diff --git a/module2/exo1/toy_document_fr.Rmd b/module2/exo1/toy_document_fr.Rmd index 6368cd7e012360761b63e07cd7a51f89896f33bb..c3035f7933baf3976d3b57f02b52f5db5f368cac 100644 --- a/module2/exo1/toy_document_fr.Rmd +++ b/module2/exo1/toy_document_fr.Rmd @@ -27,7 +27,7 @@ theta = pi/2*runif(N) ``` ## Avec un argument “fréquentiel” de surface -Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X~ U(0,1)$ et $\Y ~ U(0,1)$ alors $\P[X^2 + Y^2 $\le$ 1] = $\pi$/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait: +Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X \sim U(0,1)$ et $Y \sim U(0,1)$ alors $P[X^2 + Y^2 \le$ 1] = \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait: ```{r} set.seed(42) N = 1000 @@ -36,7 +36,8 @@ df$Accept = (df$X**2 + df$Y**2 <=1) library(ggplot2) ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() ``` -Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $\X^2 + Y^2$ est inférieur à 1: +Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1: ```{r} 4*mean(df$Accept) ``` +