#+TITLE: L'emploi recule
:preamble:
#+AUTHOR: V. Ledda
#+DATE: <2024-04-13 sam.>
#+LANGUAGE: fr
#+startup:overview indent inlineimages
#+PROPERTY: header-args:jupyter-R :exports both
#+PROPERTY: header-args:jupyter-R+ :session /jpy::ir
#+EXPORT_EXCLUDE_TAGS: noexport
#+HTML_HEAD:
#+HTML_HEAD:
#+HTML_HEAD:
#+HTML_HEAD:
#+HTML_HEAD:
#+HTML_HEAD:
:end:
* Emploi et chomage en Europe entre 2006 et 2011.
** Chargement des données
#+begin_src jupyter-R :exports code :results raw drawer
packages<-c("tidyverse","skimr")
for(package in packages)
{
if(!require(package,character.only=TRUE)){
print(c("Installation de ",package))
install.packages(package)
}
library(package,character.only=TRUE)
}
donnees<-as_tibble(read.csv2("Lemploirecule.csv",sep=";",dec=","))
donnees$Date<-as.Date(donnees$Date,"%d/%m/%y")
#+end_src
#+RESULTS:
** Aperçu
#+begin_src jupyter-R :exports both :results raw drawer
glimpse(donnees)
#+end_src
#+RESULTS:
: Rows: 19
: Columns: 3
: $ Date [3m[90m[39m[23m 2006-01-01, 2006-04-01, 2006-07-01, 2006-10-01, 2…
: $ Personnes.employées [3m[90m[39m[23m 218.947, 220.053, 220.955, 221.632, 222.985, 224.0…
: $ Chomeurs [3m[90m[39m[23m 20.1053, 19.5865, 18.9098, 18.2782, 17.4887, 16.92…
#+begin_src jupyter-R
skim(donnees)
#+end_src
#+RESULTS:
:RESULTS:
#+begin_example
── Data Summary ────────────────────────
Values
Name donnees
Number of rows 19
Number of columns 3
_______________________
Column type frequency:
Date 1
numeric 2
________________________
Group variables None
── Variable type: Date ─────────────────────────────────────────────────────────
skim_variable n_missing complete_rate min max median
[90m1[39m Date 0 1 2006-01-01 2010-07-01 2008-04-01
n_unique
[90m1[39m 19
── Variable type: numeric ──────────────────────────────────────────────────────
skim_variable n_missing complete_rate mean sd p0 p25 p50 p75
[90m1[39m Personnes.employées 0 1 223. 2.45 219. 221. 223. 225.
[90m2[39m Chomeurs 0 1 19.2 2.52 16.0 16.9 18.9 21.4
p100 hist
[90m1[39m 227. ▂▇▂▃▆
[90m2[39m 23.2 ▇▃▅▁▇
Warning message in is.null(text_repr) || nchar(text_repr) == 0L:
“‘length(x) = 16 > 1’ dans la conversion automatique vers ‘logical(1)’”
#+end_example
#+begin_export html
A skim_df: 3 × 16
skim_type
skim_variable
n_missing
complete_rate
Date.min
Date.max
Date.median
Date.n_unique
numeric.mean
numeric.sd
numeric.p0
numeric.p25
numeric.p50
numeric.p75
numeric.p100
numeric.hist
<chr>
<chr>
<int>
<dbl>
<date>
<date>
<date>
<int>
<dbl>
<dbl>
<dbl>
<dbl>
<dbl>
<dbl>
<dbl>
<chr>
1
Date
Date
0
1
2006-01-01
2010-07-01
2008-04-01
19
NA
NA
NA
NA
NA
NA
NA
NA
2
numeric
Personnes.employées
0
1
NA
NA
NA
NA
223.11079
2.447718
218.9470
221.24800
222.9850
225.286
226.7740
▂▇▂▃▆
3
numeric
Chomeurs
0
1
NA
NA
NA
NA
19.22913
2.521522
16.0451
16.89095
18.9098
21.391
23.1504
▇▃▅▁▇
#+end_export
:END:
* Représentation graphique
#+begin_src jupyter-R :exports both :results raw drawer
donnees |>
mutate(Date=Date+45)|>
pivot_longer(!Date,names_to="Variables")|>
ggplot(aes(x=Date,y=value,group=Variables))+
geom_line(aes(color=Variables),linewidth=2)+
geom_point(size=1)+
labs(title="Évolution du nombre de personnes employées\n et du nombre de personnes au chomage")
#+end_src
#+RESULTS:
:RESULTS:
#+attr_org: :width 420 :height 420
[[./.ob-jupyter/e802e54060b7411127a1be1573f26d4883ac8db4.png]]
:END: