FINAL

parent 69db4aaa
......@@ -3745,10 +3745,8 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"--> il y a donc bien des valeurs possiblement incoherentes avec des jours ou le taux cummule de cas decroit par rapport a la veille. \n",
"Est-ce une rectification due a un mauvais diagnostique initial ? une modification de la methode de comptage ?\n",
"\n",
"Aux vues du faible nombre d'incoherence (362) par rapport au nombre de donnees total (288 lignes de donnees * 1142 comptage = 328896 donnees totales), on peut choisir de passer outre et de conserver la table ainsi\n",
"Quoi qu'il en soit, ce nombre d'incoherence (362) est tres faible par rapport au nombre de donnees total (288 lignes de donnees * 1142 comptage = 328896 donnees totales), et ne devrait pas impacter particulierement les conclusions qu'elles soient presentes ou non dans la table. \n",
"\n",
"\n",
"\n",
......@@ -4132,8 +4130,9 @@
"\n",
"\n",
"### Creation d'un pays \"Hong-Kong\" \n",
"Hong-Kong apparait comme une province de la Chine. Pour plus de facilite a recupere les donnees, nous remplacons le pays anciennement \"China\" par Hong Kong pour la province Hong Kong uniquement. \n",
"Je choisis de faire une copie du fichier initial raw_data pour pouvoir y revenir le cas echeant. \n"
"Hong-Kong apparait comme une province de la Chine. Pour plus de facilite a recupere les donnees, nous remplacons le pays anciennement \"China\" par Hong Kong pour la province Hong Kong uniquement. .\n",
"\n",
"Je choisis de faire une copie du fichier initial pour pouvoir y revenir le cas echeant. \n"
]
},
{
......@@ -4252,1010 +4251,30 @@
},
{
"cell_type": "code",
"execution_count": 15,
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Province/State</th>\n",
" <th>Country/Region</th>\n",
" <th>Lat</th>\n",
" <th>Long</th>\n",
" <th>1/22/20</th>\n",
" <th>1/23/20</th>\n",
" <th>1/24/20</th>\n",
" <th>1/25/20</th>\n",
" <th>1/26/20</th>\n",
" <th>1/27/20</th>\n",
" <th>...</th>\n",
" <th>2/28/23</th>\n",
" <th>3/1/23</th>\n",
" <th>3/2/23</th>\n",
" <th>3/3/23</th>\n",
" <th>3/4/23</th>\n",
" <th>3/5/23</th>\n",
" <th>3/6/23</th>\n",
" <th>3/7/23</th>\n",
" <th>3/8/23</th>\n",
" <th>3/9/23</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>59</th>\n",
" <td>Anhui</td>\n",
" <td>China</td>\n",
" <td>31.8257</td>\n",
" <td>117.2264</td>\n",
" <td>1</td>\n",
" <td>9</td>\n",
" <td>15</td>\n",
" <td>39</td>\n",
" <td>60</td>\n",
" <td>70</td>\n",
" <td>...</td>\n",
" <td>2275.0</td>\n",
" <td>2275.0</td>\n",
" <td>2275.0</td>\n",
" <td>2275</td>\n",
" <td>2275.0</td>\n",
" <td>2275.0</td>\n",
" <td>2275.0</td>\n",
" <td>2275</td>\n",
" <td>2275</td>\n",
" <td>2275</td>\n",
" </tr>\n",
" <tr>\n",
" <th>60</th>\n",
" <td>Beijing</td>\n",
" <td>China</td>\n",
" <td>40.1824</td>\n",
" <td>116.4142</td>\n",
" <td>14</td>\n",
" <td>22</td>\n",
" <td>36</td>\n",
" <td>41</td>\n",
" <td>68</td>\n",
" <td>80</td>\n",
" <td>...</td>\n",
" <td>40774.0</td>\n",
" <td>40774.0</td>\n",
" <td>40774.0</td>\n",
" <td>40774</td>\n",
" <td>40774.0</td>\n",
" <td>40774.0</td>\n",
" <td>40774.0</td>\n",
" <td>40774</td>\n",
" <td>40774</td>\n",
" <td>40774</td>\n",
" </tr>\n",
" <tr>\n",
" <th>61</th>\n",
" <td>Chongqing</td>\n",
" <td>China</td>\n",
" <td>30.0572</td>\n",
" <td>107.8740</td>\n",
" <td>6</td>\n",
" <td>9</td>\n",
" <td>27</td>\n",
" <td>57</td>\n",
" <td>75</td>\n",
" <td>110</td>\n",
" <td>...</td>\n",
" <td>14715.0</td>\n",
" <td>14715.0</td>\n",
" <td>14715.0</td>\n",
" <td>14715</td>\n",
" <td>14715.0</td>\n",
" <td>14715.0</td>\n",
" <td>14715.0</td>\n",
" <td>14715</td>\n",
" <td>14715</td>\n",
" <td>14715</td>\n",
" </tr>\n",
" <tr>\n",
" <th>62</th>\n",
" <td>Fujian</td>\n",
" <td>China</td>\n",
" <td>26.0789</td>\n",
" <td>117.9874</td>\n",
" <td>1</td>\n",
" <td>5</td>\n",
" <td>10</td>\n",
" <td>18</td>\n",
" <td>35</td>\n",
" <td>59</td>\n",
" <td>...</td>\n",
" <td>17122.0</td>\n",
" <td>17122.0</td>\n",
" <td>17122.0</td>\n",
" <td>17122</td>\n",
" <td>17122.0</td>\n",
" <td>17122.0</td>\n",
" <td>17122.0</td>\n",
" <td>17122</td>\n",
" <td>17122</td>\n",
" <td>17122</td>\n",
" </tr>\n",
" <tr>\n",
" <th>63</th>\n",
" <td>Gansu</td>\n",
" <td>China</td>\n",
" <td>35.7518</td>\n",
" <td>104.2861</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>4</td>\n",
" <td>7</td>\n",
" <td>14</td>\n",
" <td>...</td>\n",
" <td>1742.0</td>\n",
" <td>1742.0</td>\n",
" <td>1742.0</td>\n",
" <td>1742</td>\n",
" <td>1742.0</td>\n",
" <td>1742.0</td>\n",
" <td>1742.0</td>\n",
" <td>1742</td>\n",
" <td>1742</td>\n",
" <td>1742</td>\n",
" </tr>\n",
" <tr>\n",
" <th>64</th>\n",
" <td>Guangdong</td>\n",
" <td>China</td>\n",
" <td>23.3417</td>\n",
" <td>113.4244</td>\n",
" <td>26</td>\n",
" <td>32</td>\n",
" <td>53</td>\n",
" <td>78</td>\n",
" <td>111</td>\n",
" <td>151</td>\n",
" <td>...</td>\n",
" <td>103248.0</td>\n",
" <td>103248.0</td>\n",
" <td>103248.0</td>\n",
" <td>103248</td>\n",
" <td>103248.0</td>\n",
" <td>103248.0</td>\n",
" <td>103248.0</td>\n",
" <td>103248</td>\n",
" <td>103248</td>\n",
" <td>103248</td>\n",
" </tr>\n",
" <tr>\n",
" <th>65</th>\n",
" <td>Guangxi</td>\n",
" <td>China</td>\n",
" <td>23.8298</td>\n",
" <td>108.7881</td>\n",
" <td>2</td>\n",
" <td>5</td>\n",
" <td>23</td>\n",
" <td>23</td>\n",
" <td>36</td>\n",
" <td>46</td>\n",
" <td>...</td>\n",
" <td>13371.0</td>\n",
" <td>13371.0</td>\n",
" <td>13371.0</td>\n",
" <td>13371</td>\n",
" <td>13371.0</td>\n",
" <td>13371.0</td>\n",
" <td>13371.0</td>\n",
" <td>13371</td>\n",
" <td>13371</td>\n",
" <td>13371</td>\n",
" </tr>\n",
" <tr>\n",
" <th>66</th>\n",
" <td>Guizhou</td>\n",
" <td>China</td>\n",
" <td>26.8154</td>\n",
" <td>106.8748</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>4</td>\n",
" <td>5</td>\n",
" <td>7</td>\n",
" <td>...</td>\n",
" <td>2534.0</td>\n",
" <td>2534.0</td>\n",
" <td>2534.0</td>\n",
" <td>2534</td>\n",
" <td>2534.0</td>\n",
" <td>2534.0</td>\n",
" <td>2534.0</td>\n",
" <td>2534</td>\n",
" <td>2534</td>\n",
" <td>2534</td>\n",
" </tr>\n",
" <tr>\n",
" <th>67</th>\n",
" <td>Hainan</td>\n",
" <td>China</td>\n",
" <td>19.1959</td>\n",
" <td>109.7453</td>\n",
" <td>4</td>\n",
" <td>5</td>\n",
" <td>8</td>\n",
" <td>19</td>\n",
" <td>22</td>\n",
" <td>33</td>\n",
" <td>...</td>\n",
" <td>10483.0</td>\n",
" <td>10483.0</td>\n",
" <td>10483.0</td>\n",
" <td>10483</td>\n",
" <td>10483.0</td>\n",
" <td>10483.0</td>\n",
" <td>10483.0</td>\n",
" <td>10483</td>\n",
" <td>10483</td>\n",
" <td>10483</td>\n",
" </tr>\n",
" <tr>\n",
" <th>68</th>\n",
" <td>Hebei</td>\n",
" <td>China</td>\n",
" <td>39.5490</td>\n",
" <td>116.1306</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>8</td>\n",
" <td>13</td>\n",
" <td>18</td>\n",
" <td>...</td>\n",
" <td>3292.0</td>\n",
" <td>3292.0</td>\n",
" <td>3292.0</td>\n",
" <td>3292</td>\n",
" <td>3292.0</td>\n",
" <td>3292.0</td>\n",
" <td>3292.0</td>\n",
" <td>3292</td>\n",
" <td>3292</td>\n",
" <td>3292</td>\n",
" </tr>\n",
" <tr>\n",
" <th>69</th>\n",
" <td>Heilongjiang</td>\n",
" <td>China</td>\n",
" <td>47.8620</td>\n",
" <td>127.7615</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>4</td>\n",
" <td>9</td>\n",
" <td>15</td>\n",
" <td>21</td>\n",
" <td>...</td>\n",
" <td>6603.0</td>\n",
" <td>6603.0</td>\n",
" <td>6603.0</td>\n",
" <td>6603</td>\n",
" <td>6603.0</td>\n",
" <td>6603.0</td>\n",
" <td>6603.0</td>\n",
" <td>6603</td>\n",
" <td>6603</td>\n",
" <td>6603</td>\n",
" </tr>\n",
" <tr>\n",
" <th>70</th>\n",
" <td>Henan</td>\n",
" <td>China</td>\n",
" <td>37.8957</td>\n",
" <td>114.9042</td>\n",
" <td>5</td>\n",
" <td>5</td>\n",
" <td>9</td>\n",
" <td>32</td>\n",
" <td>83</td>\n",
" <td>128</td>\n",
" <td>...</td>\n",
" <td>9948.0</td>\n",
" <td>9948.0</td>\n",
" <td>9948.0</td>\n",
" <td>9948</td>\n",
" <td>9948.0</td>\n",
" <td>9948.0</td>\n",
" <td>9948.0</td>\n",
" <td>9948</td>\n",
" <td>9948</td>\n",
" <td>9948</td>\n",
" </tr>\n",
" <tr>\n",
" <th>72</th>\n",
" <td>Hubei</td>\n",
" <td>China</td>\n",
" <td>30.9756</td>\n",
" <td>112.2707</td>\n",
" <td>444</td>\n",
" <td>444</td>\n",
" <td>549</td>\n",
" <td>761</td>\n",
" <td>1058</td>\n",
" <td>1423</td>\n",
" <td>...</td>\n",
" <td>72131.0</td>\n",
" <td>72131.0</td>\n",
" <td>72131.0</td>\n",
" <td>72131</td>\n",
" <td>72131.0</td>\n",
" <td>72131.0</td>\n",
" <td>72131.0</td>\n",
" <td>72131</td>\n",
" <td>72131</td>\n",
" <td>72131</td>\n",
" </tr>\n",
" <tr>\n",
" <th>73</th>\n",
" <td>Hunan</td>\n",
" <td>China</td>\n",
" <td>27.6104</td>\n",
" <td>111.7088</td>\n",
" <td>4</td>\n",
" <td>9</td>\n",
" <td>24</td>\n",
" <td>43</td>\n",
" <td>69</td>\n",
" <td>100</td>\n",
" <td>...</td>\n",
" <td>7437.0</td>\n",
" <td>7437.0</td>\n",
" <td>7437.0</td>\n",
" <td>7437</td>\n",
" <td>7437.0</td>\n",
" <td>7437.0</td>\n",
" <td>7437.0</td>\n",
" <td>7437</td>\n",
" <td>7437</td>\n",
" <td>7437</td>\n",
" </tr>\n",
" <tr>\n",
" <th>74</th>\n",
" <td>Inner Mongolia</td>\n",
" <td>China</td>\n",
" <td>44.0935</td>\n",
" <td>113.9448</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>7</td>\n",
" <td>7</td>\n",
" <td>11</td>\n",
" <td>...</td>\n",
" <td>8847.0</td>\n",
" <td>8847.0</td>\n",
" <td>8847.0</td>\n",
" <td>8847</td>\n",
" <td>8847.0</td>\n",
" <td>8847.0</td>\n",
" <td>8847.0</td>\n",
" <td>8847</td>\n",
" <td>8847</td>\n",
" <td>8847</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75</th>\n",
" <td>Jiangsu</td>\n",
" <td>China</td>\n",
" <td>32.9711</td>\n",
" <td>119.4550</td>\n",
" <td>1</td>\n",
" <td>5</td>\n",
" <td>9</td>\n",
" <td>18</td>\n",
" <td>33</td>\n",
" <td>47</td>\n",
" <td>...</td>\n",
" <td>5075.0</td>\n",
" <td>5075.0</td>\n",
" <td>5075.0</td>\n",
" <td>5075</td>\n",
" <td>5075.0</td>\n",
" <td>5075.0</td>\n",
" <td>5075.0</td>\n",
" <td>5075</td>\n",
" <td>5075</td>\n",
" <td>5075</td>\n",
" </tr>\n",
" <tr>\n",
" <th>76</th>\n",
" <td>Jiangxi</td>\n",
" <td>China</td>\n",
" <td>27.6140</td>\n",
" <td>115.7221</td>\n",
" <td>2</td>\n",
" <td>7</td>\n",
" <td>18</td>\n",
" <td>18</td>\n",
" <td>36</td>\n",
" <td>72</td>\n",
" <td>...</td>\n",
" <td>3423.0</td>\n",
" <td>3423.0</td>\n",
" <td>3423.0</td>\n",
" <td>3423</td>\n",
" <td>3423.0</td>\n",
" <td>3423.0</td>\n",
" <td>3423.0</td>\n",
" <td>3423</td>\n",
" <td>3423</td>\n",
" <td>3423</td>\n",
" </tr>\n",
" <tr>\n",
" <th>77</th>\n",
" <td>Jilin</td>\n",
" <td>China</td>\n",
" <td>43.6661</td>\n",
" <td>126.1923</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>4</td>\n",
" <td>4</td>\n",
" <td>6</td>\n",
" <td>...</td>\n",
" <td>40764.0</td>\n",
" <td>40764.0</td>\n",
" <td>40764.0</td>\n",
" <td>40764</td>\n",
" <td>40764.0</td>\n",
" <td>40764.0</td>\n",
" <td>40764.0</td>\n",
" <td>40764</td>\n",
" <td>40764</td>\n",
" <td>40764</td>\n",
" </tr>\n",
" <tr>\n",
" <th>78</th>\n",
" <td>Liaoning</td>\n",
" <td>China</td>\n",
" <td>41.2956</td>\n",
" <td>122.6085</td>\n",
" <td>2</td>\n",
" <td>3</td>\n",
" <td>4</td>\n",
" <td>17</td>\n",
" <td>21</td>\n",
" <td>27</td>\n",
" <td>...</td>\n",
" <td>3547.0</td>\n",
" <td>3547.0</td>\n",
" <td>3547.0</td>\n",
" <td>3547</td>\n",
" <td>3547.0</td>\n",
" <td>3547.0</td>\n",
" <td>3547.0</td>\n",
" <td>3547</td>\n",
" <td>3547</td>\n",
" <td>3547</td>\n",
" </tr>\n",
" <tr>\n",
" <th>79</th>\n",
" <td>Macau</td>\n",
" <td>China</td>\n",
" <td>22.1667</td>\n",
" <td>113.5500</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>5</td>\n",
" <td>6</td>\n",
" <td>...</td>\n",
" <td>3514.0</td>\n",
" <td>3514.0</td>\n",
" <td>3514.0</td>\n",
" <td>3514</td>\n",
" <td>3514.0</td>\n",
" <td>3514.0</td>\n",
" <td>3514.0</td>\n",
" <td>3514</td>\n",
" <td>3514</td>\n",
" <td>3514</td>\n",
" </tr>\n",
" <tr>\n",
" <th>80</th>\n",
" <td>Ningxia</td>\n",
" <td>China</td>\n",
" <td>37.2692</td>\n",
" <td>106.1655</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>3</td>\n",
" <td>4</td>\n",
" <td>7</td>\n",
" <td>...</td>\n",
" <td>1276.0</td>\n",
" <td>1276.0</td>\n",
" <td>1276.0</td>\n",
" <td>1276</td>\n",
" <td>1276.0</td>\n",
" <td>1276.0</td>\n",
" <td>1276.0</td>\n",
" <td>1276</td>\n",
" <td>1276</td>\n",
" <td>1276</td>\n",
" </tr>\n",
" <tr>\n",
" <th>81</th>\n",
" <td>Qinghai</td>\n",
" <td>China</td>\n",
" <td>35.7452</td>\n",
" <td>95.9956</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>6</td>\n",
" <td>...</td>\n",
" <td>782.0</td>\n",
" <td>782.0</td>\n",
" <td>782.0</td>\n",
" <td>782</td>\n",
" <td>782.0</td>\n",
" <td>782.0</td>\n",
" <td>782.0</td>\n",
" <td>782</td>\n",
" <td>782</td>\n",
" <td>782</td>\n",
" </tr>\n",
" <tr>\n",
" <th>82</th>\n",
" <td>Shaanxi</td>\n",
" <td>China</td>\n",
" <td>35.1917</td>\n",
" <td>108.8701</td>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>5</td>\n",
" <td>15</td>\n",
" <td>22</td>\n",
" <td>35</td>\n",
" <td>...</td>\n",
" <td>7326.0</td>\n",
" <td>7326.0</td>\n",
" <td>7326.0</td>\n",
" <td>7326</td>\n",
" <td>7326.0</td>\n",
" <td>7326.0</td>\n",
" <td>7326.0</td>\n",
" <td>7326</td>\n",
" <td>7326</td>\n",
" <td>7326</td>\n",
" </tr>\n",
" <tr>\n",
" <th>83</th>\n",
" <td>Shandong</td>\n",
" <td>China</td>\n",
" <td>36.3427</td>\n",
" <td>118.1498</td>\n",
" <td>2</td>\n",
" <td>6</td>\n",
" <td>15</td>\n",
" <td>27</td>\n",
" <td>46</td>\n",
" <td>75</td>\n",
" <td>...</td>\n",
" <td>5880.0</td>\n",
" <td>5880.0</td>\n",
" <td>5880.0</td>\n",
" <td>5880</td>\n",
" <td>5880.0</td>\n",
" <td>5880.0</td>\n",
" <td>5880.0</td>\n",
" <td>5880</td>\n",
" <td>5880</td>\n",
" <td>5880</td>\n",
" </tr>\n",
" <tr>\n",
" <th>84</th>\n",
" <td>Shanghai</td>\n",
" <td>China</td>\n",
" <td>31.2020</td>\n",
" <td>121.4491</td>\n",
" <td>9</td>\n",
" <td>16</td>\n",
" <td>20</td>\n",
" <td>33</td>\n",
" <td>40</td>\n",
" <td>53</td>\n",
" <td>...</td>\n",
" <td>67040.0</td>\n",
" <td>67040.0</td>\n",
" <td>67040.0</td>\n",
" <td>67040</td>\n",
" <td>67040.0</td>\n",
" <td>67040.0</td>\n",
" <td>67040.0</td>\n",
" <td>67040</td>\n",
" <td>67040</td>\n",
" <td>67040</td>\n",
" </tr>\n",
" <tr>\n",
" <th>85</th>\n",
" <td>Shanxi</td>\n",
" <td>China</td>\n",
" <td>37.5777</td>\n",
" <td>112.2922</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>6</td>\n",
" <td>9</td>\n",
" <td>13</td>\n",
" <td>...</td>\n",
" <td>7167.0</td>\n",
" <td>7167.0</td>\n",
" <td>7167.0</td>\n",
" <td>7167</td>\n",
" <td>7167.0</td>\n",
" <td>7167.0</td>\n",
" <td>7167.0</td>\n",
" <td>7167</td>\n",
" <td>7167</td>\n",
" <td>7167</td>\n",
" </tr>\n",
" <tr>\n",
" <th>86</th>\n",
" <td>Sichuan</td>\n",
" <td>China</td>\n",
" <td>30.6171</td>\n",
" <td>102.7103</td>\n",
" <td>5</td>\n",
" <td>8</td>\n",
" <td>15</td>\n",
" <td>28</td>\n",
" <td>44</td>\n",
" <td>69</td>\n",
" <td>...</td>\n",
" <td>14567.0</td>\n",
" <td>14567.0</td>\n",
" <td>14567.0</td>\n",
" <td>14567</td>\n",
" <td>14567.0</td>\n",
" <td>14567.0</td>\n",
" <td>14567.0</td>\n",
" <td>14567</td>\n",
" <td>14567</td>\n",
" <td>14567</td>\n",
" </tr>\n",
" <tr>\n",
" <th>87</th>\n",
" <td>Tianjin</td>\n",
" <td>China</td>\n",
" <td>39.3054</td>\n",
" <td>117.3230</td>\n",
" <td>4</td>\n",
" <td>4</td>\n",
" <td>8</td>\n",
" <td>10</td>\n",
" <td>14</td>\n",
" <td>23</td>\n",
" <td>...</td>\n",
" <td>4392.0</td>\n",
" <td>4392.0</td>\n",
" <td>4392.0</td>\n",
" <td>4392</td>\n",
" <td>4392.0</td>\n",
" <td>4392.0</td>\n",
" <td>4392.0</td>\n",
" <td>4392</td>\n",
" <td>4392</td>\n",
" <td>4392</td>\n",
" </tr>\n",
" <tr>\n",
" <th>88</th>\n",
" <td>Tibet</td>\n",
" <td>China</td>\n",
" <td>31.6927</td>\n",
" <td>88.0924</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>1647.0</td>\n",
" <td>1647.0</td>\n",
" <td>1647.0</td>\n",
" <td>1647</td>\n",
" <td>1647.0</td>\n",
" <td>1647.0</td>\n",
" <td>1647.0</td>\n",
" <td>1647</td>\n",
" <td>1647</td>\n",
" <td>1647</td>\n",
" </tr>\n",
" <tr>\n",
" <th>89</th>\n",
" <td>Unknown</td>\n",
" <td>China</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>1521816.0</td>\n",
" <td>1521816.0</td>\n",
" <td>1521816.0</td>\n",
" <td>1521816</td>\n",
" <td>1521816.0</td>\n",
" <td>1521816.0</td>\n",
" <td>1521816.0</td>\n",
" <td>1521816</td>\n",
" <td>1521816</td>\n",
" <td>1521816</td>\n",
" </tr>\n",
" <tr>\n",
" <th>90</th>\n",
" <td>Xinjiang</td>\n",
" <td>China</td>\n",
" <td>41.1129</td>\n",
" <td>85.2401</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>3</td>\n",
" <td>4</td>\n",
" <td>5</td>\n",
" <td>...</td>\n",
" <td>3089.0</td>\n",
" <td>3089.0</td>\n",
" <td>3089.0</td>\n",
" <td>3089</td>\n",
" <td>3089.0</td>\n",
" <td>3089.0</td>\n",
" <td>3089.0</td>\n",
" <td>3089</td>\n",
" <td>3089</td>\n",
" <td>3089</td>\n",
" </tr>\n",
" <tr>\n",
" <th>91</th>\n",
" <td>Yunnan</td>\n",
" <td>China</td>\n",
" <td>24.9740</td>\n",
" <td>101.4870</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>5</td>\n",
" <td>11</td>\n",
" <td>16</td>\n",
" <td>26</td>\n",
" <td>...</td>\n",
" <td>9743.0</td>\n",
" <td>9743.0</td>\n",
" <td>9743.0</td>\n",
" <td>9743</td>\n",
" <td>9743.0</td>\n",
" <td>9743.0</td>\n",
" <td>9743.0</td>\n",
" <td>9743</td>\n",
" <td>9743</td>\n",
" <td>9743</td>\n",
" </tr>\n",
" <tr>\n",
" <th>92</th>\n",
" <td>Zhejiang</td>\n",
" <td>China</td>\n",
" <td>29.1832</td>\n",
" <td>120.0934</td>\n",
" <td>10</td>\n",
" <td>27</td>\n",
" <td>43</td>\n",
" <td>62</td>\n",
" <td>104</td>\n",
" <td>128</td>\n",
" <td>...</td>\n",
" <td>11848.0</td>\n",
" <td>11848.0</td>\n",
" <td>11848.0</td>\n",
" <td>11848</td>\n",
" <td>11848.0</td>\n",
" <td>11848.0</td>\n",
" <td>11848.0</td>\n",
" <td>11848</td>\n",
" <td>11848</td>\n",
" <td>11848</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>33 rows × 1147 columns</p>\n",
"</div>"
],
"text/plain": [
" Province/State Country/Region Lat Long 1/22/20 1/23/20 \\\n",
"59 Anhui China 31.8257 117.2264 1 9 \n",
"60 Beijing China 40.1824 116.4142 14 22 \n",
"61 Chongqing China 30.0572 107.8740 6 9 \n",
"62 Fujian China 26.0789 117.9874 1 5 \n",
"63 Gansu China 35.7518 104.2861 0 2 \n",
"64 Guangdong China 23.3417 113.4244 26 32 \n",
"65 Guangxi China 23.8298 108.7881 2 5 \n",
"66 Guizhou China 26.8154 106.8748 1 3 \n",
"67 Hainan China 19.1959 109.7453 4 5 \n",
"68 Hebei China 39.5490 116.1306 1 1 \n",
"69 Heilongjiang China 47.8620 127.7615 0 2 \n",
"70 Henan China 37.8957 114.9042 5 5 \n",
"72 Hubei China 30.9756 112.2707 444 444 \n",
"73 Hunan China 27.6104 111.7088 4 9 \n",
"74 Inner Mongolia China 44.0935 113.9448 0 0 \n",
"75 Jiangsu China 32.9711 119.4550 1 5 \n",
"76 Jiangxi China 27.6140 115.7221 2 7 \n",
"77 Jilin China 43.6661 126.1923 0 1 \n",
"78 Liaoning China 41.2956 122.6085 2 3 \n",
"79 Macau China 22.1667 113.5500 1 2 \n",
"80 Ningxia China 37.2692 106.1655 1 1 \n",
"81 Qinghai China 35.7452 95.9956 0 0 \n",
"82 Shaanxi China 35.1917 108.8701 0 3 \n",
"83 Shandong China 36.3427 118.1498 2 6 \n",
"84 Shanghai China 31.2020 121.4491 9 16 \n",
"85 Shanxi China 37.5777 112.2922 1 1 \n",
"86 Sichuan China 30.6171 102.7103 5 8 \n",
"87 Tianjin China 39.3054 117.3230 4 4 \n",
"88 Tibet China 31.6927 88.0924 0 0 \n",
"89 Unknown China NaN NaN 0 0 \n",
"90 Xinjiang China 41.1129 85.2401 0 2 \n",
"91 Yunnan China 24.9740 101.4870 1 2 \n",
"92 Zhejiang China 29.1832 120.0934 10 27 \n",
"\n",
" 1/24/20 1/25/20 1/26/20 1/27/20 ... 2/28/23 3/1/23 \\\n",
"59 15 39 60 70 ... 2275.0 2275.0 \n",
"60 36 41 68 80 ... 40774.0 40774.0 \n",
"61 27 57 75 110 ... 14715.0 14715.0 \n",
"62 10 18 35 59 ... 17122.0 17122.0 \n",
"63 2 4 7 14 ... 1742.0 1742.0 \n",
"64 53 78 111 151 ... 103248.0 103248.0 \n",
"65 23 23 36 46 ... 13371.0 13371.0 \n",
"66 3 4 5 7 ... 2534.0 2534.0 \n",
"67 8 19 22 33 ... 10483.0 10483.0 \n",
"68 2 8 13 18 ... 3292.0 3292.0 \n",
"69 4 9 15 21 ... 6603.0 6603.0 \n",
"70 9 32 83 128 ... 9948.0 9948.0 \n",
"72 549 761 1058 1423 ... 72131.0 72131.0 \n",
"73 24 43 69 100 ... 7437.0 7437.0 \n",
"74 1 7 7 11 ... 8847.0 8847.0 \n",
"75 9 18 33 47 ... 5075.0 5075.0 \n",
"76 18 18 36 72 ... 3423.0 3423.0 \n",
"77 3 4 4 6 ... 40764.0 40764.0 \n",
"78 4 17 21 27 ... 3547.0 3547.0 \n",
"79 2 2 5 6 ... 3514.0 3514.0 \n",
"80 2 3 4 7 ... 1276.0 1276.0 \n",
"81 0 1 1 6 ... 782.0 782.0 \n",
"82 5 15 22 35 ... 7326.0 7326.0 \n",
"83 15 27 46 75 ... 5880.0 5880.0 \n",
"84 20 33 40 53 ... 67040.0 67040.0 \n",
"85 1 6 9 13 ... 7167.0 7167.0 \n",
"86 15 28 44 69 ... 14567.0 14567.0 \n",
"87 8 10 14 23 ... 4392.0 4392.0 \n",
"88 0 0 0 0 ... 1647.0 1647.0 \n",
"89 0 0 0 0 ... 1521816.0 1521816.0 \n",
"90 2 3 4 5 ... 3089.0 3089.0 \n",
"91 5 11 16 26 ... 9743.0 9743.0 \n",
"92 43 62 104 128 ... 11848.0 11848.0 \n",
"\n",
" 3/2/23 3/3/23 3/4/23 3/5/23 3/6/23 3/7/23 3/8/23 \\\n",
"59 2275.0 2275 2275.0 2275.0 2275.0 2275 2275 \n",
"60 40774.0 40774 40774.0 40774.0 40774.0 40774 40774 \n",
"61 14715.0 14715 14715.0 14715.0 14715.0 14715 14715 \n",
"62 17122.0 17122 17122.0 17122.0 17122.0 17122 17122 \n",
"63 1742.0 1742 1742.0 1742.0 1742.0 1742 1742 \n",
"64 103248.0 103248 103248.0 103248.0 103248.0 103248 103248 \n",
"65 13371.0 13371 13371.0 13371.0 13371.0 13371 13371 \n",
"66 2534.0 2534 2534.0 2534.0 2534.0 2534 2534 \n",
"67 10483.0 10483 10483.0 10483.0 10483.0 10483 10483 \n",
"68 3292.0 3292 3292.0 3292.0 3292.0 3292 3292 \n",
"69 6603.0 6603 6603.0 6603.0 6603.0 6603 6603 \n",
"70 9948.0 9948 9948.0 9948.0 9948.0 9948 9948 \n",
"72 72131.0 72131 72131.0 72131.0 72131.0 72131 72131 \n",
"73 7437.0 7437 7437.0 7437.0 7437.0 7437 7437 \n",
"74 8847.0 8847 8847.0 8847.0 8847.0 8847 8847 \n",
"75 5075.0 5075 5075.0 5075.0 5075.0 5075 5075 \n",
"76 3423.0 3423 3423.0 3423.0 3423.0 3423 3423 \n",
"77 40764.0 40764 40764.0 40764.0 40764.0 40764 40764 \n",
"78 3547.0 3547 3547.0 3547.0 3547.0 3547 3547 \n",
"79 3514.0 3514 3514.0 3514.0 3514.0 3514 3514 \n",
"80 1276.0 1276 1276.0 1276.0 1276.0 1276 1276 \n",
"81 782.0 782 782.0 782.0 782.0 782 782 \n",
"82 7326.0 7326 7326.0 7326.0 7326.0 7326 7326 \n",
"83 5880.0 5880 5880.0 5880.0 5880.0 5880 5880 \n",
"84 67040.0 67040 67040.0 67040.0 67040.0 67040 67040 \n",
"85 7167.0 7167 7167.0 7167.0 7167.0 7167 7167 \n",
"86 14567.0 14567 14567.0 14567.0 14567.0 14567 14567 \n",
"87 4392.0 4392 4392.0 4392.0 4392.0 4392 4392 \n",
"88 1647.0 1647 1647.0 1647.0 1647.0 1647 1647 \n",
"89 1521816.0 1521816 1521816.0 1521816.0 1521816.0 1521816 1521816 \n",
"90 3089.0 3089 3089.0 3089.0 3089.0 3089 3089 \n",
"91 9743.0 9743 9743.0 9743.0 9743.0 9743 9743 \n",
"92 11848.0 11848 11848.0 11848.0 11848.0 11848 11848 \n",
"\n",
" 3/9/23 \n",
"59 2275 \n",
"60 40774 \n",
"61 14715 \n",
"62 17122 \n",
"63 1742 \n",
"64 103248 \n",
"65 13371 \n",
"66 2534 \n",
"67 10483 \n",
"68 3292 \n",
"69 6603 \n",
"70 9948 \n",
"72 72131 \n",
"73 7437 \n",
"74 8847 \n",
"75 5075 \n",
"76 3423 \n",
"77 40764 \n",
"78 3547 \n",
"79 3514 \n",
"80 1276 \n",
"81 782 \n",
"82 7326 \n",
"83 5880 \n",
"84 67040 \n",
"85 7167 \n",
"86 14567 \n",
"87 4392 \n",
"88 1647 \n",
"89 1521816 \n",
"90 3089 \n",
"91 9743 \n",
"92 11848 \n",
"\n",
"[33 rows x 1147 columns]"
"(33, 1147)"
]
},
"execution_count": 15,
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_china = new_data.loc[(new_data['Country/Region'] == \"China\")]\n",
"df_china\n"
"df_china.shape\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On somme toutes les donnes et on reinitialise les province, lattitude, longitude a NA, le pays a China.\n",
"On somme toutes les donnes pour les 33 provinces de Chine et on reinitialise les province, lattitude, longitude a NA, le pays a China.\n",
"\n",
"On travaille sur une Serie pandas, on la reformate en dataframe avec une tranposition. "
]
......@@ -6855,7 +5874,7 @@
"source": [
"### Analyse de l'évolution du nombre de cas cumulés au cours du temps\n",
"\n",
"On transforma la table pour etre plus comprehensible par matplotlib pour faire le graphique - globalement on realise une transposition en supprimant les data lattitude/longitude pour le moment et en renommant les colonnes avec le nom du pays correspondant.\n"
"On transforma la table pour etre plus comprehensible par matplotlib pour faire le graphique. Globalement on realise une transposition en supprimant les data lattitude/longitude pour le moment et en renommant les colonnes avec le nom du pays correspondant.\n"
]
},
{
......@@ -7257,7 +6276,7 @@
"source": [
"C'est donc les USA ayant eu le plus de cas recences, mais a normaliser par le nombre d'habitant global de chaque territoire et/ou du nombre de deces. \n",
"\n",
"## Question subsidiaire\n",
"## Question subsidiaire - utilisqtion des donnees de deces\n",
"\n",
"On recupere les donnees de deces en faisant une copie local au besoin. "
]
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment