Update module2/exo1/toy_notebook_en.ipynb

parent 5b929b75
...@@ -71,7 +71,7 @@ ...@@ -71,7 +71,7 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Using a surface fraction argument\n", "## Using a surface fraction argument\n",
"A method that is easier to understand and does not make use of the sin function is based on the fact that if $X ∼ U(0, 1)$ and $Y ∼ U(0, 1)$, then $P[X^2 + Y^2 ≤ 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" "A method that is easier to understand and does not make use of the sin function is based on the fact that if $X \\sim U(0, 1)$ and $Y \\sim U(0, 1)$, then $P[X^2 + Y^2 \\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:"
] ]
}, },
{ {
...@@ -114,7 +114,7 @@ ...@@ -114,7 +114,7 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"It is then straightforward to obtain a (not really good) approximation to \\pi by counting how many times, on average, $X^2 + Y^2$ is smaller than 1:" "It is then straightforward to obtain a (not really good) approximation to $\\pi$ by counting how many times, on average, $X^2 + Y^2$ is smaller than 1:"
] ]
}, },
{ {
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment