbSFhw0KeUo5qR1PsSdD/DJg1H8XkFUa5TvsTkpWkopvc/Sp5Rtb16hgVKGej32GS+Uv1K2MTHIOzrgOkVCc0msCN8bUsfnlhlX9gRCInykp2caVQcZA6LQjm27KhlxDN5RS/Ddk4l5j/VDlE/AWzTUEI7phDB6vGRhDrlveinB0Z5hZiKvenN56jrT0RDiZCH/57rdTdrKFHqEKwNNgKxBQoR7U1EDxPRCiJaTkRflPsnEtFCIlolfydoaS4motVEtJKITtH2H01Ey+SxH5Ac+hFRMxHdJvcvJqLZWppzZRmriOjcuNdRDvotNjreVNiwZXRfUedUplM+6AE++ZrH8OkbF8eqh4N9uXFXQ4n5ZnuvITiPqEEOTZnSx9yjoRhNXtFNKGFRfaMxD2UkF08rDmtvPUQ+yNcElN7zqHM7VPsF+VDCQopVJ57MPJRgjdM533tMfxfi+lCimg/rmUo0lByArwghDgFwLIALiehQABcBWCSEmAtgkfwf8thZAA4DcCqAHxNRWuZ1HYDzAcyVf6fK/ecB6BVCHADgGgBXy7wmArgUwDEAFgC4VBdcVUMATWmnyUyjEHekVYGGEqbSO9UIf+AjqTEBBAmEYA1FTnoso3i9rHJGilHmLQBASzZdss/TORiySURDCTluq4+eNmwtL3Vi3LDhsCAIbxSXSUOxp48aBhtFGORDIuZyETSU4769CF++7QXjsSjPnb66tv96wq41ygDL40OxnL/u7QH88um1oXnVitgCRQixWQjxnNzuA7ACwEwApwO4WZ52M4Az5PbpAG4VQgwJId4EsBrAAiKaDqBLCPGUcN6qW3xpVF53ADhJai+nAFgohOgRQvQCWIiiEKoaBSGQTatZ4gECJSQKLAibMIrirPaIkwpHOEFVVXmbRpRRF0zU8XRKZZi8omoocWbKR/GhhDmC1f44kWLlaig2H0qYzA2LbvKMmkNG3v52jOqXUMcCPzcQ8u4oDSHIxLd5xyDufH6j8ZjXP2rO48Yn3iye7ztHN/3Fd8qH1+ETP3sa3/jjy9YPjdWaRHwo0hT1TgCLAUwTQmwGHKEDYKo8bSaA9VqyDXLfTLnt3+9JI4TIAdgBYFJAXqa6nU9ES4hoSXd3d7wLlBSEQCZIQwmxN5cbOqgTFhAAJBs2HGzzdl6eoE+2lqOh2EZ3tmtQQiuqnTnMmWyeNxDdhBK+9Ep4Hf3PU/QoL+fXdi9C/VAhYcFhvibPtfuORxlxA8WBSRQtxn5caSjxnvtChHdHb2N/dcKe22gBOeHv+I7dIwCCP0ZWSyoWKETUAeD3AP5VCLEz6FTDPhGwP24a704hrhdCzBdCzJ8yZUpA9cIRgKuhhKm1xhDLKKYPS9SMx8Fp68As23GI0gGYfChxom300Z0nTNXaUavj9pcqbDly/eU1jigjfGDLlJepnpG+r+ETCCpJ1Al9tnkoYc9cOQLD2FEG2P2j+gSKS68EDGJCrkM9k3F9D1H8PePbmor18RWkP0MmzT2KdTbKO56R/c9gbg/UUIgoC0eY/FoIcafcvUWasSB/t8r9GwDsrSWfBWCT3D/LsN+ThogyAMYB6AnIq2oIISAEkJUaitHxFtIZRrOjmvOIYgoq95sOwenDR4umUbEaWZczMcs2ec5UBU8kTMBL6s3HLvj85StG2ynv74Sitp46L18QsZ45T9sbSvVojyECxZ8+bIDlzyNQoMibbTtjpEINJYp236wFdwRFeQU9T05ZlufF8r7rqIjFwZE9TKBIX8aNAFYIIf5XO3Q3gHPl9rkA7tL2nyUjt+bAcb4/I81ifUR0rMzzHF8aldfHATwk/Sz3AziZiCZIZ/zJcl/VUPc3SKDkPBExwS+fDdtEMj1lNOd++S+Wnm2UOQGm0OmiMzt6uTnLy2heE0mvR5DJLfheeDUUg2CMoF2oI2EaSpS2KPkCYAQfjr9+JgEfVrbXLFV6PGxuRJAWEtWHEvQ8ueeE3I9cPlp72YgyGOuTnyE2laO3fZjgHbKYq6KYvNKuQKlPk1clS6+8C8DZAJYRkQqduATAVQBuJ6LzAKwDcCYACCGWE9HtAF6BEyF2oRBCidnPA/gFgFYA98o/wBFYvySi1XA0k7NkXj1EdDmAZ+V5lwkheiq4llDUzVYqZ5jjLRHHnNX8FfOtKavsIA3FqdiwIVQ1jsnLNpINEwRBGkpYRxlmXijO3raXEZS/kzZ6J+fXUKIK5DBNq7woL3s7OHmVpg8SOGE+RX8egfcz5DrUiD22hqKXZclj11DOeo53IGQfoADAzt0jxsjDKFFx5Ibs72ECRQjxBOyra59kSXMlgCsN+5cAmGfYPwgpkAzHbgJwU9T6Voq6v9mU0lAMExtDImKizOz2dBAWu26Yb8G/HZUwgegv3zyiVB1x9ArkLO1m9n3o2/YyytNQDMcL0a8jfAHG8DxKTV7C82vDI2BDrjMsvdEpX4az2X/YM3s8oBrFVbrtnaQ6x5bN7goFiud9tWSRC9BCvFp2aVr9/Ne7+zG1q6W0DhGebeVTs0X11RqeKR8R9WJnM8opX3pO2OJulSwQp6cMW4zQvx0V/Rl+vdv8/Qyg6AA2+lBkHtWK8tKvK8hEEtZRenwxBieqOzciyj1LwIfiN3lF7Rc9I+sYWnHY4o+2kG7jcd8zd+1Dq43llNTRHaBEGyCY0isTkFVbDNXUwssKagv9GTKuoqGlHRjOlRz3l2u7XDWCH9lTo7zGCn4fiumhyRWEa+OMM1oE7FpO2EhRr6M/n6jo+f7zb54PraMpskjlUU75Ocu1meeH6PWw5+kxaRnvhV6+vQMIugqVbdgngKM0hc0pH/bIhJruQgoPc0Z7hb2hfM8z6j225u1+rRx7PcLWwAOCZ9EPeTQh83klPiofUcLyg/xFNj+gm79WrwHLHJIwbRPQ1o+LE3UzCrBAiYi62UWTl/nlK058LM0jipZqNXlFyEcIYFxrFgBw4sFTzSdplC6VEV4/oNgBmKO8VF2iP/C6qUPPMixaJsp3yv3bCk+YZ0A5US4jLOoukoZiCRsOI2z9p7I0FMPxctoxqKQgs6DKItDMGuDTGtJCaG3XW6lg9devNGw4ZPl6LU/bpMQoc7AUbPJqcNS9zoTMQ3GjwEwvd5kmL5sKbJ1ND4G9pG02kwq/tf58otqfg9ZeimPysmkoZlOVOV3JeSGfpg37fkU5a0OFzkOx1THAj1P8lkpw2Z6OMGQQE/QhMf92MX3w8SDNWV82JtiHUigpy1aO6R2K4quxzdMpptOfu3ChVHbYsHYfbCYv770Mrm8l346pJixQIqIesrB5KGqtrzCnfKSH1hblFeCUL+eLiXGX+1DXYRolxVmy3RZuHaqhBJQRFi2md0LmiWjh16EcwVaNUf1a8vCY3fyZRGy+sHki5bRneFhw2DPtPaYGX0CINikvPUiLUeWYzJPK5NWcSVnLMX1qQSfKJMyga82FLA6pt11/JA3FXAc1TqzXKC8WKBFRNzgbEDacLwh3Zds4Ex/1cvzn62cHzZRXNtYo/VGpQClXQ7GbvMoRKLZOzxydVdyO6sQ1CpR88aWOEzb84CtbSs611cFmvtc7Bf8IOqoPKiw0V98Xtqy66TJsA5xiens7nzB3ivWYjhISQoQHOJjaRQ1sWrLp2CavsDlkTh52X02YhqLvu+sF83piUQZL9R42zAIlAut7BtzvfmcDNJB8GSYvW2do00Si2HiBYhRIFOFQavIKTQJAj/IqTeCavMp43m22aWN9IpoFbPN5FB4NxXQvQxYbfHjlVnc77CubUTo5/8jbDZMNuY+FsI5MS2/qhMLaO0wDynmim4rbL6zfjiv/vAIAMKEtG+g/zEd4L1Q5puPqXrZm01bBEfR1UX++Vg0lQAuJ6pMDgNe2mCMoo/oHgXATXq3gb8pH4EPffxx9clKTbXFIIQQKApFWIwYCOpkIo3XraEuUZ/IK+n7FgjkTremCFoeMY/KyXWf4xEZ7GXpSU6fs9aGYPpYWrKF4ZkaHjKqjdFB+s1tQSLSpnnp53joUt4Oi8gCLyauM43qbPvRqUeC2ZNOBgjHKexGooeSUhpJC/5ClDF0DKQikfCtQh60IUHqO91guQHvx75sxrnQOinOOeVsn6NMR9QBrKBHo02bIZi1hwepha8o4M2DjzKQHfKMgm8krwClv+n66DX8dPC9CgDwIXstL5RW5Gr6Rn1afmG3o5BM84hzOF1zzZNC3bWwdXJhTH9A7Hcu9LugmL29bRglb9pcd5jQ3mihDOrGwkbtevt4mbU3FmeBNmVQk/4h/23uOGsQYBIpm8rKVo4cNm0KIwwSCqpuSQ/5zggYHzvnO794TW63XGKYNAkULRJhPqFawQCkTNc/E39mpByDQh+KxR9sfWtM51XDK+/PRn+GguP3iTPnSeriRTQloKKaXSt8TZaZ8JkXGfIZyBbfTC7pXQpivZSSCzT1s+fogU09Uk0bYPBH9+KYdgyXHgyYmAhFMah6BUvRLtWsCJU0UOMAoFLT5W7ZVk+W1mTrSooZi96GEOc2jOMQ9Ju0Sk1dI2LDc19GctYYNR/KhyBd8uE5NXixQyiRjeaAGhpyHpDlg1BtlJOaZk+ExN+jnmOsmoDnlIzxvQWHDQeYkd/l6w2xd1zRRTpSXZXRoyqJck1c2nbKaSVrlekqmzjtoSRF/PWzVUPuj2PWtGkpIM4aGq2oZbNlpEChauaaywibs5T3XUNxubSpa04mCfQK5QjE60hrgEKAVq3kordl0rAAIVQe3LKuGUihGcQr/seCBUMEVKGk3OrD0nOK2bUCmxot73GrDYxXXR+K74d+462UAwKotfQAsK79G0VAsIyl99Bj0iWG1vHWUpVf8HUSYvd2fzuToVHvKMXnZOkXzjGNzOj/q/jRlUtZRbauroXiPFwrOpwpUW4bPILd0ggF2f8A7GvebSdTz85ZBCPjLCKqnvm/XYOn8B/0+GwWnxaSl8GgoWjtnNB9FOkWh2mTR/GiWCG6ouqEOrlO+ya6hDHnCxIOvw1bVfEEgK+tZ8sVGS3CCQu1qa8ogVxCWlaGDtU2d/7l/ZfAJNYIFSplk3Jny3v2rZOSGeiSMETUR7P+2B1t/z+wmL4F0iM0r6FvqYfZ291jQFxtlFnGd8uFhw9E0lKJPK2WODMoXTV7+4+o+ZdzBQ2n+UcwTxSVqzG2pmxX9Hal+bVsDhEqQGcbZV9zuGxyx1hEwX0fOIjBM6YcskXMpomCNtxAcbq/XzWTqGdKjvCL4vMKsB0Hm6KzlmdDfF2NAjqxXR4ujuZm0lLAACz/q6431BAuUMnFnyvtuuPqCWqd8YIxmlAij2hHLOfrZVg1FCHfik+151Iv1d2LCcyy4AwAsM+XdGd7BL4TNNl/OTPkoy3k0pc0CZSRfQHMmjRSV3gv1vxsibihH7xCsGogIFig2c5H//56BYWN6p27aV0RDorBM3+HQnwHTVdgEhil/W+RcKsCHorTB5hCBotrQ1Jaq3OZsyurzGvaYvErzGIkw2z5oWoD+3gYF5HRIU6DJjyI8z75dqCm27bKEtNUQFihlYgsLVg9IZ7OzlpbRzBIh1NTuQwkfQRUKxaABG97vYnvzUf8TBYclKlONeaZ8sS6B9SiYR4zlrOXV22/vaFV7BZm8mtIpZFKlAscvUEzvdqv2PQtrBxQwdwLwtrG/g9Gfg6CPKemTaU3Phd5RmsxFYcEFuq0+yOTVnEl5jqt8957YilQqPEw+TEMpfnba/l6pe2LKYki7DtNAyDtAsJjd8sW2Lllt2PMM283dbc1OHU0CxfvsG6uAXL7gDlqH6vAjWyxQIqD30V0tjsDwP/jqxWtvVo5e+0gKsI+uPTN2LZEnQWaBVMhM+aCoINfvYHFku3V0NZT4TvkRi68o6mrDHc0ZrOsZsOavaygFUdrZDuecsOFMutQco+qeDvBNdLVmA5fZAYLt/oD3uv1aiC6EhgIcsGEmL13oGzUMjye4NH99ZdwggdLalDauPvCH//cupANMXq5p0jK/SxFkZtWjvADz/dLbweSnGRzJg8gRjIMBX1RssrT1SL5Q1BQDou06mu0mryhm1JGCcPOoxwUiWaCUSbu8mXqH+bmbl2CndHiOb2sCYImXjzB3wdbRRolR9zjlLf25N9LMbLdvyaatTnkhhBtVUxCl1yG084IY8YxmzfbnIIEytasZQ7mCNdrF1TIy5qVyhqRASaeo9GuJvk7OdCXDuQImdTj3OsgEaSpboe/v2eUTKFqdgjqOsNUZ9LY15ROmoaiOr6M54xEY/mtozaZ9GoqznU2nQGR3yrsajhIGlrYadjUUYRwcqDroeZrOUXn4GRjOoy2bRmtT2vpM5QrCFVolE1HzAi0Zc5AHUBzgqP7DtIR9lE9U5PLFYBLbQKWWsECJgP58vnOf8c4+beeDK4rrOn35gwcCiKChWF4cfaRqWzYjaL2jMJNXLm9/sXKuQElZo22GcgUUhO4rMvthAhQcJ50lVNjrmCxNp86dIAX3ToOjGSgKS1sn88a2fqSJnHkqlmVPMpaIPsBph6AOTN9vMx/mAvwkevsHmTZG8sV6BC0xkyKzpqPb4U2XsXs4jxRJgWIKEy84z1yTz+Slrj2TosAoL9XWzWEaiv7c+i5Uj/Ky5eGN8jILztamNFoydoGSLwi3rf3COVcooDlrDtgBis+QEiimMvRqB7VXu/TD6Mv21wssUMrgr4+cgckdzQDMo8FpXc3oalU+lNJR7++WbnD/t3VCK9/aqaUp7vcs9WGL1RfQTF7BnRxQOsJRdW7Jpq3LY/cPKU0sW1Kvcr57P2IJswybSKfyVd992bnbvBT4iHYtgLcT2jWUw3CugPuWv4W0wYdS0DpDwLsUvmI4V3Dt4ebwZlGcAGppSyU00ilCT3+AyStgJDqcL6Ala9dQVMfX0Zwx5vO9B1d56uxnYDiPtqYMmjIpi1PfiSxsSqd8ZqWiUE6R3afmaoMRfShA6UBoOF8AUXGQY+qsPRqKoTK7h6VAyaasPqtcoagd+AcJI3nHHEZk01CUySvAhxIQgVksp+Ca1VlDaXAOm9HldtgmLWHLziF3aRb/COaxVd2e/22d0K+eXlc8xxJmbLOARNFQRoIEinyKWzJp66i6X07gHN/qaAi2eTOhGopFWwsLnVR7xkuBYgudLDqLZaev1XNAW0onYzB5qToERXkN5fJoy2bQlE6ZzRdaEpvJSpU7tbMZm7fvNh5TZdkYyRcCzUUjOWdfZ0s2tAMyaigjObQ2pUs0kGIaJ7LQf1zVP5NKOWHDIRpKmEDxLJ3iq4cKsFDag6mzDvtcwe7hPFqzabRk7RrKSE5YBUq+IJBOE9JEgUv5KO3C5EMJ+mY94PQPgyMFdzDFAqVBee+BzjLc//ie/YpLRFgefHfxSN8Dpzq+CXJkbzIpve0fpeojPrmdSZHV5JUvFBe9sykInqidvD+yqGjysl1fv/w4kHqoRwyjUiB4ZrRzrvkF934QypBOnjuxPcTk5a7v5NwPvUNSL/NFpx3s+FB8dVVl2ASKEAJPv9GDnoFhtDenXa3Nfn3BTvkDpnZg045Bz7XkCsWPpQVqKLlCYMjtSL6AdIrQkjVrGF7sHW1T2ixQcnmBTCpVosHkC47WkE6REzZcoVM+yBek/GGqszcJBF0om+7HwEgerU0ZNGfTVqf8cL6AzmbztICRfAHZlOOTC/oujeuUNwg9vf1M2qI6rt698Ps5+rBAicC3PnY4Hv339yGdIteubnLszRzf6kZ6+I+rkf0lHzoEAPDvv3upJP0Nj78JAPjSBxw/jK56K6fkuNYsdlm++FbQnPI2dnuidmw+lDRyBWExgThlT5Od3eruXSXpgXCTl162dS0vSwcJABOlQ3ynRUNRmpjJz6HaddaEVhnl5X0x3XXALJPYNvQ62sTqrbvQ3pwxChSvuTJ4dL7PxDYA8OSTyxcwe3KbrK/dpl8Qeris2eSVTROaMmljB7TPxDYcMr3LeJ2AMnml0WwRSE5kIUoEzoj2LDZlUtbl41XnW/Q/mM8LijYbzjtC1dVQDO2lv0umugwO59GaTaElk7K2t766gr8tcnmBTNrxF5nWI1ODlPaAKK8hT+hyafnq3WUNpcGZOb4V+05qB1BUWfsNnfr3znqHO6r122lVR6xGP29s6/cc7+0fxk8efR0A8A7p+DeNqqZ0NmO7ZaJbQRRH1Ta7vZ6nf6SnR3kB5tHiLikYj9x7HACvD8MzWzhEoHhW2rWsuhs0c3uSq6GYhWtRQymNylEdRksmjWw6ZQ1OsI389cUIOpozntWoFcOaRmk3eTn7ld9N7zTzHuerOf2I7xptX6ZsSqfQnEkZTWcDw3l3IUfTLVPO6s6WrHGmfa5QQCbtaCj+eVZqVYnmTMoa+qw6X1s4rlsPKdiAUgEbxeS1a8j8nCoGRnJoa8qgJZu21lWtUN2UTpWYvHKFAjJSQ7GtzAAUfY9GgZILfvZVGldD4bDhxiedIrQ1pd11kZQqP7WzGX81e2JRoPhG/70Dw0inCO/c2xEWfkVCj7bZf4ojvPQHTI2wDpnehWUbdli/TZGVoySbD2T3sKb1lPhQvB2pSSht63PqufeE0tGzNwTVWLx2rtb56CGyWp1e2rADsy+6B8+t6y3WUWko7U5whFVDkXmaIn9UnVub0mhrSpcMDlRUVUdzqVkPKC7ACQBvdPdj4StbSjpC1YFNaG+ymry2yrZUzmS1wKhKr0LQbVFeSgC5oeyG00ZkJ9hscaoPjuTRJtObOrHFb/SgOZPC+Nas0V+VLziBII7vwTswUBpKsy+k2FO+FHJqSRKb8B0YzrtmTr/TfDjn+JFamuwaSp828DBpjEUfitkpL4RwykmnkE1TiR8nV3A0lIwlok3dQzWPzeR3CzN5uQLFfS44ymuPIJtO4S+vvw2gaPJRnYMSOH7bfk//MCa0ZTFv5ji898ApOHRGl3vsrR2D+OA1j7n/q5Gp6vg279iNax58DQBwxKxx2DmYK4kKenZND7r7hpCSobAmgbJrKIdP37jY/b80yss74jVFw6jFCved5AgU/eWN4jdQ9A/p6fQIngImS3PW759zouLuX/6WdlyZDhxHcVjYcEum1KeltMSWbAodBpOV28lZJqnqeakO8DfPrPOc89pbziKhk9qbzPN1hMCldy8HAMyW2u/6XmeiZr4gsG3XEKaPa0EmRVan/HWPrAZQHLEao7zk6N3kVBdCYGA45wo0v1/vlU07MZwv4Ok3erBrKIc1bw+UCJXdwzm0NaXR2ZzxaDC5vOOkBmAVZkBxfTFlQjVpFz39w9ixe8Rq0uofynlMXiaTVd/giDuIM/kvi1Feaff+66jnrimTQjZj0FDywg2RDgpbbm1KG585dR3+8/11BDSTl1aHFZt34vrHXi/rsxHVgAVKDHbsHsErm3eit38YF/xyKQDg304+0D2+94Q2LN+0w5Pmt8+sdyPEJnc0eyayna118kCxQ1cP1eduXuIeK86/8D6QZ/7kKQDOaLHJYMYBgHVve2eW+1+KfvnAdrXKEa8hj1c270RnSwaTpIagdwC6RtNnMUUp3tRMfv5Q5ramDNqb0u4oTl/mRJ8wN641aw0bVqNMNXrXX3JV5+ZMGu3NmZK6uhpKS2laIQT+/qdPA3A+InXl38xz9+t89hfPAgCmy6/z+ddd6tfabeb4VgDFzrWnfxgF4Uze7GjJWIXmz6TPTZms/EJ8cCSP3y3dgE07BtFs8KEM5505RZPlyN8/atYHLeoLjLpwV9fR1pRGV2sWvf3DrsauJgoCjkCxLdmu7t+0rma3zn6UKXjVVmfw5s/r1bf6MHdap+vwNj0Tu4Zy7rvj17z7h3LYvHMQsya0WuehrH3beV6ndrUgm06VLFI5kndMf2lL0IwaFDSlnUGMaeVnNYAiMptyB30mL32A8K+3voBv/flV6+eFRwsWKBWwausu1xdy/AGT3f1H7TsBK+UIFQBuf3Y9gKIWM7E965nI5l9CRJmc1AOkJlNOam9yXxrvaLD4YLVkzSMopxyv38ZvE1e+GVt0kRACi1ZswQcPmYaWJqeOXg2laDILWwlVjc7TKfJ0ZCN5x2ynzD2AV6Co0WUmRehqyRhNXpu278a//e5FAEWbtSkMtyUrR4t+k5eroZS+uDsHc66W9j8fPxIfe+csAF6NS+e4/ScBcEaQOrofrDjidOq4tc/Jf0pHM6Z0NGNbn33NMgAYLwXCLt+o96k33na3nbW2vHUcHPaaD/3agbLsHT5zHM54xwwARZONYmA4h/bmDPaf2oH+4byrZe0aGkGnPHefiW3o6R9Gd1/pYoZKWE7rlBqKoTNX78MVZzjC22tmLWDj9t3Yf0o7pnW1gAjYtGN3SR59gznj3CnA0bqFcDRFm8mrd8Cp58zxrUYfyqCMtrOFDQ+OOMERqRShoyVTcq8AYJscZHY0ZYz+qoVyAnV7UxrZNHnez5Xysxm1XjCSBUoMVOivPoKboHWA+05qQ+/AiPuyfPX33oiuCe1NGBwpuC+wv+NOpRwtQ+1vyTjmncWXnOSaJ/RR9TZN22lryjg2XoNAWevTUL7zwGvudv9QDv95l9PJz5ncIfMtPpxCCJxz0zMYHCngiFnj0JROIUWlLzfgaGA2gSKEwG8WF81De3W1eDpXx/GZxoT2Ysel5igAxeiwbDqFrtascfT+Xe26lGDSzQOq829rSsuw3+I1bNy+G4+sdOYMmVYD0OuaSTvhuCkqBl34mTutEwCwxheEsXP2nykAABjYSURBVH2gWG/llFd2+dvkAGRKZzOmdDYbOwldIzpKDji8foKC6+9Sa1T5n7OBEed8FTHnF4qq0/v2xw7HBe/bv6RcAOjtH8H41qz7nfTegRG80b0L9y/f4i57c/hMJ4Bj6dpe+FEj8alyEOPXknYN5fDDhxzT3vzZEwB4nzl1zeNbs2jKOKN/vW1VW6zc0oe9ZTSdv8NXHx6b2tWMlqz5A1hPrt4GANY5ObuHc2hvyiBtWBsOcKwaShi3WwI5mjMpfOyomehsKdWaAeCnj74BwOk/bGHcO3aPYNdQDn/3k6dKrCSjAQuUGPz07PkAgJc2bHf3TdQFinxw1/cMeOyit51/LIBihNJdL2y0rpjrRMY4D8yuoRzGt2aRSadcM4z+wOkfYcqmCdl0Cj39wyUv/1qpCb3/oCkl5ekf7NnLYKbZ2jeEx1c5L9WsCW1yfSbgF39Z456jrnXm+FbrOlsrt/Thkj8sA+B0hJM6mjza2uBI3h3pKXq1DkJpJONas+hqyRo1FCUIACdYAigKgqVre3DLU06dJ7Y3ob3ZO1o8/don3GsyfYpAr0u+INx2UJ3eUC6Pv/7hE+457ztwCtqb0ljjE+ZK4H7m+NnuCFwJLtXuB0/vwl7jWrBkba+nLd/c1o9D//N+9//DZjgCXj0TQgj89Q+fwL/f4Qxknr74JLQ0lc6XKa6QncH4tiy6d3m/u6LMMp0tGdev5x9Zb+0bxNSuFtcH8tqWPlz2p1cAOAELQFGoX/CrpfCj7t9Ui8lLfz9Uh6xrUuq+KqHc1ZIt6Ywfe60bw7kC5u/rCCSPP20kj8Vv9Dh16GzBuDZnAqhfW/v+ImdFgXY5YPN35iq82hkIlj73O3ePuJpoZ3MGuwZLhd5QroB9J7ZbI+oUe3W1eITa0rU97rE/vbQJ8y69H8+s6cHX//CyNY9qwQIlBkfLB/PHj7zu7hvXVhxRq5HQurcHXBPAxacdjGP2c8wfSpu56M5lOO/mZ41ltDWn3ZFT32DOFSTqpdK1I/3TrgdM7cSG3t144JUtbicHAN99YCV+s3gdjt53An7+2QU4bd5ert0a8EZLqU5YN1HoI+x5csSp6qa472XHvq4c9qZPzm7oKZojfvEPCzChrcntNFZt6cPjq7ahoznjCavWy1bCZ2J7E5ozKbzoi3h7fl2vKxBasil3qZzfLF6HoVwef3vdU3j1rT50Njshoh1NzhpV6uXUtT3VEeodca8m/N7o9tqr1/cM4JI7X8ayjc7I8DPHzwYR4dAZXSWj88tlp3veu+cUIwNlR0dE2G9yOzqaM5g3w2nrT/7saTftDxatckfR3/jIoQAgR7XOPXy9ux+vaibXaV0tmC21ZtXW63sGcOJ3HwXgjLpnTWh159cAjpnvK9Js2NGcMS5qOJIvYNuuYUztbMah07vQnEnhtbf6MH2c4xP64klzAcCjbeq83r3LHch0NmeQTpHPJ1fAe/77Yfd/v1N+685B9xqUmVZvB8V50gf57rlT0JRO4fXu4vN0w+NvuMJiWlczJkvz39v9zrMvhMBtzxY16kkdTehq8Ua8FQoCOwZG0NmSkQ73UoGyY/dIUei1lmpRSvhO7GjCuNZsyfG35SDjSx84EO3NGcdnJZ/FL9/+onven5cVfVzbB5xB5c1/WYMdA8Em6KRoaIFCRKcS0UoiWk1EF41WuekU4exj93X/v/aT7/Qc30d2qF/7/UuuI1zZ0gFgzuR2d/u5ddvRlE7hn967nyePEw+ehntf3oyRfAE7B4v2aBU6eckfluH7D67C4Eje/aLfn7/wHpw6by83D+XkA4oj6IP3ckwwM8a3YsvOIbdTVKaHy04/zO2Edd+O6uB/ds58V4M5bEaX61AezhXw08cclfx9B00FADwsHbmAM5o/40dP4nO3OC/3E197vyscX9ywAwPDOXxCdppPrN6Gn3z6aDRnHIGgHKIA8MybzmisrSmNKVLwKX8MAPzNj//ibr96+WnuOYte3Yr/+r9X3GMqxFQJaiU01KoIQFHTvPXZdbhDrsOmm7w+9x7nnt38DwsAACdf85inzWdNcNrmqH0nYNnGHfjYj5/EwHAOsy+6x+3wZ00oToZVPpSHX93qjtjVuk3PrdvudmJ6h3nA1A73OpRwVz4YoPi8qPPUfbxn2Wb3nL26WjBzvFeg6G3a2ZJ154Do/qa3djjlTOtqQSpF2HdSG9a8PYDfyoi3f5TtM31cKw6Y2oH9tOceAL582wvuNhGhLesN4f7Wn191t3/x2b9CV2sWmRS5A537XykuyjpTtnVHcwYPvLIFR/7XAwCAB7VzDprWiWP2m4hn1+gj+mI7dDRn3PZ6Ww4sXtuyC1/7/TL3nEntTSVmyK/9/iX0DeVw5N7j0dZUGsH1zbuX44nV29x1CGaMa8WmHbs9AyEVGn/IXp2YNbG1xK/60gZnkHLMfhMBAHOnduD5ddshhPAM8HTWvD2AR1/rxqV3L8eRlz0QunpFEjSsQCGiNIAfATgNwKEAPkFEh45W+ZdLByFQjNJRqI5y52AO58soMDUbGvAKFMCx7+8v/RaK4/efhIIA5n79Xjy+aptrJlMjRQC45sHX8I7LHnAXnTxICounLz4JgBNt9uTqbR5N46unHAwAeLcMIjjt+49j847d2No3iPfMnYxzjpuN1qY0xrVm8cOHVrud19K1vehszuCkg6e6eR00rRPdfUP40cOrsWxj0fz3ocP3wszxrXh81TbsGBjB4Egeb/cP4YX1zjknHzoNs+Q8FtVR/fH5Ta5t+5TDpuFdB0zGyitOw6nzpuG1LbuweziPXy9e60YbEREufP8BAIBbnloLwPzBrRbNoa/7bj546DQAxaUwegaG8fQbb+PR14prrilN8/7lW/Bvv3sRS9b0oLffaY+fnn20m/dfSdu+3/auOvEpUkA/t247vq8txqiug8jxxdz6zDq8uH47BobzbhTdkXLeEgAc+61F+P6Dq1yfUoqK/okZ41px94ubsHNwxB3dHjStE7/+3DEAitrWgyu2QAiBJWuKGtMRs8Zh1oQ2rO8ZwBOrtkEIgd8tWe+2k5rH0pRJ4c3ufgghsHrrLld7UEJ5xvhWz8rbKW2y1UeOmI43tvVjQ+8AlqzpwdadgyW+jDlT2vGcpsnd9OSb7vb7DpqKdIqw17gWbNq+G/mCwB+f3+geV4McZabcsXsE2weG3QHMuw+YjNamNGZPaseabf3YtmsIQghXsP/LiQeAiNwByGbp2L/inuIg5JlLTgIRYXJHM7qlQOnuG3Lfv/cfNBUT25uwZG2vO/BY3zPgasxKC57U0YzBkYLr/O/tH8bFdy5DW1MaR+87AftNbsfmHYOuX65vcMSNGlTTDU44cAo2bt+NGx5/E/e8tBmHTO9yLSdPXnQi/uPDzoocn/l50QKiNOdqkgk/pW5ZAGC1EOINACCiWwGcDuCVwFQJcu5x++Lmp9a6DkWdfz/lII9fQtlPAWe9r++f9Q588dbiCO3wWePwzNdPcv/XNQ0AnjDDv1x0Io6/6iEATvSIGr2odcb2GteCj71zJu58fiOeWL0NR8xyOp0fffIo1zT3fikYhnIFHPdtJ69PH7uPW8a/nXwgvnHXchz+zQfcfXOndng6iYntTRjOFzzX+ezXPwAiwpzJ7Vj06lYceVkxPQCcePBUXP23R7j//8+ZR+Lel9/CJX9YhpZsCp9YsA++/bHD3eMnHTwNv3p6HQ75z/vcfV840REkKiQXAGZfdI+nnItPOxg2/vvjR+DMo53orP2mOJ3+SdJ0ouhozqCrxft6fFyGZgPABw6Z5m63NZW+Rt/6m8NdTW0vrZ5KiwOAlVec6m5P62rB2rcHcPqPnnTqc4iT9uC9uvCBQ6bhwRVbsHsk785HOm3eXrju00e76dVkuiO0+3XH549zNVt1Ldc98jpGcgX85XXHH3bBe/cHEbl+L32e0kHTOvGzcxx/IRFh9qQ2/G7pBs+q2YAzAACAd+0/2Q1oUMsH6e31vQdX4d1XPww/yjT2ocOn46p7Xy25l98980h3uzmTwh9f2IQ/vrDJ3ffmtz/kTjY9aK8uPCzr8I7LFrrn/M+ZzjM3pbMZ/cN5zL/iQffYzPGt+MrJBwEA9peDgAt+9Ryu/Jt5rt/wpW+e7A4Up3U1Y/vAiKeeB+/ViQntTTjt8L1wz7LNOPV7j2PBnIm4+8ViPS/5kPNMqr7gkP+8D//x4UNwvXwmFsyZKN8dpw7/8ceXceLBU11TMlAcrC6Y42gqV/55BQBnAHrJhw5xv+B59nH74op7VrjprvvUUZ7BSbVoWA0FwEwA67X/N8h9o8Y3P3oYnv/GB0s0FADu6Bkojn50Tn/HTFz4fidy5ooz5uGQ6V2Y2tmCqTJ8MptO4fZ/Os49/4eaWW3G+Fa88a0P4aunHuTu+4J8KRVHydEKUFSX1ZIuikf+7X2YN7M4wfIgGZEEAJ88Zl+PVuW/JgA4a8E+8KNGeBe8d/+SY4BjUpvQXgxg6GjO4O/n7w3AEY6qc1IsmDPR07Efu99EfFm+/ESE//vnd5eU8ezXP4B/0sq/8m/m4TPHz3b///Dh0937ccj0Tn9y/O6C4/Dyf52CTDqFZd88uUSwAKWfWl4we6K7PaEti08eU2ybUw7by12kUvHQV97rroQMAF840Xv/dC32Z+cc7WqUir8+cobn/08Y7kVnS6lfDwBueOJNDAzn8YUTD8DX5DN0woGlgRrTxnkHSsqEpfPgl4vX8Y8n7IeLTjsYn1iwD774Ae/1zJs5Dl+X69jpPPSV9+JL8htCuhlZcc3fH4m/lcLfVM9LPnSw5906dr+J8LPwSye4fp33+QJSsmnCHy483v2/Q7MAKKf2xacd7AmX/vARM1w/oeJP/+I8hx85wrkvb+0cdIVJazaN+/71PXjPXKdstWwRAFxxzwps7RvCJxbsje9IwXnCgc69vvO5jfjn3zyPP720GQvmTMSrlxcHIAdN63Tf1+njWnDBe/d3v0sDOHOsFl9yEo6ZMxFPfO39OO3w6SXtUg2o1jMr40JEZwI4RQjxOfn/2QAWCCH+xXfe+QDOB4B99tnn6LVr145aHbcPDOOPz2/EmfP39piqFIWCcD7U1JQ2pI7G0rU9mNrZ4ukwAMeZeMtTa9HWlMb1j72Bfz7xAJz+DrO8/cPzG9DZnMWJB0/1aCDqmx5q+XHlPPaz9u1+dLZkMaEt63m5hRC49qHVWN29C4fPHIdPH7uvxwSlc89Lm5FOAafOK33wd+wewSMrt2Lxmz244IT9XR+V4o3uXXhr5yCeWLUNnzl+tlFjBBzfxEF7dWKGbwAwlMujKZ3Cc+t6sf+UDs8cGEW+IPCxHz+JvSe24fLT53mEouKtHYO46M6XcPFph7jmR50tOwexaMVWzJzQ6vHVKNb3DGBdzwA29A7g7/+qVECour68cadr3tAZHMlj+aadeOr1bfjUMfsa6/jalj6cfM1jWDB7Im45b4HnfvT2D+OFDdtx9b2vYmpXC6762OElbbV0bS+WrOnBuw6YjJQMOCiH59b1YlpXC254/A189MgZeOc+3usYGM5hXc8A7n95C845rvQahnJ5vL61H6mUE3Fleu7vffktjG/NYl3PAI7ce7y7+KUiXxB4c9suTOtqQW//SMnzpNpi2cYdePL1bbjghP2Nbfl69y4882YPPnjoNNfvCDh+mydWb8OUzmb89REz0NmSKUl///K38Ny6Xhy/vyM8Tpg72fPurNi8E4++1o31PQM4YGoHPnbULI+VQ6E+ZV1tiGipEGJ+6HkNLFCOA/BNIcQp8v+LAUAI8W1bmvnz54slS5bYDjMMwzAGogqURjZ5PQtgLhHNIaImAGcBuLvGdWIYhhmzNKxTXgiRI6J/BnA/gDSAm4QQy0OSMQzDMFWiYQUKAAgh/gzgz7WuB8MwDNPYJi+GYRimjmCBwjAMwyQCCxSGYRgmEVigMAzDMInAAoVhGIZJhIad2BgHItoNICi0eByAoBXU9gGwLuB4lDyqfRwIr+do1KHStkyijEqP8/2OXodq3+/ReB74mbQfP0gIUbr8gx8hxJj5A9Adcvz6StJHzKOqxxO6ziTqUFFbJlRGpcf5ftfJ/R6l54GfSctxAEvCyhVCjDmT1/aQ4/9XYfooeVT7OFD5dSZRh0rbMokyKj3O9zt6Hap9v0fjeeBnMtpxK2PN5LVERFiPplrpR4tGqCfXMTkaoZ5cx2SoVR2jljvWNJTra5x+tGiEenIdk6MR6sl1TIZa1TFSuWNKQ2EYhmGqx1jTUBiGYZgqMeYFChHdRERbiehlbd+RRPQUES0jov8joi65P0tEN8v9K9Q3WOSxR4hoJRG9IP+mmsobhTo2EdHP5f4Xieh9Wpqj5f7VRPQD8n9Gsj7qWM123JuIHpb3bjkRfVHun0hEC4lolfydoKW5WLbXSiI6RdtfzbZMsp5Vac9y60hEk+T5u4joWl9eVWnLhOtYL+34QSJaKttrKRGdqOVVtWcyMlFCwfbkPwAnADgKwMvavmcBvFdu/wOAy+X2JwHcKrfbAKwBMFv+/wiA+XVQxwsB/FxuTwWwFEBK/v8MgOMAEIB7AZxWh3WsZjtOB3CU3O4E8BqAQwH8N4CL5P6LAFwttw8F8CKAZgBzALwOID0KbZlkPavSnjHq2A7g3QAuAHCtL6+qtGXCdayXdnwngBlyex6AjdVux3L+xryGIoR4DECPb/dBAB6T2wsB/K06HUA7EWUAtAIYBrCzzup4KIBFMt1WOGGG84loOoAuIcRTwnn6bgFwRj3VMam6BNRxsxDiObndB2AFgJkATgdwszztZhTb5XQ4A4ghIcSbAFYDWDAKbZlIPZOqTxJ1FEL0CyGeADCo51PNtkyqjtUkRh2fF0JskvuXA2ghouZqP5NRGfMCxcLLAD4qt88EsLfcvgNAP4DNcGarfkcIoXeiP5fq8DdGQd201fFFAKcTUYaI5gA4Wh6bCWCDln6D3FdPdVRUvR2JaDac0d5iANOEEJsB5wWHozUBTvus15KpNhu1tqywnoqqtmfEOtoYlbassI6KemvHvwXwvBBiCLV5v0tggWLmHwBcSERL4aihw3L/AgB5ADPgmBa+QkT7yWOfEkIcDuA98u/sGtXxJjgP0xIA3wPwFwA5OGqwn2qH+JVbR2AU2pGIOgD8HsC/CiGCNExbm41KWyZQT6DK7VlGHa1ZGPYl2pYJ1BGos3YkosMAXA3gn9Quw2mjHsLLAsWAEOJVIcTJQoijAfwWjk0acHwo9wkhRqSp5klIU40QYqP87QPwG1Tf5GCsoxAiJ4T4khDiHUKI0wGMB7AKTgc+S8tiFoBN/nxrXMeqtyMRZeG8uL8WQtwpd2+RJgNlgtkq92+AV3NSbVb1tkyonlVtzzLraKOqbZlQHeuqHYloFoA/ADhHCKH6plF/v02wQDGgIjiIKAXgPwD8RB5aB+BEcmgHcCyAV6XpZrJMkwXwETjmnlGvIxG1ybqBiD4IICeEeEWqzX1EdKxU188BcFc91bHa7Siv+0YAK4QQ/6sduhvAuXL7XBTb5W4AZ0kb9RwAcwE8U+22TKqe1WzPGHU0Us22TKqO9dSORDQewD0ALhZCPKlOrsX7bSRpL3+j/cEZOW8GMAJHyp8H4Itwoi1eA3AVihNAOwD8Do4z7BUA/y6K0SFLAbwkj30fMsqmBnWcDWAlHOfegwD21fKZD+dFeB3AtSpNvdRxFNrx3XDMAC8BeEH+fQjAJDhBAqvk70Qtzddle62EFjVT5bZMpJ7VbM+YdVwDJ3Bjl3xGDq1mWyZVx3pqRzgDs37t3BcATK32Mxn1j2fKMwzDMInAJi+GYRgmEVigMAzDMInAAoVhGIZJBBYoDMMwTCKwQGEYhmESgQUKw9QJRHQBEZ1TxvmzSVvdmWFqTabWFWAYxpk8J4T4SfiZDFO/sEBhmISQi/vdB2dxv3fCmdB5DoBDAPwvnImx2wB8RgixmYgegbOO2bsA3E1EnQB2CSG+Q0TvgLOyQBuciWr/IIToJaKj4ayFNgDgidG7OoYJh01eDJMsBwG4XghxBJxPG1wI4IcAPi6cNc1uAnCldv54IcR7hRDf9eVzC4CvyXyWAbhU7v85gC8IIY6r5kUwTBxYQ2GYZFkvimss/QrAJXA+hLRQrniehrNEjeI2fwZENA6OoHlU7roZwO8M+38J4LTkL4Fh4sEChWGSxb+WUR+A5QEaRX8ZeZMhf4apG9jkxTDJsg8RKeHxCQBPA5ii9hFRVn7LwooQYgeAXiJ6j9x1NoBHhRDbAewgonfL/Z9KvvoMEx/WUBgmWVYAOJeIfgpnpdgfArgfwA+kySoD56Niy0PyORfAT4ioDcAbAD4r938WwE1ENCDzZZi6gVcbZpiEkFFefxJCzKtxVRimJrDJi2EYhkkE1lAYhmGYRGANhWEYhkkEFigMwzBMIrBAYRiGYRKBBQrDMAyTCCxQGIZhmERggcIwDMMkwv8HwTCkVoci3y0AAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sorted_data['inc'].plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Un zoom sur les dernières années montre mieux la situation des pics en hiver. Le creux des incidences se trouve en été."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xt8XHWZ+PHPM7fc0yZpek1LoS2lpWKhpYCAiijlsiu4ws+6q1RFUcTV9bfrKrv+FlcXV1wv6O6Ki1Ip6MpVpSqKFUTupS0UCpTeaKFp0yZt7re5Pr8/zpl0kk5mziSTZJI+79crr0y+c75nzhzKPPN8r6KqGGOMMV74xvoCjDHGjB8WNIwxxnhmQcMYY4xnFjSMMcZ4ZkHDGGOMZxY0jDHGeGZBwxhjjGcWNIwxxnhmQcMYY4xngbG+gHybMmWKzp07d6wvwxhjxpXNmzcfVtXabMdNuKAxd+5cNm3aNNaXYYwx44qIvOHlOGueMsYY45kFDWOMMZ55Dhoi4heRF0TkN+7f1SKyXkR2ur+rUo69QUR2ich2EVmZUr5MRLa6z31fRMQtLxKRe9zyDSIyN6XOavc1dorI6ny8aWOMMUOTS6bxOWBbyt9fAh5R1QXAI+7fiMhiYBVwKnAx8AMR8bt1bgWuBRa4Pxe75dcALao6H/gucLN7rmrgRuAsYAVwY2pwMsYYM7o8BQ0RqQMuA36cUnw5sNZ9vBa4IqX8blUNq+oeYBewQkRmAJWq+ow6m3jcOaBO8lz3Axe6WchKYL2qNqtqC7Ceo4HGGGPMKPOaadwC/COQSCmbpqoNAO7vqW75LGBfynH1btks9/HA8n51VDUGtAE1Gc7Vj4hcKyKbRGRTU1OTx7dkjDEmV1mDhoj8BdCoqps9nlPSlGmG8qHWOVqgepuqLlfV5bW1WYcZG2OMGSIvmca5wHtFZC9wN/AuEfkpcMhtcsL93egeXw/MTqlfBxxwy+vSlPerIyIBYBLQnOFcZoJKJJR7N+4jHIuP9aUYY9LIGjRU9QZVrVPVuTgd3I+q6oeAdUByNNNq4EH38TpglTsi6kScDu/n3CasDhE52+2vuHpAneS5rnRfQ4GHgYtEpMrtAL/ILTMT1Iv1rfzjAy/xxI7DY30pxpg0hjMj/BvAvSJyDfAmcBWAqr4iIvcCrwIx4HpVTX5tvA64AygBfuf+ANwO3CUiu3AyjFXuuZpF5GvARve4r6pq8zCu2RS4I50RALoisTG+EmNMOjkFDVV9DHjMfXwEuHCQ424CbkpTvglYkqa8FzfopHluDbAml+s041dzlxM0wtFEliONMWPBZoSbgtLc7QSNXuvTMKYgWdAwBaXFzTR6oxY0jClEFjRMQWnuCxrWPGVMIbKgYQpKS7dlGsYUMgsapqAcsUzDmIJmQcMUlL4+DesIN6YgWdAwBaXZOsKNKWgWNEzBiMYTtPc6k/psnoYxhcmChikYyU5wsEzDmEJlQcMUjJauaN9j69MwpjBZ0DAFI9mf4feJjZ4ypkBZ0DAFI9k8Nb2y2JqnjClQFjRMwUjO0Zg52YKGMYXKgoYpGMk5GtMnlVjzlDEFyoKGKRjNXREqigJUFAds5z5jCpQFDVMwWrojVJWFKAr4LNMwpkBlDRoiUiwiz4nIiyLyioj8q1v+FRHZLyJb3J9LU+rcICK7RGS7iKxMKV8mIlvd577vbvuKuzXsPW75BhGZm1JntYjsdH9WYyaslu4oVaVBioN+69MwpkB52bkvDLxLVTtFJAg8KSLJbVq/q6rfSj1YRBbjbNd6KjAT+KOInOxu+XorcC3wLPAQcDHOlq/XAC2qOl9EVgE3Ax8QkWrgRmA5oMBmEVmnqi3De9umEPVG4xQH/RQH/MQSSiyeIOC3ZNiYQpL1/0h1dLp/Bt0fzVDlcuBuVQ2r6h5gF7BCRGYAlar6jKoqcCdwRUqdte7j+4EL3SxkJbBeVZvdQLEeJ9CYCSgSSxAK+CgOOv8swzFrojKm0Hj6GicifhHZAjTifIhvcJ/6jIi8JCJrRKTKLZsF7EupXu+WzXIfDyzvV0dVY0AbUJPhXAOv71oR2SQim5qamry8JVOAIrEERQEfxUE/YEuJGFOIPAUNVY2r6lKgDidrWILT1DQPWAo0AN92D5d0p8hQPtQ6qdd3m6ouV9XltbW1Gd+LKVyReIKg/2im0WuZhjEFJ6cGY1VtBR4DLlbVQ24wSQA/Ala4h9UDs1Oq1QEH3PK6NOX96ohIAJgENGc4l5mAovFk85RlGsYUKi+jp2pFZLL7uAR4N/Ca20eR9D7gZffxOmCVOyLqRGAB8JyqNgAdInK2219xNfBgSp3kyKgrgUfdfo+HgYtEpMpt/rrILTMTUCSWIOT3URSwoGFMofIyemoGsFZE/DhB5l5V/Y2I3CUiS3Gai/YCnwRQ1VdE5F7gVSAGXO+OnAK4DrgDKMEZNZUchXU7cJeI7MLJMFa552oWka8BG93jvqqqzcN4v6aADewIt7kaxhSerEFDVV8CTk9T/uEMdW4CbkpTvglYkqa8F7hqkHOtAdZku04z/h0NGk6mEbZMw5iCY4PgTcEIx53mqb4+DVtKxJiCY0HDFARVTekIt+YpYwqVBQ1TEGIJRRUn07COcGMKlgUNUxAi7pyM/kNuLdMwptBY0DAFIRk0+k3us0zDmIJjQcMUhEg8TaZhHeHGFBwLGqYgpDZPFQWsI9yYQmVBwxSEZKZRFPAhIoQCPpunYUwBsqBhCkJfpuHun1Ec8FmfhjEFyIKGKQipHeGAu3ufNU8ZU2gsaJiCEE3pCAc3aFhHuDEFx4KGKQipHeEAxUFrnjKmEFnQMAUhnCbTsO1ejSk8FjRMQTi2I9xvmYYxBciChikIA5unioI+6wg3pgBZ0DAFoa8jvN/oKcs0jCk0XrZ7LRaR50TkRRF5RUT+1S2vFpH1IrLT/V2VUucGEdklIttFZGVK+TIR2eo+931321fcrWHvccs3iMjclDqr3dfYKSKrMRPSMZlGwNc34c8YUzi8ZBph4F2q+lZgKXCxiJwNfAl4RFUXAI+4fyMii3G2az0VuBj4gbtVLMCtwLU4+4YvcJ8HuAZoUdX5wHeBm91zVQM3AmcBK4AbU4OTmTgiAzrCg35fX/ZhjCkcWYOGOjrdP4PujwKXA2vd8rXAFe7jy4G7VTWsqnuAXcAKEZkBVKrqM6qqwJ0D6iTPdT9woZuFrATWq2qzqrYA6zkaaMwEMnByX9AvRGM6lpdkjEnDU5+GiPhFZAvQiPMhvgGYpqoNAO7vqe7hs4B9KdXr3bJZ7uOB5f3qqGoMaANqMpxrzNz5zF427m0ey0uYkFLXngIneMQSlmkYU2g8BQ1VjavqUqAOJ2tYkuFwSXeKDOVDrXP0BUWuFZFNIrKpqakpw6UN37f/sIN7N+7LfqDJycAht0G/r6/MGFM4cho9paqtwGM4TUSH3CYn3N+N7mH1wOyUanXAAbe8Lk15vzoiEgAmAc0ZzjXwum5T1eWqury2tjaXt5Sznkic7oiN6sm3SCxBwCf4fM73hFDARzRuzVPGFBovo6dqRWSy+7gEeDfwGrAOSI5mWg086D5eB6xyR0SdiNPh/ZzbhNUhIme7/RVXD6iTPNeVwKNuv8fDwEUiUuV2gF/klo2JaDxBJJ6gKxIbq0uYsCKxRF8nOEDAJ9YRbkwBCng4Zgaw1h0B5QPuVdXfiMgzwL0icg3wJnAVgKq+IiL3Aq8CMeB6VU1+Nb8OuAMoAX7n/gDcDtwlIrtwMoxV7rmaReRrwEb3uK+q6ph1KCQzjO6wZRr5Fokn+jrBIdmnoagq7shsY0wByBo0VPUl4PQ05UeACwepcxNwU5ryTcAx/SGq2osbdNI8twZYk+06R0OPGzQs08i/aLx/ppF8HI0roYAFDWMKhc0Iz0G3Gyy6whY08i0cS/R1goMz5BawJipjCowFjRx092Ua1jyVb5FYom+4LUDAl8w0LGgYU0gsaOSgJ5rs07BMI98GdoQH3ce2lIgxhcWCRg6SzVLd0TiJhA0HzaeBHeGhvuYpu8/GFBILGjlIdoSrHs06TH4M7AhPBpCYZRrGFBQLGjlIndRnI6jyK3JMR7j1aRhTiCxo5KA7JbuwuRr5dUyfhts8FbFFC40pKBY0ctCTkl1YppFf4dixk/vAMg1jCo0FjRykNk/Z+lP5FY33H3Lb16dhK90aU1AsaOQgNVB02rDbvIoM0hFuzVPGFBYLGjnoTmmSsj6N/BrYEZ5cOsSap4wpLBY0ctAdieOu3G19Gnl27Cq31qdhTCGyoJGDnkic6rIiwGaF51vEOsKNGRcsaOSgOxJnSnkIsPWn8s1ZzTZd85T1aRhTSCxo5KAnEmdyaZCAT2yl2zxS1UE7wi3TMKawWNDIQVckRmkoQFlRwIbc5lFyUcJ0Q24taBhTWLxs9zpbRP4kIttE5BUR+Zxb/hUR2S8iW9yfS1Pq3CAiu0Rku4isTClfJiJb3ee+7277irs17D1u+QYRmZtSZ7WI7HR/VjOGeiJxSkJ+ykJ+yzTyKBJzAkPq6KlAcka4NU8ZU1C8bPcaA/5eVZ8XkQpgs4isd5/7rqp+K/VgEVmMs13rqcBM4I8icrK75eutwLXAs8BDwMU4W75eA7So6nwRWQXcDHxARKqBG4HlgLqvvU5VW4b3toemOxKnNOintChgo6fyKNlvkVw6BI4GkGjMMg1jCknWTENVG1T1efdxB7ANmJWhyuXA3aoaVtU9wC5ghYjMACpV9RlVVeBO4IqUOmvdx/cDF7pZyEpgvao2u4FiPU6gGRPdkRhlRQE307DmqXzpyzQC/r4ymxFuTGHKqU/DbTY6HdjgFn1GRF4SkTUiUuWWzQL2pVSrd8tmuY8Hlvero6oxoA2oyXCuMdETdZunigL9JvqZ4TkaNNL1aVjzlDGFxHPQEJFy4AHg71S1HaepaR6wFGgAvp08NE11zVA+1Dqp13atiGwSkU1NTU0Z38dQRWIJonF1mqdCAcs08igSd+5l+lVuLdMwppB4ChoiEsQJGD9T1V8AqOohVY2ragL4EbDCPbwemJ1SvQ444JbXpSnvV0dEAsAkoDnDufpR1dtUdbmqLq+trfXylnKW3IDJyTT81qeRR+G+jvCj3xFEhIBPbPSUMQXGy+gpAW4Htqnqd1LKZ6Qc9j7gZffxOmCVOyLqRGAB8JyqNgAdInK2e86rgQdT6iRHRl0JPOr2ezwMXCQiVW7z10Vu2ajrjjpBojQUsEwjz5JNUKmZBjhNVBY0jCksXkZPnQt8GNgqIlvcsn8CPigiS3Gai/YCnwRQ1VdE5F7gVZyRV9e7I6cArgPuAEpwRk39zi2/HbhLRHbhZBir3HM1i8jXgI3ucV9V1eahvdXhSc7LKA35KS/yW59GHh0dcuvvVx70i/VpGFNgsgYNVX2S9H0LD2WocxNwU5ryTcCSNOW9wFWDnGsNsCbbdY60npSgURpyJvclEorPl+7WmFyk6whP/m2ZhjGFxWaEe3Q00whQVuR8I07d/tUMXTjm3MfiYP9/jgGfBQ1jCo0FDY+SzVElbqYB2KzwPOmNJpcRGdA8FbDmKWMKjQUNj1L7NCpLggC090TH8pImjGSmUWQd4cYUPAsaHqUGjZoyZ3n0I12RsbykCSM55LY42D/TCFnQMKbgWNDwqCelearaDRotFjTyojeaKdOw5iljCokFDY+S7e4lwaNBwzKN/EhmGkUDO8L9NrnPmELjZZ6GIbXd3d/XYdtsQSMvwoN1hPt9toyIMQXGMg2PwrEEIs6Es1DAR0VxwIJGnvTG4gT9gn/AnJeQ30csYc1TxhQSCxoehWMJigI+3H2jqCkLWfNUnoSjiWOyDEjOCLdMw5hCYkHDo0is/wdbdVmI5q7wGF7RxBGOxY/pBAdrnjKmEFnQ8GjgB1t1WRHNXTZPIx/CscQxw23B5mkYU4gsaHgUjib6rY1UY5lG3vRGB8s0bEa4MYXGgoZHyT6NpKqyEM1dEZwV3M1whGOJYxYrBCfTiFmmYUxBsaDhkdM8dbQJpaYsRDSudNj6U8M2aPNUwEfEMg1jCooFDY/CsUS/yWfJCX7NnTaCargGbZ6ynfuMKTgWNDwa2DxVXW6zwvPFCcjWEZ4PneGYLW9jRpSX7V5ni8ifRGSbiLwiIp9zy6tFZL2I7HR/V6XUuUFEdonIdhFZmVK+TES2us993932FXdr2Hvc8g0iMjelzmr3NXaKyGrGiNPu3r95CmxWeD6Eo3GK02UatglTzv7lwZdZ/ZPnxvoyzATmJdOIAX+vqouAs4HrRWQx8CXgEVVdADzi/o373CrgVOBi4Acikvy0vRW4Fmff8AXu8wDXAC2qOh/4LnCze65q4EbgLGAFcGNqcBpN4ejAIbe2aGG+ZM401AYb5OCl+ja2H+wgYTPpzQjJGjRUtUFVn3cfdwDbgFnA5cBa97C1wBXu48uBu1U1rKp7gF3AChGZAVSq6jPqfArcOaBO8lz3Axe6WchKYL2qNqtqC7Ceo4FmVEUGNE/VlBUB1jyVDwMDclLI78y+t6VEvInGE+w93EU4lqCp04aDm5GRU5+G22x0OrABmKaqDeAEFmCqe9gsYF9KtXq3bJb7eGB5vzqqGgPagJoM5xp14QEzwktCfoqDPpurkQcD+4uSAn6nzJqovHnjSFdfgH2zuXuMr8ZMVJ6DhoiUAw8Af6eq7ZkOTVOmGcqHWif12q4VkU0isqmpqSnDpQ3dwNFT4GQbR2z01LBlmhEOEI1ZpuHFzkOdfY/fPGJBw4wMT0FDRII4AeNnqvoLt/iQ2+SE+7vRLa8HZqdUrwMOuOV1acr71RGRADAJaM5wrn5U9TZVXa6qy2tra728pZyFY3FC/v63a1ZViX2jy4PBhtwmm6eiCcs0vNjZ6AQNEcs0zMjxMnpKgNuBbar6nZSn1gHJ0UyrgQdTyle5I6JOxOnwfs5twuoQkbPdc149oE7yXFcCj7r9Hg8DF4lIldsBfpFbNurSZRrzast5/XDXWFzOhBGLJ4gldJBVbq15Khe7GjupqyphRmUx+yxomBHiZROmc4EPA1tFZItb9k/AN4B7ReQa4E3gKgBVfUVE7gVexRl5db2qxt161wF3ACXA79wfcILSXSKyCyfDWOWeq1lEvgZsdI/7qqo2D/G9DpmqHrPKLcC82jKauyK0dEWockdTmdxE4sn9wdMvIwLWPOXVzsZOFkwtpzsSZ1+LBQ0zMrIGDVV9kvR9CwAXDlLnJuCmNOWbgCVpyntxg06a59YAa7Jd50jq2450QBPKSbVlALx+uJNlZdWjfl0TQW80/b0FZ7tXOBpYzODiCWV3Uyfnza+htTvK4ztHpm/PGJsR7kHyQ2vgB9u82nIAdjdaE9VQ9W2jm6YjPGTNU57Vt3QTiSWYP7WcOdWlHGoP0xuNZ69oTI4saHjQt4f1gA+2uqpSQn4fuw93pqtmPAhnyDSSzVMxW7Qwq8PuKL5plcXMqSkFnEBiTL5Z0PCg79vwgNFTfp8wd0qpZRrD0Ove28FWuQVrnvKiO+KstlxWFGB2tRM0bASVGQleOsKPe319Gmk6a0+aUs6Oxo7RvqQJI3Om4Q65taCRVVfYCb6lIX/fagUNbb1jeUlmgrJMw4NMH2wn1Zbx5pFu+2AboqODDGzI7XD0ZRqhAJNLgwC0dtt2xCb/LGh4cLQj/NgPtvlTy4kllPWvHhrty5oQwn3NUxmG3FrQyKo74mYaRX6Kg35KQ35bTNOMCAsaHoTdUSjpMo2LTp3OaXWT+OzPX+D3Lx8c7Usb944OuU2XaSSbp6wjPJvUTAOgqjREc7cFDZN/FjQ8SDahpNvHurwowM8+fhZzp5Txwz/vHu1LG/eODrlNt4yIZRpeJfs0StwBBVVlQWueMiPCgoYHmdrdASqKg5w7r4adhzps74ccJfuLijP0aURiFjSy6Y7EKA358fmc7KyqNGQbhJkRYUHDg0zfhpNOnl5BVyTO/tae0bqsCaE3w71NloUtaGTVFYlTGjoaeKtKQ7Ra85QZARY0PIgMsoxIqoXTKgDYcciG3+Yi08i0ZPZhM5uz6w7HKA0dHUFfVRq0TMOMCAsaHmRrngIn0wDYftBmh+ci071NTvjrsaCR1TGZRlmI9t4YMesPMnlmQcOD5OipdB3hSZXFQWZOKmb7wUz7U5mBejOMTEuWJUdYmcF1R2KUFaVmGs6qy6091hlu8suChgeDrXI70MnTK9h+yDKNXIRjCUJ+X18HbiqfTygK+PqCthlcV/jYTAOwfg2TdxY0PPAaNBZOq2B3Y6c1CeQgHEu/a19ScdBvfRoe9ETifXM0AKrdTKO5yzINk18WNDyIxBL4fULAnyVoTK8gEk+w94gtYOiVsyPi4H1FJUG/9Wl40BWJUVp09D4mlxJpsUzD5JmX7V7XiEijiLycUvYVEdkvIlvcn0tTnrtBRHaJyHYRWZlSvkxEtrrPfd/d8hV3W9h73PINIjI3pc5qEdnp/iS3gx112b4NJy2Y6nSG77QmKs8G2x88qTjosz4ND7oHZhpu85QtJWLyzUumcQdwcZry76rqUvfnIQARWYyzVeupbp0fiEjy68+twLU4e4YvSDnnNUCLqs4Hvgvc7J6rGrgROAtYAdzo7hM+6sKxRMZO8KR5U52d/HY3WdDwKt3e66msecqbrnDsmHkaAC02K9zkWdZPQlV9HGffbi8uB+5W1bCq7gF2AStEZAZQqarPqDNl+k7gipQ6a93H9wMXulnISmC9qjaraguwnvTBa8SFowlPmUZpKMCsySXsarSg4VU4mkg7GzypKOin1yb3ZRSLJwjHEv3maZSE/BQHfdY8ZfJuOH0anxGRl9zmq2QGMAvYl3JMvVs2y308sLxfHVWNAW1ATYZzjTqneWrwD7ZU86aWs8syDc/CsXjGTKMk6KM3YplGJt1uJlZW1P/faFVpyJqnTN4NNWjcCswDlgINwLfd8mPHTYJmKB9qnX5E5FoR2SQim5qamjJd95CEY94yDYD5teXsbuwikbA1qLzIlsUVB/19S42Y9Lr7NmDqv6daVWnIMg2Td0MKGqp6SFXjqpoAfoTT5wBONjA75dA64IBbXpemvF8dEQkAk3CawwY7V7rruU1Vl6vq8tra2qG8pYwiWdrdU82fWk5PNM6BNluDyoveLFlcccD6NLLp6tvqdUCmURa0Pg2Td0MKGm4fRdL7gOTIqnXAKndE1Ik4Hd7PqWoD0CEiZ7v9FVcDD6bUSY6MuhJ41O33eBi4SESq3Oavi9yyUZecgObF/KnlANav4VH3gOUvBrLRU9llzDSsecrkWdY9wkXk58A7gSkiUo8zoumdIrIUp7loL/BJAFV9RUTuBV4FYsD1qpr8mngdzkisEuB37g/A7cBdIrILJ8NY5Z6rWUS+Bmx0j/uqqnrtkM+rXPo0UoNGTVkRS2ZV4o4uNmn0ROKUZAgaJSHLNLLpyzQG3MeashCHO8NjcUlmAssaNFT1g2mKb89w/E3ATWnKNwFL0pT3AlcNcq41wJps1zjSwrEEZWVZbxXgjI+vLgvx7T/soCca53urlnL50jHpvx8XeqKZM42igE3uy6bHHSgwMPhOKS+ivTeW05ceY7KxGeEeeB1ym7RoRgWxRIKKogC/ealhBK9s/HM2Dxo8IBcH/X3Lp5v0jvZp9L+PtRVFABzptCYqkz/evj4f5yLxRE7f1P7jyrcSjiW485m9/GzDm3SGY5QX2a0eKJFQeqOJvi1K0ykO+ojEE8QTij/NooYmtU/j2EwDoKkjzMzJJaN+XWZiskzDg3CWpS4Gmjm5hBOnlHHpW2YQiSV49LXGEby68SvZ7JSpeSoZUMI27HZQR/s00mca1q9h8smChgdelxEZaNmcKqZWFPGQNVGl1T1IW3yqvo2YbILfoJL3sXTAkNtk0GjqsKBh8seChgfO5L7cOxJ9PuG8+VPYsq91BK5q/OvrwM3SPAXYUiIZdIVjBHxyzLDwmnJn/SkLGiafLGh40BvNvNRFJnNqSjnU0WvNK2l0R51mlWwd4WD7hGeSnOsycGh3UcDPpJKgNU+ZvLKgkUUkliCW0CF3ZM+pLkUV9rfYDPGB+ppVPDRPWdAYXFc4dszIqaQp5SGaLGiYPLKgkUW328mYqQklk9nVpQC82dydt2uaKHpz6NOwoDG47gwTJGsrijjcYUNuTf5Y0MiiK5J+BVGv5rhBY59lGsfwlGm4AxBsKZHBOXNdBgsaxZZpmLyyoJFFdzh7u3smteVFhAI+9lmmcYxuD0NuLdPIrr03RmVxMO1zU8pDHLaOcJNHFjSyGG6m4fMJdVUlFjTS6Ek2/WUIyMlmF8s0BtfaHenbE3yg2ooiOsIxG7Js8saCRhbDzTTAaaKyPo1j9TVPZRpy6w51tvWnBtfWE2VSSSjtc8lZ4TaCyuSLBY0s+jKNYQSN2VWllmmk4W1yX7JPw4JGOqpKW080Y6YB9PVrdPRGcXYeMGZoLGhkkRw9NXC2bS7mVJfS3hujzTbE6acnEkeEjEu0FFmfRkbdkTjRuDKpZJCgkbL+VFt3lLd941G+u37HaF6imWAsaGThZYRPNrOrncXi9rVYtpGqOxKnNHjspLRUR9eesj6NdFp7nC8ikwcJGlPdTGPP4S5+tWU/Hb0xbnvidQ629Y7aNZqJxYJGFl156NOwuRrp9URjGTvBAYJ+wSe29tRgWt09wDM1Ty0/oYofP7GHnz77BnNrSoknlC//aiv//add7D3cNZqXayaArEFDRNaISKOIvJxSVi0i60Vkp/u7KuW5G0Rkl4hsF5GVKeXLRGSr+9z33W1fcbeGvcct3yAic1PqrHZfY6eIJLeEHVX5yDTm1Zbj9wnbGtrzdVkTQk+WrV4BRITioO3eN5g2N9MYrCNcRLjh0kUc7gyzs7GTj59/ElefM5c/bmvkPx7eztpn9o7exZoJwUumcQdw8YCyLwGPqOoC4BH3b0RkMc52rae6dX4gIslPhVuBa3H2DV+Qcs5rgBZVnQ98F7jZPVc1ztayZwErgBtTg9No6YrECAV8BD3uEZ5OcdDPgqnlvFTflscrG/+y7Q+eVBz002trd6WV7CcbrE8DYNk+EfW9AAAgAElEQVQJVVz2lhmUhfy8d+lMvnTJKTzy9+9gTnUph22DJpOjrJ+Eqvo4zt7dqS4H1rqP1wJXpJTfraphVd0D7AJWiMgMoFJVn1Fn6MadA+okz3U/cKGbhawE1qtqs6q2AOs5NniNuO5w/Ji9l4fitLpJbN3fZiNXUvREM+8PnlQS9Ns8jUH09WkM0jyV9B9XncZDnzufyuIgQb+PebXl1FYU0dxlQ3FNbob69XmaqjYAuL+nuuWzgH0px9W7ZbPcxwPL+9VR1RjQBtRkONeocr4ND3/XvbfUTaa5K8L+VltOJMlrplEU9Nk8jUG0dnsLGqWhACfUlPUrqy4L2VawJmf57ghPNwxGM5QPtU7/FxW5VkQ2icimpqYmTxfqVXckNuTZ4KlOmzUJgK3WRNWnOxKnJJg9IBcH/IQtaKTV1hMl5PcNaUHNKeUha54yORtq0DjkNjnh/k7uZ1oPzE45rg444JbXpSnvV0dEAsAknOawwc51DFW9TVWXq+ry2traIb6l9Loi8awjfLw4ZUYFQb+wdb8FjaSeDAvtpSoO+qx5ahBtPREqS4IZhy0PpqasiJbuCImENZka74YaNNYBydFMq4EHU8pXuSOiTsTp8H7ObcLqEJGz3f6KqwfUSZ7rSuBRt9/jYeAiEalyO8AvcstGVXc4lpc+jaKAn5OnVVjQSOG1eaokZKOnBtPaPfhs8Gyqy0LEE9o3AssYL7J+hRaRnwPvBKaISD3OiKZvAPeKyDXAm8BVAKr6iojcC7wKxIDrVTX5f/t1OCOxSoDfuT8AtwN3icgunAxjlXuuZhH5GrDRPe6rqjqwQ37EdUXiTC5NP5wxV6fOrOTR1/LbfDae9UTifavYZlIc8Pe13Zv+Wrujg07syya5HeyRrjBVZfn5N24mvqxBQ1U/OMhTFw5y/E3ATWnKNwFL0pT34gadNM+tAdZku8aRlK8+DYCZk0s43BkmEksQyrB0xvFAVemO5jDk1jKNtNp6osycXDykujVlzmzxI50R5k/NcrAxruP7k8uDrnB+Rk8BzJjk/M/d2GFLOETjSjyhnkdPWZ9Gem09USqHnWlYZ7jxzoJGFj2R/PRpAEyrdIKGrftzdFkQL4MMKouDdPRa81Q6rd0RJg8yGzwbCxpmKCxoZJBIuE0oRfnJNKa7mcbBdgsa3dHkml7ZA3J1WYj23hjRuGUbqaLxhNvnNrRMo8rtqztie22YHFjQyKA3Fkd1eOtOpZpR6ax2a5lGbmt6JTtpW7rtG3GqNo+zwQcT9PuYXBq0CX4mJxY0MugKJzdgyk/QqCwJUBz0WdAgpXnKw+ipavcbcUuXNVGlavWw7lQ21WUhmq15yuTAgkYGfRsw5akjXESYMamEBmueSsk0st/bqjLnQ9E+3Ppr63Hux3CCxpSyItsK1uTEgkYGfZlGnobcAkyrLOKQZRp9AdnLgoXV1jyV1qF258M+uaXrUFSXhawj3OTEgkYG+c40ACfTsKBBR69zb8s9DDJINk/Zh1t/+1ucxS/rqkqHfI6acmueMrmxoJFBsgklv5lGMY0dvcf9ej8H3NV+Z3iYmNbXEW4fbv3Ut3RTURQYVvNUTbmz/lTMRqYZjyxoZDAymUYx0bge99+a97f2UFEcoLI4+wde0O+jojhg34gH2N/aw6yqkmGdY0p5CFVotqY/45EFjQySfRr5GnILRyf4HTrOO8P3t/Qwa7L3D7zqspD1aQxQ39JD3TCDxlS3P6Sx3TrDjTcWNDIYiUwjOcHveO/X2N+a2wdeVam1vQ+Ua+BNp7bC+ffY1GFBw3hjQSODrhHo05jpBo36lu68nXM82t+ae6ZhQeOotp4oHeHYsDrBwRnNB5b5Gu8saGTQ1hMl4BOKA/kLGrUVRUytKGLLvta8nXO8ae+N0tEbY2YOQaOqNGQd4SmSXzqG26eRHK7baJmG8ciCRgYNrT1Mn1SMz5f7rmiDERGWz61i096WvJ1zvEkOFc3lA6+6LGidtSmODrcdXtAoCvipKg3aysvGMwsaGRxo7c3p27BXy06oZn9rDw1tPXk/93jQFzRyap4qojea6Ft+5HhXP4R7OJipFcV9EwWNycaCRgYH2nr6+iDy6cy5VQDHbbaxv3VomQbY0NCk/a09FAd9fbPlh2NqZZE1TxnPhhU0RGSviGwVkS0issktqxaR9SKy0/1dlXL8DSKyS0S2i8jKlPJl7nl2icj33X3Ecfcav8ct3yAic4dzvbmIJ5SDbSOTaSyaUUlJ0M/mN47PoHGgtYdQwMeUMu/LXySX8W62FVkBp0+jrqoU93+VYZlaUUyjdYQbj/KRaVygqktVdbn795eAR1R1AfCI+zcishhn/+9TgYuBH4hIsof5VuBaYIH7c7Fbfg3Qoqrzge8CN+fhej1p6ggTS+iIBI2g38fpcyaz6Y1R3/K8INS3OhlcLn1FyW/Ulmk43jjSPez+jKRplUU0dYSP+1UKjDcj0Tx1ObDWfbwWuCKl/G5VDavqHmAXsEJEZgCVqvqMqipw54A6yXPdD1wo+fhq5cEBt79hqPsvZ7N09mS2NXQQiR1/yzfsb8l9JrMtJXJUNJ5gd1MnC6dX5OV8UyuKiCXUArLxZLhBQ4E/iMhmEbnWLZumqg0A7u/klvWzgH0pdevdslnu44Hl/eqoagxoA2oGXoSIXCsim0RkU1NT0zDfkiO5NtJIZBoAC6aVE08obzYfX/M1ovEEOw51MK+2PKd6U8qdpizb9RB2N3USjSuLZ1Tm5XzJVQpsVrjxYrhB41xVPQO4BLheRN6e4dh0GYJmKM9Up3+B6m2qulxVl9fW1ma7Zk9GOmgkPzR3NXaOyPkL1cv72+iOxDnrxGNif0aTSoLUVhSx89Dxdb/Sea2hA4BTpucnaEytTM7VsIBsshvW+hiqesD93SgivwRWAIdEZIaqNrhNT43u4fXA7JTqdcABt7wuTXlqnXoRCQCTgFHpCDjQ2ktFkbcF9YbiJDdo7G46vj4EN+xx/vOtOLE657onTytnV2NHvi9p3NnW0E7I7+Ok2rK8nG9qxfjKNNa/eoiHtjYQTyhfWLmQ2dXDmxVvcjPkTENEykSkIvkYuAh4GVgHrHYPWw086D5eB6xyR0SdiNPh/ZzbhNUhIme7/RVXD6iTPNeVwKNuv8eIO9Da42nZ7qEqLwowY1Lx8Rc0Xj/CvNqyIW0ctGBqBTsbO4/7DtttBzuYP7WcoD8/XZJHZ4UXfqbx2sF2PnHnJh7f0cQj2w5x8S2Ps2nv8TmgZKwM51/dNOBJEXkReA74rar+HvgG8B4R2Qm8x/0bVX0FuBd4Ffg9cL2qJmdqXQf8GKdzfDfwO7f8dqBGRHYB/xd3JNZoONDWM2JNU0nzasvZfZw0T4VjcSKxBJv2tnDWSbk1TSUtmFZOdyTeN8/jeLWtoZ1FeerPACgO+plcGhwXi2j+6oUD+H3CHz7/dh7+/NsREda9eCB7RZM3Q26eUtXXgbemKT8CXDhInZuAm9KUbwKWpCnvBa4a6jUOR0NrL6fVTR7R15hXW8YDz+9HVfMy3r5QqSqXfO8JWrudRfbOGkLTFMDJ05zRQjsbO47bJonDnWGaOsIsmpGfkVNJJ00pK/j+tURC+fWLBzh/wRRq3IERC6dX8NpBa7IcTTYjPI22nihHuiJ5WaIhk/lTy+kMxyb8bNxdjZ283tRFachPRXGAt82bMqTznDzV+aDccRx3hr96oB0gr5kGwCkzKnntYAej1Po7JJvfbGF/aw9XLJ3VV3bytAp2HCrs655oLGiksdmddHfGnKosRw5PcgTVRG+ienLXYQB+/omz2fqVlUPqzwCYVBpkakUROw4dP98s79u0r9/KAQ+/cpDioI+ls/ObBS+aXkFbT7SghzT/4vn9FAd9vGfxtL6yhdPKae2O2n4go8iCRhob9jQT9Aunzxnh5qmpTtDYOcGDxlO7jjCnujQvTUonT6s4bobdHu4M86VfbOWTd23iSGeYaDzBQ1sbePeiaZQV5W9jMDiauWxraM/refOlvTfKg1v285enzez33k92JzhuP46+SIw1CxppPLenmdPqJlMczN8+GulMrShi5qRint59eERfZyzF4gmeff0I584fWpPUQAunO80Rx8Nqt7958QDxhNLaHeWGX2zlse1NtHRHuTyleSZfkh++2xoK88P3l8/vpzsS58PnnNCvfKHbz7V9lPs1nn+zhc/+/AXae6Oj+rqFwILGAN2RGFvr24Y0jyBXIsKFi6bx+I7D9EYn5ofgi/VtdIZjnJenoHHBwqmEYwn+vCM/M/8L2a+2HGDRjEr+8eKF/OHVQ1z3081MKgnyjpPzM4E1VWVxkLqqkoLsVFZVfvrsG5xWN+mYwSk15UVMKQ+NapNlPKHc8MBW1r14gH/51cuj9rqFwoLGAC+82UosoaMSNADevXgaPdE4z+w+MiqvN9r+uO0QPoFz5g1tmO1AZ51UzeTSIL9/uSEv5ytUew93sWVfK1csncknzj+J2z68jIXTK1h9zgmEAiPzv+0p0yt5rQCap9q6o/3WGNuwp5mdjZ186OwT0h5/8rQKtg+zyfJgWy87PQaeB56vZ/uhDs45qYZfbTnAg1v2D+u1xxsLGgNs2NOMT2DZCSPbCZ509knVlIX8rN92aFRebzTFE8ovnq/nnQun5mXfB3BWCH7Pomk8sq2RcGxiZmeRWIJ/WfcKfp/wl2+diYhw0anT+e1nz+f/XrRwxF530YwKXj/cNeZZ78fWbuT9tz5NNO4s5nnXs28wqSTIX542M+3xJ0+rYMfBjiFfd2t3hPff+jR/8Z9PsnFvM6o66ATSnkic7/xhB0tnT+aua1awdPZk/u232+gMx4b02uORBY0Bnt51mCWzJo3Y8iEDFQX8vP3kWh7Zdoj4BJvp/MTOJg61h7lqWV32g3NwyVum0xGO8fSuiZedJRLKP9z3Io/vaOLr71sy4hNMUy07oYp4Qnlo69hlcS+82cLmN1p4/XAX922qp7Gjl4dfPshVy+ooCaXvY1x56nR6onHWPr037fNHOsN9fWDxhLL9YAd/2t5IPOEEh7+/90UaO3qprSjioz/ZyJk3PcKpNz7M1Wue46GtDf0CyJqn9nCwvZd/unQRAb+Pr7z3VJo6wtz62K6834tCZUEjRVc4xpZ9rXnrtPXq8qWzONQe5rdj+D9rPsUTyov7Wrnj6b1UlQa5cNG07JVycO78KdSUhfjRE69PuPH533tkJ+tePMAXLz6FD5w5Z1Rf++0Lalk0o5L/fHQXsfjYLNl/x9N7qSgKcFrdJL73yA5ueGArsYTyN4M0TYHT9HnBwlr+60+7jlk6v6UrwspbnuBvfvwssXiCv/7Rs6y85XE++pON/PDPu/nphjd45LVG/vnSRfz8E2ez7IQqzptfw5XL6thzuJNP/+x53veDp2jtjnCkM8ytj+3mPYun9TVfL509mfedPosfPb6H2x7ffVxsdWBBI8Vze5qJJZRzhzj5bKguWjyNebVl/OBPu8b9ukqJhPKZ/32ey//7KR7b3sT7z6jLext8UcDP9RfM5+ndR3hi58QZeXbvpn1875GdXLmsjk+946RRf32fT/jchQvYc7iLnz/35qi/fmN7L799qYGrls/my5ctprEjzFO7D3PNeSdy4pTMizPecOkiusIxvv/ozn7lNz20jcOdYZ5/s5WP/GQjG/Y08/fvOZmLFk/jlj/u4OsPbeMdJ9ey+m1zmV1dytqPreCWVafztSuW8Ng/XMC3rnor2xo6WL3mOT5w27P0RON88eJT+r3Gly9bxHkLpvD1h17j//zPMyO258vGvc2suu0Z9hzuGpHze2VBI8VTuw4TCvhYPnd0+jOSfD7h0++cz2sHO3jktcbsFQrYzQ+/xu9ePshnL1zAr64/l38c8D9YvvzN2XOoqyrh33/3Wl/b93j2X4/u5B/vf4lz59dw0/uWjNmyMhctnsYZcybz/x58hY/dsXFU2+ofeH4/sYTy4XNOYMWJ1Wz853fz8ldW8v/+YnHWuidPq+ADZ87hrmfeYK/7ofrY9kbu31zPde+cx+lzJvPkrsO8c2Etn3nXfL7x/tOYVBIi5Pdx8/tPS3u//T7hymV1fG/VUrbub6MnEucnHzmT+VP77wVTU17Emo+cyX//9Rm82tDO//mfZ2jN84ZWvdE4X7jvRZ59vZkP/XgDDW1jt/6aBY0UT+0+wvITqkZ8fkY67106kynlReN68bXHdzTxP39+nQ+dPYfPv3sBS2dPHrGRPkUBP/986SK2NbRz02+3jchrjJbn32zhW3/YweVLZ/KTj6ygKDD6//6SfD7hfz9xNl+65BT+tL2Rb/7+tVF5XVXlvs37OHNuVV9WMaW8iEAOK/l+/j0LCAV8/Ntvt7H9YAd/d88WTplewecuXMDX3/cW3rmwln+7wgnI1WUhHrjuHB647m1Mn5R5NetL3jKDP3z+Hfzh82/n7RmGO1922gzu+MiZ7Dncxb88+Irn684kkVCe3n2Yf3nwZfYe6ebLly2ivSfK3/7vC2mbZkejXzS/00rHscOdYbY1tPOFlSM3OiWToN/H+Qum8PiOJhIJzWn/7ELQ0etMQJtXW8aXL1s8Kt+UL3nLDD527omseWoPZ86t5rLTZoz4a46Eb/9hOzVlIb7+vreMWJDNRXHQz6feMY+Dbb3c8fRe/vKtMzlz7sgOQX9hXyuvN3XxqbfPG/I5plYUc/0F8/mPh7fzx22HqCgKcOuHllEc9LNoRiV3fHRFv+NPqPG+H8nA7GIwb5s/hc9euIDvrN9BTXmIWZNL+MCZs6kY4sCab/z+NW57/HUAPrhiDh8//yQqigN88YGt3PnMGzyx8zDbGtqpKgvS2B7mpNoy7r72nCG9llcWNFwlQT+3fGApb83zmj65eNu8Gn75wn62H+rI+4J0I+VgWy9//aNnef1wFyJw/6fOGdVM7YZLT+GZ14/wnfXbuWTJ9HERbKPxBLG4UhLy8/iOJp7adYQvX7Yo70uDDNcXVi7kj9sO8fG1m7hl1VIuWDg1e6UchWNx1m05wH2b6ykJ+rl0mIH/0++cx7ITqnhy52HOnT8la1/ISPj0O+fx7OtH+MlTewG4b1M9n75gHvUtPfzVGbOYMSnziLg/bW/kl8/v5y9Om8HtT+7hr06fxeffczJ1VU69q5bN5mcb3uTGda8Q9AsrT51OR2+MRdMreUvdpJF+e8hEG32yfPly3bRp01hfxpAcaO3hbd94lC9ftoiPnz/6HaGp4gmlMxyjNOSnvSfK64e72H6wg9KQn1OmV7J4ZiWqykd+spHn9jTzyXecxBlzqjKm7yPlwS37+dzdW1jzkeW865T8jtQaDlXlmd1HeOjlBs6bX8vyuVU8sbOJbz28g8OdYf7itJn85qUDTKss5g+ff/uYNItms/dwF5/66Wa2H+rgm+8/jauWz85aR1X58RN72PxGC93ROPNqy/jw2Sf07VaZetw/3PcSDzxfT1HAx9++az6fedeCkXoro0pVCccSbNzbzKd/9jwdvU7f0JTyEF9YuZCyogBnnVjTt3jnkc4wL9W3URz087E7NtLjzjmpLgvxyP99B1UD5jltrW/jxnUv88WLTxny/jQDichmVV2e9TgLGoXlXd9+jDnVpcek0qPptYPtfOquzew90j3oMafOrKSiOMCzrzfz1ctP5epz5o7eBQ4QjSd4+zf/xOzqUu659uyC2JvkQGsP/3Dfizy9+wh+n/Rra140o5J5tWX85qUGzps/hVtWLWVK+dBW/h0NPZE4n7hzE0/vPswtq07nvW9NP8kuae3Te7lx3SucOKWMsiI/Ow91MqW8iF//7XlsP9jBG0e6iMQTvN7UxR1P7+Vv3zWfz7/75HGRJQ5FY3svB9p6Cfl9XP+/z/eNfgr4hIuXTOej587l7+7Zwr5mp3N71uQSbv3QGdzx9F4ue8uMvA9ZH8yEChoicjHwPcAP/FhVvzHYseM9aPzLgy9z36Z61n3mXE6cUkZXOM6k0sztoY0dvfzs2Tdp7AhzzrwalsysZE51aU6diOA0Fax9ei/fXb+TiuIAHz33RKLxBJXFAeqqSlk8s5LeaJwndh5m3YsH6I3GWXZCFV/5y1PH/H/4nzy1h3/99aucv2AKX1i5kEUzKvu2Qx3NTa5i8QR3b9zHfzy8nWg8wRcvPoUrl9Xx5x1N7G/pYcmsSaw4sRq/T2hs72VKedGY3zsvuiMxVq95jk1vtPDZdy1gxqRiAn4fF506jcriIG09Uf746iEOd4b59vodnDuvhjUfORMR4aX6Vq784TMUB3y09/YfjXXJkun891+fMS7uQT70RuPsa+6mJxrnNy81cOcze+mNJqgoDvBvVyyhvqWHi5dM79s2YTRNmKAhIn5gB87WsfXARuCDqvpquuPHe9DYfrCDv/nxs3SGY5QE/bT2RPnCyoXUVZXywOZ6gn6hoa2Xfc3dXHPeSQQDwi1/3Ek0nqA8FKDDHSJZW1HE9e+cx4zJJbT1pF+JsyjgY9GMSsqKAjz/RgvffPg19jX3cMHCWm5+/2lMrRy5PdLzTVX56YY3+fpvt9ETjVNRHOAzF8znQGsPP9+4j4qiAFMri5laUcS0yiKmVhQzY3IxFyycyvTKYvYe6eJQe5i9R7rY1tDOshOqWDp7Ms++foRIXEGV/a29zJhUzJJZk/AJJFQJ+n2cPK2CVxvauX9zPX96rZGGtl5WnFjNze8/bUza1EdKbzTOF+5/iV+njPAL+X3UVhRxpCtMb9QZ+lxXVcIvP31uv31TfvXCfn7w2C6uPmcuF5wylZDfRyjgo7I4UBCZ4Vipb+nmx0/s4a/OmDXiO4VmM5GCxjnAV1R1pfv3DQCq+u/pjh/vQQOczOHfH3oNVaUnGufhV5x1qU6oKaUsFKCqLEhRwM+j7pyOi0+dzhcvOYU51aW8eqCd1w62c9/mep7b05zT654yvYJ/vmwR5y8Y/X6JfGnqCPPs60d44Pl6HtvehE/gitNnURTw09TRy6H2MI0dvTR1hEkoiEBZKNBvPkIo4Es7s3dgM1OSE0CgLOTn/AW1vO+MWVy0eNqE/DBUVZ5/s5WashCtPVF+//JBGjt6qSwO8r7TZzG3pozSIn9flmfGj4kUNK4ELlbVj7t/fxg4S1U/k3LMtcC1AHPmzFn2xhtvjMm1jgRV5Wcb3qSsyM973zoLf0oa/9j2RmJx5d2Lj23zVFVe3t+OCEwqCZLu86szHGNbQzuRWILaiiLecfLUfucf7za/0UxFcbBvb/FU8YTyxpEu1r14gMOdYU6rm0zd5BJmTi5hdnUpT+46zN7DXZw7v4bKkiCoM29gf2sPOw514BPB5xN6IjFe3t/O9EnFXHH6LMoLbASUMV5NpKBxFbByQNBYoap/m+74iZBpGGPMaPMaNMZDDlkPpI7zqwPG77RpY4wZx8ZD0NgILBCRE0UkBKwC1o3xNRljzHGp4BtgVTUmIp8BHsYZcrtGVfOzsIsxxpicFHzQAFDVh4CHxvo6jDHmeDcemqeMMcYUCAsaxhhjPLOgYYwxxjMLGsYYYzwr+Ml9uRKRDmD7gOJJQFueX2oKkK8NqvN9fSPxfvN9znzePyj8e5jP89m9Gx67f8eaApSpavY1hFR1Qv0Am9KU3TYarzOMc+X1+kbo/eb7GvN2/8bDPczn+eze2f3L9/lyuSfHS/PUr8f6ArLI9/WNxPu1e1hY58unQn+vhXzvoPDfb17PNxGbpzaph/VTxsvrTFR2/4bO7t3w2P07Vi73ZCJmGrdNsNeZqOz+DZ3du+Gx+3csz/dkwmUaxhhjRs5EzDSMMcaMEAsaLhGZLSJ/EpFtIvKKiHzOLa8WkfUistP9XeWW17jHd4rIfw041wdFZKuIvCQivxeRKWPxnkZTnu/fB9x794qIfHMs3s9oGsK9e4+IbHb/jW0WkXelnGuZW75LRL4vE3H7wAHyfP9uEpF9ItI5Vu+n4OVzaNd4/gFmAGe4jytw9iVfDHwT+JJb/iXgZvdxGXAe8Cngv1LOEwAagSnu39/E2a52zN/jOLl/NcCbQK3791rgwrF+fwV2704HZrqPlwD7U871HHAOIMDvgEvG+v2Ns/t3tnu+zrF+X4X6Y5mGS1UbVPV593EHsA2YBVyO88GF+/sK95guVX0S6B1wKnF/ytxveZUcB5tG5fH+nQTsUNUm9+8/Au8f4csfU0O4dy+oavLf1CtAsYgUicgMoFJVn1HnE/DOZJ2JLF/3z33uWVVtGM3rH28saKQhInNxvo1sAKYl/xG5v6dmqquqUeA6YCtOsFgM3D6Cl1twhnP/gF3AKSIyV0QCOP+jz85SZ8IYwr17P/CCqoZxPijrU56rd8uOG8O8f8YDCxoDiEg58ADwd6raPoT6QZygcTowE3gJuCGvF1nAhnv/VLUF5/7dAzwB7AVi+bzGQpXrvRORU4GbgU8mi9IcdtwMj8zD/TMeWNBI4X7gPwD8TFV/4RYfctN+3N+NWU6zFEBVd7tNBPcCbxuhSy4oebp/qOqvVfUsVT0HZx2xnSN1zYUi13snInXAL4GrVXW3W1wP1KWcto7joGkU8nb/jAcWNFxu/8PtwDZV/U7KU+uA1e7j1cCDWU61H1gsIsmFv96D08Y6oeXx/iEiU93fVcCngR/n92oLS673TkQmA78FblDVp5IHu00wHSJytnvOq/Fwv8e7fN0/49FY98QXyg/OSB7FaU7a4v5cijOa5xGcb7uPANUpdfYCzUAnzre8xW75p3ACxUs4677UjPX7G2f37+fAq+7PqrF+b4V274AvA10px24BprrPLQdeBnYD/4U7gXci/+T5/n3T/beYcH9/ZazfX6H92IxwY4wxnlnzlDHGGM8saBhjjPHMgoYxxhjPLGgYY4zxzIKGMcYYzyxoGDPKRORTInJ1DsfPFZGXR/KajPEqMNYXYMzxRGTdjmUAAAGOSURBVEQCqvrDsb4OY4bKgoYxOXIXxfs9zqJ4p+MsxX01sAj4DlAOHAY+oqoNIvIY8DRwLrBORCpwlt7+logsBX4IlOJMyPuYqraIyDJgDdANPDl6786YzKx5ypihWQjcpqqnAe3A9cB/AleqavID/6aU4yer6jtU9dsDznMn8EX3PFuBG93ynwCfVWf9LWMKhmUaxgzNPj26btFPgX/C2dBnvbtZnh9I3ZfhnoEnEJFJOMHkz27RWuC+NOV3AZfk/y0YkzsLGsYMzcD1dzqAVzJkBl05nFvSnN+YgmDNU8YMzRwRSQaIDwLPArXJMhEJuvs1DEpV24AWETnfLfow8GdVbQXaROQ8t/xv8n/5xgyNZRrGDM02YLWI/A/OKqr/CTwMfN9tXgoAt+BsJ5rJauCHIlIKvA581C3/KLBGRLrd8xpTEGyVW2Ny5I6e+o2qLhnjSzFm1FnzlDHGGM8s0zDGGOOZZRrGGGM8s6BhjDHGMwsaxhhjPLOgYYwxxjMLGsYYYzyzoGGMMcaz/w9h9J+xz8VaswAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sorted_data['inc'][-200:].plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Etude de l'incidence annuelle"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Etant donné que le pic de l'épidémie se situe en hiver, à cheval\n",
+ "entre deux années civiles, nous définissons la période de référence\n",
+ "entre deux minima de l'incidence, du 1er août de l'année $N$ au\n",
+ "1er août de l'année $N+1$.\n",
+ "\n",
+ "Notre tâche est un peu compliquée par le fait que l'année ne comporte\n",
+ "pas un nombre entier de semaines. Nous modifions donc un peu nos périodes\n",
+ "de référence: à la place du 1er août de chaque année, nous utilisons le\n",
+ "premier jour de la semaine qui contient le 1er août.\n",
+ "\n",
+ "Comme l'incidence de syndrome grippal est très faible en été, cette\n",
+ "modification ne risque pas de fausser nos conclusions.\n",
+ "\n",
+ "Encore un petit détail: les données commencent an octobre 1984, ce qui\n",
+ "rend la première année incomplète. Nous commençons donc l'analyse en 1985."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n",
+ " for y in range(1985,\n",
+ " sorted_data.index[-1].year)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "En partant de cette liste des semaines qui contiennent un 1er août, nous obtenons nos intervalles d'environ un an comme les périodes entre deux semaines adjacentes dans cette liste. Nous calculons les sommes des incidences hebdomadaires pour toutes ces périodes.\n",
+ "\n",
+ "Nous vérifions également que ces périodes contiennent entre 51 et 52 semaines, pour nous protéger contre des éventuelles erreurs dans notre code."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "year = []\n",
+ "yearly_incidence = []\n",
+ "for week1, week2 in zip(first_august_week[:-1],\n",
+ " first_august_week[1:]):\n",
+ " one_year = sorted_data['inc'][week1:week2-1]\n",
+ " assert abs(len(one_year)-52) < 2\n",
+ " yearly_incidence.append(one_year.sum())\n",
+ " year.append(week2.year)\n",
+ "yearly_incidence = pd.Series(data=yearly_incidence, index=year)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Voici les incidences annuelles."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAD8CAYAAABQFVIjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3X+QldWd5/H3B0FxElEg6PBDhY3GCppZHLrQLfdHxB0gPyrgjJmwOkrVWEXijy1nNrWiE7fMKFMVU5M4y7ohMWNG1FF0TCzdRIa0UWucWQSaoFE0TjMrgygjWI2KUwVj43f/eL53fLhpbt9ubve9t/vzqrrVT5/nnHNPPzT9vefH8xxFBGZmZkdrTLMbYGZmI4MDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNcTYZjdgOH3sYx+LmTNnNrsZZmZtZcuWLW9FxJT+8o2qgDJz5ky6urqa3Qwzs7Yi6R/ryechLzMzawgHFDMzawgHFDMza4i6AoqkHZJekPScpK5M+7qk1zPtOUmfLeW/UdJ2Sa9IWlhKn5v1bJe0SpIy/ThJD2b6RkkzS2WWSerO17JS+qzM251ljz36y2FmZoM1kB7KhRExJyI6Smm3Z9qciHgcQNJsYClwNrAI+I6kYzL/amA5cGa+FmX6lcC+iDgDuB24LeuaBNwMnAfMA26WNDHL3JbvfyawL+swM7MmGYohr8XA2og4GBGvAtuBeZKmAhMiYkMUu3rdAywplVmTxw8DF2XvZSHQGRE9EbEP6AQW5bn5mZcsW6mrre159wC/+70N7Nl/oNlNMTMbkHoDSgA/lbRF0vJS+rWSfiHpB6Wew3TgtVKeXZk2PY+r0w8rExG9wDvA5Bp1TQbezrzVdbW1VT/rZvOOHlY90d3sppiZDUi996FcEBFvSDoZ6JT0S4rhq1spgs2twLeA3wfUR/mokc4gytSq6zAZAJcDnHbaaX1laQln3bSOg70f/Ov3923cyX0bd3Lc2DG8svIzTWyZmVl96uqhRMQb+XUP8AgwLyLejIhDEfEB8H2KOQ4oegunlorPAN7I9Bl9pB9WRtJY4ESgp0ZdbwEnZd7quqrbfmdEdEREx5Qp/d7o2TTPXH8hX5gzjfHjin+S8ePGsHjONJ5ZcWGTW2ZmVp9+A4qkj0g6oXIMLABezDmRiouBF/P4MWBprtyaRTH5vikidgP7JZ2fcyBXAI+WylRWcF0CPJnzLOuBBZIm5pDaAmB9nnsq85JlK3W1pZMnjOeE48ZysPcDjhs7hoO9H3DCcWM5+YTxzW6amVld6hnyOgV4JFf4jgXuj4i/lnSvpDkUQ007gC8DRMQ2SQ8BLwG9wDURcSjrugq4GzgeWJcvgLuAeyVtp+iZLM26eiTdCmzOfLdERE8erwDWSloJbM062tpb7x3ksvNO59J5p3H/pp3s9cS8mbURFR/2R4eOjo7ws7zMzAZG0paqW0b65DvlzcysIRxQzMysIRxQzMysIRxQzMysIRxQzMysIRxQ2pCf92VmrcgBpQ35eV9m1opG1Z7y7c7P+zKzVuYeShvx877MrJU5oLQRP+/LzFqZh7zajJ/3ZWatys/yqsOedw9w7QNbuePSc90bMLNRx8/yaiCvqjIz65+HvGrwqiozs/q5h1KDV1WZmdXPAaUGr6oyM6tfXQFF0g5JL0h6TlJXpk2S1CmpO79OLOW/UdJ2Sa9IWlhKn5v1bJe0KrcCJrcLfjDTN0qaWSqzLN+jW9KyUvqszNudZY89+svxqyqrqh65+gIuO+909r53cCjexsys7dW1ykvSDqAjIt4qpX0T6ImIb0i6AZgYESskzQYeAOYB04AngE9ExCFJm4DrgGeBx4FVEbFO0tXAb0TEVyQtBS6OiC9JmgR0AR0UWw1vAeZGxL7cZvhHEbFW0neB5yNida2fwzs2mpkN3HCs8loMrMnjNcCSUvraiDgYEa8C24F5kqYCEyJiQxRR7J6qMpW6HgYuyt7LQqAzInoiYh/QCSzKc/Mzb/X7m5lZE9QbUAL4qaQtkpZn2ikRsRsgv56c6dOB10pld2Xa9DyuTj+sTET0Au8Ak2vUNRl4O/NW12VmZk1Q77LhCyLiDUknA52Sflkjr/pIixrpgylTq67DG1MEwOUAp512Wl9ZzMysAerqoUTEG/l1D/AIxfzImzmMRX7dk9l3AaeWis8A3sj0GX2kH1ZG0ljgRKCnRl1vASdl3uq6qtt+Z0R0RETHlClT6vlxzcxsEPoNKJI+IumEyjGwAHgReAyorLpaBjyax48BS3Pl1izgTGBTDovtl3R+zoFcUVWmUtclwJM5z7IeWCBpYq4iWwCsz3NPZd7q9zczsyaoZ8jrFOCRXOE7Frg/Iv5a0mbgIUlXAjuBLwJExLZcgfUS0AtcExGHsq6rgLuB44F1+QK4C7hX0naKnsnSrKtH0q3A5sx3S0T05PEKYK2klcDWrMPMzJrED4c0M7Oa/HBIMzMbVg4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEHUHFEnHSNoq6cf5/dclvS7puXx9tpT3RknbJb0iaWEpfa6kF/Lcqtxbntx//sFM3yhpZqnMMknd+VpWSp+Vebuz7LFHdynMzOxoDKSHch3wclXa7RExJ1+PA0iaTbEn/NnAIuA7ko7J/KuB5cCZ+VqU6VcC+yLiDOB24LasaxJwM3AeMA+4WdLELHNbvv+ZwL6sw8zMmqSugCJpBvA54M/ryL4YWBsRByPiVWA7ME/SVGBCRGyIYiP7e4AlpTJr8vhh4KLsvSwEOiOiJyL2AZ3Aojw3P/OSZSt1mZlZE9TbQ/kz4Hrgg6r0ayX9QtIPSj2H6cBrpTy7Mm16HlenH1YmInqBd4DJNeqaDLydeavrMjOzJug3oEj6PLAnIrZUnVoNfByYA+wGvlUp0kc1USN9MGVq1XUYScsldUnq2rt3b19ZzMysAerpoVwAfEHSDmAtMF/SfRHxZkQciogPgO9TzHFA0Vs4tVR+BvBGps/oI/2wMpLGAicCPTXqegs4KfNW13WYiLgzIjoiomPKlCl1/LhmZjYY/QaUiLgxImZExEyKyfYnI+L3ck6k4mLgxTx+DFiaK7dmUUy+b4qI3cB+SefnHMgVwKOlMpUVXJfkewSwHlggaWIOqS0A1ue5pzIvWbZSl5mZNcHY/rMc0TclzaEYatoBfBkgIrZJegh4CegFromIQ1nmKuBu4HhgXb4A7gLulbSdomeyNOvqkXQrsDnz3RIRPXm8AlgraSWwNeswM7MmUfFhf3To6OiIrq6uZjfDzKytSNoSER395fOd8mZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGY2Kux59wC/+70N7Nl/oNlNGbEcUMxsVFj1s2427+hh1RPdzW7KiHU0z/IyM2t5Z920joO9H27ldN/Gndy3cSfHjR3DKys/08SWjTzuoZjZiPbM9RfyhTnTGD+u+HM3ftwYFs+ZxjMrLmxyy0YeBxQza5rhmNc4ecJ4TjhuLAd7P+C4sWM42PsBJxw3lpNPGD9k7zlaOaCYWdMM17zGW+8d5LLzTueRqy/gsvNOZ+97B4f0/UYrP77ezIZd9bxGhec1WpMfX29mLcvzGiOTA4qZDTvPa4xMdQcUScdI2irpx/n9JEmdkrrz68RS3hslbZf0iqSFpfS5kl7Ic6tyb3ly//kHM32jpJmlMsvyPbolLSulz8q83Vn22KO7FGY2nDyvMfLUPYci6b8BHcCEiPi8pG8CPRHxDUk3ABMjYoWk2cADwDxgGvAE8ImIOCRpE3Ad8CzwOLAqItZJuhr4jYj4iqSlwMUR8SVJk4CufN8AtgBzI2Jf7lv/o4hYK+m7wPMRsbrWz+A5FDOzgWvoHIqkGcDngD8vJS8G1uTxGmBJKX1tRByMiFeB7cA8SVMpgtGGKKLYPVVlKnU9DFyUvZeFQGdE9ETEPqATWJTn5mfe6vc3M7MmqHfI68+A64HysoxTImI3QH49OdOnA6+V8u3KtOl5XJ1+WJmI6AXeASbXqGsy8Hbmra7rMJKWS+qS1LV37946f1wzMxuofgOKpM8DeyJiS511qo+0qJE+mDK16jo8MeLOiOiIiI4pU6b0lcXMzBqgnh7KBcAXJO0A1gLzJd0HvJnDWOTXPZl/F3BqqfwM4I1Mn9FH+mFlJI0FTgR6atT1FnBS5q2uy6wmP3XWbGj0G1Ai4saImBERM4GlwJMR8XvAY0Bl1dUy4NE8fgxYmiu3ZgFnAptyWGy/pPNzDuSKqjKVui7J9whgPbBA0sRcRbYAWJ/nnsq81e9vVpOfOms2NI7macPfAB6SdCWwE/giQERsyxVYLwG9wDURcSjLXAXcDRwPrMsXwF3AvZK2U/RMlmZdPZJuBTZnvlsioiePVwBrJa0EtmYdZkfkp86aDS0/esVGjT3vHmDl4y/z023/xIH3P2D8uDEsPPvX+drnPukb6sxq8KNXzKoM5O7sdpxnacc228jigGKjSr13Z7fjPEs7ttlGFg95mZW041Nw27HN1l485GU2CO34FNx2bLONTA4oZiXt+BTcdmyzjUxHs2zYbESqzLNcOu807t+0k71tMMndjm22kcdzKGZmVpPnUMzMbFg5oJiZWUM4oJiZDYBvID0yBxQzswHwDaRH5lVe1lb2vHuAax/Yyh2XnutlsTas/HDR/rmHYm3Fnw6tWXwDaf/cQ7G2MNo/Hbpn1ny+gbR/7qFYWxjtnw7dM2sN9T5cdLRyD8VaRq1P4aP10+Fo75m1mu9d/uG9fSuXnNPElrSmfnsoksZL2iTpeUnbJP1xpn9d0uuSnsvXZ0tlbpS0XdIrkhaW0udKeiHPrcqtgMntgh/M9I2SZpbKLJPUna9lpfRZmbc7yx7bmEtiA9WoZZT9fQofjZ8OR3vPzNpLPT2Ug8D8iHhP0jjgbyVVtu69PSL+tJxZ0myKLXzPBqYBT0j6RG4DvBpYDjwLPA4sotgG+EpgX0ScIWkpcBvwJUmTgJuBDiCALZIei4h9mef2iFgr6btZx+rBXwobrHIgWHnxpwZcvt5P4aPx0+Fo7ZlZe+q3hxKF9/Lbcfmq9QCwxcDaiDgYEa8C24F5kqYCEyJiQxQPELsHWFIqsyaPHwYuyt7LQqAzInoyiHQCi/Lc/MxLlq3UZcPkrJvWMfOGn3Dfxp1EFIFg5g0/4ayb1vVfuMSfwmsbjT0za091zaFIOgbYApwB/O+I2CjpM8C1kq4AuoCv5h/96RQ9kIpdmfZ+Hlenk19fA4iIXknvAJPL6VVlJgNvR0RvH3XZMHnm+guPuEf7QPhTeG2jsWdm7amuVV4RcSgi5gAzKHob51AML30cmAPsBr6V2dVXFTXSB1OmVl2HkbRcUpekrr179/aVxQapkYHAn8JHHj+iZPQZ0CqviHhb0tPAovLciaTvAz/Ob3cBp5aKzQDeyPQZfaSXy+ySNBY4EejJ9E9XlXkaeAs4SdLY7KWU66pu853AnVA8vn4gP6/1r1H7cPhT+MhztHNr1n763Q9F0hTg/QwmxwM/pZgQ3xIRuzPPHwLnRcRSSWcD9wPzKCblfwacGRGHJG0G/iuwkWJS/n9FxOOSrgE+FRFfyUn5346I381J+S3Ab2Zzfg7MjYgeSX8F/LA0Kf+LiPhOrZ/F+6GYDT3vcT/y1LsfSj09lKnAmpxHGQM8FBE/lnSvpDkUQ007gC8DRMQ2SQ8BLwG9wDW5wgvgKuBu4HiK1V2V2du7gHslbafomSzNunok3Qpszny3RERPHq8A1kpaCWzNOsysyRo1t2btp9+AEhG/AM7tI/3yGmX+BPiTPtK7gF8Zz4iIA8AXj1DXD4Af9JH+/yh6QWbWQrzIYvTynfJm1nDe43508p7yZmZWk/eUNzOzYeWAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYjaEvCeIjSYOKGZDqLwniNlI54dDmg2B6j1B7tu4k/s27vSeIDaiuYdiNgSeuf5CvjBnGuPHFf/Fxo8bw+I503hmxYVNbpnZ0HFAMRsC3hPERiMHFBtRWmkSvLInyCNXX8Bl553O3vcONrtJZkOq34AiabykTZKel7RN0h9n+iRJnZK68+vEUpkbJW2X9IqkhaX0uZJeyHOrJCnTj5P0YKZvlDSzVGZZvke3pGWl9FmZtzvLHtuYS2LtrJUmwb93eQcrl5zD7GkTWLnkHL53eb/bSZi1tX432Mo/+h+JiPckjQP+FrgO+G2gJyK+IekGYGJErJA0G3iAYnveacATwCci4pCkTVn2WeBxYFVErJN0NfAbEfEVSUuBiyPiS5ImAV1AB8Xe9VuAuRGxL/et/1FErJX0XeD5iFhd62fxBlsjV/UkeIUnwc2OXsM22IrCe/ntuHwFsBhYk+lrgCV5vBhYGxEHI+JVYDswT9JUYEJEbIgiit1TVaZS18PARRnIFgKdEdETEfuATmBRnpufeavf30YhT4IPr1YaWrTWUdcciqRjJD0H7KH4A78ROCUidgPk15Mz+3TgtVLxXZk2PY+r0w8rExG9wDvA5Bp1TQbezrzVdVW3fbmkLklde/furefHtTbkSfDh1UpDi9Y66roPJSIOAXMknQQ8IumcGtnVVxU10gdTplZdhydG3AncCcWQV195bGSoTIJfOu807t+0k73+9Nxwvr/GahnQjY0R8bakp4FFwJuSpkbE7hzO2pPZdgGnlorNAN7I9Bl9pJfL7JI0FjgR6Mn0T1eVeRp4CzhJ0tjspZTrslGqPOm9ckmtzzw2WM9cfyErH3+Zn277Jw68/wHjx41h4dm/ztc+98lmN81aQD2rvKZkzwRJxwP/Gfgl8BhQWXW1DHg0jx8DlubKrVnAmcCmHBbbL+n8nAO5oqpMpa5LgCdznmU9sEDSxFxFtgBYn+eeyrzV729mQ8RDi1ZLPT2UqcAaScdQBKCHIuLHkjYAD0m6EtgJfBEgIrblCqyXgF7gmhwyA7gKuBs4HliXL4C7gHslbafomSzNunok3Qpszny3RERPHq8A1kpaCWzNOsxsiHlo0Y6k32XDI8lQLhve8+4Brn1gK3dceq4/rZk1UDv+32rHNtfSsGXDVh+vejEbGu34f6sd29wI7qEcJd9QZzY02vH/Vju2uR7uoQwT31BnNjTa8f9WO7a5kRxQjtJAVr347mJrB63ye9qOK8rasc2N5IDSAPU+VXa0jqtae2ml39N2fGJzO7a5UTyHMgxG6riqjSz+PbUj8RxKCxnt46rWHvx72npaZfixXg4ow6Cdx1Xb7RfaBq+df09HqlYafqzHgJ7lZYPXrncXl3+hV178qWY3x4ZYu/6ejjTt+hBOz6FYnzyebtY8e949cMSHcDajx+g5FDsqHk83a552HX70kJf1qV1/oc1GinYcfnRAsSNqx19os5GiHff38RzKKDbSnohqZkPDcyjWr3Zbkmhmrc1DXqNQuy5JbDXu4Zkdrp4tgE+V9JSklyVtk3Rdpn9d0uuSnsvXZ0tlbpS0XdIrkhaW0udKeiHPrcqtgMntgh/M9I2SZpbKLJPUna9lpfRZmbc7yx7bmEsy8nkFV2O4h2d2uHp6KL3AVyPi55JOALZI6sxzt0fEn5YzS5pNsYXv2cA04AlJn8htgFcDy4FngceBRRTbAF8J7IuIMyQtBW4DviRpEnAz0AFEvvdjEbEv89weEWslfTfrWD34SzF6eAXX0XEPz6xv/fZQImJ3RPw8j/cDLwPTaxRZDKyNiIMR8SqwHZgnaSowISI2RLES4B5gSanMmjx+GLgoey8Lgc6I6Mkg0gksynPzMy9ZtlKX1WE0PxH1aLmHZ9a3Ac2h5FDUucBG4ALgWklXAF0UvZh9FMHm2VKxXZn2fh5Xp5NfXwOIiF5J7wCTy+lVZSYDb0dEbx91WR3acUliq3APz6xvda/ykvRR4IfAH0TEuxTDSx8H5gC7gW9VsvZRPGqkD6ZMrbqq271cUpekrr179/aVxWzA3MMz+1V19VAkjaMIJn8ZET8CiIg3S+e/D/w4v90FnFoqPgN4I9Nn9JFeLrNL0ljgRKAn0z9dVeZp4C3gJEljs5dSruswEXEncCcU96HU8/Oa9cc9PLNfVc8qLwF3AS9HxLdL6VNL2S4GXszjx4CluXJrFnAmsCkidgP7JZ2fdV4BPFoqU1nBdQnwZM6zrAcWSJooaSKwAFif557KvGTZSl1mZtYE9fRQLgAuB16Q9Fym/RHwXyTNoRhq2gF8GSAitkl6CHiJYoXYNbnCC+Aq4G7geIrVXesy/S7gXknbKXomS7OuHkm3Apsz3y0R0ZPHK4C1klYCW7MOMzNrEj96xczMavKjV8zMbFg5oJiZNcFI3F7bAcVsFBmJf8Ta1Uh8dI8fDmk2ipT/iK28+FPNbs6oNJIf3eNJebNRoPqPWMVI+CPWbhq5X/xwPfHak/Jm9q/8/LHW0chH97TasJmHvMyabDg+Zfr5Y63laLfXbtVhMwcUsyYbrnmNo/0jZo1ztI/ueeb6C484bNZMDihmTTLcnzL9/LGRo1V7nJ5DMWsSz2s0zmhcDt2KT7x2D8WsSVr1U2Y7Go3LoVuxx+mAYtZEntc4Oq06OT1a+T4UM2tbjbynw47M96GY2YjnYcPW4iEvM2trHjZsHR7yMjMbwRpx46yHvMzMbFgfz1LPnvKnSnpK0suStkm6LtMnSeqU1J1fJ5bK3Chpu6RXJC0spc+V9EKeW5V7y5P7zz+Y6RslzSyVWZbv0S1pWSl9VubtzrLHNuaSmJm1v7NuWsfMG37CfRt3ElGsgJt5w08466Z1/RcepHp6KL3AVyPik8D5wDWSZgM3AD+LiDOBn+X35LmlwNnAIuA7ko7JulYDy4Ez87Uo068E9kXEGcDtwG1Z1yTgZuA8YB5wcylw3Qbcnu+/L+swMzOac+NsvwElInZHxM/zeD/wMjAdWAysyWxrgCV5vBhYGxEHI+JVYDswT9JUYEJEbIhi4uaeqjKVuh4GLsrey0KgMyJ6ImIf0AksynPzM2/1+5uZjXrNWAE3oFVeORR1LrAROCUidkMRdCSdnNmmA8+Wiu3KtPfzuDq9Uua1rKtX0jvA5HJ6VZnJwNsR0dtHXWZmxvCvgKs7oEj6KPBD4A8i4t2c/ugzax9pUSN9MGVq1XV4Y6TlFMNsnHbaaX1lMTMbkYb78Sx1rfKSNI4imPxlRPwok9/MYSzy655M3wWcWio+A3gj02f0kX5YGUljgROBnhp1vQWclHmr6zpMRNwZER0R0TFlypR6flwzMxuEelZ5CbgLeDkivl069RhQWXW1DHi0lL40V27Noph835TDY/slnZ91XlFVplLXJcCTOc+yHlggaWJOxi8A1ue5pzJv9fubmVkT1DPkdQFwOfCCpOcy7Y+AbwAPSboS2Al8ESAitkl6CHiJYoXYNRFxKMtdBdwNHA+syxcUAeteSdspeiZLs64eSbcCmzPfLRHRk8crgLWSVgJbsw4zM2sS3ylvZmY1+U55aymjcQMks9HGAcWGxXA+/sHMmsNPG7Yh5Q2QzEYP91BsSHnfdLPRwwHFhpQ3QDIbPTzkZUPOGyCZjQ5eNmxmZjV52bCZmQ0rBxQzM2sIB5QRyjcSmtlwc0AZoXwjoZkNN6/yGmF8I6GZNYt7KCOMbyQ0GzwPFR8dB5QRxjcSmg2eh4qPjoe8RiDfSGg2MB4qbgzf2Ghmo96edw+w8vGX+em2f+LA+x8wftwYFp7963ztc590754G3tgo6QeS9kh6sZT2dUmvS3ouX58tnbtR0nZJr0haWEqfK+mFPLcqtwEmtwp+MNM3SppZKrNMUne+lpXSZ2Xe7ix7bD0XxcysLx4qbox65lDuBhb1kX57RMzJ1+MAkmZTbN97dpb5jqRjMv9qYDnFHvNnluq8EtgXEWcAtwO3ZV2TgJuB84B5wM25rzyZ5/aIOBPYl3WYmQ1aZaj4kasv4LLzTmfveweb3aS20+8cSkT8TbnX0I/FwNqIOAi8mnvEz5O0A5gQERsAJN0DLKHYU34x8PUs/zBwR/ZeFgKdlT3kJXUCiyStBeYDl2aZNVl+dZ1tNDP7Fd+7/MMRnZVLzmliS9rX0azyulbSL3JIrNJzmA68VsqzK9Om53F1+mFlIqIXeAeYXKOuycDbmbe6LjMza5LBBpTVwMeBOcBu4FuZrj7yRo30wZSpVdevkLRcUpekrr179x4pm5mZHaVBBZSIeDMiDkXEB8D3KeY4oOgtnFrKOgN4I9Nn9JF+WBlJY4ETgZ4adb0FnJR5q+vqq613RkRHRHRMmTJloD+qmZnVaVABRdLU0rcXA5UVYI8BS3Pl1iyKyfdNEbEb2C/p/JwfuQJ4tFSmsoLrEuDJKNYyrwcWSJqYQ2oLgPV57qnMS5at1GVmZk3S76S8pAeATwMfk7SLYuXVpyXNoRhq2gF8GSAitkl6CHgJ6AWuiYhDWdVVFCvGjqeYjF+X6XcB9+YEfg/FKjEiokfSrcDmzHdLZYIeWAGslbQS2Jp1mJlZE/nGRjMzq6neGxtHVUCRtBf4xz5OfYxibqaduM1Dr93aC27zcGm3Nh9te0+PiH4noUdVQDkSSV31RN9W4jYPvXZrL7jNw6Xd2jxc7fXThs3MrCEcUMzMrCEcUAp3NrsBg+A2D712ay+4zcOl3do8LO31HIqZmTWEeyhmZtYQIzKgHGEPl38raUPuyfJ/JE3I9HGS1mT6y5JuLJV5Ovd1qez7cnKLtPlYSX+R6c9L+nSpTJ/7zrR4m4flOks6VdJT+e+8TdJ1mT5JUmfur9NZetjpgPf3afE2t+R1ljQ5878n6Y6qulryOvfT5iG/zoNo729J2pLXcouk+aW6GneNI2LEvYD/CPwm8GIpbTPwn/L494Fb8/hSikfuA/waxZ3/M/P7p4GOFmzzNcBf5PHJwBZgTH6ruEO0AAADpklEQVS/Cfh3FA/RXAd8pg3aPCzXGZgK/GYenwD8PTAb+CZwQ6bfANyWx7OB54HjgFnAPwDHDOd1bnCbW/U6fwT498BXgDuq6mrV61yrzUN+nQfR3nOBaXl8DvD6UFzjEdlDiYi/oXiMS9lZwN/kcSfwO5XswEdUPGzyeOBfgHeHo51lA2zzbOBnWW4P8DbQoeIZaxMiYkMUvymVfWdats1D1ba+RMTuiPh5Hu8HXqbY+mAxxb465NfKNfvX/X0i4lWgsr/PsF3nRrV5KNrWqDZHxD9HxN8CB8r1tPJ1PlKbh8sg2rs1IioP0d0GjFfxzMWGXuMRGVCO4EXgC3n8RT58kvHDwD9TPIZ/J/Cn8eEzwwD+Irut/2Moh4+O4Ehtfh5YLGmsiodwzs1ztfadGS4DbXPFsF5nFZvGnQtsBE6J4gGm5NfKEMVg9vcZMkfZ5opWvM5H0srXuT/Ddp0H0d7fAbZGsRFiQ6/xaAoovw9cI2kLRRfxXzJ9HnAImEYxRPBVSf8mz10WEZ8C/kO+Lh/eJh+xzT+g+IfvAv4M+L8UD+Mc0F4xQ2SgbYZhvs6SPgr8EPiDiKjVG23InjyN0IA2Q+te5yNW0Udaq1znWobtOg+0vZLOpthC/cuVpD6yDfoaj5qAEhG/jIgFETEXeIBibBmKOZS/joj3cyjm78ihmIh4Pb/uB+5n+IcO+mxzRPRGxB9GxJyIWAycBHRTe9+ZVm3zsF5nSeMo/gP+ZUT8KJPfzK5/ZZhlT6YPZn+fVm1zK1/nI2nl63xEw3WdB9peSTOAR4ArIqLy96+h13jUBJTKSgtJY4CbgO/mqZ3AfBU+ApwP/DKHZj6WZcYBn+fDfV+a2mZJv5ZtRdJvAb0R8VLU3nemJds8nNc5r8ldwMsR8e3SqfKePOX9dQazv09LtrnFr3OfWvw6H6meYbnOA22vpJOAnwA3RsTfVTI3/BoPdja/lV8Un4x3A+9TROArgesoVkL8PfANPryp86PAX1FMVL0E/Pf4cBXHFuAXee5/kqtlWqDNM4FXKCbinqB4Emilng6KX+B/AO6olGnVNg/ndaZYlRP5Xs/l67PAZIoFA935dVKpzNfyWr5CafXLcF3nRrW5Da7zDooFHu/l79LsNrjOv9Lm4brOA20vxYe7fy7lfQ44udHX2HfKm5lZQ4yaIS8zMxtaDihmZtYQDihmZtYQDihmZtYQDihmZtYQDihmZtYQDihmZtYQDihmZtYQ/x/rFzgxQKYDrwAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_incidence.plot(style='*')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Une liste triée permet de plus facilement répérer les valeurs les plus élevées (à la fin)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "2014 1600941\n",
+ "1991 1659249\n",
+ "1995 1840410\n",
+ "2020 2053781\n",
+ "2012 2175217\n",
+ "2003 2234584\n",
+ "2019 2254386\n",
+ "2006 2307352\n",
+ "2017 2321583\n",
+ "2001 2529279\n",
+ "1992 2574578\n",
+ "1993 2703886\n",
+ "2018 2705325\n",
+ "1988 2765617\n",
+ "2007 2780164\n",
+ "1987 2855570\n",
+ "2016 2856393\n",
+ "2011 2857040\n",
+ "2008 2973918\n",
+ "1998 3034904\n",
+ "2002 3125418\n",
+ "2009 3444020\n",
+ "1994 3514763\n",
+ "1996 3539413\n",
+ "2004 3567744\n",
+ "1997 3620066\n",
+ "2015 3654892\n",
+ "2000 3826372\n",
+ "2005 3835025\n",
+ "1999 3908112\n",
+ "2010 4111392\n",
+ "2013 4182691\n",
+ "1986 5115251\n",
+ "1990 5235827\n",
+ "1989 5466192\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "yearly_incidence.sort_values()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Enfin, un histogramme montre bien que les épidémies fortes, qui touchent environ 10% de la population\n",
+ " française, sont assez rares: il y en eu trois au cours des 35 dernières années."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEKCAYAAAAGvn7fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGbhJREFUeJzt3X2UJXV95/H3h5kBhmkYjAONDkr7QAjIqDgXXWQ13WhcdNCcGE5QQcVIGo0PRCdnM8v6sLrLOj5MsphgkklUiAodw8PZyBjUE2hQNEgPqA2OEBdmlSEMAjLSMAuMfPePX7XctP1wq27dvsXPz+ucPn3vrbpVn/rdut9b9auqexURmJlZPvbqdwAzM6uXC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLzNJeTnzVqlUxNDQ067AHH3yQFStW9HL2lTU5GzQ7n7NV1+R8zlZd2Xxbt269JyIO6mqmEdGzv7Vr18ZcrrrqqjmH9VuTs0U0O5+zVdfkfM5WXdl8wER0WXvdFWNmlhkXdjOzzLiwm5llxoXdzCwzLuxmZpkpVdglvUfSzZJuknSRpH17FczMzKrpuLBLWg28G2hFxNHAEuB1vQpmZmbVlO2KWQosl7QU2A+4s/5IZmbWDUWJ3zyVdBZwDrAb+GpEnDrLOKPAKMDg4ODasbGxWac1NTXFwMBAlcw91+RsUH++yR27apvW4HLYubvz8desXlnbvBfyq/a61snZqiubb2RkZGtEtLqZZ8eFXdKTgEuAU4D7gX8ALo6Iz8/1nFarFRMTE7MOGx8fZ3h4uGzeRdHkbFB/vqENW2qb1vo1e9g02fk3VWzfuK62eS/kV+11rZOzVVc2n6SuC3uZrpiXA7dHxE8i4lHgUuDF3czczMzqV6aw/wj4D5L2kyTgZcC23sQyM7OqOi7sEXEdcDFwAzBZPHdzj3KZmVlFpb62NyI+CHywR1nMzKwGvvLUzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMdF3ZJR0j6TtvfzyT9US/DmZlZeR3/NF5E3AI8H0DSEmAHcFmPcpmZWUVVu2JeBvyfiPi/dYYxM7PuKSLKP0n6DHBDRPzFLMNGgVGAwcHBtWNjY7NOY2pqioGBgdLzXgxNzgb155vcsau2aQ0uh527Ox9/zeqVtc17Ie3tVucylzHf8jZ5vXO26srmGxkZ2RoRrW7mWbqwS9obuBN4TkTsnG/cVqsVExMTsw4bHx9neHi41LwXS5OzQf35hjZsqW1a69fsYdNkxz18bN+4rrZ5L6S93epc5jLmW94mr3fOVl3ZfJK6LuxVumJeSdpan7eom5lZf1Qp7K8HLqo7iJmZ1aNUYZe0H/BbwKW9iWNmZt3qvDMUiIiHgCf3KIuZmdXAV56amWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZabsT+MdKOliST+QtE3Scb0KZmZm1ZT6aTzgXOCKiDhZ0t7Afj3IZGZmXei4sEs6AHgpcDpARDwCPNKbWGZmVpUiorMRpecDm4HvA88DtgJnRcSDM8YbBUYBBgcH146Njc06vampKQYGBqon75HJHbsYXA47dy/+vNesXtnReHW33eSOXbVNq2zbdbrMdWhvtzqXuYz5lrep7wlwtm6UzTcyMrI1IlrdzLNMYW8B/wIcHxHXSToX+FlEvH+u57RarZiYmJh12Pj4OMPDw+UT99jQhi2sX7OHTZNle6m6t33juo7Gq7vthjZsqW1aZduu02WuQ3u71bnMZcy3vE19T4CzdaNsPkldF/YyB0/vAO6IiOuK+xcDL+hm5mZmVr+OC3tE3AX8WNIRxUMvI3XLmJlZg5Ttb3gX8IXijJjbgLfUH8nMzLpRqrBHxHeArvp+zMyst3zlqZlZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmSv2CkqTtwAPAz4E93f6StpmZ1a/sb54CjETEPbUnMTOzWrgrxswsM4qIzkeWbgd+CgTw1xGxeZZxRoFRgMHBwbVjY2OzTmtqaoqBgYEqmXtqcscuBpfDzt2LP+81q1d2NF7dbTe5Y1dt0yrbdp0ucx3a263OZS5jvuVt6nsCnK0bZfONjIxs7babu2xhf2pE3CnpYOBrwLsi4pq5xm+1WjExMTHrsPHxcYaHh0vG7b2hDVtYv2YPmyar9FJ1Z/vGdR2NV3fbDW3YUtu0yrZdp8tch/Z2q3OZy5hveZv6ngBn60bZfJK6LuylumIi4s7i/93AZcALu5m5mZnVr+PCLmmFpP2nbwOvAG7qVTAzM6umTH/DIHCZpOnnXRgRV/QklZmZVdZxYY+I24Dn9TCLmZnVwKc7mpllxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWWmdGGXtETSjZIu70UgMzPrTpUt9rOAbXUHMTOzepQq7JIOBdYBf9ubOGZm1i1FROcjSxcDHwH2B/44Ik6aZZxRYBRgcHBw7djY2KzTmpqaYmBgoErmnprcsYvB5bBzd7+TzK3J+cpmW7N6Ze/CzNC+zk3u2LVo82033/I29T0BztaNsvlGRka2RkSrm3ku7XRESScBd0fEVknDc40XEZuBzQCtViuGh2cfdXx8nLmG9dPpG7awfs0eNk123DSLrsn5ymbbfupw78LM0L7Onb5hy6LNt918y9vU9wQ4Wzf6ka9MV8zxwGskbQfGgBMkfb4nqczMrLKOC3tE/JeIODQihoDXAVdGxGk9S2ZmZpX4PHYzs8xU6qiNiHFgvNYkZmZWC2+xm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMdFzYJe0r6duSvivpZkkf6mUwMzOrpswvKD0MnBARU5KWAd+Q9E8R8S89ymZmZhV0XNgjIoCp4u6y4i96EcrMzKpTqtcdjiwtAbYCzwbOi4g/mWWcUWAUYHBwcO3Y2Nis05qammJgYGDOeU3u2NVxrroNLoedu/s2+wU1OV/ZbGtWr+xdmBna17l+rV/zLe9C74l+eqJma8LrXLbtRkZGtkZEq5v5lyrsv3iSdCBwGfCuiLhprvFarVZMTEzMOmx8fJzh4eE55zG0YUvpXHVZv2YPmyYr/c73omhyvrLZtm9c18M0/177Otev9Wu+5V3oPdFPT9RsTXidy7adpK4Le6WzYiLifmAcOLGbmZuZWf3KnBVzULGljqTlwMuBH/QqmJmZVVNmf/4pwAVFP/tewBcj4vLexDIzs6rKnBXzPeCYHmYxM7Ma+MpTM7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8yU+c3Tp0m6StI2STdLOquXwczMrJoyv3m6B1gfETdI2h/YKulrEfH9HmUzM7MKOt5ij4h/i4gbitsPANuA1b0KZmZm1Sgiyj9JGgKuAY6OiJ/NGDYKjAIMDg6uHRsbm3UaU1NTDAwMzDmPyR27Sueqy+By2Lm7b7NfUJPzOVt1vc63ZvXKys9d6P3aT/Nl61cdaW/rsm03MjKyNSJa3cy/dGGXNABcDZwTEZfON26r1YqJiYlZh42PjzM8PDznc4c2bCmVq07r1+xh02SZXqrF1eR8zlZdr/Nt37iu8nMXer/203zZ+lVH2tu6bNtJ6rqwlzorRtIy4BLgCwsVdTMz648yZ8UI+DSwLSL+tHeRzMysG2W22I8H3gicIOk7xd+repTLzMwq6rhDLyK+AaiHWczMrAa+8tTMLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsM2V+8/Qzku6WdFMvA5mZWXfKbLGfD5zYoxxmZlaTjgt7RFwD3NfDLGZmVgNFROcjS0PA5RFx9DzjjAKjAIODg2vHxsZmHW9qaoqBgYE55zW5Y1fHueo2uBx27u7b7BfU5HzOVl2v861ZvbLycxd6v/bTfNn6VUfa27ps242MjGyNiFY386+9sLdrtVoxMTEx67Dx8XGGh4fnfO7Qhi0d56rb+jV72DS5tG/zX0iT8zlbdb3Ot33jusrPXej92k/zZetXHWlv67JtJ6nrwu6zYszMMuPCbmaWmTKnO14EfAs4QtIdkt7au1hmZlZVxx16EfH6XgYxM7N6uCvGzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDOlCrukEyXdIumHkjb0KpSZmVVX5jdPlwDnAa8EjgJeL+moXgUzM7NqymyxvxD4YUTcFhGPAGPAb/cmlpmZVaWI6GxE6WTgxIg4o7j/RuBFEfHOGeONAqPF3SOAW+aY5CrgniqhF0GTs0Gz8zlbdU3O52zVlc13WEQc1M0Ml5YYV7M89kufChGxGdi84MSkiYholZj/omlyNmh2Pmerrsn5nK26fuQr0xVzB/C0tvuHAnfWG8fMzLpVprBfDxwu6RmS9gZeB/xjb2KZmVlVHXfFRMQeSe8EvgIsAT4TETd3Me8Fu2v6qMnZoNn5nK26JudztuoWPV/HB0/NzOyJwVeempllxoXdzCwzLuxmZpl5QhZ2Saslre53jtlIeqak90g6od9ZZmpyNmh2Pmerrsn5mpwNqud7QhV2SUOSrgauAD4u6SX9ztRO0n8Evkb6Lp23SXp7nyP9QpOzQbPzOVt1Tc7X5GzQZb6IaPQfsG/b7dcCnyhuvxn4B2BNcV99yHYC8Izp+QMfAE4r7r8I+BIw3I98Tc7W9HzOlme+JmerO18jt9glHSDpryTdCnxC0mHFoN8BflTcHgN+CJwx/bRFzHeUpO8B/w34rKQTIrX2UcAhABFxHfBN4C2Lma/J2Zqez9nyzNfkbL3K18jCDpwI7EtasEeAD0haTtoteTVARDwMXAy8pLj/WK/CSDpU0gFtD50CXBIRLyV9wLxB0uHAhdP5CpcBR0vap1f5mpyt6fmcLc98Tc62WPn6VtiVLJX0Vklfl3SWpGcVg58NPBIRe4A/A34KnAZ8FXiKpF8rxrsV+LGk43qU8UhJXwa+AXxY0vTXFP8/YL/i9heBu4B1pE/UJ7ftYdxH+nbL5/0qZWt6PmfLM1+Tsy12vr4V9mJX4zeBNwEfA/YB/qYYfBdwd/HJ9GPSwjyL1ADf5/GvBV4G3Fs8XgtJK9ruPh+4IyKGgCuBTxSP3wc8LGn/iLgP+FfgqUWObwLvLcbbG/g5sD33bE3P52x55mtytn7mW7TCLuk4SR+VdHpxX8CRwBUR8aWI+BhwmKQXAztIn2BHFk/fBgwUj/0F8CpJryZ9KAwC3+0y25MknS/pemCjpIOKfGuAayUpIv4RuF/SOtKewv7FcIr7BwOPkfYwDpb0N8BFwJ6IuDvHbE3P52zVNTlfk7M1Jd+iFHZJzwH+EngA+D1J7y3mvRp4oFhogPOBN5AK9R7gxcXjN5COGD8UEdcAG4DTgeOB/x4Rj7VNo4qXFvN7FemgxNnAAaQvOzuk2LsAuKDI9+1iWV4JEBHfKqaxNCK2AWcCNwP/MyLeQneanK3p+Zwtz3xNztaMfHOdLlP1j7RlfQZpt2Np8difAmcVt1vAJ4GTgZcDX2l77tNIuyqQCvmNpF9hOgb438BT2sYtfTpS0bBnAleTunNWFY9/EXh3cfsZwMZi+LGk/rAlbcv2k2I6q0l7Eu8EPgt8CljRRbs1NlvT8zmbX1e33b//q3WLXdLzSQc4fxv4IPC+YtAO0m+mQvrkuRb4XeCfgUMkPVfSskj96TskvSQiriR93eVHgUuBiyLi36bnFUXLlHQS8BrgQ8BxpL59SGfbTO8d/Bj4OvDKiLie9Ik7UsxzCrgOODYidgBvJHUF3QW8LyIeLBuobU/j1U3LNoPbrprGtRu47brJ9kRouzI/jfdLJL0QOBz4akT8hLQ1fmtEnC7pBcA5klrAOPCfJO0XEQ9J+i7we6RzNC8E/gD4pKTdwCRwezGLvwIujIhdJTIpIkLSsaTdnK8DWyKdHvnrwG0RcaWk20lXr74C2Ar8jqRVEXGPpH8FHpT0dODPgdMkHUz61ah7SbtORMQEMFGh3VqkvZoHgI8DdwPP7Hc2t121bE+EdnPb5dd28ym1xa5kmaQ3SbqR1LF/IDBdeH8ObC+2vm8g7VocBzzE46fwADxK2gU5hLRVfhOpf/1q4J6IuAPSVnnFov5S4DOko8ovBz5SjPIYcKuk5RFxe5HvuaQX607S+aTTy7GE1D6XFBlPBdYCm6PiOa6SVkr6bDHN24FzI+JuSXuRPsn7mW1J0Xa/SdoVbEzbFevdgKTzaVjbFfMMScM0c53bR9KKhrbdAQ1vuwFJ+0q6gIa13YI66a8BVgAvLm4fWAT75CzjnUW6DHZ1cf9kUn/6YaSvALi6eHxfUjfMqrbnHgPs3UmeGfPcD3gbj2/5LwP+CHhHMfxJwPeK6Z9C6u8aKoadVCzLquL2JLCS1L//5fY8wF5dZLuIdMXYAKlr6cy2caaPQ7wT+B+Lla3tdT2DtLKtJx3gaUrbTWe7tFivDmpY2+0PbCH9khjAe5rQbjPyfRn46+L+x4C39bvtSO+JN5Pe/5c0re3a8l0J/H3xWGPWu07/Ftxil3Q2cBuwRdJgRNxP6he6s+gbf40ev0DoW6QDoNMXGl1LOoj6UERcAPxU0udIB0VvAX7RhxQRN0bEIwvlmZHtEOByYBj4HOkAxWtJewl7iun+lHTg9d2kvq+Defw0ymtI59I/EhGXA58mXc16HumI9aNt+Up9qs7I9nfA24tstwJHSNpYbEX9vtIFV1eQ9mB6nq3It4L05jqBdP3AK0jHPY4lbSn1s+3as20mnS3wWtI1DL/R77YrLCdde/EsSatI6/ySYpp9abdZ8u1NWteeSuriOFrSR/rVdpKWkY6xnQx8PCJ+txh0TNs0+9Z2M/J9LCKmt7gngaP62XaldfAJNkzavfhb4D3FY8eSitYdRfALgU3FsHOAD7c9/3rgmOL2PqRTgI6t41OJtPK+qO3+6aQtkzcD3257/KnAncXtd5Au231S8fwvAU9vG3dVj7K9iXSk+9eBvy/+Xg/8L9K5/IuWrW16B7bd/s+kN9Op/W67WbL9MemUsWc2qO3eTOprfT/wVtKBtOv73W6z5HsfaY9nVRPajrQHduqMx04BrmtC282R7+lFhr6vdx0vRwcLOn1qzinAeHF7GWlramVx/zDS1vqxpF3Ai0lbWv9E+qTapyfhUx+X4Be/3foCHu/uuZd0zuj0uF+jKLSk3aevFuP8ySJlOwb4xvSK2zbeMtLB5ROK++f0OtuMnAeQjm/sBD5c3L8XGOxX282S7a5ivisouvn61XZtr+dbSN1srwW+UDx2T7/bbY58Y8Vj7acL92W9I3VR3ApsKub/gaJ+3Acc3IB1rj3fVaQv5jq03+td6eUoscBPJl0o9Jzi/tIZw88HTp5egUhdD2fSo6I+x8p8AY+fL/854KPF7V8j7XE8ve2FOZq2rwRepGzvaH+suH1I0XbPXexsbRn+kHS+7WZSv/Y3izec+tl2M7KdRzqt7NlNaDvSV0YvIfWhXk3aMr4JeH+/17lZ8v0z6QyzFzSk7b5C2gN7Gmkr+CzShmFT1rn2fF8gXfp/eBPartO/6aLTEUmfAn4WERuK+3uRzrt8B/Ac4JQo2U9eF0mHkvq03hURtyp9odhokWs18J2o56qybrK9PSJuKx47htQtta7I9of9yNZO6TqEM0lvsiNJK+uh9LHt2rIdTXqz/TnpLKuT6FPbSRogdXPsQ2qn3yBdeHI2aUv5cPrYbrPkO5x0fOK3SMe8XkZqv76sdypOey5uP4/0Pr2WdEl939e5GfmOJl3pfi7pm2b7tt6VUfY89s3AucVBhiNJK/HxpBfl7H4V9cIxFOfASzqD1P9/NqkL6QeRTr/sd7YfFdluJ60ce0hb8Tf2MVu7e0kHAd8XEX8n6TTg5obku5/UT3wT6XVdRv/abg/p7IlHSVvqPyet/5PAexvQbnPle1jSa0gFv2/r3XTRLNxPOu70/oi4sAFtNzPfA6SN123Af6W/613Hym6xv450oPRh0jeOXRkRt/QoWymSriUdXNtOOof0QxHxvb6GKszIdhewoUHttpK0BfcG0vffbwbOi4hH533iIpgl26cjYlN/U/2y4sKT6b7su/qdZ6Yi38nAZyOdddLvPPuQfnPhjaQ96r8EPhXpa7r7bpZ8myPiz/qbqpyOC7uk55LO57yYdLCotq/K7VaxB/FB0pbw5yNdtdYITc4GIGkpqfvlYVK+Jr2ujc0G6aIu4LEos3W0iJqcT9KZpNNqP9e01xWan28hpbbYzcys+Zr603hmZlaRC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDP/H+KofDj+oV4qAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_incidence.hist(xrot=20)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.4"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}