diff --git a/module2/exo1/toy_document_fr.Rmd b/module2/exo1/toy_document_fr.Rmd index 4728db3fa55f7eeed333c2e3d661245e425c60b5..2f253dc98e82b5c1f252af53409c1bec3b5e649a 100644 --- a/module2/exo1/toy_document_fr.Rmd +++ b/module2/exo1/toy_document_fr.Rmd @@ -1,33 +1,50 @@ --- -title: "Votre titre" -author: "Matthieu Moreau" -date: "La date du jour" +title: "À propos du calcul de pi" +author: "*Arnaud Legrand*" +date: "*25 juin 2018*" output: html_document --- +## En demandant à la lib maths + +Mon ordinateur m’indique que $\pi$ vaut *approximativement* ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) ``` -## Quelques explications +```{r pi} +pi +``` -Ceci est un document R markdown que vous pouvez aisément exporter au format HTML, PDF, et MS Word. Pour plus de détails sur R Markdown consultez . +## En utilisant la méthode des aiguilles de Buffon -Lorsque vous cliquerez sur le bouton **Knit** ce document sera compilé afin de ré-exécuter le code R et d'inclure les résultats dans un document final. Comme nous vous l'avons montré dans la vidéo, on inclue du code R de la façon suivante: +Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** : -```{r cars} -summary(cars) +```{r la méthode des aiguilles de Buffon} +set.seed(42) +N = 100000 +x = runif(N) +theta = pi/2*runif(N) +2/(mean(x+sin(theta)>1)) ``` -Et on peut aussi aisément inclure des figures. Par exemple: +## Avec un argument “fréquentiel” de surface -```{r pressure, echo=FALSE} -plot(pressure) +Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X∼U(0,1)$ et $Y∼U(0,1)$ alors $P[X^2+Y^2≤1]=\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait: + +```{r Argument fréquentiel de surface} +set.seed(42) +N = 1000 +df = data.frame(X = runif(N), Y = runif(N)) +df$Accept = (df$X**2 + df$Y**2 <=1) +library(ggplot2) +ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() ``` -Vous remarquerez le paramètre `echo = FALSE` qui indique que le code ne doit pas apparaître dans la version finale du document. Nous vous recommandons dans le cadre de ce MOOC de ne pas utiliser ce paramètre car l'objectif est que vos analyses de données soient parfaitement transparentes pour être reproductibles. +Il est alors aisé d’obtenir une approximation (pas terrible) de π en comptant combien de fois, en moyenne, $X^2+Y^2$ est inférieur à 1: -Comme les résultats ne sont pas stockés dans les fichiers Rmd, pour faciliter la relecture de vos analyses par d'autres personnes, vous aurez donc intérêt à générer un HTML ou un PDF et à le commiter. +```{r} +4*mean(df$Accept) +``` -Maintenant, à vous de jouer! Vous pouvez effacer toutes ces informations et les remplacer par votre document computationnel. diff --git a/module2/exo1/toy_document_fr.html b/module2/exo1/toy_document_fr.html new file mode 100644 index 0000000000000000000000000000000000000000..0ad49080509e96c34176d3ec0570277bb702dc93 --- /dev/null +++ b/module2/exo1/toy_document_fr.html @@ -0,0 +1,497 @@ + + + + + + + + + + + + + + +À propos du calcul de pi + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + +
+

En demandant à la lib maths

+

Mon ordinateur m’indique que \(\pi\) vaut approximativement

+
pi
+
## [1] 3.141593
+
+
+

En utilisant la méthode des aiguilles de Buffon

+

Mais calculé avec la méthode des aiguilles de Buffon, on obtiendrait comme approximation :

+
set.seed(42)
+N = 100000
+x = runif(N)
+theta = pi/2*runif(N)
+2/(mean(x+sin(theta)>1))
+
## [1] 3.14327
+
+
+

Avec un argument “fréquentiel” de surface

+

Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si \(X∼U(0,1)\) et \(Y∼U(0,1)\) alors \(P[X^2+Y^2≤1]=\pi/4\) (voir méthode de Monte Carlo sur Wikipedia). Le code suivant illustre ce fait:

+
set.seed(42)
+N = 1000
+df = data.frame(X = runif(N), Y = runif(N))
+df$Accept = (df$X**2 + df$Y**2 <=1)
+library(ggplot2)
+ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
+

+

Il est alors aisé d’obtenir une approximation (pas terrible) de π en comptant combien de fois, en moyenne, \(X^2+Y^2\) est inférieur à 1:

+
4*mean(df$Accept)
+
## [1] 3.156
+
+ + + + +
+ + + + + + + + + + + + + + +