#+TITLE: L'emploi recule :preamble: #+AUTHOR: V. Ledda #+DATE: <2024-04-13 sam.> #+LANGUAGE: fr #+startup:overview indent inlineimages #+PROPERTY: header-args:jupyter-R :exports both #+PROPERTY: header-args:jupyter-R+ :session /jpy::ir #+EXPORT_EXCLUDE_TAGS: noexport #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: :end: * Emploi et chomage en Europe entre 2006 et 2011. ** Chargement des données #+begin_src jupyter-R :exports code :results raw drawer packages<-c("tidyverse","skimr") for(package in packages) { if(!require(package,character.only=TRUE)){ print(c("Installation de ",package)) install.packages(package) } library(package,character.only=TRUE) } donnees<-as_tibble(read.csv2("Lemploirecule.csv",sep=";",dec=",")) donnees$Date<-as.Date(donnees$Date,"%d/%m/%y") #+end_src #+RESULTS: ** Aperçu #+begin_src jupyter-R :exports both :results raw drawer glimpse(donnees) #+end_src #+RESULTS: : Rows: 19 : Columns: 3 : $ Date  2006-01-01, 2006-04-01, 2006-07-01, 2006-10-01, 2… : $ Personnes.employées  218.947, 220.053, 220.955, 221.632, 222.985, 224.0… : $ Chomeurs  20.1053, 19.5865, 18.9098, 18.2782, 17.4887, 16.92… #+begin_src jupyter-R skim(donnees) #+end_src #+RESULTS: :RESULTS: #+begin_example ── Data Summary ──────────────────────── Values Name donnees Number of rows 19 Number of columns 3 _______________________ Column type frequency: Date 1 numeric 2 ________________________ Group variables None ── Variable type: Date ───────────────────────────────────────────────────────── skim_variable n_missing complete_rate min max median 1 Date 0 1 2006-01-01 2010-07-01 2008-04-01 n_unique 1 19 ── Variable type: numeric ────────────────────────────────────────────────────── skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 1 Personnes.employées 0 1 223. 2.45 219. 221. 223. 225. 2 Chomeurs 0 1 19.2 2.52 16.0 16.9 18.9 21.4 p100 hist 1 227. ▂▇▂▃▆ 2 23.2 ▇▃▅▁▇ Warning message in is.null(text_repr) || nchar(text_repr) == 0L: “‘length(x) = 16 > 1’ dans la conversion automatique vers ‘logical(1)’” #+end_example #+begin_export html
A skim_df: 3 × 16
skim_typeskim_variablen_missingcomplete_rateDate.minDate.maxDate.medianDate.n_uniquenumeric.meannumeric.sdnumeric.p0numeric.p25numeric.p50numeric.p75numeric.p100numeric.hist
<chr><chr><int><dbl><date><date><date><int><dbl><dbl><dbl><dbl><dbl><dbl><dbl><chr>
1Date Date 012006-01-012010-07-012008-04-0119 NA NA NA NA NA NA NANA
2numericPersonnes.employées01NANANANA223.110792.447718218.9470221.24800222.9850225.286226.7740▂▇▂▃▆
3numericChomeurs 01NANANANA 19.229132.521522 16.0451 16.89095 18.9098 21.391 23.1504▇▃▅▁▇
#+end_export :END: * Représentation graphique #+begin_src jupyter-R :exports both :results raw drawer donnees |> mutate(Date=Date+45)|> pivot_longer(!Date,names_to="Variables")|> ggplot(aes(x=Date,y=value,group=Variables))+ geom_line(aes(color=Variables),linewidth=2)+ geom_point(size=1)+ labs(title="Évolution du nombre de personnes employées\n et du nombre de personnes au chomage") #+end_src #+RESULTS: :RESULTS: #+attr_org: :width 420 :height 420 [[./.ob-jupyter/e802e54060b7411127a1be1573f26d4883ac8db4.png]] :END: