diff --git a/module3/exo2/exercice.ipynb b/module3/exo2/exercice.ipynb index 0bbbe371b01e359e381e43239412d77bf53fb1fb..ddbc4ab43628cad7fe8126c451a4f52a56f71061 100644 --- a/module3/exo2/exercice.ipynb +++ b/module3/exo2/exercice.ipynb @@ -1,5 +1,2306 @@ { - "cells": [], + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#Incidence varicelle" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import isoweek" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "data_url = \"https://www.sentiweb.fr/datasets/incidence-PAY-7.csv?v=77dym\"" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "raw_data = pd.read_csv(\"https://www.sentiweb.fr/datasets/incidence-PAY-7.csv?v=77dym.csv\", skiprows=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020234275150129190098214FRFrance
12023417340417865022537FRFrance
22023407284514104280426FRFrance
3202339717396292849315FRFrance
4202338716632743052315FRFrance
5202337711222232021213FRFrance
62023367726101442102FRFrance
72023357961961826102FRFrance
82023347116892327204FRFrance
92023337330811845432528FRFrance
102023327799611201487212222FRFrance
112023317331813985238528FRFrance
1220233075821326983739513FRFrance
13202329713558829718819201228FRFrance
14202328767004043935710614FRFrance
15202327772534599990711715FRFrance
1620232679192622312161141018FRFrance
17202325711498825714739171222FRFrance
18202324711115796814262171222FRFrance
1920232371256361341899219929FRFrance
20202322712184812516243181224FRFrance
21202321711349759815100171123FRFrance
222023207900046151338514721FRFrance
232023197934460911259714919FRFrance
24202318710671729114051161121FRFrance
252023177918461621220614919FRFrance
26202316711387801414760171222FRFrance
27202315714040761320467211131FRFrance
282023147152471103219462231729FRFrance
29202313713322970016944201525FRFrance
.................................
16861991267176081130423912312042FRFrance
16871991257161691070021638281838FRFrance
16881991247161711007122271281739FRFrance
1689199123711947767116223211329FRFrance
1690199122715452995320951271737FRFrance
1691199121714903897520831261636FRFrance
16921991207190531274225364342345FRFrance
16931991197167391124622232291939FRFrance
16941991187213851388228888382551FRFrance
1695199117713462887718047241632FRFrance
16961991167148571006819646261834FRFrance
1697199115713975978118169251832FRFrance
1698199114712265768416846221430FRFrance
169919911379567604113093171123FRFrance
1700199112710864733114397191325FRFrance
17011991117155741118419964271935FRFrance
17021991107166431137221914292038FRFrance
1703199109713741878018702241533FRFrance
1704199108713289881317765231531FRFrance
1705199107712337807716597221529FRFrance
1706199106710877701314741191226FRFrance
1707199105710442654414340181125FRFrance
17081991047791345631126314820FRFrance
17091991037153871048420290271836FRFrance
17101991027162771104621508292038FRFrance
17111991017155651027120859271836FRFrance
17121990527193751329525455342345FRFrance
17131990517190801380724353342543FRFrance
1714199050711079666015498201228FRFrance
17151990497114302610205FRFrance
\n", + "

1716 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202342 7 5150 1291 9009 8 2 \n", + "1 202341 7 3404 1786 5022 5 3 \n", + "2 202340 7 2845 1410 4280 4 2 \n", + "3 202339 7 1739 629 2849 3 1 \n", + "4 202338 7 1663 274 3052 3 1 \n", + "5 202337 7 1122 223 2021 2 1 \n", + "6 202336 7 726 10 1442 1 0 \n", + "7 202335 7 961 96 1826 1 0 \n", + "8 202334 7 1168 9 2327 2 0 \n", + "9 202333 7 3308 1184 5432 5 2 \n", + "10 202332 7 7996 1120 14872 12 2 \n", + "11 202331 7 3318 1398 5238 5 2 \n", + "12 202330 7 5821 3269 8373 9 5 \n", + "13 202329 7 13558 8297 18819 20 12 \n", + "14 202328 7 6700 4043 9357 10 6 \n", + "15 202327 7 7253 4599 9907 11 7 \n", + "16 202326 7 9192 6223 12161 14 10 \n", + "17 202325 7 11498 8257 14739 17 12 \n", + "18 202324 7 11115 7968 14262 17 12 \n", + "19 202323 7 12563 6134 18992 19 9 \n", + "20 202322 7 12184 8125 16243 18 12 \n", + "21 202321 7 11349 7598 15100 17 11 \n", + "22 202320 7 9000 4615 13385 14 7 \n", + "23 202319 7 9344 6091 12597 14 9 \n", + "24 202318 7 10671 7291 14051 16 11 \n", + "25 202317 7 9184 6162 12206 14 9 \n", + "26 202316 7 11387 8014 14760 17 12 \n", + "27 202315 7 14040 7613 20467 21 11 \n", + "28 202314 7 15247 11032 19462 23 17 \n", + "29 202313 7 13322 9700 16944 20 15 \n", + "... ... ... ... ... ... ... ... \n", + "1686 199126 7 17608 11304 23912 31 20 \n", + "1687 199125 7 16169 10700 21638 28 18 \n", + "1688 199124 7 16171 10071 22271 28 17 \n", + "1689 199123 7 11947 7671 16223 21 13 \n", + "1690 199122 7 15452 9953 20951 27 17 \n", + "1691 199121 7 14903 8975 20831 26 16 \n", + "1692 199120 7 19053 12742 25364 34 23 \n", + "1693 199119 7 16739 11246 22232 29 19 \n", + "1694 199118 7 21385 13882 28888 38 25 \n", + "1695 199117 7 13462 8877 18047 24 16 \n", + "1696 199116 7 14857 10068 19646 26 18 \n", + "1697 199115 7 13975 9781 18169 25 18 \n", + "1698 199114 7 12265 7684 16846 22 14 \n", + "1699 199113 7 9567 6041 13093 17 11 \n", + "1700 199112 7 10864 7331 14397 19 13 \n", + "1701 199111 7 15574 11184 19964 27 19 \n", + "1702 199110 7 16643 11372 21914 29 20 \n", + "1703 199109 7 13741 8780 18702 24 15 \n", + "1704 199108 7 13289 8813 17765 23 15 \n", + "1705 199107 7 12337 8077 16597 22 15 \n", + "1706 199106 7 10877 7013 14741 19 12 \n", + "1707 199105 7 10442 6544 14340 18 11 \n", + "1708 199104 7 7913 4563 11263 14 8 \n", + "1709 199103 7 15387 10484 20290 27 18 \n", + "1710 199102 7 16277 11046 21508 29 20 \n", + "1711 199101 7 15565 10271 20859 27 18 \n", + "1712 199052 7 19375 13295 25455 34 23 \n", + "1713 199051 7 19080 13807 24353 34 25 \n", + "1714 199050 7 11079 6660 15498 20 12 \n", + "1715 199049 7 1143 0 2610 2 0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 14 FR France \n", + "1 7 FR France \n", + "2 6 FR France \n", + "3 5 FR France \n", + "4 5 FR France \n", + "5 3 FR France \n", + "6 2 FR France \n", + "7 2 FR France \n", + "8 4 FR France \n", + "9 8 FR France \n", + "10 22 FR France \n", + "11 8 FR France \n", + "12 13 FR France \n", + "13 28 FR France \n", + "14 14 FR France \n", + "15 15 FR France \n", + "16 18 FR France \n", + "17 22 FR France \n", + "18 22 FR France \n", + "19 29 FR France \n", + "20 24 FR France \n", + "21 23 FR France \n", + "22 21 FR France \n", + "23 19 FR France \n", + "24 21 FR France \n", + "25 19 FR France \n", + "26 22 FR France \n", + "27 31 FR France \n", + "28 29 FR France \n", + "29 25 FR France \n", + "... ... ... ... \n", + "1686 42 FR France \n", + "1687 38 FR France \n", + "1688 39 FR France \n", + "1689 29 FR France \n", + "1690 37 FR France \n", + "1691 36 FR France \n", + "1692 45 FR France \n", + "1693 39 FR France \n", + "1694 51 FR France \n", + "1695 32 FR France \n", + "1696 34 FR France \n", + "1697 32 FR France \n", + "1698 30 FR France \n", + "1699 23 FR France \n", + "1700 25 FR France \n", + "1701 35 FR France \n", + "1702 38 FR France \n", + "1703 33 FR France \n", + "1704 31 FR France \n", + "1705 29 FR France \n", + "1706 26 FR France \n", + "1707 25 FR France \n", + "1708 20 FR France \n", + "1709 36 FR France \n", + "1710 38 FR France \n", + "1711 36 FR France \n", + "1712 45 FR France \n", + "1713 43 FR France \n", + "1714 28 FR France \n", + "1715 5 FR France \n", + "\n", + "[1716 rows x 10 columns]" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "raw_data" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
\n", + "
" + ], + "text/plain": [ + "Empty DataFrame\n", + "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n", + "Index: []" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "raw_data[raw_data.isnull().any(axis=1)]" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020234275150129190098214FRFrance
12023417340417865022537FRFrance
22023407284514104280426FRFrance
3202339717396292849315FRFrance
4202338716632743052315FRFrance
5202337711222232021213FRFrance
62023367726101442102FRFrance
72023357961961826102FRFrance
82023347116892327204FRFrance
92023337330811845432528FRFrance
102023327799611201487212222FRFrance
112023317331813985238528FRFrance
1220233075821326983739513FRFrance
13202329713558829718819201228FRFrance
14202328767004043935710614FRFrance
15202327772534599990711715FRFrance
1620232679192622312161141018FRFrance
17202325711498825714739171222FRFrance
18202324711115796814262171222FRFrance
1920232371256361341899219929FRFrance
20202322712184812516243181224FRFrance
21202321711349759815100171123FRFrance
222023207900046151338514721FRFrance
232023197934460911259714919FRFrance
24202318710671729114051161121FRFrance
252023177918461621220614919FRFrance
26202316711387801414760171222FRFrance
27202315714040761320467211131FRFrance
282023147152471103219462231729FRFrance
29202313713322970016944201525FRFrance
.................................
16861991267176081130423912312042FRFrance
16871991257161691070021638281838FRFrance
16881991247161711007122271281739FRFrance
1689199123711947767116223211329FRFrance
1690199122715452995320951271737FRFrance
1691199121714903897520831261636FRFrance
16921991207190531274225364342345FRFrance
16931991197167391124622232291939FRFrance
16941991187213851388228888382551FRFrance
1695199117713462887718047241632FRFrance
16961991167148571006819646261834FRFrance
1697199115713975978118169251832FRFrance
1698199114712265768416846221430FRFrance
169919911379567604113093171123FRFrance
1700199112710864733114397191325FRFrance
17011991117155741118419964271935FRFrance
17021991107166431137221914292038FRFrance
1703199109713741878018702241533FRFrance
1704199108713289881317765231531FRFrance
1705199107712337807716597221529FRFrance
1706199106710877701314741191226FRFrance
1707199105710442654414340181125FRFrance
17081991047791345631126314820FRFrance
17091991037153871048420290271836FRFrance
17101991027162771104621508292038FRFrance
17111991017155651027120859271836FRFrance
17121990527193751329525455342345FRFrance
17131990517190801380724353342543FRFrance
1714199050711079666015498201228FRFrance
17151990497114302610205FRFrance
\n", + "

1716 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202342 7 5150 1291 9009 8 2 \n", + "1 202341 7 3404 1786 5022 5 3 \n", + "2 202340 7 2845 1410 4280 4 2 \n", + "3 202339 7 1739 629 2849 3 1 \n", + "4 202338 7 1663 274 3052 3 1 \n", + "5 202337 7 1122 223 2021 2 1 \n", + "6 202336 7 726 10 1442 1 0 \n", + "7 202335 7 961 96 1826 1 0 \n", + "8 202334 7 1168 9 2327 2 0 \n", + "9 202333 7 3308 1184 5432 5 2 \n", + "10 202332 7 7996 1120 14872 12 2 \n", + "11 202331 7 3318 1398 5238 5 2 \n", + "12 202330 7 5821 3269 8373 9 5 \n", + "13 202329 7 13558 8297 18819 20 12 \n", + "14 202328 7 6700 4043 9357 10 6 \n", + "15 202327 7 7253 4599 9907 11 7 \n", + "16 202326 7 9192 6223 12161 14 10 \n", + "17 202325 7 11498 8257 14739 17 12 \n", + "18 202324 7 11115 7968 14262 17 12 \n", + "19 202323 7 12563 6134 18992 19 9 \n", + "20 202322 7 12184 8125 16243 18 12 \n", + "21 202321 7 11349 7598 15100 17 11 \n", + "22 202320 7 9000 4615 13385 14 7 \n", + "23 202319 7 9344 6091 12597 14 9 \n", + "24 202318 7 10671 7291 14051 16 11 \n", + "25 202317 7 9184 6162 12206 14 9 \n", + "26 202316 7 11387 8014 14760 17 12 \n", + "27 202315 7 14040 7613 20467 21 11 \n", + "28 202314 7 15247 11032 19462 23 17 \n", + "29 202313 7 13322 9700 16944 20 15 \n", + "... ... ... ... ... ... ... ... \n", + "1686 199126 7 17608 11304 23912 31 20 \n", + "1687 199125 7 16169 10700 21638 28 18 \n", + "1688 199124 7 16171 10071 22271 28 17 \n", + "1689 199123 7 11947 7671 16223 21 13 \n", + "1690 199122 7 15452 9953 20951 27 17 \n", + "1691 199121 7 14903 8975 20831 26 16 \n", + "1692 199120 7 19053 12742 25364 34 23 \n", + "1693 199119 7 16739 11246 22232 29 19 \n", + "1694 199118 7 21385 13882 28888 38 25 \n", + "1695 199117 7 13462 8877 18047 24 16 \n", + "1696 199116 7 14857 10068 19646 26 18 \n", + "1697 199115 7 13975 9781 18169 25 18 \n", + "1698 199114 7 12265 7684 16846 22 14 \n", + "1699 199113 7 9567 6041 13093 17 11 \n", + "1700 199112 7 10864 7331 14397 19 13 \n", + "1701 199111 7 15574 11184 19964 27 19 \n", + "1702 199110 7 16643 11372 21914 29 20 \n", + "1703 199109 7 13741 8780 18702 24 15 \n", + "1704 199108 7 13289 8813 17765 23 15 \n", + "1705 199107 7 12337 8077 16597 22 15 \n", + "1706 199106 7 10877 7013 14741 19 12 \n", + "1707 199105 7 10442 6544 14340 18 11 \n", + "1708 199104 7 7913 4563 11263 14 8 \n", + "1709 199103 7 15387 10484 20290 27 18 \n", + "1710 199102 7 16277 11046 21508 29 20 \n", + "1711 199101 7 15565 10271 20859 27 18 \n", + "1712 199052 7 19375 13295 25455 34 23 \n", + "1713 199051 7 19080 13807 24353 34 25 \n", + "1714 199050 7 11079 6660 15498 20 12 \n", + "1715 199049 7 1143 0 2610 2 0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 14 FR France \n", + "1 7 FR France \n", + "2 6 FR France \n", + "3 5 FR France \n", + "4 5 FR France \n", + "5 3 FR France \n", + "6 2 FR France \n", + "7 2 FR France \n", + "8 4 FR France \n", + "9 8 FR France \n", + "10 22 FR France \n", + "11 8 FR France \n", + "12 13 FR France \n", + "13 28 FR France \n", + "14 14 FR France \n", + "15 15 FR France \n", + "16 18 FR France \n", + "17 22 FR France \n", + "18 22 FR France \n", + "19 29 FR France \n", + "20 24 FR France \n", + "21 23 FR France \n", + "22 21 FR France \n", + "23 19 FR France \n", + "24 21 FR France \n", + "25 19 FR France \n", + "26 22 FR France \n", + "27 31 FR France \n", + "28 29 FR France \n", + "29 25 FR France \n", + "... ... ... ... \n", + "1686 42 FR France \n", + "1687 38 FR France \n", + "1688 39 FR France \n", + "1689 29 FR France \n", + "1690 37 FR France \n", + "1691 36 FR France \n", + "1692 45 FR France \n", + "1693 39 FR France \n", + "1694 51 FR France \n", + "1695 32 FR France \n", + "1696 34 FR France \n", + "1697 32 FR France \n", + "1698 30 FR France \n", + "1699 23 FR France \n", + "1700 25 FR France \n", + "1701 35 FR France \n", + "1702 38 FR France \n", + "1703 33 FR France \n", + "1704 31 FR France \n", + "1705 29 FR France \n", + "1706 26 FR France \n", + "1707 25 FR France \n", + "1708 20 FR France \n", + "1709 36 FR France \n", + "1710 38 FR France \n", + "1711 36 FR France \n", + "1712 45 FR France \n", + "1713 43 FR France \n", + "1714 28 FR France \n", + "1715 5 FR France \n", + "\n", + "[1716 rows x 10 columns]" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = raw_data.dropna().copy()\n", + "data" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "def convert_week(year_and_week_int):\n", + " year_and_week_str = str(year_and_week_int)\n", + " year = int(year_and_week_str[:4])\n", + " week = int(year_and_week_str[4:])\n", + " w = isoweek.Week(year, week)\n", + " return pd.Period(w.day(0), 'W')\n", + "\n", + "data['period'] = [convert_week(yw) for yw in data['week']]" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "sorted_data = data.set_index('period').sort_index()" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "periods = sorted_data.index\n", + "for p1, p2 in zip(periods[:-1], periods[1:]):\n", + " delta = p2.to_timestamp() - p1.end_time\n", + " if delta > pd.Timedelta('1s'):\n", + " print(p1, p2)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEKCAYAAAAB0GKPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsfXe8HkW99/f3PKek90oKSUgkJJRAYujSJaBeUOEaVOB60SgXy33Vq+C9iqjxiuVywVfwRVBCkyrSe5EWAgklIYGQThrpvZz2zPvH7uzOzk7bp5zznHPm+/mcz9lndnZmdnd2fvPrxBiDh4eHh4eHDbm2HoCHh4eHR/uAJxgeHh4eHk7wBMPDw8PDwwmeYHh4eHh4OMETDA8PDw8PJ3iC4eHh4eHhBE8wPDw8PDyc4AmGh4eHh4cTPMHw8PDw8HBCTVsPoFgMGDCAjRo1qq2H4eHh4dGuMG/evM2MsYHFXNtuCcaoUaMwd+7cth6Gh4eHR7sCEa0q9lovkvLw8PDwcIInGB4eHh4eTvAEw8PDw8PDCZ5geHh4eHg4wRMMDw8PDw8neILh4eHh4eEETzA8PDw8PJzgCYZHu8OOfU14+J11bT0MD49Oh3bruOfRefHdu9/Gs+9vxMQDemHMwB5tPRwPj04Dz2F4tDus3b4PALC/qdDGI/Hw6FzwBMPDw8PDwwmeYHh4eHh4OMFKMIioCxG9TkTvENFCIroqLP8pEa0lorfDv7OFa64goqVEtJiIzhTKJxPRgvDcdUREYXk9Ed0dls8holHlv1UPDw8Pj1LgwmE0ADiVMXYEgEkAphHRMeG5axhjk8K/xwCAiCYAmA5gIoBpAK4nonxY/wYAMwCMC/+mheWXANjGGBsL4BoAV5d+ax4eHh4e5YSVYLAAu8OfteEfM1xyDoC7GGMNjLEVAJYCmEpEQwH0YozNZowxALcCOFe4ZlZ4fB+A0zj34eHh4eFRHXDSYRBRnojeBrARwNOMsTnhqW8S0Xwi+jMR9Q3LhgFYLVy+JiwbFh7L5YlrGGPNAHYA6K8YxwwimktEczdt2uR0gx4eHh4e5YETwWCMtTDGJgEYjoBbOBSBeOkgBGKq9QB+F1ZXcQbMUG66Rh7HjYyxKYyxKQMHFpUwyqMDgRkZ3SS2723E84s3VnA0Hh4dH5mspBhj2wG8AGAaY2xDSEgKAP4EYGpYbQ2AEcJlwwGsC8uHK8oT1xBRDYDeALZmuhOPToNipJUzbpuHr/zlDWzf21iBEXl4dA64WEkNJKI+4XFXAKcDeD/USXB8FsC74fFDAKaHlk+jESi3X2eMrQewi4iOCfUTFwF4ULjm4vD4PADPhXoOD4+yYPmmQA3X2OKd/Tw8ioVLaJChAGaFlk45APcwxh4hotuIaBIC0dFKAF8HAMbYQiK6B8AiAM0ALmOMtYRtXQrgFgBdATwe/gHAzQBuI6KlCDiL6WW4Nw8PAd6GwsOjVFgJBmNsPoAjFeUXGq6ZCWCmonwugEMV5fsBnG8bi4eHh4dH28F7enu0a9w3bw2+dutc9wu8oNPDo2j4aLUe7Rrfv/cdp3req8fDo3R4DsOj3aIYswjPYHh4FA9PMDw6BTyD4eFROjzB8Gh3KGXxr6Sx9qxXV+LeuavtFT082im8DsOjU6A1dBhXPrQQAHD+lBGWmh4e7ROew/DoVMgSTsTDwyMJTzA82h2K4RbIazE8PEqGJxgenQo+4IyHR/HwBMOjU8D7YXh4lA5PMDw6FTyD4eFRPDzBqGLMW7UNuxua23oYHQKewfDwKB2eYFQpdu5vwudveBWX3fFmWw/Fw8PDA4AnGFWLhqYgb8PCdTvaeCTVi6JCg3itt4dH0fAEw6PdIotPRTFZ+jw8PJLwBMOj3aI4DqP84/CoDF5bvgVzlm9p62F4CPChQTzaLfza37Ex/cbXAAArf/WpNh6JB4fnMDzaLbw+wsOjdWElGETUhYheJ6J3iGghEV0VlvcjoqeJaEn4v69wzRVEtJSIFhPRmUL5ZCJaEJ67jkLBMhHVE9HdYfkcIhpV/lv16Cjg6ogs5CK6poPQmBtfXIZRlz+K/U0tbT0Uj04EFw6jAcCpjLEjAEwCMI2IjgFwOYBnGWPjADwb/gYRTQAwHcBEANMAXE9E+bCtGwDMADAu/JsWll8CYBtjbCyAawBcXYZ7KxvWbt+Hh99Z19bD8JBQXAKljkExbnxxOQBg137vp+PRerASDBZgd/izNvxjAM4BMCssnwXg3PD4HAB3McYaGGMrACwFMJWIhgLoxRibzQJZwq3SNbyt+wCcRlVk1vL561/Ft/76VlsPwyOFLFZS4RUdg150mPvwaF9w0mEQUZ6I3gawEcDTjLE5AAYzxtYDQPh/UFh9GAAxi8yasGxYeCyXJ65hjDUD2AGgfzE3VAl8tHM/AC8zrzZ05hSt/D6qZ1vl0RngRDAYYy2MsUkAhiPgFg41VFdNYWYoN12TbJhoBhHNJaK5mzZtsg277PD0orqQSYcRTrGOQvT5fXh64dGayGQlxRjbDuAFBLqHDaGYCeH/jWG1NQDElGPDAawLy4cryhPXEFENgN4Atir6v5ExNoUxNmXgwIFZhu7Rxli7fR9aCuVdrDs6h/Ha8i1YvXWvsU4VSW49OgFcrKQGElGf8LgrgNMBvA/gIQAXh9UuBvBgePwQgOmh5dNoBMrt10Ox1S4iOibUT1wkXcPbOg/Ac6wKt4J/fmVFqzkSdRTlLBAQi+N/9Rz+5+nFTvWvfWYJrn1mibVeMVOk+maVHtNvfA0n/vp55bl2dBseHQguHMZQAM8T0XwAbyDQYTwC4FcAziCiJQDOCH+DMbYQwD0AFgF4AsBljDFu+3cpgJsQKMKXAXg8LL8ZQH8iWgrguwgtrqoNv3j0PXwhdCYqBau37sXGUC+iRbgitKcFTgd+ry8v2exU/5pnPsA1z3xgrVeMWW21L7WMMbyydDMKjtyY5y88WhNWT2/G2HwARyrKtwA4TXPNTAAzFeVzAaT0H4yx/QDOdxhvhwDfNZo8WKt7WcsGLjYp1z0VgriMeG/9zszXVjsBfnLhBnzj9nn4yacnGOtV+314dEx4T+8qRYErNTvAFpLfQrkWuXU79gEArnp4UfYxlGcIFcNH4b2t2rLHqX61349Hx4InGFWKjrSDLDfR46Hfi0G1P1fOjdkkUlx/U4WqPo8ODE8wqhQdaRmITFrLdFf7m7OHw4jFYtX9ZOOwJ+Zxymf/73NL8OIHrW9q7tG54KPVVik60s6x3F7WpbRT7Y/VRXy3Yef+KCQIr/bbpwIjAR/Z1aOS8BxGlaLaF7ZiUK57GtKrCwBg7KAezteUW49SMTgYCBz9y2ej46q/H48OBU8wqhQfbNgFAGhq6TgrQrnu5JTxQRSazx45zFJTNYbqfp65jNxYtd+PR8eCJxhViu/d+w4AYMe+pjYeSemoCkuvdhJ8MHMIkyq/H4+OBU8wqhTVvrAVg3LrZTqSnocjO4fh4dF68ASjStGRFkOqkD9yR8zpzbmxguNAq/1+PDoWPMGoUnSkdaDcVlK8vaYMwQxjxz39NTMfXYTDrnwyUfb4gvWtmtUuq1e812F4tCY8wahWdKB1oFI6jOuetQcolGEiWn96aQV2NcQZ7Oat2oZL73gTP3vE3aPcBcs27cafX16RKt++txE/uG8+AGBnB9BdeXQ8eD+MKkUHohdld9wrRlxXTDyrnfuDRXvttn2Z+zPhc9e/ih37mnDhsQeiNh/v2T4UQpk/tWiDU1uMdSzxpUd1w3MYVYqOtAioRFLLNu3GX15J77Jd0Oxoajx35Vbs2NsExhiWbtwdjqGIkOiZrzBjV0iIZMarGF0Pgz2MiIdHueAJRpWiI64B4j197vpXcdXDi9Dckj0ulEsiJsYYzvvjbHzxptfwwuI4ZEZrPNeF63bgl4+9pyVOfPjy2WJEd3sbmsuemMrDQwdPMKoU7ZXBeGPlVvz19Q8TZbGXdXxTuwVdQVY0OyyQvMrCdTuxZlss6inmuWZdx8+7YTZufHE59lmU5fJYiiEYZ1zzIp5c+FH2Cz08ioDXYVQp2qv1y/l/nA0AuGDqyKgsDqiXRjF36bKjFs1Sd+4XiVPlRVL83dlETPI7Ltb8+Ft/fauo69oLXlm6GXsbW3DGhMFtPZROD08wqhTtlcNwRSmxnZocxFgiUWlojutn6a9Y4y5npzupXs7z+0p86aY5AHxgxWqAn6JVig5JLxQ3VQwn5abDEI/jH63xXDmBynpvlXJw9PAoF6wEg4hGENHzRPQeES0kou+E5T8lorVE9Hb4d7ZwzRVEtJSIFhPRmUL5ZCJaEJ67jkJbRyKqJ6K7w/I5RDSq/LfaztCBKAZfr8VbKsWZz02HwZTHrcm5ZdVFV0PMraUbd5ekX/Lo2HDhMJoBfI8xdgiAYwBcRkQ84fA1jLFJ4d9jABCemw5gIoBpAK4nonxY/wYAMwCMC/+mheWXANjGGBsL4BoAV5d+a+0b7VWHoQK/E3GnHwfZy95eVh2GKMFqTXNlW18pkVQVEIzT/+cfuOjmOW09DI8qhZVgMMbWM8beDI93AXgPgCmu9DkA7mKMNTDGVgBYCmAqEQ0F0IsxNpsFX9KtAM4VrpkVHt8H4DTOfXRWdEQdhlrpnf1Gmwt2HYZYpdDKIqm4X/P59L1Xx5R/88PtyvLtextx6m9fwOKPdrXyiDyqBZl0GKGo6EgAfAvyTSKaT0R/JqK+YdkwAKuFy9aEZcPCY7k8cQ1jrBnADgD9s4yto6Ej0YtIJKXSYVSAw9iyuwH3zounYKFQmkiqaK7ERjCqkMMw4YXFm7B88x7c8MLSth6KRxvBmWAQUQ8A9wP4d8bYTgTipYMATAKwHsDveFXF5cxQbrpGHsMMIppLRHM3berY+Ytdo5VWEq8u3YxXlm4uuR0lF2EwtbXBtnP/tzvexC8efU9ZvzVFfbZ3mHbcU1OMu9/4UFne2uDWaTV5byvTWeH05omoFgGxuIMx9jcAYIxtYIy1MMYKAP4EYGpYfQ2AEcLlwwGsC8uHK8oT1xBRDYDeALbK42CM3cgYm8IYmzJw4EC3O2ynqAJ6gS/eNCcyaSwHxMWaL43FEEbbjn/TrobE7617hN/FOO4VKR21dSXfh66XH96/oKj+yw1ubPDmqm2Ys3xLG4/Goy3gYiVFAG4G8B5j7H+E8qFCtc8CeDc8fgjA9NDyaTQC5fbrjLH1AHYR0TFhmxcBeFC45uLw+DwAz7GOFEypHeDW2SvxH2GWv3Kj3CKprJf8/e110XExk6rYqZiVGLa11s52nzyMy/LNe/CFG1+r2Dg+3LIXU37xTMXa9ygeLo57xwO4EMACIno7LPsRgAuIaBKCb3AlgK8DAGNsIRHdA2ARAguryxhjPEbCpQBuAdAVwOPhHxAQpNuIaCkCzmJ6abeVHa8t34IxA7pjUK8urd11VeAnDy4EAPzm/CPK3rZqHYoWxyreFpRqd2GjF/Lptt4i2UR9rZVf/p65q7F5d4O9okerw0owGGMvQ80tP2a4ZiaAmYryuQAOVZTvB3C+bSyVxPQbX0P/7nWY9+Mz2nIYHRpKDqOYUB22SwzrfGsuylnNatsaVg7DwTqNY/XWvejZpQZ9utVlHkdbc1oeenjtlYAtexpbtb9CO4sy2thcwN/fWptZRKMiCqX4YZTy1FpT6W3tiRl/tjps/WfhME789fM4+bcvFDUOTy+qFz6WVBuiqVBAfS5vr1gl+P1zS/D755aiS20O0w4dar8gRKzDEJTeGXNXKxssAq3r6W2zkkqeL1VtV+rO3CpCyzi+7XuLzBroWYyqhecwNPjpQwsx6vJHK9qHacd2/NjADWXMgO4VHYMME9ezYed+AMCOItOHlitarbIdx8WsNXfx9gW4vP3lStW5WJ5Oa/nSdhZysWLzHoy6/FEsWrezrYfiDE8woF5sbnl1ZcX7bWzWy4THDOgBADhiRJ+Kj0NEKf4fT1vSipbNSqqEhTbLLrnUhSurH0ap9KNUx79q0al0Fgbj6UVBHpO/vbnGUrN64AkGWi/F5e6G5sSiagrTzReb1rAu/sUji4R+i2/na7fOVZYrraT4uaLyU5QgkqpQXeX1rbwA2ziA/U0tuGfu6qpP/9tZovZyjrA9qTK9DgPmneDGXfvL1s8P75uPRxesj36bOAxdGs9K4KaXVwj9qnv8cMteZXkWqBb61uYwWlMmlVUnYKrfUmDIW1gIG4fx2ycX46aXV6BftzqcrkhGVC10REf3CgWGXLXHT8kAighGlTx4B3gOA+bYRFNnPlu2flZu2ZP43WjgMFjEYZSteyeo+nvi3fX4xG+ex3PvbyyuTaTvhX8s5SIYibYdxuKCUpcmW18K8qmt62LSmrdwGJtC3wZd+HK7DsM6BADA+h37rHUuu/NNzNKIfXU0oT0trC7g91ntHJ8ITzDQOovy84s3YqGk3HISSVV0VGm0KB7Gu2uDcW/e7W52LIbnUObD4Ocy3uHyTbuxaH3xSkKXd12uD1i1D0kkc8rQTbODSWulHA037WowcsMyjv3v56x1Hp2/Hlc+tFB5TncfqrnZntEeRVKeYKB1JuKlt89LlbmIpFp7V6XqT/5+XYb0DeF+TdWz3t6pv/tHtguK6E+uU3SwWsWFIrFLm9Xq23IiGO5DU0LVQ0uB4eMzn8H37n3HqFs46TfP49w/vFLiCMzoYPQi4jBue21V2w4kAzzBQOssyvub0sTBhcNobRaDKYZUzEK0TeEEyRQsRpbbM5n8urbjUq9cj1w13P984N34RxYOw0EkpZPvb93TmNic6Lg6FYHj8/AxQfemwqote/H2anUeDRO+rAhuqTMPdkmc1Z4gclJywMxqhVd6o+08rk3dxvSi7TkMGVklH/FCJDju8f4yPPtyPIlixE3FS3r0C7Bb7RguaWl1sv+jfv40zpw4GF1qzU6iqk2NiEqYu76cIXx+RxVJAUFyqoE969twNG7wHAbaToZoWixjs9rWGk2y3wSKWCmY4rjUe3Fd7E2yfCcOI4P1kgmq1yuKllJ+GIZ+TNwoh8mK6smFsTm3TrR09RPvp8qqaY1Wcb/tGeLrqqLHbIQnGMjO6n60ozymtqZeI7PaVp5Jql1cuSwZVbdSrvtz9vR20WGE/ysRakMULW3d0+g891x0GDaz22hcmpm3bnvauim2cGOt5h2hG59qbj46fz2eX1yc9V5bQ+Qw2osFmCcYyC6mWL55d5n61Z+LraRadyKpnezIWid9jaVNblab4f7K8yTsrZjyd2SBahFYsy1elM+69iX8+sl4V296Fi4iKZVZrTi3N+40y8lV422LdUzXp2p8l935Jr7ylzfK0u+abXuxr7HFXrFMEF9XO6EXnmD8x73v4N/ueDPTNeXyRDURqrbyw3CxksqOeJeaOpPh/lzrGv0wnDiMMpEmqZlNuxqwV1qQnlpoDqfC4aL0VoniRDozO8ySx+fvjn1NCWW2jSa1dciOSusaT7j6eVwyqzzExwXkOYz2h3vnrcHcVdsyXVNJEU10rm2MpJz0OTv3lx58sJhotaaFvKxWUmGlUhdI+d5sQRtLNavNKb5mJZEOn8J37noL/3bHm7EXv6KLalrHTErvXzyyqCxWVK8ua73Us+I68sh8sxVataDTE4xiUK6onabFsrWU3nNXJlOnq3Zx8t3+8rG0ctQElYinrRLuVep5vufgTPj//rHMeN40Npdx19ekraBMaygXjzU0t4R1zVZd5eKsbZyCjvM2XXbTyyswZ0X7yjMu6pxueME8N6oFnmAUgWLoRY2CLTHrMKJa2jo79jXhwpvnWEMkL9mwK8rHLOO8P85O/FaFjShZ+Ws6VwGRlLGNCgU7PO+GV1Nl4mK7Y18T7p2Xjkrq+mhdxjBEkV44GwdnLnOZBy76QJt5rFaHYeMgqogb6qjwBKMIFLN+qpyqjDb5DhzGVQ8vxEtLAjv215ard1crNu/BGde8iN88udhpnG99GDhfiR9nMRyV2iJK1WZl9AWl1MtKmN5ZvR17FMpSsZ3rnl2ivjhhWmniOO3jKDW4ozgfX/xgU3g9N75wg0t/suhof1Py2emasBK/EjY2bRHPqdT8JW0BK8EgohFE9DwRvUdEC4noO2F5PyJ6moiWhP/7CtdcQURLiWgxEZ0plE8mogXhuesoXDWIqJ6I7g7L5xDRqPLfavlQzHtWXWKaoi7RavcI3IBuTNyD9M0P3fQ0P3pgAZpaCrh9ThyuoFzmpYndavi/EnpM03h13Zk8oW2imHM0ITHEBa6uprS9mcuCpqrisimJ68bH73+0Ey0Fhq0Z0xa7vE55TL97ym0zY9NRlCIyawtfrHZIL5w4jGYA32OMHQLgGACXEdEEAJcDeJYxNg7As+FvhOemA5gIYBqA64mIC1dvADADwLjwb1pYfgmAbYyxsQCuAXB1Ge6tYiiXDsO0CLjkwxBloOWce/uaWrCqDOHMOZiKYkTnsrRTxrFIECOnpmJJFckFiVd1UegXALv5MYcTh6F6vvbL4oVL0lf86vH3cNJvXnBoIcZOh2yM8sJ/sxBe34RKLuptwWF88863Wr3PUmElGIyx9YyxN8PjXQDeAzAMwDkAZoXVZgE4Nzw+B8BdjLEGxtgKAEsBTCWioQB6McZms+Dt3Cpdw9u6D8BpVK5VuQIoZmCqu3FZIEzTuFIsLUFWUJeJQIp9RLGkymUlVdoHL/o58CN+368sLU6ZKi5Cr69Ut+E+zR04jIyhSNJ1k79F73DG3Mb6WwduQU5NLPebxQ9DRCmfQwcLU1UxZOKTQ1HRkQDmABjMGFsPBEQFwKCw2jAAq4XL1oRlw8JjuTxxDWOsGcAOAP0V/c8gorlENHfTpk1Zhl5WFEPLVIuuOZaUXYeR4DDKTDzExadUERxvqbX8MIppo0d9XqjD5faldSj2VSzR4SiawzC4b8jVExZRRU6nO+Z8aK2zYvMe43mtp7dVJFU8WttBtr3CmWAQUQ8A9wP4d8aYyYZQJ643ifGdRPyMsRsZY1MYY1MGDhxoG3LFUD4Ow0EkZWhT9OwtN7MhDq0yuaKLT6BUCrQLQwW4NZdF3lUkVXw8KyehVFhXKCGqmIydm/HqoLOGypojPQuqyd+kmuFEMIioFgGxuIMx9reweEMoZkL4nwd0WQNghHD5cADrwvLhivLENURUA6A3gKSDQBXBNLcO+fETuOQWN29R04LCHXtNREXkKiopv6ukSKpUs8/onKMITdediiMq9b5d5OKJ8BBGKylzW0eP7mc1i7UhYcWGyi2itnZ134XN2b0Uxz1PMNzgYiVFAG4G8B5j7H+EUw8BuDg8vhjAg0L59NDyaTQC5fbrodhqFxEdE7Z5kXQNb+s8AM+xCmqhzrr2JfzZUdGmgmlo+5pa8Kwilal66Sl+gQCAvAO5143VGJZE+m3bEdraUKVoLQblmBJaglGBuD7llItbLUoJyumUiSBbqi5Ykz3fRTH9iH4a/3LcqOjYdi8u8bZ0ENtevqk8seI6Ilw4jOMBXAjgVCJ6O/w7G8CvAJxBREsAnBH+BmNsIYB7ACwC8ASAyxhjfMW5FMBNCBThywA8HpbfDKA/ES0F8F2EFleVQFNLAe+t34mfPbKo6DaKmZe2OD/pc/ZFNrEDVrS/fNPuyAJFbmf0FY/hJw++m7pGVfe3T32gH4QLIgV+Nh2GbNJZjvVX10biWSoqXfP0Bxh1+aNaB0h1X9lGbBZJ2eT3lF3pLZ2SdRjylPr72+tQDtieiziO2nw8CJvDX4tDvC39mGKUmtWxI8OaQIkx9jL0Eo/TNNfMBDBTUT4XwKGK8v0AzreNpRxQZYLLCt3HawoPoVTSGOY/3y25iilU7YsTXwx6x3Mr3Dp7VeqaYFysIsHQ1KFB9P2s3roX/brXKc8dObJP5GSYbQzFWRtdGzre7W8uoIcLawc3TsVV7GVrikij9HYZQ2SxJo6rcrBtuEQdRq3wrG3vTra+yjam1pVJtdfsgZ3O05vvUrIqcice0AuHD+8NIDnhG5sLYIxhzba9OOvalzK1aZqkfEK52ubbFJTiee7wV6dZ+Bgr7wfEpP9yXzqc84dXMHXmM8q6I/p2w4xPjCl6LDJcRVKmPOypvjIs1oCZKHC/GN2iSaS+3hSyXD6T5DAqRzJsC784r0WHRxtzp2v3pw8txH8+sMBybfL3H55fau6sRLgkxKpGdDqCwSdGVgKfI8Ll08aH1wYXb9i5Hx/7r8dx+5wPsW2PxWFJZSVlqM6jk5Yipkh0L/TP40V1q1c7kzFLv1mhastV6b1xVwP2NjbHAwuxr0mvVxHvNRXDS+rurGtfwq2zV5qqJJBFn5OV6Jre548sC56OU3HjcgLs2p+MHFApkmEbUouGw7DtynWnb3l1pdXcV372f3mleB2nCxo9wWgfKHYdzJGQ9CdsZNnGQDn2WJGhid3Mat2U0zbRhthVQ7hL1nMYlbFKb2wu4IXFG/H+Rzuj8br0oxI17NzX5GSSKsfwku/svfU78ZMHFzovjra818m+ApRzN5l1A2HKbyLHieJhZIDKiqRsGx3xfJ1BJCVzezYCLcesSl6b/N21zpz/vFQ0ZeBUqwmdj2AUuXXO5SgSY/E29oe7zfranFWRV7QOw1DngbfWxu1bvnCxHX6su6bASrdIEp2zxGfzL395A9P+NxbdOXWjUJrvbmh2WtXkLHQu/S3ZsEt7btOuBkz73xexdKO+DgdfwEwEQxT9ZHgUinbcRX5ymfKZVFQkZT4vLt4mpbecUtbGgfzob3ouTZ7vXWsrTDBK0Le0JTohwSjuuhxRtFvl87Ih3G3W1+SKalcmMj+8bz5++tBCAIIOQ3Ptjr3ZkhiJ7Vh3eGBWm/dMfRtEUi7LpMpizFWXIIukXHQYf3tzbVg3XfvJhR/h/Y924dpnHWTcnNC10tqg6sdFLPb9e9+xirzKCXld/9jgHonfImGoFXQY8nUyAbHd6pwVetcuue1KR5L1OowOjpwg0+UfIRft1NfkHaxYFGa10py5e+5q3BIGwYtScmoaPvu6pILdNr1FIsGPtGIsi9Jb3PVxrLSEe5CRJVqtSmneXGBOFkb5vJrDaGhuiYhzMJ64XpfaXKLbtiXuAAAgAElEQVSuCJNYQwZ/hvKzHNanq9Bvemwm6JXe5MxhyFPx7dXbcack4y9XVkkV5HvIS6kCdSIp2QNcvjcbcezVtVY/JunpVdpqyusw2glK4TAiHUZYxl96bT5nt5NXfIDPKRz8OFq40ltDMdZK7HgxIiltXZj3/T3q09bYLy7Rx/YytVXsItnYXEjc89xV6t3j544cnvjNF4KfPbwoIs4AEit3F4M4IpMOIxKlJXH2YUPibhPvLa75hy8epW5T0xeJHQrIYiWVbK+CIinpt0wIRNFS0kpKvlJ/nQoma+g08TE2VTI8h9HBkaNYh1GQvjid/FiE6vN7dIFeWe6iw0i2L++kpd2YMEIXxyljHgW3IWnH4npO7k+s2yyxZ4+8o36WXz8paXrL70u2mlm4dkd03LNLTaJfEVl2hjrnS1UyLRkHDequ3AQ8ppkzJn1UMSiHRKZXF7Wbl/zOZdHSPoEoi1ZS8px00sU4ns/KrZSKpuag/fMmD7fUrC50OoJRrP1PLhfLNeVoppWIu+MSfFDGvFVbce/cIFCwnGo1E4dhYTHKca/rduwP2nKoq3oWzS3MaQ8s19EpG2cJTozjh/QK+lPcaBaRVGSmapCP6/w/6vI5PPzNE1Jt/mNxmpP700VTVN2gpcDwZ4N5qO09luqLoSOMqcVZomq79sf6OVEHlSIYUrulLPLyjr/SeqemApdOVFZXUm50PoJRwkTgH7q8yQyKbSKpbBMj5jCcWQx8/obZ+I/75mPjzv24zJCcxUUkZfr4MvsXmM65NMUZOqFuU0tBcnrTNCQ9dpfwEab7a8hgDvm9e99Rjk1nziyCiJSKV9XYzpgwWLlpuWfu6pRuwhUus3X7XnPUBH3UWfm3TDDizU4+QTCS18n3W2yu8FVb9uDEXz+fbKvCMiluVlvrGDWgWtC+RlsGGOW2hq9k4bqdqMlzghG8bD4B75m7Bs+8p9dHANns2nfsbRJ0GG4Qdyq/f25plJOZgyWObR+WpUZmmZS5r2Iudw00J4vqXK5j0n8RWTiMqD2pofra+LMTxydWIyQXSw6d9U6g9Nbv1JXjMrwYF9HbdRZLMV3rcr/yQi86R4pciryIpxXVxuFo36dKNFxxkVT4fXuCUeUwy9P1nrw1uRzqQwUc32WKLd3wwjJjv1kYjCN+9lRmHYa4kPRWWIOIH4CtzV37m7H4I72fQXYOozR9SKwyEnQYLUkrqcSx4WE3O9i/MwPFsHEYnz58aLo96Xe9kK7VFJJEtZboxDw2sagY9dUF/brXlaT2/sKUEdqXmxZJ6c+LfjR2HYb53apivY3/8RP49RPpLIEV5zBCgjy8b1dLzepC5yMYwvGoyx9NnV+9VZ3Lui5PkcUG97+o5CbE5ochQxyLKuTH8k1ps1fdunrhza/jfQPBcB9TUNMkBXJ5hrKRARDIgF1EUnK5E4dhEklZOIyfnZOKrZlqT7T80YFIzU3oFnFd8EGO0w8ZbO1TBGP292zaCPToUqPdWMjlKc5B+JnLQDBcFvlXlm621gFKC5XuAs7BTR3dD0DScq6a0fkIhmUecE58wtBeifKafC7aGXIuJJsCPf2pTxrRR1s7Egk4UiWXXT+XZ9uqbt7dYDyvul5Vxs2GjToMh2fIazyx8CNjf8aLEShQXXQYMYOR7oRzGLqFW/Ysl4YAAKjPiyIpoV7KP8FdJGUTeqraMiEL56cbjesrSjngAfjExwbilq98HOMEpz5ZSia/n6setqcs+NJNc5zGVMF0PABiDqMun8NBA7tXNNhjOdHpCIZtGnMP4pH9uiXKa3IUyZ4jkVSGOZUKgmcdSYB31uywV3Icy/8+80HYb2kfg9q2P122Moywalag2/vjbd/xWlKBS4ljBye+HGUSSamGbeMwSPFFmXQY2nagVnrnTL4Ehn5V1jhmM1M3KzQdcjnSti/PB1E5vnrrXry3fid272/CyQcPwuBeXfCTT09QXlfJNb3iVlKCDxcRVZxAlQudjmDY3guPjJpaVAlGHYYNNSrzuSIniUpslkVHUercVF1u5CJKVXordBjp/nUiqRg1OXISNZgIXGOLvGglf6sWeV7nJ5+egCf+/USM6t89PmmIJaXSV+h2ooFISj/uzBxGiXOEoH+OJp8Hbq30ppDrZNqhgbhGZ3VVCbSWH0ZtTQ45izixmtD5CIblvDYPBQsU32KdLFCZUmbVBXDIJoCubRl0uZmgWpiKJQouY+FWLKlmxMXWoaGafM7p3UXPSVnVrFsyiaTqa3MYP6QXjhBEkbw2YwwPChntiNRt6dZ9VbF4eVZrHBcu1LioGpxZ0wTD3E9eiuGma6ecqPT6HUeJIBCo1RM4FYvORzBsu2/pv1ie9vR2f8m2D3bjrv3ac06LXILDMO/s+Pn1O/R9mvtSlCnq/TxMg2scfQZRmoyESIrU5VwUOPnAvoFIykWHoXAU5LAtWioGgNcxic1eXbYFf31diuckTRnGGD7YoM43rVJ6i79VHK6ZyKOkGOcEvZhFXBz7da+zLpb8maZ1HfbJkzVIZ9R2K4mk6vI5q8FCNcFKMIjoz0S0kYjeFcp+SkRrpRzf/NwVRLSUiBYT0ZlC+WQiWhCeu45C3pqI6ono7rB8DhGNKu8tJmH3QUj+5whyHCd3OlnesWkhAYBlG/XB+9zk/PGxLQd3qZy9UiRl1FNkFyXZIBsM6Lro36Mef/zyUfjTRVOcWX9dnZ5daqI84xFnINVRiqR4RADFHOBlsmc+kOYw7nz9Q7yuibiqy+nNUWNSfihQynMCApNgeZ7taWjG6q17o1E+/p0T8dkjh1n74s8hFe7GYYy3vbbSXkmB1lJ6cx1Ge8nY6jKLbgEwTVF+DWNsUvj3GAAQ0QQA0wFMDK+5noi4jecNAGYAGBf+8TYvAbCNMTYWwDUAri7yXpxg5zAY7p+3Bs+8tyFRPmZAYK2RE2TFPIGSCiJX0FJgWKzIseC6WLqwqy4TLrYQUlceM7C7sryY8STrG845OE7LVrVHjuyDO792tLNvy7RDhwZ+BY4fJn8v8qIheiDHY0vWMXMYesjEQWVW++5aQ854y7PoJiQEymTKbICNQLUUWOL5TL/xNZz46+ejsl5da5Eje19xhAWZw0hjzvItid+qzZPNoRGo/I6fm+bX5nOozZM2GOG7a3cU5SxaKVgJBmPsRQD6QPJJnAPgLsZYA2NsBYClAKYS0VAAvRhjs1kwW24FcK5wzazw+D4Ap5FOs1cGuCiEb355RaqcW7bkKJY3ivGHZDy9KDYBXbZpt9UUVfXx8aiwTrs9B+JjcwZUycyVfVnuJX2uNB1GrFMIjg7o3RXd6mokZz17O2QZCwcnYpybcBkbR20+h+kfH6Gso+Qwwv9yGHYgTTBsSl/TrXXLmEHO6b0YKnGrLDF214IwwKNIQHNEVpErV/6n/TXS133hxtdsw1Z+3zIqveHf29SCmlzg29WjvgZ7FBzmlt0N+PTvX8b3wxAz1YBSdBjfJKL5ociqb1g2DMBqoc6asGxYeCyXJ65hjDUD2AGgfwnjMsIqkkIsOx7Zrxt+ds5EAEBtOGlzjrtU8UPhu4cfnT0+2Zezsq88HEazJdxIlqQx8seqtAKL6rq3o64k/S7S4CxHelNPVXeXGzK0mfr9/pkHS3VCkZRi4HxvJJtdE1HKRNc0D1QRk8XfYspRp9es6Orkgwc6XBigJtTZqXRGvGmeMsD1O0jpaCxj0OpQSrSUKwf2NbZE76R7fY1SJMnz1s9bta2iY8mCYgnGDQAOAjAJwHoAvwvLVVNRpz6LNl6GcwkQ0QwimktEczdt0udfKBV84ezdtTYypeUfABxYaCBpxsirjx7QQ1Pb3IaTeMChjtYCLIRL2O24v+Rvk1K/1NAgurq6hU9X7iL+ALLJr1X3lsryZ5rpIVyc9EzrnEnJDMi5sfXtRHUyOFSqwJ+BKjowfwdEXNdhE0kF/2Wl91KFSLhe8KLf2xiLcob06hId24IUApUXSe1tbI64vu51+cRYOfj7ryYLqqIIBmNsA2OshTFWAPAnAFPDU2sAiPz4cADrwvLhivLENURUA6A3NCIwxtiNjLEpjLEpAwe673aSbdjOs2jXV1eTE4KEcQ7DfTfLEX0gcl+ObbhwDy67pqYoaKK6bhY5oNyC0TmvxNAg8uJF0n9XiDqMnppcDa5jMtXV+TwoTV/D/yqCKzvbGQmZwYwVUPtvmA0V0mUmKywZ/H6aFbL5W19dFY4pKeLVQbdw/uC++am6YtiV7ftiXcX4oT2jY5eUJqU6t9qwv6kQJerK59Tm3rykmhTiRRGMUCfB8VkA3ILqIQDTQ8un0QiU268zxtYD2EVEx4T6iYsAPChcc3F4fB6A51gbuj0yAFv3BKEx6vK5KJDfAb2DIGG50CvTNsQaBYehMpNMdCyBryEuxMAtRpK2K+X4lHVk0+IQJjm0aWRZHPdK/YYTzm0mMVmJHckWSdH7V8WGCotkItPUXEB9TR53zTgmKjOKpIDEPa3euhe3aXRsLiIpxkqyqo1ElNc9uyR1jhuAEMjJECEiGA5zXHyO+xpjMY8pr4YKlV6kWxiLxqpzuuQRq1vTYdEG/TYrBBH9FcDJAAYQ0RoAVwI4mYgmIZiiKwF8HQAYYwuJ6B4AiwA0A7iMMcZ5rUsRWFx1BfB4+AcANwO4jYiWIuAsppfjxnSwzZWH316H1VuD9Kf1tTl8+vChKDCGTx0W0Eiuw7DKXfPpCZpVl88XHpcJniVYWilK75pcDo0thVQbJoIhh1pPjMXaYxr8OWY1jcgJea9N/Wb5Pvlz+PIxI/HlYw4EkNbniCIYGfxe5GfPRRTjBsViTKNISrr+gj+9lkrjK4/ZSMhLJJq14dydNXsVrlIEZAQ4h8HHxLTfRz5Seqv7+t8vTMItr67E26u3S5x9XEck4k6OtxVao9dt34chvbqgUGDROydNd1wi4CJCay1YCQZj7AJF8c2G+jMBzFSUzwWQmjmMsf0AzreNo1ywfQhzBDv3utBG+pxJw6IyCuXgruIkIJ648g7TwmBEO343hXaGXNOa0bsQtFwOQIsiHpBhUj/0zjrtuSxKaFkVkJUAizoMW5h7G+Suh/ftFmXqkxd/prkG0OcPHxaGvRbv0ab8FIe9aZc5gKQNbmuUvpKLPoxbSQHBHNfZTeQoeHY6p8sBPerRJbJiFEYnDE/cwLl5+5d/kV6+aTdO/d0/cNDA7li2aQ/GDwnEZDpjDD7OSodazwLv6W1AveJj5i/XtusX2Ui+OMnfkDgpVZNC57Ckgi71qBKaqnx8XQzB8XRcyH3z1ijL7UNxEUmFrLlhpy5Cr/SOxR+l7q7jXXq6rrxYmqyk+Domt8JFoWJTOo4haDs5T1w4znpDmHXTjp9D52z64n+cog1hIqIujKME2CzACD3qa5R+MMF5wVQ3EZsrblMUSbkswJVYo3mKgWXhf04sidT37xIos7XR+QiG5bz4jag+KL5LtREM8YPVcRgiLvrz6+m+NDF0VNA5/qig1WFEBEp/rcrE0RSywgYeAp1D5aRUts/G0UrKycgg4lSiprUwcRgR96Q1RHDjomSzWpdFsV/3Ou05phmTeA+vr0zbptTV5DCyfzcncWF9TT5a4G3j7dWlFjs1DneiSEfc0CQ4DJFgFGkp98bKrcokTCIamwtabl9OvhXrMEg5x/kz4ZuBauA0Oh/BsEwWcaKrEt1wqw7bnBPzLuh2xlY9SAazOt2OcmjvLqkyrVmtor8xA5Le3ypT3wfeWqsdl+15/+3N+Np7567G+B8/YawPiCIpa9UEcsKqahyWy/OWfFpMY1E1xxdrG8ejCpeurKfpx4SeXdKZGc+bHBgzZtFzie84S1Dc2jxpfSxkdK/PY2+DxuNZoBhi/+IcrRV0GCYl8sdHBS5lqhrn/3E2zrr2JeM4j/r50zj7OnUdvShY/Z1wHQYR4ZZXV+KgHz1mzVVTaXQ+gpGhrorD4FYd2TgMLpKKZ/MpBw+0jiWLH4aOwzj54EGpMt3E7R5m6hO/p7OkTGD58MMTW1CFPYn6yvDAH3/3I2U5kxZ5pYmoQ/sJHUaJviHNkomyzAl0D23sg/N8wxDXeer/fAI962ui63XPybb+8si3qpzeNsiWWQf07oIfnX0IgOA5yc957fZ9Si5ZFIfGilzzyAO9BDmJpHh72gVXOEcaDmOfwLmaduqHDQueZ99ueu7LhN0Nzc7cNvd81xH7iMMg4P43A5Hv+u3FBQwtFzofwbB8U+JE/+YpY1PneSypfQpHGxGi/FEltuhal7fuviOC4SBtyiLv1H0vQ/sEilbxg5I//MjUN7Gr1C8OYj2TbsQFaX+MrEpvSomSVHDyabFwGF/7xJioH9X7H9CjHh8b0lMghuo+Tc/29xccibtDs9tiTGDltrvV1whWS+n6SzfuVnJSjcJmxTVaAPfTcHVOE/UUpnM60/A+3WJuykQwrjh7PHp2qUlx1uWArl/Res+lflui0xEM2/5RnO8qGW+OCIUCMPPR94ztiJ6b8WSOG9fJLUWUg8NQQbc4mZSg0ZgUeg6TGKISJoG2JclESNyU3nbEHIZ5DDF/kSYqSY5H047hZgf1rE9YWWV91LKvYI6S41ZBRRAaBdm8a7QALu6VI0CboH1GwjmVw+yVn5mAj4/qF5U3GTqrzedwxPA+RenNbBtAHQHQKb15WaFgF4G3Fjodwcjy4FWiD/6Rr9iiD0cOIBHtNhZJARdMDRzhXT6rA8PMbG4EQz8ZZehaU3kby9fnFWY9O/aplZGTRvSxPu9zJh1griBAbqsoPwzehonDcJgj0fPWiMn4Tybou2RCJibOsemVlOfExdmwA9ch9TwRx6/SczzpMpFgqFIRq1CXT5rB2nWL+phTYopT8Xnx+iP7JZXwNhN03QJug81SUadn1JnVqvxlss75csPqh9HRYJsG1t2rg2cqkLT+ER33Zp57GK76p0Px3XveVg7m/kuPxdhBPfHBhl1Yv2M/Hn5nnZsfhovcikPTniqkhVyiUsTfLuXaBoLdL5OsyVRD5OajmeD40Yzqn8zLnsvFC5NRh+GwWEQ28pEOI4mcQFd5X/LjFUUpxQQ30IkOXduS51VTS0HIAKh+zGodRvxie2hCrsiLdE0UaseNwzDxPaKFmDg8sUx8PnzhVqU6DuoXl5+i0UKITCImE4exa38zFq4zW2e1FjyHIcFme84XnSyEPhJJESEXhjTWiaSG9emG3l1r8fFR/Zx3X4BeJKUap26xdNkdRlYtlnrd62tC44C4TEXUsuzk5Kq2a2UrN1cdBmPAH55famy7bygTv/21VQCAv7+dtBQjgbDypEdpkRQpd5G3X3J0oo4Oot5KtLT5h8GzPtlX8iEs37wnGrfJokfE2u37sGxTrOQVfQtE7JdMSmslDsMmrzfqMKA2XWfCRk3FYcxfsyPRzqx/nRqPqQgC3thsJhgmDkP1uKtQhdH5CEapiMxqDXVOP2RwInCcKJLiCOZkuhVxl++y+/rNeYcDcHPcO3x4bwB6j2Fl0Dzpy3fVq3C2XlwIXALamRBnu0vrUZRjSImAkjoM/jxkLN24G795crGx7QkHBNd+tDOwWllnCMPxkwcXCiMQxiPqMIR7GdGva6KODiIBFuX42/ba83gA6vchchgur+b4Xz2Hf/nLG9Fv3eamQfKvkXUY/DpdUEjNmgogvA8Fp8fvj6RyvnDLwR2HhUYf4jzJAhvBaNFt6iw6jGpCpyMYVlmp5Xo5ltSJ4wbg6s8flqgzsGc9eneNFeaq3Y/uA6hJEIzgvwsr6xIahE/oPzy/THlexWHIJTwmj4sPSfCczBVdPsyDBwchFPZJi07WoGwiV2eMXWTI7REhvC+eJ0Um2KqmlRwGb06YDeI8cbVAyyLbjolC+vlFzptIc61fOnpk4vdxB6XT1gzt3TVVBqSNH7hfRLwB4YPSjVkfvr2lwJQiKdGcWXzXUXpUiQPlVXJFmCg3NLfgsjvfTJTdMWcVbpu9Mvqt4zBEYp8YvScYbY9SX4G8GyCiVFC0YOLFdXj2PXEy675vcbESxRoc8i5m575m5Cg5GcUPWfTDsO2A8gqbRHkh4h+Z7YPqUpsPdRjGaomPQveBHD92gHJMYtsu35aYXpdBH7uo1kE0x/vmeVJkoq7iguRWE3NJqCcGLzQNRTallv1VOC475aBkPeke5DEF51iURpTjoIFxIMT6mlwqi98XpozA9V86Sj1Yqa8aIV0A70/8rxqXnsNgmHhAEMdrQI/6uEuRwyCxfngPkpFHVJ/cTNlFLN24O8W5/+cD7+LHEXdpMKvNqZXeWcfQGuh8BEPxYmZfcSoe+dYJTtdz8abYTIv0ZmUR6D1z14Tlya9fNRbRk1ZlwvrogmQgv/raQB8iEoNXl8V5jc+YMDg6lkMTAMBFxx4YHbvoMPhHZlqgf/W5wzCsT1cw5hBzKzy/t7EZry1Ph5ro1aUm1QYfpart3Q3NsUNUSsmc1GEcPryPckyqER89up9UJ6gVJwqS5gAl6/H+RQQm2jEB4xDngI4LGtmvG44eHW8MTI5tl56c9ieS+0ydY2klrjg96vK5FMH53FHD0Fdhil4opDcO/LnJmyLdmExqhQJjuCJ0OBwiRDbg1XOU/PL4pkHmMESdR9aNpYvPhInD8CKpKoXqo+rdtTa2Z7esmXLCF0J6IugcccQNvM4zV1wf4mi1cT2Zm/ni1JEpDkOHhua0s+FV/zQxkuWqraSSZbU1MRFjjOGVpZtT1/zTpAOQy7nF3OLD/uH9C1IiJyBpMskhipVkvP3hdm1fOWnn2EtjoaX6+I87KMnl8K7j0NtqoiYOMZXWNkeRqEY85eLL8OIPTkFvwRnNpBSWw3mYRFJiVTmnuTg/amtyqXcrGhmIhK6FsdRcr5Ec93TckTgwPYcRxJoa0a9rguI8tTDm7FXRo+X5Hom1kF0cJL//nz+yKFVHjpPGU97qCFT1kYtOSDBUbyGfi60oXHQYjCExs1OLhUaJldBhQP1xdKuLlX7i7mtPQzM+2LALt4VWORw1+RwIZHTce+kHp+ALU0akRAy8j7GDeoZtKQiGLJLKxzk6rvjbAnzppjmpa3iu5gJjuFJgyVXgz+mDj9ThRXbsa8Ks2auUQQlVToEyUU7eS0Ck43AeujGly446sI+yDnfuPHhIz8R5URcQjVdqOJ+jSKzk6jmvgyiyufnlFcmxyIm7+H/FfcYLuIqYxLqA2nxajKKKvQYE9y0/U75YyyKpYsKKcy4t4LICNLUU8KeXVoTlskgqTaTFcpcsgKkxSPXldwAEVmgieNpY0cJNRDXqMLwfBgJFrusnyomB2A7f3R8/tj9+OG087p+3RvMxig0lJ+zgXvU4RYr7JFpJfeP2eXhpSXo3z8dkspIa0a8b+navU4qkgPiDkzPFqcAJBgNw1xurtfU4YdXFh4rg+E28vTrmHPhzUy3syWilMufn6FGseHknjhuIMQO6Rx89nwHcsmbmZ5OGDyQthECaC6zJU1RW+tIQPO+12/elbPZ1IemVHG74X/WceI4OIJgH8iKpixQQBOtM1q3V+GGYTGd1C6gY3JPXufrx9+Nrpfvn2TNTnGv4syZPmUOLu9SXDVPE1M1KHUb10YvOx2HoFvI4i5uZdIg5FYL68fEhQ3rh8OF9lGIUuW1Z1NPcwlIssuiH8dryLdAhR2S1khLFHzL4xFU4emOXFFK6LtJh6GdzIAJwDSXu9lUkZNBI78o5xGeY4jDA0+vG41RBK48W6stEq6smEZI4RLndGiGX85uCwlSXE9wEfi+qeaBrT6VUjc1c0+fEDY0qKkBdPn4GciIjuT1uYMHHzZ+DlmAYHkkiDHhY9obwPGWRlMpoQuy7R30Ndjeoc29ox+A019X96UTYXodRBVDrDeLl2yqSCh33RKefw4YFNvmDRRZTcW0/IQKm/AE0F1hK6cwneUshTUyS47frMHRiMiCe7CorqXGhuIrvHvnO0DSXKSSH8pCe+e5JuP/SYxNlrruo9wWR1WcOPyA1hsib2vCcgncnyqo1C6mdXqQ8xtNe3JHWO0KKw8gRmgsFbNvTiGvD3NffOW1ccd7vYWdqyyfZ2EIv/rFFj41Et4r5xPVbQNLYQpUOgM/1OLw5Q0NzSxTSO9UvzErvYEyxmEz8lgjAlDBsOYR20rqx4HcxBMPFokk2A4/8RDTfZrvkMIjoz0S0kYjeFcr6EdHTRLQk/N9XOHcFES0losVEdKZQPpmIFoTnrqNwFhNRPRHdHZbPIaJR5b3FJIrZwYhQyTePHzsA9196HL5y/KigLSTlu3271eJLR49MWZCIE7alwCJFoNgXEEwclbjo0W+fENWzBR9UxeL52TkTAQD/94Kj8JkjDsBoRYTO86cMx0s/OAWPfvsEnHLwQEwNLXOMBIPUtuxjB/XA5AOT1kamXZRo93/lQ7Eu5JTxwU5X5YdhFklRQjwiv3N+/y6yY5nDSHMzYT3hGRwzJnnv+RyhpYVhv2CMwBWhWcEX1CxybxNx0XFZk0cGn3p9TT6twxDmb31NHv/1qcByiSH9nmMdRjzHD/6vJwzfp94KjE99kcOQN1hi7o/YhDfZDu+7e30N9ja2ZPLzcQnNIz8DpiB0qvPVBBcO4xYA06SyywE8yxgbB+DZ8DeIaAKA6QAmhtdcT0ScT70BwAwA48I/3uYlALYxxsYCuAbA1cXejAt0r4DvNm2EQ44zw6tPPrBvtODLSqyG5kLKZl2c3ECgpEtzGOGYGVPa408MvY0J9mi1/Po9ws7p9EOCXeCEA3rh9xccmfJ8De6FMKJfN4wd1BN/+crUKES5MaVmeJ3Lrsv0TajEHiJGD0wTODMnFjoTCuMUccdXg5AcOvGCSBRimbuOw+DngY8N7oFpE4dgeN9kbKuaPKGpwBKcTtY85WJ/DG67UpXvhwwdx/r7Lx6JR751AnrWp82dZaV3JF401KsAACAASURBVN4qpLuq1fhh6ODCYUD47sRvSb4sFn/JC3jyPnTcjnEMBshqjuNC/6JocyG1oWqzyOlRNlgJBmPsRQCygfw5AGaFx7MAnCuU38UYa2CMrQCwFMBUIhoKoBdjbDYLnsqt0jW8rfsAnEbFfjUO0KbC5Ky2RSgly+ZVQxWJQVNLAXsbW1BfIxEMSekdcBgSwRC8YHdq8hkDwK6GZmzYGWfiUoVX4Pe1pzFuJ/WBO6j+FZIWRR1KOMmZYPrQJoTOWDp8cerIVJnJwogrTkUdxoXHHBid79utLhQPqK+/+vOHYeqofqivyaX0KHK/MYcRvGeVPcGehhZs2tWAlwXTZNXou9ep9SPJ/rjezF2WrhX/UNK36Pnvn4wH/u04AIEV36HDeivNeNOxu4L/DGnz6liHwee4XaSqqxLFr4Kaw0hbQyX/R/XCqzkxEw1JRI5LNa9dsgvIHAvPbihuLpL17W22NorVYQxmjK0HgPA/14YNAyCazqwJy4aFx3J54hrGWDOAHQDSMQfKBNvnZCNVcijiXqrFWZjc0298DUA6eZDoaMUYQ3OBpXQIrrsvGf2VeTyC/+LEl3fwLmTaZHYZtYO0cYAIUb7Nm5Gz9l0wdSTODz8obT9EkZVS1J7hDefCXbiYne3n5x4an88lnemAQJm9ZOZZAIDJB/bDPd84NiAYfNEp8LYlgiEshKrsdUBs+XXji3GoFtXozz5sqPae4v5i4qRDTS4e0/w12/FW6LNyz9eTeqVAxBk3NHpAdxw5sm+ijmoBr83JcxxhfwqlN8V9wTLuoK2kSEr0ETlz4uBwTKTmMDSiIPm7OjTk2Ln4VzQgEDl42T8FSDvvqqD7jnVJpDqD0lu15DBDuemadONEM4hoLhHN3bTJHJFTixLfgcxh8JSWyTrx5ObhAlQcBgdfxGWRlOvu65Ch5p04EHMrovmfbAaZha/TEYMTxg4IdBi55Li/fdq46PgTH4vl9Lp7Gzeoh3KRHdDDnDozoQiXmuY6DB49Vgb3CJazBKYJK6UWHXmonAC+/eH2gMNQ3AsPWDhEiL9UrBhCXJx1+FvIJRQY8NfX433dkSOTPiYEu0xepaOSDQ5ykkJbBBd56TZF/3r86GSHAoF6cuFHOOrnTwMAvn3q2FgUDAjcY1p8yBE5Swplhw/vHY2Xe4BzT/fdDc3497veTty7DBOHEYXCN3h6y+MB7ES0LVAswdgQipkQ/ufJH9YAGCHUGw5gXVg+XFGeuIaIagD0RloEBgBgjN3IGJvCGJsycGBxykEdXBdLMbwEEKS1TFcKJul//X1BVKTK3seb4R9PSiRl2H2JOhF5ETVJ9JpNHIaDSCr+WNSz+favHh05eInfx78cN0pZP6sliC0qr8pyioPrVS68+fXwd/LaPAV+Eet3xHmTZUMEIOZUgj5428k63ASVe0SrVCs8nHYXgXArzbEdvYQCCzD98+HcWKHAovEO6FGnjHHlEm7c9u54uw+9sw6fuu7lxLn9oRMpn0/ivLz8rPH4yWcmpNriNWYLoW/EOawTW8nPJBZJqW+gVtpczXp1JZ5YGPsTqXRcJgJ71cOBwYZWpJZLf+fb9zbilWVqv6u2RLEE4yEAF4fHFwN4UCifHlo+jUag3H49FFvtIqJjQv3ERdI1vK3zADzHKmgeoI/zT4n/OsjOX8qI4AhiO4mJhQb2rE/WERadZg2HYYpWe930I1NjF3H5WePx98uOF9oK6ogxp2QFsdNONtoRWuohufhpnccYU7L4OtgWMtOCKZsvygsx/3BVToLJdsSYVGodRv+QiAciKfWu9PixA5DPJS3cVDtVt/eS9DHhuOqfJkbHYhiTQiEed1r/Yndcy5Ha10g1cJXzJs+xzbtOzEuVXlCgGOLiXC+IekWxlewHIoJJ704GJ0L8vci6B9UcNEkBHp2/Hh9s2IXXV8b74CNGpOOYiW1c/Jc38ODb61J12prrcDGr/SuA2QAOJqI1RHQJgF8BOIOIlgA4I/wNxthCAPcAWATgCQCXMcY4L3opgJsQKMKXAXg8LL8ZQH8iWgrguwgtrioF8YGffdgQvHPlJwHEuyHbtyl/KKrdn+oDT1v8BLqQPQ3N+PHfA4vltA4jFknx1K4cYi7nlIUOgG+cdBAmCZMyp/gwXcadqqOIwqqCbH6scyIvMIbfPpXOPfFPUupWTkxl+3iZ4TFFsNVZMpmg3vGnzWrlRTcOHBnqMDTt5yjJNZViGcOQXsw+fXis/8gJOgxRDCq339hSSHBZKrhkpTMlALsy5CA4EROJpsqXhhODV5dtxuMLYgLUNRFKR3znokgqKOQ+QDxigsgUiD3WSEpvefQqCzKTSCqfI3zymhcTZf8tRAZQbSbeX18dGfZkWEODMMYu0Jw6TVN/JoCZivK5AA5VlO8HcL5tHOWCOHe71tZETlLZ/DDi36rrVE2pFyuGm15agQfeCrK1yWatoo26GGMKAI4VQpi7xB6KdnKGme3Sjmj5YqvHEr/VbesWHTFMNRBEZ5Vj8YhoCO/LtOtVBY60QdWaGCxOlRyL9wUECwljes5VjjSssv13fr8snSmwv/Ac89GYYoKRy5FybC8rgkom+oPdCo5vLlTvmPtF8HtLEAzVNxUSgy/+KRm7bI2UZlU1Ij5MVx+gOpnDkOqpvOlNSm9VFOgEZ6TR46hQ9RxGR0NyEYuPXeXEKbGG4jLVB54S/4T/RXloKjRI+HZkUcOZEwdLmfnkQerHZOQwtGeEOnxyK5q5dvokoV7S2kgbnsLxC7DVenT++rA9/TU6Yv/It07AFWeNdx5fsHixRH+p0OVCpGGdHw0QPHORiKsWVyeCEQbeM8XuEpMV8TDgp40fpK1vgrwh0NUJ+jOLCQGzqJTXU7UiRjgWLRjFR6bb3OhGxfVWXCwnDz8rh6HSg4mIn1NcpnvlxQRnLCc6H8EQxSTCW3Gl8rLZpatISrWLC6xn4t+yWaLIYYgTRfb6dtuBhgTDMLNdZeVAeuK+8Z+n45xJw6LfsvlxMRFYRbirtQz1JGLPlaeHDuuNr590kPISVbc5QfSh8xqP3l1Br8Pg9ZoSBCPd4X3z1qTKZGTTPzEcECrALztFnSvD3pY9oquLvivayLSov8uoLah1Jl8UogFwrh0Anl60ISpXDbOppYDfatLwRn4YBTXXqtLviBu/my+ekjhniw3GRdE6/dz9lx4XHXsOo5WR4DDEUNj8vIMeT5Q5u4qkVApmhuTHoQs+KMfiSddTcy+qsiZj1j2XnWwA+TnJSn3Z/Fj3zbhyGC7B3YL24mNVaBBxAuhym4vQWS3JIbJTOgxhN19gTKvDyVFyd626T1WeENexJsakEEnZdr86iERTBxKIpr6doM5+iVNIt6XeCowf0itZR1FJ1f3db6zGko27o988xD8gKL3D95LWYShEUgLRz+rfxEVWOoIxdlCc6bCtfTM6X3jzBNuXkEkBcOMwxAmj3DkqytKK6WDHpFK2yeMrMIZbXl0ZletEV/J1qv7NOgztqVTbVqV3Lin+yRIxVQVVLg8VTONyjaArQtYdAcmFSa/DCP63hFZSJh2GyGEUayCYN0QjFusAwcLExSrFRMYNYFd685ZNz5x3/5MHo1B1yqjJbiOKdUvD+nTF2tDPRdW/SKB+OG18FAcOiBd8/ozk61ULe0tiXZHHlYa4weLvQGeam7D4UtZoPXQ6DkN85Codhp1gJFlS024+eZ2GwxAGsbexRXnNzn3JEONpbsXOYfB+zFZS9sXDVelNlNwZ69p2XcBVCZR4P7r2bDoMF/x1xjGpMjEctVaHEf5esmEXNu9u0OswSA5BkW18HHX5XOrdHjsmGTAh8I/hVlJBXVta3gcF02wRLqFf5FwXHH/88uTEmIDYL0Msk+HC/atMZsXrvnfGxxJjA4BJI/okrA75xq0xMqRI9qPyBbKJqUWs/NWn0EsIhihzGDv3NyWehzhWL5JqZSREOwodhgubLe7SXZXeKrFRYD0Tl8mmdHx8qrDYtv5S4w7/l03pbd1duu1cXT+A/Zpxi/4otvYI2TiM/3fhZGUEXwjt2HQYv39uadi3XochJrY6YkRv5/GJqK8JcmyL0W5v+PJRqXr5UPfgymHo0tjqxD9yHSC5eN/ylY9j2qFD4vEo+lf7YdjzbBPiTUI+wa0Lm8SwP5Gb7y85vtZJSu+Up7hi8ovfaIrDIMIBoZHBTRcl9RuAwGGE/f3nA+8mzovf9+w2dubrfARDOBadZ/grsbH1gd28eTekJCIasZE4Gf71hNHKdlSpPeUx2VBupfe+RrNc3TSmYX26RMcmHwUROkI3sl8yAmxi1yu9SjmMtI2j0p0lYWXSOV26viMS5tOz3zsJg3p2UVe0gAf+GyFExO2qCFqYI0JLAWhpcSMYutOq0CCqOkAyl0maE0tfp84tjxSFSnFHwvsVd/BTRsXmtHxMouHIxwYn0+vGfhg6pXd6LtosJ086eCAG9azH6UIcNQ5+v9z3ZeuehsR5sb3fPvVBuvFWROcjGOF7vfHCyfjcUXG0Ete4TXJgNhVcpcKyDqOHFGaE74bk/uQPSt6RmbgeE4eRhVPZvDue1KcfkjbNFNuqk4TSp44fjLtmHIPjDupfskw2lRxIcxyMKZuOQEdQRJFU7ABnVnSqklPxtvjCJFvJZQGPCyZGI1blUOExvqKkWVaiqdO9OHCZynko/3bbcKmU3gf2T24WRA6jpcBwxoTBWPmrTyV8evhUVOWv55A9vXdIImGVWS3nDk4dPyj1zAiBrk73qFeE/kWX3j4PQPqZlGphWE50PoIRTqlRkqiBvxKbEjZHZLE00llOpQuZVDdtLhv8lxd5XWRUjr7d0nGreBUThyGupd3r8njom2n5Ne9LFKPI+azFsQPqpEDHjOmPfM5ummmD/FTNCtakDsMlB4OynOJr+aJi4zB0C5RoJWVaxGyoC4Nb7m2IOT+duIdbSeVI7VUtQrdW6dIQ25BaTDNwGHJ3d34tqV8SdRgFxpTEkH87uvzjQPwum1sYHp2/PpW7Xq30DspuvniK8p4YmHbh5/e7JQyRkyYY2qG2OjqtlZT8DmLZvPkjqM2T1czRRXnMxRri5NAFH5STI8kTlk+ovt1q8d1PHoyzBBmxXMdE7HY1xDup75w+DocPT8e74e2sFjxs5eRQQPIZ6B5HMUpoE95ZvV2KVptsfNXWPfhoZxzywpZRzTRu3nRzi3rhdd8lklaslQXcd8A2N3M5iqykxA3KxAN64dzQj+Zbp46NdC86gqJawFN9OXAPSidXrQ4j7vDIkX2ilMgctblY8a9LaxwFOzRICaKgnwBeVegMVMnKCmF/QS6YZL9b9jQGlnKa/uRpaDObb0t0Qg4jQFpkEE4kyyJSX5N3yp9tK8tTYAZJBoKh4wpkiyE+ofK5HC485sBUWI2gLUq09cx3T0rVGSHoA3STlO8QeQ5qIJ04R75e77QWx1oqFmLT5/zhFaPI7bXlySDIPGOhS9siVmzeg4feCQLDNRfSqXUB949cXBuK9YkA4vlrun9ej8eSEhemR799Ir72iTHhmARir2lHFMvp4PIdqJ7TBxt2p8pkAtWlJr1JGdqnC9bt4Ka0amJnM2EVxxhEGU63oVN6c0InX7J1T6MxPIysEykm5llrodMRjBjJtyDLLXVQLY7plu1veHdDM/Y2tuADQSGo8/SWFwFZMc8vM+1Q5bZ6dU0zl7261EZRRHXKUNXklXUUQX/ma/iYCowlcjPI9UUTTOV4pGf91VvnRse2BW3mZ1OhzaRx2N9jsyK1LpD+6HWxhkwcpg49FSH1+fuS806k6nErqRb1DhxIziMTsXfR98lIRQhWNL9zf1OqTLbKqq9Nz7ke9TXY29CClZv3YMXmPcq2dXpB1bgZUz+jJk20Wv4dqp4YMzhvyhtQm8i5LdHpCIZO7iqbtukgyj51qTPVOowk3l23AwBw99x4sZR3RHzHYhdJcQ5DP7H4GS4n1SlYbW3J0WIB9YQW08TqndbSOqMcAfP+64zoNydglUB/BScmwuUzDUQ7+p2sWE/Zh8hhOIqkutWrrZ8Ae74QIkJDUwF/fmWF8l0CSZNUkw6jGB1QevfstoMHkhyNnGkRiJ0Xv3xzEKBwlyKtsejtDgCPf+dExRh5HTXRUxH/fyzeFPlOqO4psAZUP8xLQutInjmweGfKyqPTEQwO+Z3yj9WkFAaSO5vfnn+Eum2H/rvV2tVHOg5DtyMxTTROH3hcIr0SlhL/ZWzf65a7YpAgX9ZK7xVijSG9uiSSTVlFO4bTpvXs5IMHKpNayeOzoblQUISuT1+r05ckOAwNER/aOymrNylz7SIp4LEF6411RMKlJxjuoUFMZao5K8aHSvYXdyiHogG4yTCLRLYqghbp8lqSCZxUdXSJr1SbSjHFsNxk97p8GAYo3RYADO7VBYN71UfGKqoAkiq9ZFug0xEMvdKbkM+R9YOrywt5KDQzIEu4cWOd8O2kOIwWmWAE/11EUhyqRQ6IzQ51xEcmVmco7MqBpJhKb56a5vhSXus2emE4f/ToftpzBw/pqT0XtW05z0LRjor4lpPD+P0FSedE1fPkj9tFJGWbny76J0LSp0WVR15tASX3la4j+0UE/SWhFgMGYxJDoKTqSLpKk9iKMZaIN8Vh1WFKv/t0qzOGhwmuMXNsuoyVrY3ORzDAPXPTL49PQiJEiZVkiBNe94GrlX3ZFkIg/lj3NKrzIcttZ2FldWPnu1edff75k5OJnL4bhlqQIW6WTc5f8kdSjFOiDr+QdBT//bnY/NfmfwDY31FDcyFlbcSR1mGYCYbJxFUWy5msf2wiqVyOUF+rFqVyJDgMXTtkDsOiu9ZmPfbzc9V6JaLkM1T5teRzQR3+PlScQBQ9oUUvPuJjen3lNvzjg02p83ajF4m7ZEGIe9N8yoUcm06HWi16jM5HMDQcBhB/KKP7d48SK8kQP2rXBXr0gO44aGDS78PFMIg3L4uBZKWgk0jKQRQAxPenW7zqanIYPyQd2VOGKK/VLzpps9q0fbz5GZvO1kuWNIN7xWIM3c75c0fFIdp1MudpEwPxQIExNDYXrFZigH6RiTyPDRZSLmKcWOlt5pD3NDQnnC5VyAtj0XIY0gKu0g2qwrmY0gKPGdgdFx5zoLo/wfwY0HAYoQ6jVvLUVvVv5DDCspWahF0qT2/V9VH9QhBt2jRXeQbDXzyySHPe2GWrofMSDMUL4B+t68KrkznLH9m/nXyQ0SPZ1tcbK5NhuI8a2VeqF/zPQjB0Oxb+IZpooXitzgFKbN606MgchvzbLpJy/5LEXamOIP6f02OOSdf0UQcG/ikFFoiAVM8gZYuvWaR5vVoHgwXTuHg7NmKwbW/aAkmGyH2Z8niI70pFD3cprJ1MHIZM4EUQJfUzSpNZosgfAlATDN4d5z7UviLqe/72qUHuEFteeXmjUSgwo+MeH9fGXfsxa/Yq5flq0YN3PoIR/lftHvliaV54hWPN05Nl2sr2nDiM9HWvXH4qvvfJpBiIt2/SYbiuqzmHZyBuhrUchtihpik5thOQNjqwyduzeBsnzUXVdcT71vUc5zVnaGguKAmG/Py+c7padMdrmTiMFHeoEqOUcUVJzCPtu0tyTar3sGlXmniZnNJMJutESf8jnWVawGFwE3mFSIoTk4Jd6S3j0pMDgiFzizIBkZtsYcwYGoSPY/6aHdrzHUIkRUQriWgBEb1NRHPDsn5E9DQRLQn/9xXqX0FES4loMRGdKZRPDttZSkTXUQWfji66KBAv9KZFyoXDEMvPmDAYnznigGKGqpy4w/p0VSRoyUbozH3an0He4SOnxLFul5peaL44NSmSkK+U7zGLy594rU6HkXMidHHfepFUfDx1dD9MGpH2mgdiEVIWYu8a4dWG+y89VlluTP8bjYmSIilFnRPHpUPCmHRUpnAdBEqE/1encaUwiyWFv9PtRGa1Lfp1QDX3/3nKcMH0PrmpkTmZFMFoceMwTCjm/VYC5eAwTmGMTWKM8bi9lwN4ljE2DsCz4W8Q0QQA0wFMBDANwPVExHnQGwDMADAu/JtWhnEpYVpgsuoCtI5PAofxk09PUO7CXXLzZvUWNvphOLaVd3gGYlu1FvNcQG+5I+swbr/kaHzjpDGJOmLo6W+fNg4v//CUxPksTuKJhVBr4RYf6wPvheKfXQ14ddkW5c5QfEYmYs2T/Jic9lzCjBTDYOjmlzgWvZVU0s9B9R4mH9gXw/sm/SVS9yIM3EQwgGTYEyWHEbbNh2ISN0U6DIMBgYhvnToujjElcRQpgiHNG55Ey4QckZFoiHP3wy17sUfjQ1NpVEIkdQ6AWeHxLADnCuV3McYaGGMrACwFMJWIhgLoxRibzYLt5q3CNeWHQYfhRjDiY92uUCzXteWy0DmLkVwWebemYqW3icMQxFZdNBY34uWPzFfb/cs6jCmj+qYI2xDBn2PSiN4Y2ju5AGURSYnPR3eduIDoHgGvMjfULekUzXmHZ9krdHDUcauqcaiqFiOS0ho+kMszSJ7o211jJGJR2Cd1GIblKPUMVCKp4D/foKhuT9ZvqOooOZMcIZcj5ChtfSWLvuTrudLbyGHAvCaIz+0Tv3kef3trrb5yBVEqwWAAniKieUQ0IywbzBhbDwDhfx77ehgAMQbEmrBsWHgsl6dARDOIaC4Rzd20KW3u5jZgvVkth9kBzoXDsFuZyPjUYUNTZfIYj9CINfgwTIuO6zhsfhhAvJM7oE8Xgw7D3lcuVFLa6qiOi4G4ID3z3kZrf7renIkvpduUcU4Y8M/EYaSspBTtFeMdXEpoELn4zq+mMxOq+pDHLp5WxUCL+jOMMWorLFu+KbBuUumFeJHZcY9zKvHcJOEbkzmMdCyoZJuFgt2sligZRv37Gj0lR30JccdKQanRao9njK0jokEAniai9w11VY+LGcrThYzdCOBGAJgyZUpREetMZrV8vTXJC8WP1+mD07zXS04Yjbmrgh3qtIlD8IcvpbOjiThsWG/87dLjjGMyKtUc51cskrK3ZbRqcVhWcwQ0hruzCUN7KbkV8Z5UBFFn/vw7hRd+V6F9LYchiqS0i2VYbrnFYOEwLxRdwsgBpqbkaWbyHeA4oLc9EZNu/iYU/w4cxrA+XROBK0XYuCPxXowEw8KpAOnv9n+/MClVJ4pWG5nVqp5luv/Y/JlSoUG4ocavP394amw5Cvpq0QQylNvn+Oap47B2+z6s3b5fed4lpl0lUFKvjLF14f+NAB4AMBXAhlDMhPA/38qtASB6fQ0HsC4sH64orwh00WoBQeFreCripHQRSekmyVmHDY3k/ycp8kXI6FqX137gPNT4u2sNVhbCkvRLRf6KaLwOYpTo4ynRKosQJw/69BFpDitox0x8iSiKxSPi85OHp8rEDHRaHUYGkZTtFl0MCDiRXLllr7aOTHwvPi7tqyDezuQD++KJ//MJy+j0GyOR23Ei/I7fC2BWepu5WuswUs9ZRcQiguGg9BZFT7xePpdOoMZ/19YElcS0vpefNR5A4NOhy0uvG8d/f+5w3PqvU6N+RbQ7gkFE3YmoJz8G8EkA7wJ4CMDFYbWLATwYHj8EYDoR1RPRaATK7ddDsdUuIjomtI66SLimYlB9CKvCj1YOgy3CZQcqimlM3AqfaKaFd2qYXrKfIikSB/dGNdnYi8MQHdhkuCi9IzNeR0XtmIHqvNi5HDJlm9M9S1dhjBgS28VKSttuWOc/7ptv7C/WYRjGZPG6lq9/9nsn4bNHpomh+L5G9O2aSFGqbddBh6Ebu1jHFBfNprAXuUbTnNNZBibadhDLyWHgVfOON51IxRzOhtp8LmVGe+VDCxNjFO+jT/jdrtyyVxlmJBq7ZYclz1ebgUClUIpIajCAB8IXVwPgTsbYE0T0BoB7iOgSAB8COB8AGGMLiegeAIsANAO4jDHGSe6lAG4B0BXA4+FfRVBigjcnOXregcNwbZPP576GQHkuFlCuugAeOl0Vsly+Xpd2NBhTfHzd9COVdXIUx+5ykcGXkpEOcOMwxA9TrxR26483ZZpyLvdNDkRMJDym95LoW8dhCNeb4oBxmHa7tsRSSYssbTOpPlRVs3AhXDGumlMUWiwt27RHuC7sI0epXBovhhs2lT5PJzJV9Wk+n/zdVhxG0QSDMbYcQEpQzBjbAuA0zTUzAcxUlM8FYE5OUCbESu/irhejUuqWgsRH4PBeXczp+mmsUAC3BUzsw9Qf3zyZHcnCOo7WZIMUkUWDOnG4B515rlxfBdd3Ke7KXOKA6YwIZO5U1xY3O31hsd5AI2tMK90zEIP/uYZJ1y06Ln4Y+wVT6QuPVYfzUF2fSl3rYOoMpBdj1XOodVhEeRdc72CK2izmnRHFsKKoSuQ2VHPYmWA41Yph2tBVEp3P09ug9HbBdofQCgmRVDEG8gL2hDmaVXm6ObJyMcYxMX2MHfl688IUnxvUS62ATcqvHURS2kXe7Rm7GCy4PCe5+LZLjnbqXz0me52E6akicRCARKh2V05MJ9bY1xTb+Oue7VMLN0TH/zxlhLJOcH3ydzr0S1xB5RnOIRM31buxRZoWr3tl6RYAprww8u9YDCsSCTFVsYwxA/Ux6VL9Waa/TExtASQrhc6X05sfFLmOu6z/WUVSJjEZt/HvVqd/VW5ijfjYNCb+LZja5B+MaAao629Uf7X1TFAn7sNlkdMSDOuV7m2J5boxyY9Plb3QFU7+OMKxzjKNiHDxsQdi1uxVzhyGbtFRJR6SYVLgipBzDZk2Pos/2qU9J+6oJx/YF6eOH5Sq40Iw5DranOWhhVtcEPyryeUSGfdE8ZRo5fXBL85CjoDV2/ZZxxQ0bxFJSb89h9Fa4KFBiqQY4mI7vK96MRR3LaX6DnDzT5PIxknsJUaPNYqk9OaGHM+HIpb3DR94Vq7HZZErZyYyvdLb3p88d3S+KFmgsvSKxiSMwxg+Dr3qKAAAEd1JREFUw0G3JEK36KiSE8lwzT8u00PTO+ymyWAJJJ/xLz97mFKc5qKelFMF6CCnwRXFsKJZLRepfvOUsTh8eOwnVVeTQ00+50y8bdU6hFlte4TJrNYF4sers3BxVeS5oBARjNKc8sRxmOr/9+cOw/Fj+2Pc4B7ug1TA5bbFMbksQFp5v1T8tINJqbYpByImX2ta6GyIdGqGOjWOBCPreHSbkOMOGmC9tiHkMG67ZKqxXhZP/K4GLlq8J91UsUWRBYC9jW4hNWSiKUZTEM1quT7j8OG9le24mGkH58xfTFdprWkrK6nORzBK1GG4EBqX0CCubfJvoGSCIYxj6x59mtXDh/fBHV89xuiU54LYW9ZtTKVwGPKOf5wiYxvHzRcHIc8c1hZnnUnP+uLzjpvC7XOIGxATYd0ZiggH9NCLfZLpV4vfzfC4Th8fpc9qCGSzSjSFeB8sOCLq5vsBfezOisePtRNDAOgucRi8S1mHERtt6AKRCmuB4XnbXkXvbrUYI/h3eILRSoij1erf0LXT0x6iHHJ6VBXEj7rUwLucwyjVpFS82qR7KBciRyfHj6RcIilZlCBj8oF90a0uj0tPPqjo/uTi7vVq4vrxUX2V5SJijld/b6aQLyL2hLvnngYfjLtmqEN4ZMWnDw8iMNsWLp2SXgXTl8VjbgH653HuJGVEoQQG9KjHERpuQIQsroutpJKhQXhYkFKMKOR6hw7rpawjEmcvkmolxPkw9NDpJoAgQB4AnPQxvXe2q9ySw+S8VXAwO3XpTdwVnTjObZdVDhhNhjMqvXU7S9HyxtZOn251WPSzadadMWDiMJK/dbt+F90Gfy+m5+Q6nbifmekZlGuh+d0/H4G3fnyGdUNkCvfB8T//HFjnm8RX4gKuo5+umzPO2U415HzXPafArDZ40Es27MLCdTuDcs0zd5U28FOnHzIYj3zrROO4AXNYnkqi81lJOYgATDhv8nCcOG4ghhhi9WR1DuQpP1VwEUl9fvJw/ObJxXjkWydY2zl6dD8jQSwXXMJiiETMZRet+yhFyxdbTusscMmo+Pmj0l7XHHyB+Mrxo7R19oVK2O4G+b3rQsgXXNOzLJfhQG0+Z3Qm5RAXejlNMYeL+LKmjKbqfKNy2DA9p6Ez463Jx75DZ1zzYjw+3VxxJBhcrGqM4SZc3u4c99orTBn3ojqGFZ+IjMQCiLN5ucLksMRNNk2T7dKTDsIXp440fsB8F15OSyMT+BpnIhgfCjbsTiIpTVtieHEX00pXuDwrI+cXjtfEjXIxUimKcw6Xd+z6/i89+SCnAIY28Ff2m/MO1xLXyCPeQDHEzYIpFAnHRQZnwi2hDm+kJmAiEIvaLjlhNH509iGC71FOqTh34TBMTz4S4TqIrfI5arXvODWGNum1DcEctN4uClETRvVX76SKwfc+eTBG9uuGMQP0Vku5HFl3e3w3X46J5tJEgdlFLSKH4TIuHWEViYSc4rUU6IiBiwMgEE8x03Q6f/II1OQI0w7Vc5muiLlRkz4kOCcqUFX44bTxuPDYUSWPiT+qupqcNdaT7NQnQuRUenezGxmcrUgXwMGTD/UxtMN38DX55OKcz5HSGku34RGvnfGJMco6Yj2XPDRt5YMBdEIOg8PFF6FYlJP6n3LwIJzyg7STUla0OCj7s+KcSfrUs/wRmp0ERd2Dg0hK81wPGaq3iioFsikjhzgMk6gw3jnr59OEA3ph6S/PLmp8Mty4yDbamRqNH1xEUkGd7o6c2BHD1bljgDiooEl3yDkMec7VCiIpES6OoJ81iC+5VZZLBOgshgTlRifkMIL/ps/GltSnXLjzq0fjugvUgfnKDX5PJRpbBW2Fj+fKz0w01LEvXkkdRvEcxr8eP9p6bTHQ5sMQZo/xAw//lxrw0hW8H6cNSyvRDde8KACMFIPrCGwbnjEDu6MmR4lAkzK4nstEMPguXnaCzEuxpDh0bYli1CGaEDlAvDkxOU3ytjyHUWUoB7342omjrXGnjnO0CS8HyimS4jCJPgoRh2EYk/CcnUKD6LyzyyzP7V6XN3oEuzocRjvnMhEMm8lwJAY0LtKtRL04OJdlqDJuUMAhnmCw3nMJTgkAT/3/9s49SIrqisPfWZY3iyvIAuICmuAiQUFZRSOID1ARo5WHiWgEMcZYRVQSSpSoZaVSiZhKrPiqUsqAJvGR0rzQGC1j1CQmRl0jKiK+EzCK8QWIMYTy5I++7fbuTvf0zPb0Y/d8VVPTe+fOnd+cvdOn77m3z11yWNlv6IctB0RMHPuOovMFQX2fui7ZaiF8eXHcSW9/Pq9lVOkltcG2kpjvqpZe5zDibNHa3XseAC6aN6nbbSTJRzFCRJUStVLjoxghsGCKhTirpNKa6Hvg/MM/vgmuFMGvFHWxd+5RE3j6tS2xlvCW4/6lsyLzMEG786p00UUtaR9lhZ/GW0Y18MQlc9g1Yk5huFuee8GxLZGfFye0GSckFbZVcX1d6ZBUd5e5+r+XcRG51/zfbpzULbWi9zmMGCGp6RHrs4tL8iOMqKGxf4KI+rjgZHV3kg8CTBzVEJnbqhKaGgbQ1BAePgg6wdse3cj5x0wsWW9qcyOPXTQ7EU2fGFE+VctAF9v+MGa+pDTwV7CVC6MMK7NoY0j/el657LhE5uD8c0CUw9j4jpc08B9vb+9Q7oekNm/9sEN51LzCktkTOCxipRy0n4/i3KsR1TdrTe+bw3DP3cnrUkSOnDiS+Qc18+0Twucd4uL/uKPsFGdEsyMQk4oTl42aL/j14kPLvj8pgirejkizkjZ+RuP/RGSS9VPNLzg4fNlpkvgjtbhpvqNI+nc5IOIkf8+6NwC4vW1Th/K+dd6Oe6+81dGRRPXfJbP35oCx0Xf9x9l50R/FxFklVit63Qhj7uRR7D1ySGZ3SmZFv/o6Lvvcfom0dec5M1jv7nANw58ziXQYgRFG1DD71RXzymryf3BjGgeWrdtdgieu0z89vuafF5flx03kI1XmTg5fUjp0QN9Y9kyKZce2sOyOp5jSHL5qKSuiTtJTmhtZu/E95nZa7qwob2z9kJNXPtKhvLu5na740lRufPiVyNVduzV4F2pxU8vXgl7nMMYNH8y4kPskdt9lAJsjNnExPMY0Dix7YvZ/QFGOYEdg17Y4V1jl+MPSWWVDG0kQdIGXfiY/c1VNDQO4MmQ73KyYNm4Y9y89PGsZJYnqczctOpA72jZ1uSBYs/ZfXereuOjAbo9+xjQOLDvv6YeiorIC1JrcOAwRORa4EugD3KCqK9LW8MdlR6S9hqTHMrW5ke99dl+OnxJ+tfvNOS0svuWJxD5zrxhx/iQIrpLpieHLnk7LyAY2bN4WGZJqHNSPM2d2vdGu80q9pOZV4nDUxCYunrcPXzwwfIfDWpOLOQwR6QNcC8wFJgHzRST1S7f6PnWJbIZjeCfSU6aPZWhE5tR5+3nOJKu8ON1lRorLoo3kuPmr07lhQWtVYenOmYDTvGCoqxPOnLlX5G+q5hoy++SOHAS8qKovq+oO4DbgxIw1GSlw1zkz+NOyI7KWURHDBnthtqgrVCO/7DakP7MnjazqvUuP3vvj49n7dD8DQ9HIS0hqDLAx8PcmYHpGWowUmRyRMTSvtI7blXOO/CSnTB+btRQjZU5qbeak1mZefWs7TUOzux8iK/LiMEqN67pMJ4jIWcBZAGPH2o/VyIa6OmHp0dE3kBk9m/Flkjf2VPIypt4EBGdy9gC6LEdQ1ZWq2qqqrSNGRN8IYxiGYSRLXhzGY8AEEdlTRPoBJwNrMtZkGIZhBMhFSEpVd4rI14F78ZbVrlLVdRnLMgzDMALkwmEAqOrdwN1Z6zAMwzBKk5eQlGEYhpFzzGEYhmEYsTCHYRiGYcTCHIZhGIYRC4naCSvPiMg2YEPIy2OBf5ZpYhdgS0p14tZLSnfceknViaM7bU1x7dTb+0ra/amofRx6Tl9pUdWGGG13RVUL+QAej3jt3zHevzKtOhW0lYjutL9fHN0ZaIprp17dVzLoT4Xs4z2pr0SdO8s9empI6r0Yde5MsU7ceknpjlsvqTpxdCf5eUn+X3p7X0m7PxW1j0PP7iuxKHJI6nFVba30tTxjutOnqNpNd/oUVXtn3d35HkUeYays8rU8Y7rTp6jaTXf6FFV7Z91Vf4/CjjAMwzCMdCnyCMMwDMNIkUI4DBFZJSJvisgzgbIpIvJXEXlaRO4UkaGuvJ+IrHbla0Xk8MB7prnyF0XkKqnx/ooJ6n5QRDaIyJPuUdOtvkSkWUQeEJH1IrJORM5z5cNE5D4RecE97xp4z3Jn1w0ickygPG2bJ6k9NbtXqltEhrv674vINZ3aSs3mCevOdT8XkTki0uZs2yYiRwbayrPNo3RXZvNql1el+QAOAw4AngmUPQbMcsdnAN9xx4uB1e64CWgD6tzfjwKH4G3Y9DtgbkF0Pwi0pmjv0cAB7rgBeB5vr/XvAxe68guBy93xJGAt0B/YE3gJ6JORzZPUnprdq9A9GJgBnA1c06mt1GyesO689/P9gd3d8WTgtYLYPEp3RTZP5R+TkJHG0/HEu5X2OZhm4Fl3fC3w5UC9+/H2DB8NPBconw9cn3fd1fxTa/AdfgPMwbtRcnSg025wx8uB5YH697ofTyY2T0J71nYvpztQ73QCJ96sbV6t7qztXYl2Vy7A23gXGoWweWfd1di8ECGpEJ4BTnDHJ9G+Y99a4EQRqReRPYFp7rUxeDv7+WxyZWlTqW6f1W7IeEmtwzpBRGQ83hXK34CRqvo6gHv2h6+l9mQfQ8Y276Z2n9TtHlN3GJnZvJu6ffLcz4N8Hvi7qv6XYtk8qNsnts2L7DDOABaLSBvesGyHK1+F9w97HPgR8BdgJzH3DU+BSnUDnKqq+wIz3eO0NISKyBDgF8ASVd0aVbVEmUaU15wEtEMGdq9Ad2gTJcpqbvMEdEP++7lf/1PA5cDX/KIS1XJn8xK6oUKbF9ZhqOpzqnq0qk4DbsWLPaOqO1X1G6o6VVVPBBqBF/BOxnsEmii5b3gOdaOqr7nnbcAteCG2miIiffE6482q+ktXvFlERrvXRwNvuvKwPdkzsXlC2lO3e4W6w0jd5gnpLkI/R0T2AH4FLFDVl1xx7m0eortimxfWYfiz+SJSB1wMXOf+HiQig93xHGCnqj7rhmjbRORgN+xagBf7y7VuF6LazZX3BY7HC2vVUqMAPwbWq+oVgZfWAAvd8ULa7bcGOFlE+rtw2gTg0SxsnpT2tO1ehe6SpG3zpHQXoZ+LSCPwW7w5r4f9ynm3eZjuqmye1sRMNyd1bgVeB/6H582/ApyHtzrgeWAF7RPJ4/Emf9YDvwfGBdppdQZ5CbjGf0+edeOtKmkDngLWAVfiVvHUUPcMvCH1U8CT7nEcMBxvMv4F9zws8J6LnF03EFghkoHNE9Gett2r1P0q8A7wvutfk9K2eVK6i9DP8S7wtgfqPgk05d3mYbqrsbnd6W0YhmHEorAhKcMwDCNdzGEYhmEYsTCHYRiGYcTCHIZhGIYRC3MYhmEYRizMYRhGDRCRs0VkQQX1x0sgq7Fh5JH6rAUYRk9DROpV9bqsdRhG0pjDMIwSuKRu9+Alddsf70bLBcA+wBXAEOAt4HRVfV1EHsTL/3UosEZEGoD3VfUHIjIV747+QXg3dp2hqu+KyDS8HGIfAH9O79sZRnVYSMowwmkBVqrqfnhp6RcDVwNfUC8X2Crgu4H6jao6S1V/2KmdnwAXuHaeBi515auBc1X1kFp+CcNIChthGEY4G7U9987PgG/hbUBzn8sC3Qcv9YvPzzs3ICK74DmSh1zRTcDtJcp/CsxN/isYRnKYwzCMcDrnzdkGrIsYEWyvoG0p0b5h5BoLSRlGOGNFxHcO84FHgBF+mYj0dXsMhKKqW4B3RWSmKzoNeEhV3wO2iMgMV35q8vINI1lshGEY4awHForI9XgZQK/G28L1KhdSqsfb7GpdmXYWAteJyCDgZWCRK18ErBKRD1y7hpFrLFutYZTArZK6S1UnZyzFMHKDhaQMwzCMWNgIwzAMw4iFjTAMwzCMWJjDMAzDMGJhDsMwDMOIhTkMwzAMIxbmMAzDMIxYmMMwDMMwYvF/5fzITNyb55sAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sorted_data['inc'].plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEVCAYAAAALsCk2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztvXl4XOV59/+5Z5M02nfLkmV5kVfAxhizBLJAGpyFQlpoIGlD2iT8kqZpyZu3TdK0b9OFJl3StGmzlCwNpDSEQpoNCBCgEBIw2MYY7zZetViLpdE6Wmbm+f1xzhnNaEbSaJ8Z3Z/r0mXpmXPOPJLPzHfuXYwxKIqiKEosrsXegKIoipJ+qDgoiqIoCag4KIqiKAmoOCiKoigJqDgoiqIoCag4KIqiKAmoOCiKoigJqDgoiqIoCag4KIqiKAl4FnsDM6WiosI0NDQs9jYURVEyij179nQaYyqnOi5jxaGhoYHdu3cv9jYURVEyChE5k8px6lZSFEVRElBxUBRFURJQcVAURVESUHFQFEVRElBxUBRFURJQcVAURVESUHFQpsQYQziiEwMVZSmh4qBMyZefOsFNX3l+sbehKMoCouKgTMmx9j4OtfQSCkcWeyuKoiwQKg7KlPQMjhIx0Nk/sthbURRlgVBxUKake9AShdae4CLvRFGUhULFQZmSwOAoAOd7hhZ5J4qiLBQqDsqU9AQtcWhVcVCUJYOKgzIpo+EI/cMhAM73qjgoylJBxUGZFMelBOpWUpSlhIqDMik9wbEMJRUHRVk6qDgok+JYDmX5Plp7U8tWikQMvzrRyXAoPJ9bUxRlHlFxUCbFEYeNNYW09QxjzNRtNJ491sF7v7mL67/4LD98pZmItt5QlIxDxUGZFKfGYcOyIkbCEboGpi6Ea+oeBCDX6+au7+/jxn97PprxpChKZqDioEyK86a+YVkhkFo6a3vfMC6Bx/7oWj534yYOtvTy0qmued2noihzi4qDMimBwVHcLqGx2hKHVILSHX3DlOXn4HW7uG5DNYBaDoqSYag4KJMSCI5QnOelpjgXgNYUah3a+4apKswBoDjPC6g4KEqmoeKgTEr34CgleV4qCnJwu4S2lNxKQ1QVWeJQkOsBVBwUJdNQcVAmpWdwlBK/F7dLqC7MSSnm0BFjObhdQmGuh14VB0XJKFQclEkJBEco8fsAWFacy/kpah3CEUNn/wiVtjiA5VpScVCUzELFQZmUgO1WAqgpzpvScugaGCEcMVQV5kbXivO86lZSlAxDxUGZlMDgKMV+Sxyqi3I53zM0aSFce58lHlXjLAcVB0XJLFQclAlxOrKW2m6lmuJcBkfC9NldWpPR0TcMEOdWKspNLg4vvH6BwZGJr6UoyuKh4qBMiPOGXmJbDsvsdNbJah3abXGYyq10oX+Y937zRR7e2zyne1YUZW5QcVAmxOmrVByNOdi1DpOIg2M5OKmsAMV+L71D8eLQ3jeMMZZIKIqSfqg4KBMSsPsqOdlK1UWO5TBxxlJH3zCFuR5yve7oWnGel6HRSFyXVqdHU29Q3UqKko6oOCgT4lgOTrbSmDhM/Gm/vW8oLt4AUJSkSvqCLQ59QxqoVpR0RMVBmZCA/WbuBKR9HhcVBTmT1jq09w7HZSoBFNlV0rG1Dl22O2m8u0lRlPRAxUGZEMet5KSyghV3mDTm0D8cF4yG5P2V1K2kKOmNioMyIYHBUVwChTme6JpT65AMYwztvcMJbiVHHGKFwHErqeWgKOmJisMS528fPcx/7Tqb9DGnI6vLJdG1muJcWgLBpIVw/cMhgqPhBLfSpJaDioOipCVTioOIrBCRZ0TksIgcFJE/stfLRORJETlu/1sac85nROSEiBwVkRti1i8Tkdfsx74sImKv54jI9+31XSLSMPe/qjKel051cc9zJ3l4b1PSxwODo9F4g8P6ZYX0DoU4c2Ew4fhkaayQXBwuqFtJUdKaVCyHEPBJY8xG4ErgYyKyCfg08JQxphF4yv4Z+7HbgM3ATuCrIuLkNX4NuBNotL922usfBLqNMWuBLwF/Nwe/mzIJxhj+9tHDAJzuHEh6TE9wNC7eAPCGtRUAPH+iM+H4ZAVwkDxbqSsmW0lnTCtK+jGlOBhjWo0xe+3v+4DDQC1wE3Cvfdi9wM329zcBDxhjho0xp4ATwA4RqQGKjDEvGMsncd+4c5xrPQRc71gVyvzw2IHz7DsXYMOyQi4MjCR173QPjkTTWB0ayv3UluTxy0nEYXzMwet24fe5k4pDxMCAttBQlLRjWjEH291zKbALqDbGtIIlIECVfVgtcC7mtCZ7rdb+fvx63DnGmBDQA5Qnef47RWS3iOzu6OiYztaVGEbDEf7h8aM0VhXwh9c3Asmth8DgaLQAzkFEeMPacl44eYHwuE/8UbfSOHGA+Lbd4Yihe3AkelzvkIqDoqQbKYuDiBQADwN3GWN6Jzs0yZqZZH2yc+IXjLnHGLPdGLO9srJyqi0rE/DAS2c51TnAp3ZuYE1lAQCnkoiDM+hnPG9YW0FgcJRDLfG3QXvfED63KxpjiCW2v1JgcARjoKEiH0BnPShKGpKSOIiIF0sY7jfG/MBebrNdRdj/ttvrTcCKmNPrgBZ7vS7Jetw5IuIBioGu6f4ySmp8/dmTXN5QyvUbq1hZ7gfgdGd8gHk0HKFvOERJni/h/KvXJI87dNhprMk8gkUx4uC4lFaVW+LQp5aDoqQdqWQrCfAt4LAx5p9iHvoxcIf9/R3Aj2LWb7MzkFZhBZ5fsl1PfSJypX3N9487x7nWLcDTZrKhAcqM6egbpjkQ5IbNyxARcr1ulhfncvpCvOUwviNrLJWFOWxYVpgQd2jvS6xxcIi1HJxMJbUcFCV98Ux9CG8Afgd4TUT22Wt/CnwBeFBEPgicBW4FMMYcFJEHgUNYmU4fM8Y4Hdc+CnwHyAMes7/AEp/visgJLIvhtln+XsoEHGq1XEGblhdF1xoq8hPcStG+SknEASzr4f5dZxgaDUeb7HX0DUctkfEU5Y7FHKKWQ4V1rNY6KEr6MaU4GGOeJ3lMAOD6Cc65G7g7yfpu4KIk60PY4qLMLwdbegDYXFMcXWuoyOfR11rjjusJ2q0zksQPAK5pLOfbvzzF3jPdXG2nt7b3DXH5qtKkxxfneaOBZ7UcFCX90QrpJcbBll7qSvPi6hdWlecTGByN9lKCMcthfBGcw45V5XhcEo07jIQidA+OUlmQm/T44jwv/cMhQuEIXf3W86wss8VBYw6KknaoOCwxDrX0sjnGpQRjn+BjXUvdU7iVCnI8bF1REo07dPYnr452KM6zO7MOhegasGY+5Pnc+H1utRwUJQ1RcVhC9A+HONU5wOblxXHrju8/NigdHfSTJFvJ4Y3rKnm1qYc/eehV9jdZ7qpkNQ4w1tm1JzjKhYERyvOt6xblJk6JUxRl8UklIK1kCYftYPR4y2FFmR+XwKmYdNaeoN2RNXfiW+RD166iJzjKd184w4O7rfrGybKVnOt2DYxQ5ohDnkf7KylKGqKWwxLiYLMdjB5nOeR43CwvyYurkg4MjiZ0ZB2P3+fhz9+1iac++SZu3rqcutK8qItqPEW5TttuRxxyoutqOShK+qGWwxLiYEsv5fk+qpPEBVZV5HMmxq3U1juU0DpjIlaU+fnn2y6d9JhYy+HCwAhb6koAqziuvW/i4UGKoiwOajksIQ629LJpeVHSCuaGcqvWwRhDSyDIM0fbubaxYs6e2xGHQHCU7oERygqcmIO6lRQlHVFxWCKMhCIcb+9LcCk5rCz30zsUontwlHueO4kxcOcbV8/Z8zttu5u6BwlFzFhAOs9Ln7qVFCXtUHFYIhxr62M0bBKC0Q6r7FjBnjPdPPDyWW6+tJa60uTVzjMh1+smx+PiVIfluiqLy1YKJZ0spyjK4qHisERwOqhOJA5OIPnuRw4xHIrw0TevmfM9FOV5o7UUsdlK4YhhcCQ82amKoiwwKg5LhEOtvfh9bhrKk2cTrSi10llPXxjkHRfXRFt5zyXFeV7OdFnpsuUx2Uqg/ZUUJd1QcVgiHGzpYWNN0YSpqT6PK+pG+v15sBrAEoeRUARgLCCd56S4alBaUdIJTWVdAgyOhDjY0sstl9VNetx1G6roHw5NGLSeLbFN/JyAtFNkp5aDoqQXKg5LgIf3NDE4EubGLcsnPe5zv755XvfhiIPf5462+Y4tjlMUJX1Qt1KWE4kYvvX8KbasKGH7yuTttBcKRxycYDTEuJXUclCUtELFIcv5+eE2Tl8Y5MPXrkpa/LaQFNkupPJYcXDcShpzUJS0QsUhy/nm86eoLclj5+Zli72VqJUQazkUqltJUdISFYcsZn9TgJdOdfG7b2jA4178/2rHrVQaIw4+j4s8r1vdSoqSZiz+O4Yyb3zzF6cozPHwnstXLPZWgDFxiHUrgVUI16fT4BQlrVBxyFJ6gqM88lorv3X5iqjrZrEZC0jHd4XVtt2Kkn6oOGQpr5ztJhwxXL+harG3EsWZBldeMN5y8GpAWlHSDBWHLGXPmW7cLmHLipLF3kqUdVWFfGrnBm4YFxwvyvWo5aAoaYaKQ5ay50w3G2sKyc9JnzpHl0v46JvXxFVKg2M5qDgoSjqh4pCFhMIR9p0LsH1l2WJvJSWctt2KoqQPKg5ZyJHzfQyOhNm2yBXRqVKY66E3OKozHRQljVBxyEJ2n+4CWPR2GalSlOclFDEER3Wmg6KkCyoOWcieswFqinNZXpK32FtJibHme+paUpR0QcUhC9lzuitjXEpgFcGBNt9TlHRCxSHLaAkEaekZyhiXEoxZDn0qDoqSNqg4ZBl7znQDcFkmiYNOg1OUtEPFIcvYc6abPK+bjTVFi72VlCnSaXCKknaoOGQZe850s2VFMd406MKaKmOWg4qDoqQLmfMOokxJ/3CIQ629GVP85uDEHFp7hhZ5J4qiOKg4ZBHff/kc4Yjhuo3p02wvFXweF29cV8l/vniGroGRxd6OoiikIA4i8m0RaReRAzFrnxORZhHZZ3+9I+axz4jICRE5KiI3xKxfJiKv2Y99WeyZlSKSIyLft9d3iUjD3P6KS4PhUJhvPHeSK1aVsa0+c4LRDn/2zo0MjIT50pPHFnsryhzQ3jvEVZ9/ir1nuxd7K8oMScVy+A6wM8n6l4wxW+2vRwFEZBNwG7DZPuerIuK2j/8acCfQaH851/wg0G2MWQt8Cfi7Gf4uS5r/2dvM+d4hPvaWtYu9lRmxrrqQ911Rz/27znD0fN9ib0eZJS+f7qa1Z4gfvtK82FtRZsiU4mCMeQ7oSvF6NwEPGGOGjTGngBPADhGpAYqMMS8Yq4HOfcDNMefca3//EHC9Y1UoqREKR/jas69zcW0x1zZWLPZ2Zswn3rqOwlwvf/3TQ9pnKcM53NoLwNNH2vX/MkOZTczhD0Rkv+12cvwYtcC5mGOa7LVa+/vx63HnGGNCQA9QnuwJReROEdktIrs7OjpmsfXs4tED5zlzYZCPvWUNmayrpfk+7nprI8+f6OTpI+2LvR1lFjji0NQd5ER7/yLvRpkJMxWHrwFrgK1AK/BFez3ZO5OZZH2ycxIXjbnHGLPdGLO9srJyejvOUowxfPWZE6ypzOdtm5ZNfUKa89tXrqQo18NTKg4ZzaHWXq5YZWXN6f9lZjIjcTDGtBljwsaYCPANYIf9UBMQO82+Dmix1+uSrMedIyIeoJjU3VhLnoMtvRw538eHr12Ny5W5VoOD1+2ioiCHPp3vkLEEBkdo7Rniug1VbKopUiswQ5mRONgxBId3A04m04+B2+wMpFVYgeeXjDGtQJ+IXGnHE94P/CjmnDvs728BnjbqpEyZc12DAFxcV7zIO5k7nPkOSmZyyHYpbawp4roNVew5003PoP5/ZhqppLJ+D3gBWC8iTSLyQeDv7bTU/cBbgE8AGGMOAg8Ch4CfAR8zxjhN+j8KfBMrSP068Ji9/i2gXEROAP8H+PRc/XJLgeZAEIDaDGnPnQpFeV5tpZHBHGqJEYeNVYQjhmePa4ww05hywLAx5vYky9+a5Pi7gbuTrO8GLkqyPgTcOtU+lOQ0dQfJ97kT5jJnMkW5Xq2WzmAOt/ZRUZBDZWEOZfk+yvJ9PHOknV/fsnyxt6ZMA62QTkIkYjjQ3JMRKXgtgSDLS/IyOktpPOpWymwOt/ayabnV+NHtEt68rpL/PdpOOJL+rydlDBWHJPzLU8d5178+zw/2LkwBT3AkTHvvzD4pNweC1JZmj0sJ1K2UyYyEIpxo72djTWF07bqNVXQPjvKKVktnFCoO43j6SBv/8tRxROAbvzg5I+vhD7/3Cvc893rKx3/lmRO881+fJzKDT1YtgWBWxRvAauE9NBphJBRZ7K0o0+T1jn5GwhE2xbSMv3qNVZi571xgsbalzAAVhxjOXBjgrgf2sXl5EZ+7cTNHzvfxwusXJjz+2WMdXOgfTlj/5YlOdp1MPRv39IUBOvqGaeoOTmu/gyMhugdHM2ZWdKoU6mS4jMUpfosVh7J8H0W5Hs7amXVKZqDiYDM0GuYj/7kXEeHrv30Z77l8BeX5Pr75/Kmkxz93rIM7vv0S9+86G7dujKF3aJQL0+gu6nQidVIAU6XZFpO6rHMrOcN/tNYh0zjc2ovP42JVRX7cen25nzMXVBwyCRUHmycPtXG4tZe/v+USVpT5yfW6+e0rV/L0kXZe74gv/x8cCfGn//MaQEKL6eBomNGwoXswdXG40D9DccjCNFbQmdKZzOHWPtZXF+IZN2xqZVl+tCYn3Xn5dBcDw/rBRMXB5lhbn5VZsX6sLcdvX7kSn8fFf/wy3nr4pyeO0dQdJNfromdcVo3zc1f/NMRhwHJNHZ6hOGSrW0lnSmcWxhgOtfbGBaMdVpT5aeoOpn3GUu/QKO/59xd4eG/T1AdnOSoONsfa+mgo95PjcUfXKgtzePfWWh7a08S+cwHCEcOr5wJ8+5eneN8V9aytKkgQB+cNrW84lFJANRIxY26llonFIRIxHGuLb2XdEgjicQnVRbkp/56ZwJhbSS2HTKK9b5iugZG4eINDfZmfkXCEthlm5S0UPYOjRAx0D+i9p+Jgc7ytn3XViZ94PnTtKgBu/sov2fqXT/B733mZysIcPvX2DRTneQmMcx/FikUqrqVA0LoZq4tyaA4EE8TG4YlD53nbl56LE4jm7iDLinNxZ0FPpVjUrZSZOPfm+mWJ4rCy3A+Q9nGHgRHrw93gqFqtKg5YwejTFwZoTCIOjdWFPPfHb+FfbtvKu7Ysp6Ykl7+/ZQtFuV6K87wTupUgMR6RjC7bpXTNWsudNZFryWl7vOvUWBZUs10Al20U5tqWg7qVMgon225FWeI9WV9miUO6xx2cWMPgcHiKI7MfFQfgZMcAEQONVQVJH68qyuWmrbV8/jcu5qcfv5Y3rbPeyC1xiH8D652mOHTasQlnSM9EriXnhffKmbFCopbAEHVZKA75Pg8uUbdSptESCOJ2CcuSuDlrbAs33dNZ+21RcCyIpYyKA3C83TKHk7mVJqM4z0dvcDSuUC7WckglndXJVNpQU0hFgW9Cy8ERhz12lWkoHOF871DWVUcDuFxCQY5H23ZnGM3dQZYV5SZkKgF43C5qS/I4k+7iMKSWg8OUjfeWAsfa+vC4JCE3eyqK87yMhCMMjUbI81mB7NhPu93TcCuV5fvYWFM0YTrruW7rRXXmwiCd/cMMhyKEIyYr3Upgt9DQ/koZRVMgyPKSiZMjVpb7095yiLqVRlUc1HLACkY3VOTj80zvz+F0Qo21FnqCo+R53YikZjk4bqUyv49NNUUcb+tnNByf5RSOGFoCQS5vsKaxvnI2EC2Ay7YaB4eiXO2vlGk0d0/eymVFmT/tYw790ZiDWq0qDsDx9n7WVSePN0yGIw6B4JgI9ARHKcv3UZznTclyuDAwTKnfi8ftYmNNESPhSELRXXvfEKNhw86LavC6hT1numkOWC+ybLUcCnM9WiGdQaTi5qwv89M1MDIvWWiP7G/lz394YNadlB3LYWBELYclLw5Do2HOXBigsWp68QaIsRxiplz1BkMU5Xkpy/elmK00Qlm+DyDa5nh83MGJN6ytKmDT8mL2nu2mJWDli2et5aBupYyirW+YcMRQW+Kf8JiVdsbSXLuWfnaglY9/by/fffEMpzoHZnWtqOWgAWkVh9c7+q1MpRlYDiX+RLdSb3CUolwP5SmKQ2f/COUFOQCstl1b4zOWmux4Q11pHpfVl7K/KcDpzgHK833RWEe2UZTr1YB0BhF1c05iOayYh3TWXxzv4A+/ty8aL4xN9Z4JY+KglsOSF4fjbZYLZ7qZSjBxzKE4z0upPzVxuNA/TLltOXjcLtZXF3K4Nb4SuqlrLL6wbWUJQ6MRnjnanrUuJXDcSmo5ZAotKfT5qp/jQrh95wLced8eVlfm8/BHr6aiIIddJyfuopwKAxpziLLkxcHJVGoon16mEliuDxhnOQxZ4lBe4KMrhQrproERygt80Z831hRyqLU3znd6rnuQysIccr1uttVbQenO/pGsdSmB9bftHw7NaMaFsvCk0gSyKNdLid87Z26lux85RInfy30f3EGJ38cVq8rYdaprVnGH/phspaV+76k4tPWzagaZSgCFOR5E4gvfeoKjFNmWQ/fAyKQ3aigcoXtwlPL8nOjaxbXFdA2MxM12aOoORttyLy/Jo6bYShfMxhoHh6JcD8ZYPaqU9KepO5iSm3Nl2dyksx5s6eHl09188JpVVBVar4crVpfR2jPEua7pzUWJxREHY2AotLRdS0teHE60983IpQRWsVZRrpeALQ6j4QiDI2GK7YB0KGImbQHRbQeyYy2HS23LYG/MSMWm7iArSscCfY71kM1uJe2vlFmkOq52xRyJw72/Ok2e182t21dE165YVQ7Ai6dm7loaiCl+G1jihXBLWhyGRsOc6RqcUTDaIba/kmNBFOV6ohlIk7mWnFbdsZbDhmWF5HndvHLWGqno1DjEDvS5tL4EyN5MJYjpzKr9lTKC5u5BlhdPfT/Wl/lp7g4SCs98BGz3wAg/2tfCu7fVRuN+YLW/KfV7eWkWQenYOQ7BJR6UXtLicKK9H2OYURqrQ4l/TBycf4v93jFxGEgcI+rgtM6ItRw8bheX1BVHh7G39Q4RihjqYiyHX9tUzeblRVGRyEYcy0GD0umPMSZly2FluZ9QxNDaM/PW3Q+8fI7hUIQ7rmqIW3e5hB2rytg1C8uhbzhEqZ2FuNT7Ky1JcegJjvK9l87yWXua2/plMxeHOMvBTr103EoAXZP0hXcqqJ1sJYdL60s52NLL0Gg4GnuItRxWlufzyB9em3VzHGIZmyO9tF+gmUDXwAhDo5GULNkVs6x1CIUj/OeLZ7hqdXnS1+0Vq8o51xWMZk81B4J85ZkTKQ8ZGhgORWMYS73WYcmJw30vnObyu3/OZ37wGv3DIf7qps2snaAbayoU5SVaDkW5qVoOtlupICdufVt9CaGI4bXmnmhOeLbNiZ6KMbeSWg7pTrQgM4V7tH6W4vDzw+00B4LccXVD0sevWF0GwK5TF+joG+Z933iRf3j8KAdbeqa8diRiGBwJU1lovR6XesxhyTXeW19dyHt31PPuS2u5pK4YkdkNyimOqeSNupXyvNE4wqSWQ/8ILoGSGL8pwLaVTg+lboIjlm82m4PPyVC3UubgtHJJxXKoKc7D53HNuJL5J6+2UF2Uw1s3ViV9fMOyIgpzPfz8UDv3PHeKc7blfbJjgEvqJnfDOm6kKlsclnoh3JIThytWl3PF6vI5u541Dc5q290bIw55Pje5XtfkloPdOsM1bpJbRUEO9WV+9p4JUJjrobrIqnFYShTYA3/UrZT+JHN9ToTbJayuyI8Or5oux9v7uLi2JGlbcOf6OxrKeOS1Vrxu4Z7fuYwP37ebkx1TP5+TxlpVpG4lWIJupbmmOM9LyDZHo24l2xIoz8+ZtDOrVR2dk/SxbfUl7D3bzbnuwbhg9FLB63bh97nVrZQBNAeC5PvccZlDk7G2qiA6Q2U6hCOG0xcGWV05ecHqWzZUIQL//J5LuX5jNfVlfl7vmNpScTKVHMthqTffU3GYJSUxVdK9Q6P4PK7op/zS/Mk7s14YVx0dy6X1pbT3DbO/qWfJxRsctG13ZtDcbWUqpeqiXVtVQFN3kKFpzkxoCQQZCUVYPcXclfddUc9Lf/pW3nlJDQCrKwsSOh0nw5kCV1Vku5WWeAGmisMsie2vZDXdG/v0VJafE9df6S9/cpBPfH9f9OfYjqzjcQrdBkfCS1YcCnN1Glwm0ByYfI7DeBqrCjGGlN6wY3GOX105eQKJiESDygBrKvM51TkwZTsMZwpcRYHGHEDFYdbEioPVdG8sjFPm90aL4ELhCA/vaeJH+5rp6LPiEJ39w9EbcTwbagrJ9Vr/PUvRrQR22261HNKe5kBwWgkTTnbg+LjD3rPdk3ZsPWm7hqZyK41ndWUBw6FItP/TRDgxh8JcD36fW2MOi72BTKcoznIIxfldy/Jz6LIL3fY399A7FCJirP7zI6EIfUOhhBoHB6/bFc2uWLFUxSHXoxXSac7AcIjA4Oi0+nw1VPhxSbw4hCOGD3z7Jf7yJwcnPO9U5wCFdjv86bDGtjSmslScmENBjge/z6Mxh8XeQKYTO/DHabrnUJbvZWAkzNBomOePdyJipfv9ZH9r1N1UNkHMAcZcS0vXreTV3kppTiqtuseT43HTUB6fsXTkfC+9QyFePNmVMCbX4WRnP6srC6adfu5YGienCEo7qaz5ObbloDEHZTbEDvxxZjk4lNmZSN2DI/zieAcX1xZz6/Y6Xj7dFZ32NlG2EsDtO1bw+29eEy0cWmoU5emo0HSnKZB6Gmssa6oKOB4jDi/b/ZD6h0PsOxdIes7JjgHWTBGMTka5PbZ3KsvBiW8V2OKglsMUiMi3RaRdRA7ErJWJyJMictz+tzTmsc+IyAkROSoiN8SsXyYir9mPfVls+ReRHBH5vr2+S0Qa5vZXnF8Kcjy4XRLNVooPSFtWwdkLg+w9G+DaxgredUkNxsB3XzwDMGG2ElhtMv5k54aEOoilQlGuVWA427nAyvzhuE0nip1NxNqqAk53DkRb/DvIAAAgAElEQVSthJdPd1Oe78Ml8PzxzoTjB0dCtPYMRSe+TQcRYXVl/tSWw3AIj0vI8bjIz/Fo470UjvkOsHPc2qeBp4wxjcBT9s+IyCbgNmCzfc5XRcSp3voacCfQaH851/wg0G2MWQt8Cfi7mf4yi4GIUJTrIRAcoTfBcrDe+B99rZVwxHDN2krWVhWyYVkhzxxtBxL7KiljFOZaNSRDozPv4KnML7FdAaZDY1UBoYjhzIVBjDG8dLqLaxoruLiuhOdPJIqDU1E9VabSRKxJIZ11YDhEfo4HEbEth6VttU4pDsaY54DxPXBvAu61v78XuDlm/QFjzLAx5hRwAtghIjVAkTHmBWN9DLxv3DnOtR4CrpfpOhUXmeI8Ly2BISKGpOLw0/2t+H1utq20AsyO9QCJfZWUMaL9lTTukLY44lCYOz1xGMtY6uPMhUE6+oa5vKGMa9aWs+9cICHWNNNMJYfVlfm09w1PGsPqHw5TkGPdc1bMQS2HmVBtjGkFsP91Gp3UAudijmuy12rt78evx51jjAkBPUDS/hYicqeI7BaR3R0dHTPc+txTnDc2+rAoNpXVFocLAyNcubqcHI9lRL3zkuUAeN2W1aEkx3nD0Srp9KV3aJRC27U6HZwMohPt/dH5C1esKuOatZWEI4YXT8Z/HnXEYSZupdjnm8y11D88GhWHfJ9HLYc5vl6yO8RMsj7ZOYmLxtxjjNlujNleWVk5wy3OPUV53mh+dqzlUJznxXnNXNtYEV1fVZHP5uVFlOX7Zt34L5txhFOD0unL+Ay9VMnP8VBbkmeJw+kuSv1e1lYVsG1lCXleN78c51o61dlPbUnejHuMrXEyljondi0NDIfJz7Gu789xL/mYw0w/traJSI0xptV2GbXb603Aipjj6oAWe70uyXrsOU0i4gGKSXRjpTUlfh/DIcsvHvtCcbuEEr+ProGROHEA+IsbN9PaM/NZt0sB52+pbqW5ZzQcQWDCBnapMj7ONh2cjKX+4RDbG8oQEXI8bnasKuMXx+M9Ayc7B2bsUgKoL8vH7RJeb5/McghRmKuWg8NM74wfA3fY398B/Chm/TY7A2kVVuD5Jdv11CciV9rxhPePO8e51i3A0ybD0lNiq6KLxvley/J91BTnRs1ahx2ryrhpay3KxEQtB3UrzTl/8F97+eOH9s/6Or3BUJwrdTqsrSzgWJsVc9jRUBZdv7axgtc7BqIfnowxnOwYmLKn0mT4PC7qy/xTWA5j4pDnczM0Gkl5SFA2MuX/qoh8D3gzUCEiTcBfAF8AHhSRDwJngVsBjDEHReRB4BAQAj5mjHFss49iZT7lAY/ZXwDfAr4rIiewLIbb5uQ3W0DGu5JiuX1HPXlet7qPZkCRToObNw629M5JG/ie4CgNFTOrw2msLmA0bL357lg1Jg5vWGtZ2c8f7+TW7Svo6Bumfzg040wlh9UV+VNaDvm+McsBrBTa6Qbbs4UpxcEYc/sED10/wfF3A3cnWd8NXJRkfQhbXDKVWEEY73/94DWrFno7WYO6leYHYwztvcN43IIxZlYfXMYXfk4HJ2PJ73OzeXlRdH3DskIqCnL4791N3LhlOSc7ZxeMdlhTVcAvTnQSjpikAfR+O5UVrJgDQHAkvGTFQSuk5wDnxSEChTmafTRX5HhceN2i/ZXmmK6BEUbCEQZHwgQGZye84ws/p8Na2xLYVl8aF/sQEf74hnW8dLqLD9+3m0MtVjeB2cQcwLIcRkIRmrsTY33GGAaGQ3HZSrC0ZzroO9kc4IhDUa53yVYzzwdWgaH2V5przvcORb9vDgQpnWEh5qgtMDO1HErzfVy/oYp3balJeOw9l9cjCJ/6wX5ePHmBHI+L5cWz6zHWWG2J0bG2PurL411hwdEwETM2gdDvsyyHgSXcX0kthzmgOM96cc00MKdMTInfy4X+iQcmKdOnLUYcWqZoYz0Z0epo/8zdLt/6wOW8+9K6pI/91uUr+Of3bCViLJfSbD94rV9mua6cvmaxOO26o26laMxBLQdlFjifnGb6CUqZmNWVBZyY5lAYZXJae+Ith5ky09YZ0+GmrbVUFuTMSUJHQY6HleV+Dp9PFIcBuxq6IKbOAVjS6awqDnOA88lJxWHuaawq4Jkj7YyEIvg8aujOBW09Q7jEmhkyG8vBSTGeacwhVa5eWzH1QSmycVkRh1sT51ePzXKwfhcn5rCUC+H01TYHxMYclLmlsdpq0Hb6wtQD4pXUON87REVBDrUlebQEhqY+YQIcy2EmFdKLxcaaIk5fGEiY8uakS0crpDXmoOIwF+T73LhdopbDPNBYVQjA8TZ1Lc0V53uHWVacS21pXnQew0xYCLfSXLOxxppffeR8vPUQOwUOxsRhKcccVBzmABHh5q21XNuYPv2esoU1lQWIwPH2RFeAMjPaeoaoLspleXHe7NxK9qftTErE2FiTPCgdOwUu9l+NOSiz5ou/tWWxt5CV5Pnc1Jf51XKYQ873DrFjVRkVBTl09A0zHApHOwZPh94MtBzqSvMozPEkiIOTreTUKeV4XLhEYw6KktY0VhWo5TCOUDjCFx47Qnvv9GIGQ6NheoKjUbcSQGtM3OG/d5/jz394YKLT4+gJjpLrdc1IWBYLEWFDTWFCULp/KN5yEBGr+d4Snumg4qCkPY3VhZyKGSmpwOHWPr7+7Os8tLdp6oNjOG+nsS4rymV5SS4QX+tw/66zfPfFMymJTm9w5tXRi8nGmiKOtPYSiWmqNzAcQmQs1gCW1To+cO3Q2hOkeyC7629UHJS0p7HKatB2RjOWojj1CXvPdE/rPKc6ellxLrUleXHXGhoNc7ClB4CnjrQnv0AMs+mrtJhsrCliYCTMue7B6Fr/cJh8nyeuniI/xzNh+4wP3bubv3nk8LzvdTFRcVDSnnXVVsbSsZi4wy9PdPLI/tbF2tKiExWHswGm0+HesRyqi3JZVpyLyNi1DjT3RLuk/vxQ25TXymRxgPigdGxfJQe/z01wAsuhJRCcVTA/E1BxUNKeaMaSLQ6hcIT/8+A+/uB7e3nm6NSfcLMR542pa2CE0xcGpzh6jFjLIcfjprIgJ3qtvWctK+TGLct5/kTnlMHY3qGZTYFbbNZXF+ISOBQTd7A6ssbHTiaKOYQjhkBwlO5BdSspyqKS53OzotQfDUr/79EO2nqHKc7z8onv76OpO/U3x2yhuTtIrtd6+e6ZhmvpfM8QBTme6Kfk2tKxQrg9Z7pZWe7nPdtXMByK8Py4UZ3jyVTLIc/npqEiP85y6E9mOeQkjzn0BkcxBhUHRUkHGqsKopbDAy+fo7Iwh4c+chXhsOH379/LcGhpZZW09AS5vKGMwlxP9BN/KrT1DlFdlBP9eXlJHs2BIMYY9pwJsK2+lB2ryijM8UzpWuoZzExxAMu1lOBWyk10KyWLOXTZotA9MDotl16moeKgZASN1YWc7OynORDkmaPt3HJZHWurCvmHW7ewv6mHzz96ZLG3uKA0dwepK/VzaX3ptILS53uHWFacG/251haHc11BOvuH2bayFJ/HxZvWV/LUkba4jJ5YIhFD33AoI91KAJtqimjqDkYHScVOgXPw+zwMJmmfEbDFwZmJka2oOCgZgZOx9MXHjxKOGN6zfQUAOy9axjsuXsajry2d4PTQaJgLAyPUluRyWX0pR9v6Up6W51RHO9SW5DESivDEofMAXFZfCsCvbaqms3+EfU2BpNfpGw5hzNic70xjY42V5PDKWev3S+ZWyve5GRxNYjkMjP2ts9m1pOKgZATOoJYfvNLMVavLaYgZGbmi1B/t87MUcLKLakvz2LayBGNg39nkb+KxRCKG9r5hlsWIw3I7nfUn+1vJ97lZv8x603zzuircLpnQtZSJ1dGxXLGqnOqiHD7/6GFGwxEGYkaEOvhzPAwmCUjHCkL3QPbedyoOSkbgzBsGuG3HirjHiv1ehkMRhpJ8ystGnOyi2hI/W1eUIEJKcYfOgWFCERPnVnIK4V49F2BrfUl0tnKx38vlDaX8/HByccjEpnux5Od4+OubLuLI+T7uee4kA8PhxJiD181IOMJIKL74MhArDmo5KMri4vd5qCvNo8Tv5YbNy+IeK7En8c12HnKm4MxAXl6SS2Gul/XVhSllLMXWODjUlYyNy9xmu5Qcrl5TwbG2/qRtq3szsF33eN622XJJ/svPjzMSjiTJVko+00HdSoqSZnz8urX8xY2byPXG56OX2MOWAsHsfaHG0hwI4hKi7qFtK0vZdzYwYfDYIbZ1hkNRnod8u2XEtpXx4rDOduW9nmQSX6ZbDg6f+/XN5Nm/f75vfJ2D3bZ7NF4cA4Mj0cFT2dxCQ8VByRjec3l90nnDJfYbVDZZDpO5yJoDQZYV5eJxWy/fy+pL6RsOcbx98s61bTEFcA4iEo07bFsRLw6N1RPP0sgWcagqzOWz79wIQInfF/eYYzmML4TrGhihvsyPCHRl0T03HhUHJeNxxrRmizg8dbiNiz/3OD9+tSXp483dwWhHVYDL7E/8T9oZRxNxvncIt0uoKMiJW19dmc+GZYXRv6PDyjI/XrdwLElHXCc7KpPdSg63XlbHf/zu5QnuSr/XGfgz3nIYpTzfR3GeNy7+kG1kZh6aosTgfOLryRK30s8PtzEaNnzi+/vwuoS3X1wT93hLTzAuPrCy3M9bN1bx5adPcMPmZdFP/OM53zNMZUFONOjs8Dc3X5y0463H7WJ1RQEnJrAc3C5JcMVkIiLCW9ZXJaz7c5xRoeMsh8ER1lYWUOr30Z0lH0iSoZaDkvFkm1vppVNdXLm6jC11xXz8e6/wZEw6aThiaA0MRTuqgvXm9vnfuISCHA+feHBfNLsmOBLm354+zt//7Ag/2tfMiY7+OJeSQ2VhTtS1NJ7G6oKk7iqndUZsF9NswymKCyaJOZTm+yj1ezXmoCjpjN/nxusWAllQ63Chf5jXOwZ407oqvvN7O9i8vIjfv38PpzqtduUdfVY66vg388rCHP723RdzoLmXLz91nF0nL7DzX57jH584xj3PneSPHtjHq+cCce6oVGisKuRc92BCxk5vMJSxBXCpkp/EcjDG0D04Sqnfa1sOKg6KkraICMV5voywHJ44eJ6/+emhCR9/+bSVkrpjVSlFuV7+/Xe2E4oYfvhKMwDNAavJYLI3+Z0XLeOWy+r46v+e4D33vIgx8L0PX8mhv9rJz+66ln+9/VI+vXPDtPbbWF2AMYkZS5nadG86+G3LITbm0DsUIhwxlOX7KPH71HJQlHSnxO+N5t6nMz96tYVvPn+Kc13JO8m+fLqLHI+Li2qLASuzaEdDGY+81ooxhma7g2rtBG6gv7hxE9tXlvGBqxv42V3XctWacnweFxuWFXHjluWsKPMnPW8inHTW8WNae4KZ2a57OjhT4WItBycAXeL3UZbv1ZiDoqQ7xXneRalz+H8/OsDDe1If1elUNz9+MHlm0e7TXWxZURI3l/ldW5Zzor2fo219MQVwycWhMNfLgx+5is/9+uboJ9/ZsLI8H49L4gYtgVUEtxQthy7bUijL91Li9xEcDWdtZb6Kg5IVlOR5F9ytNBKK8F+7zvK9l86mfI4jDo8dSBSHgeEQB1p62dFQFre+c/MyXAKP7G+lJRCkOM+bUM07X3jdLlZV5CfUOmTqoJ/p4PO48PvccRXRzj1W4vdRamfJZWvcQcVByQqK/QsvDqc6BwhFDPubexL67yRjJBShvW+YwhwPe850R4vSHF45GyAcMVy+Kl4cKgtzuHJ1OY/sb6U5EJzQpTRfrKsu5ESMW8kYsyRiDgD1ZX7Odo3NLo9aDrZbCbK3+Z6Kg5IVlOT5Frwz69E26w1zJBThUMzgmIlo6x3CGHjP5VbjwCfGuZZeOt2FS2BbfUnCue+8pIaTnQPsOnlhQpfSfLG2qoAzXYNR90lwNMxo2CwJcWgoz49misGYlVDq90Xra9RyUJQ0psTvpX84lLSYa7443taHk+afSuM7x6X0pvWVrKnMT3AtvXyqi03LiyjMTXzT3bl5GW6XMDASpm6a6aizZXzGUm/Q8sEXJdlntrGyws+5riBhu29V9+AIbpdQmOuhLF/FYUJE5LSIvCYi+0Rkt71WJiJPishx+9/SmOM/IyInROSoiNwQs36ZfZ0TIvJlyebKGmVecJrvLaT1cPR8H6sq8qktyUupZXZLz1gweedFy9h1qivqphgJRXjlXDeXj4s3OJQX5HD1mnL7/MRCtvlknV1xfcIuhsuWvkqpsKo8n5FwJCrs3YOjlOR5cbkkes9lazrrXFgObzHGbDXGbLd//jTwlDGmEXjK/hkR2QTcBmwGdgJfFREnJeNrwJ1Ao/21cw72pSwhihehSvp4ez/rqwu5tL6EV1KyHKwYw/LiPN5+UQ3hiIkO03mtuYeh0ciE4gDwTruNRm3J9NJRZ0tDeT5ul3DMdqMtJXFYWW4NlTpzwUo97h6wqqNhrFX8QqazDofC/M63dvHMkfZ5f675cCvdBNxrf38vcHPM+gPGmGFjzCngBLBDRGqAImPMC8aa1n1fzDmKkhIL3V9paDTM6QsDNFYXsq2+lJaeoWhL7IloDgQp9XvJ87nZvLyIutI8/uNXp/nQvS/z3m+8iM/tmlQcfn3rcj5+3VretL5yrn+dSfF5XDSU+6MZS2OzHLK7QhqgocIS4tMXrLhD9+AIpbbF4PO4KMzxRK2/heDo+T5+cbxzQWZXz1YcDPCEiOwRkTvttWpjTCuA/a/T0aoWOBdzbpO9Vmt/P349ARG5U0R2i8jujo6OWW5dySbmo7/Sr17vnDCH/UR7P8bA+urC6ByEqVxLrYFgNJgsIrzrkuUcbu3lcGsft++o58GPXEVlYc6E5/t9Hj75tvULlsYay7rqQg629PLwnia+v9t6GS8Fy6G6MJdcr4vTdlA6MDgaTWEFKMlf2M6s+5t6ALikrnjen2u2d9kbjDEtIlIFPCkiRyY5NlkcwUyynrhozD3APQDbt2+ffLKJsqQomeO23U3dg7z3G7v48LWr+Ow7NyU87rhY1i8roL4snxyPiz1nunnHuA6qsbQEhqgvH3MJfeLXGvmt7XWsqshP+wZ2G5YV8diB83zyv18lx+Pi6jXl1BQvbGB8MXC5hJVl+Zy23UpdAyNsqRvLJitb4M6srzX1UOL3LkhSwqzEwRjTYv/bLiL/A+wA2kSkxhjTaruMHOdYExA7/LcOaLHX65KsK0rKREeFzlFA2vExf/fFM3z4jaupKowPAh9r68frFlaW5+N1u7ikrnhKy6ElEOQqO6gMkONxs7qyYJIz0offvaaBjTWFrK4sYFVFfkLb72ymocLPyY4BjDGW5ZAfYzkscPO9/c09XFxbvCAfJmbsVhKRfBEpdL4H3gYcAH4M3GEfdgfwI/v7HwO3iUiOiKzCCjy/ZLue+kTkSjtL6f0x5yhKShTmehCBnjl6oTZ1W+IwNBrh3589mfD4sbY+1lQW4LWnsW2rL+Vgcy/DoeRuqN6hUfqGQ9QkaZmdCRTlennb5mWsrSpYUsIAVkD+TNcgfcMhRsKRaMwBsNp2L5A4DI2GOdbWtyAuJZhdzKEaeF5EXgVeAh4xxvwM+ALwayJyHPg1+2eMMQeBB4FDwM+AjxljnFfSR4FvYgWpXwcem8W+lCWIyyV2f6W5cisFcbuEm7cu5z9fPEP7uGrmY219cUN1Lq0vZSQc4UBz8mI4JxVyoQvYlNmzsjyfkVCEwy3W/22s5VCa71uwCulDrb2EI4ZL6hKLJOeDGYuDMeakMWaL/bXZGHO3vX7BGHO9MabR/rcr5py7jTFrjDHrjTGPxazvNsZcZD/2B3bWkqJMi7nsr9TUbc1pvuut6whFDF979vXoYwPDIZq6g6yvHnMJbVtpvWD3TpDS2uqksao4ZBxOxtIr5wIAcQHpUr+P/uFQSu1TZstrCxiMBq2QVrKIYv/ctdBo6h6krjSPhop83n1pLffvOhvtheRMRou1HKoKc6kv8/PT11qTVmk325bDQvdFUmZPg13r8IodU3J6KgFRF9NCZCztb+qhoiCHZUUL45pUcVCyhpI5divVlVqfGD9+3VoiEcMfP7Sf0XCEY+ftTKVxs5o/+bZ1vHouwN2PHE64XksgiMclk6aqKunJsqJccjwuXjlrWQ4l/ni3EixMIdz+pgCX1C1MMBpUHJQsosTvnZOA9EgowvneoWi64MryfP765ot47lgHf/7DAxxt6yPH40oYnHPT1lo+eM0qvvOr0/z37nNxj7UEgiwrzl1ywdxswOUSVpb7ae8bBhLdSjD//ZUGhkOc6Ojn4tqFcSnB7OscFCVtmKuAdGtPEGOIyyW/fUc9zd1B/u2ZE/h9bhqrk2ftfObtGzjc2stnf3iAddWFbFlhxSJaAkMsXwJ1AdnKyvJ8jrX1IxJf/BcVh3mukj7Y0osxsGXFwomDWg5K1lCS56UnOEokMrt8hiZ72prjVnL45NvWcfPW5QyOhFlXVZjsVDxuF//23m1UFuTwxw+9ipNb0dITXPCGecrc0WAXLxbneeM+FJQ6Mx3m2a20v8lyaV20gJaDioOSNRT7fRgDfUOhqQ+eBKfGYXwVqojwd7dcwu9cuZJbttclOxWAsnwfn3zbOo619fPssQ7CEcP5niHNVMpgGiqsoHRZjEsJFs6t9FpzDzXFuQnFmPOJioOSNUT7K82y+Z5T45CsYC3H4+avb76Iq9dUTHqNd12ynOqiHL71/Ck6+oYJRYyKQwbjZCyV+OP7SeV63eR53fPuVnqtqWdB4w2g4qBkEXPVX8mpcfC4Z/7y8Hlc3HF1A7843slTR6y23JrGmrmstN1KZfm+hMdK/V665tFy6AmOcrJzYMHqGxxUHJSsISoOswxKOzUOs+V9O1aS53XzpSePAVCjMYeMZXlxHj6PKy6N1cGqkp4/cfi6XYB5TePCtmpXcVCyhmKn+d4sP8XF1jjMaj9+L7+1vY7Ofms/6lbKXFwu4XM3buZ9V9QnPFZTnBdNYphrDrX0cs9zJ7n1sjq2rliYthkOKg5K1jAXo0LH1zjMlt+7ZhUiUJjjWRIzl7OZ915Rz6X1pQnrjdUFnOocmPMWGuGI4TM/2E+p38tn37lxTq+dCioOStYwF6NCk9U4zIaV5fnctGU5G5cXzcn1lPRjXXUBoYjhjD0tbq6491enebWph/934+ak7qz5RovglKzB63ZRkOOZlThMVOMwG/7x1i1zdi0l/Wi0a16OtfXH9duaDW29Q/zjE0d5y/pKbrxk4gFS84laDkpWYVVJzzzmMFGNw2zwuF2zynxS0ps1lQWIwPH2vjm75k9ebWFwJMyfv2vTok0J1DtWySpK/F56ZxFzmKzGQVGSkedzs6LUz/G2/jm75mMHzrOppmhRJwWqOChZRYl/djMd5qLGQVl6rKsumDPLob13iD1nutl50bI5ud5M0VeAklWU5PlmVecwVzUOytJibVUhpzoHks7ymC6PH7KKJt+u4qAoc0ex30vXwAgzHSY4VzUOytJiXXUBo+G5yVh6/MB5Vlfms7Zq8VxKoOKgZBlbV5TQNTDC00fap33uXNc4KEuH2Iyl2dA9MMILJy+wc/OyRQtEO6g4KFnFuy+tZWW5n3984ti0W3e/dKprTmsclKXD2io7Y2mW4vDzw22EI2bR4w2g4qBkGV63i7ve2sjh1l4ePdCa0jnGGL79/Cl+9zsvUVeax5vWLWwPGyXzcTKWjs0yKP34wfPUluQteAfWZGgRnJJ1/PqWWr76zOv805PH2Ll5WdLMowv9w5y+MEhT9yCP7G/liUNtvHVjFV+8dSvFfm1zoUyfxqoCTszCcugZHOW545389hUrF92lBCoOShbidgmffNs6PvKfe/nhvhZuuSx+MM/jB8/z+/fvJWy7nbxu4TNv38Cdb1ydFi9KJTNprC7kueMdjIYjeFNMhW7vG+IrT59gz9lujrT2EYoY3nnJ4ruUQMVByVJu2LyMi2uL+eefH+OdF9eQ53MDVtD57kcOs6Yyn0+/fQMrSv3UlfqjjyvKTGmscjKWBlPKNDLG8MkHX2XXyS4uX1XKnW9czTWNFVy2smwBdjs1GnNQshIR4bPv3EhTd5DPP3Y4uv5fu85wtmuQP33HRq7bUE1jdaEKgzInrLP7Kh1vSy3u8ODuc/zieCd/fuMm7v/QlfzJzg1TThhcSFQclKzlytXlfOiaVdz3whn+92g7fUOjfPnpE1y1ulyDzsqcs6bKGiV6vH3quMP5niH+5qeHuXJ1Ge/bkTgjIh1Qt5KS1fzfG9bz3PEO/uSh/ey8aBldAyN85h0bNLagzDl+n4cVZXkcm8JyMMbw2f95jdFIhL/7zUtwudLzXlTLQclqcr1u/um3ttI9OMJ9L5zhXZfUcEndwk7UUpYOl9SW8PjB83z+0cP0DSVv4/LAy+d46kg7f3zDBlaW5y/wDlNHxUHJei6qLeZTOzdQ4vfyf9+2frG3o2Qxf3XTZm7eWsu/P3eS6774LD/Y2xTXyuWZI+382Q8PcG1jBR+4umHxNpoCMtMeNIvN9u3bze7duxd7G0oGMZ0UQ0WZDa+eC/C5nxzklbMB3ry+kr9998W09w1z+z0vsqYqnwfuvIqCnMXx6ovIHmPM9imPU3FQFEWZeyIRw3dfPMMXHjuCxyW43UJRrpeHP3o1lYU5i7avVMVBP0YpiqLMAy6XcMfVDTx+1xu5uK4Yn9vFfb+3Y1GFYTpotpKiKMo8Ul/u578+fCXhiMGdpplJyVDLQVEUZQHIJGEAFQdFURQlCWkjDiKyU0SOisgJEfn0Yu9HURRlKZMW4iAibuArwNuBTcDtIrJpcXelKIqydEkLcQB2ACeMMSeNMSPAA8BNi7wnRVGUJUu6iEMtcC7m5yZ7LQ4RuVNEdovI7o6OjgXbnKIoylIjXcQhWRg/oTrPGHOPMWa7MWZ7ZaV21VQURZkv0uMZ4tcAAAh4SURBVEUcmoAVMT/XAS2LtBdFUZQlT1q0zxARD3AMuB5oBl4G3muMOTjJOX3A0SQPFQM903j66R4PUA+cneY5M32+hdjfTJ5jNudm299vNs+Xbfubzd5m8ny6v9SerwLotL9faYyZ2vVijEmLL+AdWALxOvDZFI7fPcH6PdN83mkdb5/TMYvfM+32N5Pn0L+f7m+u96b7m7/9TfR+OdlX2rTPMMY8Cjw6B5f6yTwfDxCYwTkzfb6F2N9MnmM252bb3282z5dt+5vN3mbyfLq/2T3fhKSFW2kmiMhuk0JnwWx77lTQ/c0O3d/MSee9wdLd30yumy4B6ZlwzxJ97lTQ/c0O3d/MSee9wdLd37Svm7GWg6IoijJ/ZLLloCiKoswTKg6KoihKAioOEyAi/Yu9h8kQkXeLiBGRDYu9l8mY6u8oIv8rIgseIBSROhH5kYgcF5HXReRfRMQ3yfF3iYh/Afen998ckI73X7rfew4qDpnL7cDzwG3TOcnugLukEREBfgD80BjTCKwDCoC7JzntLmDBX6BpjN5/MyCT7j0Vh0kQkQIReUpE9orIayJyk73eICKHReQbInJQRJ4QkbyF3BfwBuCD2C9OEXmziDwnIv8jIodE5Osi4rIf6xeRvxKRXcBVC7XPmP2+WUR+GvPzv4nIBxZ6HzFcBwwZY/4DwBgTBj4B/J6I5IvIP9r/3/tF5OMi8ofAcuAZEXlmoTap99+c7Ted7r+MuPdAxWEqhoB3G2O2AW8BvmgrP0Aj8BVjzGaswpXfXMB93Qz8zBhzDOgSkW32+g7gk8DFwBrgN+z1fOCAMeYKY8zzC7jPdGUzsCd2wRjTi9W24EPAKuBSY8wlwP3GmC9j9fp6izHmLQu4T73/so9MufdUHKZAgL8Vkf3Az7HaiFfbj50yxuyzv98DNCzgvm7HmnmB/e/t9vcvGWsmRhj4HnCNvR4GHl7A/aU7QpKuv/b6G4GvG2NCAMaYroXcWJL96P2XXWTKvZc+7TPSlPcBlcBlxphRETkN5NqPDcccFwYWxKwXkXIs0/QiETGAG+tme5TEm875ech+wS4WIeI/iOROdOACcZBxn7RFpAirM/BJkr94FwO9/+aGdLr/MuXeU8thCoqBdvuF+RZg5WJvCLgFuM8Ys9IY02CMWQGcwvqUtkNEVtm+3vdgBQzTgTPAJhHJEZFirO67i8lTgF9E3g/RIOkXge8ATwAfEatTMCJSZp/TBxQu8D71/psb0un+y5R7T8UhGfZ/zjBwP7BdRHZjfYo7sqgbs7gd+J9xaw8D7wVeAL4AHMB6wY4/bkFx/o7GmHPAg8B+rL/pK4u5L2O1BXg3cKuIHMfqBjwE/CnwTSz/734ReRXr7wpW+4HHFiIoqPff3JCO91+633uxaPuMJIjIFuAbxpgdi72XVBGRNwP/1xjzrsXei0Mm/h3TgUz8u+n9l32o5TAOEfkIVjDtzxZ7L5mM/h1nhv7d5gb9O84etRwURVGUBNRyUBRFURJQcQBEZIWIPGNXnR4UkT+y18tE5EmxeqA8KSKl9vqvicgeu5Jxj4hcZ6/7ReQRETliX+cLi/l7KZnBXN1/9mM/E5FX7et8XZZ4uwpl5qhbCRCRGqDGGLNXRAqxiopuBj4AdBljviAinwZKjTGfEpFLgTZjTIuIXAQ8boypFas51hXGmGfEaqT1FPC3xpjHFuc3UzKBubr/7GsVGWN67Urqh4D/NsY8kPSJFWUS1HIAjDGtxpi99vd9wGGsatSbgHvtw+7FesFijHnFGNNirx8EckUkxxgzaIx5xj5mBNgL1C3cb6JkInN1/9mP9drrHsBHGhVVKZmFisM4RKQBuBTYBVQbY1rBegEDVUlO+U3gFWNMbMUqIlIC3IhlPShKSszF/ScijwPtWMVTD83zlpUsRcUhBrG6TT4M3BXzCWyy4zcDfwf8f+PWPVhpdF82xpycj70q2cdc3X/GmBuAGiAHq9WFokwbFQcbEfFivTDvN8b8wF5us/3Bjl+4Peb4OqwK0PcbY14fd7l7gOPGmH+e/50r2cAc338YY4aAH2O5phRl2qg4EB3A8S3gsDHmn2Ie+jFwh/39HcCP7ONLgEeAzxhjfjnuWn+D1RPnrvnet5IdzNX9J9b8B0dMPMA7SI+WG0oGotlKgIhcA/wCeA2I2Mt/iuX3fRCox+p5cqsxpktE/gz4DHA85jJvwwoAnsN6QTo+4H8zxnxz3n8JJWOZw/tPgJ9iuZPcwNPAJ5wW0IoyHVQcFEVRlATUraQoiqIkoOKgKIqiJKDioCiKoiSg4qAoiqIkoOKgKIqiJKDioCjzgIh8xJkTnOLxDSJyYD73pCjTwbPYG1CUbENEPMaYry/2PhRlNqg4KEoS7AZ4P8MqRLsUaxD8+4GNwD8BBUAn8AFjTKuI/C/wK+ANwI/t1tv9xph/FJGtwNcBP/A68HvGmG4RuQz4NjAIPL9wv52iTI26lRRlYtYD9xhjLgF6gY8B/wrcYoxx3tjvjjm+xBjzJmPMF8dd5z7gU/Z1XgP+wl7/D+APjTFXzecvoSgzQS0HRZmYczG9i/4Tq6XFRcCTVjsk3EBrzPHfH38BESnGEo1n7aV7gf9Osv5d4O1z/ysoysxQcVCUiRnfW6YPODjJJ/2BaVxbklxfUdIGdSspysTUi4gjBLcDLwKVzpqIeO2ZChNijOkBukXkWnvpd4BnjTEBoMduugfwvrnfvqLMHLUcFGViDgN3iMi/Y3VA/VfgceDLtlvIA/wz1qjOybgD+Lo9Y/wk8Lv2+u8C3xaRQfu6ipI2aFdWRUmCna30U2PMRYu8FUVZFNStpCiKoiSgloOiKIqSgFoOiqIoSgIqDoqiKEoCKg6KoihKAioOiqIoSgIqDoqiKEoC/z8NZyrw94xqqQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sorted_data['inc'][-100:].plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", + " for y in range(1991,\n", + " sorted_data.index[-1].year)]" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [], + "source": [ + "year = []\n", + "yearly_incidence = []\n", + "for week1, week2 in zip(first_august_week[:-1],\n", + " first_august_week[1:]):\n", + " one_year = sorted_data['inc'][week1:week2-1]\n", + " assert abs(len(one_year)-52) < 2\n", + " yearly_incidence.append(one_year.sum())\n", + " year.append(week2.year)\n", + "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD8CAYAAACLrvgBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHApJREFUeJzt3X9wXWV+3/H3x5ZXBmKzNtjUPwCTwaWxYWLWGpuUtIUla5smg70NEAUCmsQdb4iTbNLOgJ3Q8RY8U+h0SuIyUDxLFgPLDw9dBjeLlxUmTGjr2pYXiNewjrTFa7x4kYgcMNuxurK//eM+iq+ELJ0rXd1zj/R5zdy5R1+d5+g8vpa+9/l5FRGYmZllMSnvGzAzs+Jw0jAzs8ycNMzMLDMnDTMzy8xJw8zMMnPSMDOzzJw0zMwsMycNMzPLzEnDzMwya8j7BqrtwgsvjAULFuR9G2ZmhbJ///6PImLWcOeNu6SxYMEC2tra8r4NM7NCkfSjLOe5e8rMzDJz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMnPSMBvnOj85ya2P7abzxMm8b8XGAScNs3Fuy6529h3uZsur7Xnfio0D426dhpmVXHHvTnp6T//D10/vOcLTe47Q2DCJQ5tvzPHOrMjc0jAbp964+3puWjKXqVNKv+ZTp0xi9ZK5vHHP9TnfmRWZk4bZODV7+lSmNTbQ03uaxoZJ9PSeZlpjA7OnTc371qzA3D1lNo599GkPty+/lNuWXcIze4/Q5cFwGyVFRN73UFVNTU3hvafMzCojaX9ENA13nrunzMwsMycNs4Ly+gvLg5NGGf8SWpF4/YXlwQPhZcp/CTd/+aq8b8dsUF5/YXnyQDif/SXs419Cq0edn5xk88vv8t2DP+Hkz04zdcokVi7+R/zpr/6Cp9PaiHkgvAJeBGVF4vUXlid3T+FfQiser7+wvDhpJP4ltCJ57I4zvQib11yZ453YRJNpTEPSHwP/GgjgAPDbwLnA88AC4DBwa0QcT+dvBNYCp4A/jIhXUnwp8ARwDvAy8NWICEmNwJPAUuDvgN+IiMOpTAtwb7qVzRGxbah79eI+M7PKVW1MQ9I84A+Bpoi4EpgMNAMbgF0RsRDYlb5G0qL0/cXAKuARSZPT5R4F1gEL02NViq8FjkfE5cBDwIPpWjOBTcByYBmwSdKMYWtvZmZjIutAeANwjqQGSi2MD4DVQN+7/m3AmnS8GnguInoi4j2gA1gmaQ4wPSJ2R6l58+SAMn3XegG4QZKAlUBrRHSnVkwrZxKNmZnV2LBJIyJ+DPwn4AhwDPg4Ir4LXBQRx9I5x4DZqcg84P2ySxxNsXnpeGC8X5mI6AU+Bi4Y4lpmZpaDLN1TMyi1BC4D5gLnSfqtoYoMEosh4iMtU36P6yS1SWrr6uoa4tbMzGw0snRP/QrwXkR0RcTPgG8B/xT4MHU5kZ470/lHgYvLys+n1J11NB0PjPcrk7rAzge6h7hWPxGxNSKaIqJp1qxZGapklfIWK2YG2ZLGEeAaSeemcYYbgHeBHUBLOqcFeCkd7wCaJTVKuozSgPfe1IV1QtI16Tp3DijTd62bgdfSuMcrwApJM1KLZ0WKWY15nyMzgwzrNCJij6QXgO8BvcCbwFbg54DtktZSSiy3pPMPStoOvJPOXx8Rp9Ll7uLMlNud6QHwOPCUpA5KLYzmdK1uSfcD+9J590VE96hqbBXxPkdWRJ2fnOT3n32Th2+72ot0q8x7T9mQvM+RFdG9Lx7gm3uPcPuyS7z5aEZZ12l4RbgNyVusWJG4ZTz2vGGhDatvi5UXf+9abl9+KV2f9uR9S5/hgXoDbz5aC25p2LCKsM+RPwvFwC3jWnDSsEJzd4QN5M1Hx5YHwq3QPFBvVh3+ECabENwdYVZb7p6ywnN3hFntuHvKzMzcPWVmZtXnpGFWZ7zmxOqZk4ZZnfHmkFbPPBBuVie85sSKwC0Nm1DquevHW2BYEThp2IRSz10/XnNiReDuKZsQitL14zUnVu+8TsMmBG83YjY0r9MwK+OuH7PqcPeUTRju+jEbPXdPmZmZu6fMzKz6nDTMzCwzJw0zGzP1vJjSRsZJw8zGTD0vprSRGTZpSLpC0ltlj08k/ZGkmZJaJbWn5xllZTZK6pB0SNLKsvhSSQfS97ZIUoo3Sno+xfdIWlBWpiX9jHZJLdWtvlntTKR33Vfcu5MFG77N03uOEFFaTLlgw7e54t6ded+ajdKwSSMiDkXEkohYAiwF/i/wIrAB2BURC4Fd6WskLQKagcXAKuARSZPT5R4F1gEL02NViq8FjkfE5cBDwIPpWjOBTcByYBmwqTw5mRXJRHrX7X20xq9K12ncAPwwIn4kaTVwXYpvA14H7gFWA89FRA/wnqQOYJmkw8D0iNgNIOlJYA2wM5X5WrrWC8DDqRWyEmiNiO5UppVSonm24pqa5aQoW5hUkxdTjl+Vjmk0c+YP9kURcQwgPc9O8XnA+2VljqbYvHQ8MN6vTET0Ah8DFwxxLbPCmKjvuvsWU774e9dy+/JL6fq0J+9bsirI3NKQ9DngJmDjcKcOEosh4iMtU35v6yh1e3HJJZcMc3tmtTVR33U/dseZdWKb11yZ451YNVXS0rgR+F5EfJi+/lDSHID03JniR4GLy8rNBz5I8fmDxPuVkdQAnA90D3GtfiJia0Q0RUTTrFmzKqiSWW34XbeNF5Ukjd+k/1jCDqBvNlML8FJZvDnNiLqM0oD33tSFdULSNWm84s4BZfqudTPwWpT2N3kFWCFpRhoAX5FihTCRZsvY0B67o4nNa65k0dzpbF5zZb934WZFkilpSDoX+BLwrbLwA8CXJLWn7z0AEBEHge3AO8B3gPURcSqVuQv4OtAB/JDSIDjA48AFadD835BmYqUB8PuBfelxX9+geBHkNVvGycrMxoo3LBwDA2fL9KnVbJl7XzzAN/ce4fZll7D5y1eN+c8zs+LLumGhk8YYyOsDf/JOVmYj1fnJSX7/2Td5+Larx/0EgXrlXW5zlNdsmYk6tdOKbyItfCw6fwjTGMnjA38m6tROK66JuPCx6Jw0xkhec9T96XRWJG/cff1Zu3KtPjlpjDOVJiv3JVue3DouHo9pTHDuSx49T3EeHS98LBbPnpqgPNNqeFlbYZ7ibOOBZ0+NofHwzjLvmVZF+DccrhXmz4ywichJYwSq3aWTxx/QvPuS67lbLGsyyDvxmuXBA+EVGKvpgeV/QGvZvZHHTKsiTLHMOqMn78RbbZ4UYVk4aVSg2tMD8/4Dmse04CJMsawkGYynKc55vXmxYnHSqEC131kW4Q9otRXl3XnWZDAePjMi7zcvVh21aik6aVSomu8si/IHtNqK8O58PCSDrCbim5fxqFYtRSeNClX7j0kR/oBW20T6g1wEE/XNy3hR65aik0bO/AfU6sFEfPMyXtS6peikYWZ+81JgtW4pOmmYmRVcLVuK3kbEzCrmNR3jj7cRMbMxU88r+m1suXvKzDLLe02HWzj5c0vDzDLLe78tt3Dy55aGmWWW15qOvFs4doZbGlZVRdjy3EYnjw9NyruFY2dkShqSPi/pBUk/kPSupF+SNFNSq6T29Dyj7PyNkjokHZK0siy+VNKB9L0tkpTijZKeT/E9khaUlWlJP6NdUkv1qm5jwd0H499jdzSxec2VLJo7nc1rruy3xmOseNV6/cjaPfXnwHci4mZJnwPOBf4E2BURD0jaAGwA7pG0CGgGFgNzgVcl/eOIOAU8CqwD/jfwMrAK2AmsBY5HxOWSmoEHgd+QNBPYBDQBAeyXtCMijlel9lY17j6wseZV6/Vh2HUakqYDbwM/H2UnSzoEXBcRxyTNAV6PiCskbQSIiP+QznsF+BpwGPiriPgnKf6bqfxX+s6JiN2SGoCfALMoJZ/rIuIrqcxj6ec8e7b79TqNfHR+cvKsWxn43aBZ/avmOo2fB7qAb0h6U9LXJZ0HXBQRxwDS8+x0/jzg/bLyR1NsXjoeGO9XJiJ6gY+BC4a4ltUZdx+YTQxZkkYD8AXg0Yi4Gvgppa6os9EgsRgiPtIyZ36gtE5Sm6S2rq6uIW7NxlIeA6RmVltZxjSOAkcjYk/6+gVKSeNDSXPKuqc6y86/uKz8fOCDFJ8/SLy8zNHUPXU+0J3i1w0o8/rAG4yIrcBWKHVPZaiTjQFvemc2/hcgDtvSiIifAO9LuiKFbgDeAXYAfbOZWoCX0vEOoDnNiLoMWAjsTV1YJyRdk2ZN3TmgTN+1bgZeS+MnrwArJM1Is7NWpJiZWV0a7zMIs86e+gPgm2nm1P8BfptSwtkuaS1wBLgFICIOStpOKbH0AuvTzCmAu4AngHMozZrameKPA09J6qDUwmhO1+qWdD+wL513X0R0j7CuZmZjZqLMIPQut2ZmVVD0GYTe5dbMrIYmygxC7z1lZlYlE2EBorunzMzM3VNmZlZ9ThpmZpaZk4aZTVjeyr9yThoF4v/gZtU13hfijQXPniqQ8v/gm798Vd63Y1ZYE2Uh3ljw7KkCGPgfvI//g5uNTNEX4o0Fz54aR/xRl2bVNVEW4o0FJ40C8H9ws+qrZCt/jyee4TGNgpgIK03NaqmSrfw9nniGxzTMzM5iIo0nekzDzGyUPJ74WU4aZmZn4fHEz/KYhpnZEDye2J/HNMzMzGMaZmZWfU4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpZZpqQh6bCkA5LektSWYjMltUpqT88zys7fKKlD0iFJK8viS9N1OiRtkaQUb5T0fIrvkbSgrExL+hntklqqVXErBm8UZ1ZfKmlpXB8RS8rm8W4AdkXEQmBX+hpJi4BmYDGwCnhE0uRU5lFgHbAwPVal+FrgeERcDjwEPJiuNRPYBCwHlgGbypOTjX/+ZDWz+jKaFeGrgevS8TbgdeCeFH8uInqA9yR1AMskHQamR8RuAElPAmuAnanM19K1XgAeTq2QlUBrRHSnMq2UEs2zo7hvKwB/sppZfcra0gjgu5L2S1qXYhdFxDGA9Dw7xecB75eVPZpi89LxwHi/MhHRC3wMXDDEtfqRtE5Sm6S2rq6ujFWyeuaN4szqU9aWxrUR8YGk2UCrpB8Mca4GicUQ8ZGWOROI2ApshdI2IkPcmxWEN4ozq0+ZWhoR8UF67gRepDS+8KGkOQDpuTOdfhS4uKz4fOCDFJ8/SLxfGUkNwPlA9xDXsgmgkk9WM7PaGHbDQknnAZMi4kQ6bgXuA24A/i4iHpC0AZgZEXdLWgw8QymxzKU0SL4wIk5J2gf8AbAHeBn4LxHxsqT1wFUR8buSmoF/FRG3poHw/cAX0u18D1jaN8YxGG9YaGZWuawbFmbpnroIeDHNjm0AnomI76QEsF3SWuAIcAtARByUtB14B+gF1kfEqXStu4AngHMoDYDvTPHHgafSoHk3pdlXRES3pPuBfem8+4ZKGGZmNra8NbqZmXlrdDMzqz4nDTMzy8xJw8zMMnPSMDOzzJw0zMwsMycNMzPLzEnDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMnPSMDOzzJw0zMwsMycNMzPLzEnDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDLLnDQkTZb0pqS/TF/PlNQqqT09zyg7d6OkDkmHJK0siy+VdCB9b4skpXijpOdTfI+kBWVlWtLPaJfUUo1Km5nZyFTS0vgq8G7Z1xuAXRGxENiVvkbSIqAZWAysAh6RNDmVeRRYByxMj1UpvhY4HhGXAw8BD6ZrzQQ2AcuBZcCm8uRkZma1lSlpSJoP/Crw9bLwamBbOt4GrCmLPxcRPRHxHtABLJM0B5geEbsjIoAnB5Tpu9YLwA2pFbISaI2I7og4DrRyJtGYmVmNZW1p/BlwN3C6LHZRRBwDSM+zU3we8H7ZeUdTbF46HhjvVyYieoGPgQuGuFY/ktZJapPU1tXVlbFKZmZWqWGThqRfAzojYn/Ga2qQWAwRH2mZM4GIrRHRFBFNs2bNynibZmZWqSwtjWuBmyQdBp4DvijpaeDD1OVEeu5M5x8FLi4rPx/4IMXnDxLvV0ZSA3A+0D3EtczMLAfDJo2I2BgR8yNiAaUB7tci4reAHUDfbKYW4KV0vANoTjOiLqM04L03dWGdkHRNGq+4c0CZvmvdnH5GAK8AKyTNSAPgK1LMzMxy0DCKsg8A2yWtBY4AtwBExEFJ24F3gF5gfUScSmXuAp4AzgF2pgfA48BTkjootTCa07W6Jd0P7Evn3RcR3aO4ZzMzGwWV3tCPH01NTdHW1pb3bZiZFYqk/RHRNNx5XhFuZmaZOWmYmVlmThpmZpaZk4aZWR3r/OQktz62m84TJ/O+FcBJw8ysrm3Z1c6+w91sebU971sBRjfl1szMxsgV9+6kp/fMzk1P7znC03uO0NgwiUObb8ztvtzSMDOrQ2/cfT03LZnL1CmlP9NTp0xi9ZK5vHHP9bnel5OGmVkdmj19KtMaG+jpPU1jwyR6ek8zrbGB2dOm5npf7p4yM6tTH33aw+3LL+W2ZZfwzN4jdNXBYLhXhJuZmVeEm5lZ9TlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZWWZOGmZmlpmThpmZZeakYWZmmQ2bNCRNlbRX0tuSDkr69yk+U1KrpPb0PKOszEZJHZIOSVpZFl8q6UD63hZJSvFGSc+n+B5JC8rKtKSf0S6ppZqVNzOzymRpafQAX4yIXwSWAKskXQNsAHZFxEJgV/oaSYuAZmAxsAp4RNLkdK1HgXXAwvRYleJrgeMRcTnwEPBgutZMYBOwHFgGbCpPTmZmVlvDJo0o+TR9OSU9AlgNbEvxbcCadLwaeC4ieiLiPaADWCZpDjA9InZH6UM8nhxQpu9aLwA3pFbISqA1Iroj4jjQyplEY2ZmNZZpTEPSZElvAZ2U/ojvAS6KiGMA6Xl2On0e8H5Z8aMpNi8dD4z3KxMRvcDHwAVDXGvg/a2T1CapraurK0uVzMxsBDIljYg4FRFLgPmUWg1XDnG6BrvEEPGRlim/v60R0RQRTbNmzRri1szMbDQqmj0VEX8PvE6pi+jD1OVEeu5Mpx0FLi4rNh/4IMXnDxLvV0ZSA3A+0D3EtczMLAdZZk/NkvT5dHwO8CvAD4AdQN9sphbgpXS8A2hOM6IuozTgvTd1YZ2QdE0ar7hzQJm+a90MvJbGPV4BVkiakQbAV6SYmZnloCHDOXOAbWkG1CRge0T8paTdwHZJa4EjwC0AEXFQ0nbgHaAXWB8Rp9K17gKeAM4BdqYHwOPAU5I6KLUwmtO1uiXdD+xL590XEd2jqbCZmY2cSm/ox4+mpqZoa2vL+zbMzApF0v6IaBruPK8INzOzzJw0zMwsMycNMzPLzEnDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMnPSMDOzzJw0zMwsMycNM7McdH5yklsf203niZN530pFnDTMzHKwZVc7+w53s+XV9rxvpSJZPrnPzMyq5Ip7d9LTe/ofvn56zxGe3nOExoZJHNp8Y453lo1bGmZmNfTG3ddz05K5TJ1S+vM7dcokVi+Zyxv3XJ/znWXjpGFmVkOzp09lWmMDPb2naWyYRE/vaaY1NjB72tS8by0Td0+ZmdXYR5/2cPvyS7lt2SU8s/cIXQUaDFdE5H0PVdXU1BRtbW1534aZWaFI2h8RTcOd5+4pMzPLzEnDzMwyGzZpSLpY0l9JelfSQUlfTfGZkloltafnGWVlNkrqkHRI0sqy+FJJB9L3tkhSijdKej7F90haUFamJf2Mdkkt1ay8mZlVJktLoxf4txHxC8A1wHpJi4ANwK6IWAjsSl+TvtcMLAZWAY9Impyu9SiwDliYHqtSfC1wPCIuBx4CHkzXmglsApYDy4BN5cnJzMxqa9ikERHHIuJ76fgE8C4wD1gNbEunbQPWpOPVwHMR0RMR7wEdwDJJc4DpEbE7SqPvTw4o03etF4AbUitkJdAaEd0RcRxo5UyiMTOzGqtoTCN1G10N7AEuiohjUEoswOx02jzg/bJiR1NsXjoeGO9XJiJ6gY+BC4a41sD7WiepTVJbV1dXJVUyM7MKZF6nIenngP8G/FFEfJKGIwY9dZBYDBEfaZkzgYitwNZ0n12SfnS2m6tjFwIf5X0TVeK61J/xUg9wXcbKpVlOypQ0JE2hlDC+GRHfSuEPJc2JiGOp66kzxY8CF5cVnw98kOLzB4mXlzkqqQE4H+hO8esGlHl9qHuNiFlZ6lRvJLVlmSNdBK5L/Rkv9QDXJW9ZZk8JeBx4NyL+c9m3dgB9s5lagJfK4s1pRtRllAa896YurBOSrknXvHNAmb5r3Qy8lsY9XgFWSJqRBsBXpJiZmeUgS0vjWuAO4ICkt1LsT4AHgO2S1gJHgFsAIuKgpO3AO5RmXq2PiFOp3F3AE8A5wM70gFJSekpSB6UWRnO6Vrek+4F96bz7IqJ7hHU1M7NRGnfbiBSVpHVpbKbwXJf6M17qAa5L3pw0zMwsM28jYmZmmTlpjBFJfyGpU9L3y2K/KGl32krlv0uanuKfk/SNFH9b0nVlZV5P27G8lR6zB/lxY12XMd9KpqB1ye21qbQeki5I538q6eEB1yrUazJMXXL9fRlBXb4kaX/6998v6Ytl18r1dTmriPBjDB7APwe+AHy/LLYP+Bfp+HeA+9PxeuAb6Xg2sB+YlL5+HWjKuS5zgC+k42nA3wKLgP8IbEjxDcCD6XgR8DbQCFwG/BCYnL63F/glSmtwdgI3Frguub02I6jHecAvA78LPDzgWkV7TYaqS66/LyOoy9XA3HR8JfDjenldzvZwS2OMRMRfU5oJVu4K4K/TcSvw6+l4EaX9u4iITuDvgbqZux212UqmJqpVl1re82AqrUdE/DQi/gfQ79N+ivianK0u9WAEdXkzIvrWqx0Epqq0XCH31+VsnDRq6/vATen4Fs4sgnwbWC2pQaW1LUvpv0DyG6mp/e/ybqJq7LaSqblR1qVP7q9NxnqcTRFfk+Hk/prAiOry68CbEdFDnb0u5Zw0aut3KO0SvJ9S0/X/pfhfUPpP0Qb8GfC/KK1xAbg9Iq4C/ll63FHTOy6jAVvJDHXqILHM28LUQhXqAnXw2lRQj7NeYpBYvb8mQ8n9NYHK6yJpMaXdvb/SFxrktLqY6uqkUUMR8YOIWBERS4FnKfWPExG9EfHHEbEkIlYDnwfa0/d+nJ5PAM+QU9eIhthKJn1/tFvJ1EyV6pL7a1NhPc6miK/JWeX9mkDldZE0H3gRuDMifpjCdfG6DMZJo4b6ZnJImgTcC/zX9PW5ks5Lx18CeiPindRddWGKTwF+jVIXV63vuxZbydREteqS92szgnoMqqCvydmuk/vvS6V1kfR54NvAxoj4n30n18PrclZ5j8SP1wellsQx4GeU3jWsBb5KaTbF31LahqVvceUC4BClQbNXgUtT/DxKM6n+htIg2Z+TZu7UuC6/TKlp/DfAW+nxLyltX7+LUqtoFzCzrMyfUmpJHaJs1gelAf7vp+893PdvULS65P3ajLAehylNzvg0/Z9cVODX5DN1yfs1GUldKL15/GnZuW8Bs+vhdTnbwyvCzcwsM3dPmZlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpn9f/zatDjH/Ln2AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "yearly_incidence.plot(style='*')" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2020 229363\n", + "2021 363278\n", + "2002 502271\n", + "2018 543281\n", + "1996 553859\n", + "2017 557449\n", + "2019 584926\n", + "2000 605096\n", + "2015 613286\n", + "2012 620315\n", + "2022 638443\n", + "2011 645042\n", + "1995 648598\n", + "2001 650660\n", + "1993 653058\n", + "2005 654308\n", + "2006 657482\n", + "1998 660316\n", + "2014 673458\n", + "1997 679308\n", + "1994 682920\n", + "2007 701566\n", + "2013 708874\n", + "2004 736266\n", + "2008 745701\n", + "2003 770211\n", + "2016 780645\n", + "1999 784963\n", + "1992 821558\n", + "2009 822819\n", + "2010 848236\n", + "dtype: int64" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "yearly_incidence.sort_values()" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAErBJREFUeJzt3XuQZGV5x/Hvwy4o0LCiC0OyaJYgIRJXJYzBS4XMgFooRCKaKC4GUpo1hRdiSFmEAtHEyyaCpbEgqXFEUFRUNCUXY7TQUVGDuGAJuCLEXRWIF1SIs0Fg4ckf79k4LpfZ6T6zffrl+6mamr6cPud9+nT/+u33nNMnMhNJ0ujbYdgNkCS1w0CXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVWLp9lzY8uXLc88992TXXXfdnott3aZNm6yhA6yhO2qoo8s1rFu37rbM3HO+6bZroK9cuZIzzzyTiYmJ7bnY1s3MzFhDB1hDd9RQR5driIjvbct0DrlIUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKrFdDyySdH8rT7lsKMvduPbIoSxXi8ceuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZWYN9Aj4tyI+HFEXDfntkdHxGcj4sbm/x6L20xJ0ny2pYd+HnDEVredAlyemfsDlzfXJUlDNG+gZ+YXgZ9tdfPRwPnN5fOBP2m5XZKkBYrMnH+iiJXApZn5xOb67Zn5qDn3/zwzH3DYJSLWAGsAxsbGDp6enqbX67XQ9OGZnZ21hg6opYYNd9w7lGWvWrGstXnVsi66WsPk5OS6zByfb7pFP6doZk4BUwDj4+PZ6/WYmJhY7MUuqpmZGWvogFpqOOuKTUNZ9sbVE63Nq5Z1Meo19LuXy48i4jcAmv8/bq9JkqR+9BvoFwPHN5ePBz7ZTnMkSf3alt0WPwx8FTggIm6OiJcDa4FnR8SNwLOb65KkIZp3DD0zj32Quw5vuS2SpAF4pKgkVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUGCvSIeF1EXB8R10XEhyPikW01TJK0MH0HekSsAF4LjGfmE4ElwEvaapgkaWEGHXJZCuwcEUuBXYBbB2+SJKkfkZn9PzjiJOAtwJ3AZzJz9QNMswZYAzA2Nnbw9PQ0vV6v72V2wezsrDV0QC01bLjj3qEse9WKZa3Nq5Z10dUaJicn12Xm+HzTLe13ARGxB3A0sC9wO/CxiDguMy+YO11mTgFTAOPj49nr9ZiYmOh3sZ0wMzNjDR1QSw1nXbFpKMveuHqitXnVsi5GvYZBhlyeBWzIzJ9k5j3AJ4BntNMsSdJCDRLo3weeFhG7REQAhwPr22mWJGmh+g70zLwSuAi4Gri2mddUS+2SJC1Q32PoAJl5BnBGS22RJA3AI0UlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUiYECPSIeFREXRcS3I2J9RDy9rYZJkhZm6YCPfxfw6cx8UUTsBOzSQpskSX3oO9AjYnfgUOAEgMy8G7i7nWZJkhYqMrO/B0Y8BZgCvgU8GVgHnJSZm7aabg2wBmBsbOzg6elper3eQI0ettnZWWvogFpq2HDHvUNZ9qoVy1qbVy3roqs1TE5OrsvM8fmmG2TIZSnw+8BrMvPKiHgXcApw+tyJMnOKEvyMj49nr9djYmJigMUO38zMjDV0QC01nHXFpvknXAQbV0+0Nq9a1sWo1zDIRtGbgZsz88rm+kWUgJckDUHfgZ6ZPwR+EBEHNDcdThl+kSQNwaB7ubwG+GCzh8t3gb8YvEmSpH4MFOiZ+Q1g3oF6SdLi80hRSaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekSgz687mSRtTKUy5rbV4nr9rMCS3Ob7FsXHvksJuwqOyhS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVImBAz0ilkTENRFxaRsNkiT1p40e+knA+hbmI0kawECBHhH7AEcC0+00R5LUr8jM/h8ccRHwNmA34G8z86gHmGYNsAZgbGzs4OnpaXq9Xt/L7ILZ2Vlr6IA2a7j2ljtamc9Cje0MP7pzKItu1ajUsWrFsge9r8vvicnJyXWZOT7fdH2fUzQijgJ+nJnrImLiwabLzClgCmB8fDx7vR4TEw86+UiYmZmxhg5os4ZhnQ/z5FWbOeva0T+176jUsXH1xIPeV8N7YpAhl2cCz4+IjcCFwGERcUErrZIkLVjfgZ6Zf5eZ+2TmSuAlwOcy87jWWiZJWhD3Q5ekSrQy6JWZM8BMG/OSJPXHHrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1Ilun+KEUlqycqHODPVyas2L+qZqzauPXLR5r2FPXRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVIm+Az0iHhsRn4+I9RFxfUSc1GbDJEkLM8jvoW8GTs7MqyNiN2BdRHw2M7/VUtskSQvQdw89M/87M69uLv8CWA+saKthkqSFaWUMPSJWAgcBV7YxP0nSwkVmDjaDiB7wBeAtmfmJB7h/DbAGYGxs7ODp6Wl6vd5Ayxy22dlZa+iANmu49pY7WpnPQo3tDD+6cyiLblUNdSx2DatWLOv7sZOTk+syc3y+6QY6p2hE7Ah8HPjgA4U5QGZOAVMA4+Pj2ev1mJiYGGSxQzczM2MNHdBmDYt5LsmHcvKqzZx17eif2reGOha7ho2rJxZt3lsMspdLAO8F1mfmO9prkiSpH4OMoT8TeBlwWER8o/l7XkvtkiQtUN/fLzLzCiBabIskaQAeKSpJlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklSJkflF+pVDOgEBwMa1Rw5luYtZ88mrNj/oSR2GVS8srOaHqkF6OLKHLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUGCvSIOCIiboiImyLilLYaJUlauL4DPSKWAGcDzwUOBI6NiAPbapgkaWEG6aH/AXBTZn43M+8GLgSObqdZkqSFiszs74ERLwKOyMxXNNdfBhySma/earo1wJrm6gHAT4Hb+m5xNyzHGrrAGrqjhjq6XMNvZeae8000yDlF4wFuu9+nQ2ZOAVP//6CIr2fm+ADLHTpr6AZr6I4a6qihhkGGXG4GHjvn+j7ArYM1R5LUr0EC/Spg/4jYNyJ2Al4CXNxOsyRJC9X3kEtmbo6IVwP/ASwBzs3M67fhoVPzT9J51tAN1tAdNdQx8jX0vVFUktQtHikqSZUw0CWpEga6JFViJAI9Ig6LiH2H3Y5BWEM3WEM3WMPi6PRG0ea3YS4EbgfuA87IzC8Mt1ULYw3dYA3dYA2Lq1M99IjYJyJ2n3PTi4GPZ+ahlCfw2Ih4+nBat20ebjVExAMdMTx0D7f10FXWsH11ItAj4gkR8SngCuDvI2LLj3z9EtilufxRyu8sPK2LIfJwrSE79hXv4boehtDMh2QNwzG0QI+IXedcfQpwc2auBD4HnNnc/jPgrojYLTN/BnwHGANWbsemPqjKa/g896+h19RwI6NRQw3rwRq2o1GvYbsGekTsERHnRcRVwNqI2LP5VHsS8OWmx3cxcHtEHEl5onYDVjWzuJHyi2h3b892z1V5Dav4VQ2f5P41PKmZxXfobg01rAdr2I5qqGGL7d1DPxTYDDyP8muNpwK7N+3Ye87X9/OBlwJfA35BOYkGmflV4DDgf7Zvs39NzTUsYfRrqGE9WMP2VUMNRWa2/kcJhlcCX6D8Fvry5vaPAq9tLu8LrG3ufyplnGpJc18P+EkznxXAeuDVwPuAc4BdFqPd1mAN1mANXa5hvr/F6qEfBTwfeBPwdOCfmts/CzyjufwD4EvAczPzKson4yRAZs4CVwJPzcxbgJdRxqh+CJyWmf+7SO22BmuwBmvocg0Pqe9fW9yyh0NEPJXyNeRLwGWZeRfwO8B3M/NzEbEBeHtEPAdYB7wgIpZn5m0RcSOwKSIeB7wbOC4i9qL8tvpPKV9tyMyvA18foE5rsIZFrWFOLdbga2lo+uqhz3nSDgXOpezG8yzgbc0k9wHfiYidM3MD5avJkyjjTrdS9uMEuJfy9WUH4OOUn69cDRwMTGXmfX1VtW01LGlq+CPKV6ZRrGHnpoYJRnc97F5BDY9p/j8DOG9Ea9grIh4TEeOUseJRrGGnUX9PD2xbx2Yo+13+FfAh4C+BHYG/Bl7V3L8H8E3gIMoTsxZY2dx3FOVJWd5cvhZYRtmQ8ClgpznL2WGxxpeAXYFXUFbSyZQNHyNVQzP/3YDLKL9BD/C6UaqheS0dD1xOOUBjpGrgV0dY/ylljHWGcr7ckXotNe+HEyhDDncAR45gDTsCJwKXAP8CPB44aZRqaPNvm3roEbE3cCkwAXyAssHgGMo41GaAzPw58Engtc0LZC/gCc0svgj8EXB3Zl4KvBe4CDib0hu4Z8uycpE+/aLsX3o5ZWW9B3gO8ELKho/7RqGGOXYGHgHsFxHLgf0oPYrO1xAROwLXAy8C3p6ZL2zuOmjOsjtdQ2ZmRCwD/gx4Z2ZOZOYNlB7cSNQQEY+nDEccDpwG3AJ8n7JRcCReS41XUd7T76Sc0/iY5vq9I1RDe7bxU3Bn4JA510+gbFA4HvjanNt/E7i1ufwqymGxezSPvwR43Jxpl2/vTy/gUXMuv56yklePUg3Nco8H3g6cDrwc+GPgqlGpAfgEsHqr214MXDlCNZwI/ENzeUuP/ZhRqYES2o+Yc/1cyofs0aNSQ7PMS4A/by6/HHhN81oaqfd0W3/bOob+S+Brzc72UL7CHJKZ51N6iXsDZOatwPURcUhmng3cBHyEckLpKzLz+1tmmJm3beOyW5OZt0fE7hFxHmXIZTllhe4XEWNdr2HO878D8F+Unu5hmXkJsO8o1NA4FzgjIs6KiJmIeAPwn5Rz1O7VtKvrNdwG/GFErAbWRcT5lF7h7zbfmjpdQ2bem2VD4ZZtAEH5salLKOthJN7TwL8Dx0fEx4A3Ak8GrqPUsGfTrq7X0J4Ffhpu6YmcD5zUXP4A8I/N5UcD0zSfeJTxrScCjxz2J9dWdZxI+Wo5RRlT/wrwBsqLuvM1AB+j9LCWUfapPY3yIj59VNYD5Vy0pwKPpby5TgK+OirrAdi/ae8/U3p7LwXeQdlP+fWUD91O17BVPdcAxzSXLxil93TzHj6X0kF7I3AGcEPz+hqp9TDo34L2csnMjIh9gL0pn4w0TyARcSlljHpJNp94mXlPZl6Xmb9cyHIWW2aek2Ur9zmUcc9/pXz9upiO1xARPUrv8D3Apylb6Q8BjgX2iIhL6HgNjRdk5lsz8wfAWym7lL2bEVkPlPHmu4GlWcZpL21uu5Sy0XcUaiAitmTAFZQNigBvKXeNzGvpQGAmS+/6fZTOzocZnddSa/rZD/0gytbgDRHxCsrXllMp41bfzsyrW2zfYvspZYPiaZn5/og4Drg+M68ZcrseymZKYNxD6ZnfC5yamdcCfzMiNZC/fhDG7ZRAPz0zPzQKNWTmXRGxFnhzc9MOlJ0E1mbmNaNQA5SNfRGx5ZcDb2puWw+8vhlO+laXa4iIJZQMOhR4P7CJsqPDiZm5YVTWQ1sWfIKLiPgy8NvARsq+m2/KzG+237TF0eydcDjlK/KBlGGXszPznod8YEc1Bz8cA1yYmT8cdnu2VUQ8AjiCcrTd71F2OTsnMzcPtWELFBFvobwfDgI+QznZwc+H26qFi4gbgDdk5ke2HGcy7DZtq4jYj/I+vpuyLv4NeHOWIzsfVhYU6M0uZ2cAG4ALstmoMkoiYinl9xzuotQwkl+7mp7JfaP0xttaRLySssvoB0Z1PQBExAHA90axhjkHCT6FspF98yi+ppqOzf7AVzLzzmG3Z1g6fQo6SdK268QZiyRJgzPQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiX+DzfBLfwEirG6AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "yearly_incidence.hist(xrot=20)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], "metadata": { "kernelspec": { "display_name": "Python 3", @@ -16,10 +2317,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 } -