V3

parent 90e7815b
...@@ -12,12 +12,12 @@ ...@@ -12,12 +12,12 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"## En demandant à la lib maths\n", "## En demandant à la lib maths\n",
"mon ordinateur m'indique que $\\pi$ vaut *apporximativement*" "Mon ordinateur m'indique que $\\pi$ vaut *apporximativement*"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 1, "execution_count": 19,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -34,10 +34,8 @@ ...@@ -34,10 +34,8 @@
] ]
}, },
{ {
"cell_type": "code", "cell_type": "markdown",
"execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [],
"source": [ "source": [
"## En utilisant la méthode des aiguilles de Buffon\n", "## En utilisant la méthode des aiguilles de Buffon\n",
"Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :" "Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :"
...@@ -45,7 +43,7 @@ ...@@ -45,7 +43,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 18, "execution_count": 21,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -54,7 +52,7 @@ ...@@ -54,7 +52,7 @@
"3.128911138923655" "3.128911138923655"
] ]
}, },
"execution_count": 18, "execution_count": 21,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
...@@ -77,13 +75,13 @@ ...@@ -77,13 +75,13 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"[aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon)\n", "## Avec un argument \"fréquentiel\" de surface\n",
"\n" "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\\sim U(0,1)$ et $Y\\sim U(0,1)$ alors $P[X^2+Y^2\\leq 1] = \\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :\n"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 14, "execution_count": 22,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -100,8 +98,9 @@ ...@@ -100,8 +98,9 @@
} }
], ],
"source": [ "source": [
"%matplotlib inline\n", "%matplotlib inline \n",
"import matplotlib.pyplot as plt\n", "import matplotlib.pyplot as plt\n",
"\n",
"np.random.seed(seed=42)\n", "np.random.seed(seed=42)\n",
"N = 1000\n", "N = 1000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n", "x = np.random.uniform(size=N, low=0, high=1)\n",
...@@ -109,15 +108,23 @@ ...@@ -109,15 +108,23 @@
"\n", "\n",
"accept = (x*x+y*y) <= 1\n", "accept = (x*x+y*y) <= 1\n",
"reject = np.logical_not(accept)\n", "reject = np.logical_not(accept)\n",
"\n",
"fig, ax = plt.subplots(1)\n", "fig, ax = plt.subplots(1)\n",
"ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n", "ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n",
"ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n", "ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n",
"ax.set_aspect('equal')\n" "ax.set_aspect('equal')\n"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Il est alors aisé d'obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :"
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 15, "execution_count": 23,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -126,12 +133,14 @@ ...@@ -126,12 +133,14 @@
"3.112" "3.112"
] ]
}, },
"execution_count": 15, "execution_count": 23,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
], ],
"source": [] "source": [
"4*np.mean(accept)"
]
}, },
{ {
"cell_type": "code", "cell_type": "code",
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment