{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Titre 1" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "4" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "2+2" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "10\n" ] } ], "source": [ "x=10\n", "print(x)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "20\n" ] } ], "source": [ "x=x+10\n", "print(x)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Petit exemple de complétion" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "mu, sigma = 100, 15" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "x=np.random.normal(loc=mu, scale=sigma, size=10000)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD8CAYAAACRkhiPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAEctJREFUeJzt3X+s3fdd3/Hni6QLaSFqQm6CsZ3ZKwaWRKtLrqxAJZRRRjyC6vBHJVdALBHJKEpFmZiGDdKAPyxlGlCIRDKFNouzdY0saBerSaDBgCqktOlNSes4rhdDvOTWXmyoGGGTQu2++eN8TA/Oub7n3mvf45PP8yEdne95fz/f8/285eS+7vn+ODdVhSSpT98y6QlIkibHEJCkjhkCktQxQ0CSOmYISFLHDAFJ6pghIEkdWzQEknxrkmeTfCnJoSS/1urXJHk6yUvt+eqhbXYnOZrkSJLbh+q3JDnY1t2fJBenLUnSOMb5JPAG8MNV9W5gM7A1ya3ALuBAVW0CDrTXJLkR2A7cBGwFHkhyWXuvB4GdwKb22HoBe5EkLdHliw2owS3Ff9devq09CtgG3Nbqe4E/BX6x1R+rqjeAl5McBbYkOQZcVVXPACR5FLgTeOp8+7/22mtrw4YNS+lJkrr33HPP/VVVzSw2btEQAGi/yT8HfDfwO1X1+STXV9UJgKo6keS6Nnwt8Lmhzedb7ett+dz6qP3tZPCJgRtuuIG5ublxpilJapL873HGjXViuKrOVNVmYB2D3+pvPt++R73Feeqj9vdQVc1W1ezMzKJBJklapiVdHVRVf8PgsM9W4LUkawDa88k2bB5YP7TZOuB4q68bUZckTcg4VwfNJHlnW74S+BHgK8B+YEcbtgN4vC3vB7YnuSLJRgYngJ9th45eT3JruyrorqFtJEkTMM45gTXA3nZe4FuAfVX16STPAPuS3A28AnwAoKoOJdkHvAicBu6tqjPtve4BHgGuZHBC+LwnhSVJF1cu9b8nMDs7W54YlqSlSfJcVc0uNs47hiWpY4aAJHXMEJCkjhkCktSxse4YlvRmG3Y9MbF9H7vvjontW28tfhKQpI4ZApLUMUNAkjpmCEhSxwwBSeqYISBJHTMEJKljhoAkdcwQkKSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLHDAFJ6pghIEkdWzQEkqxP8idJDic5lOTDrf6rSb6a5Pn2+LGhbXYnOZrkSJLbh+q3JDnY1t2fJBenLUnSOC4fY8xp4Beq6otJvh14LsnTbd1HqurXhwcnuRHYDtwEfBfwR0m+p6rOAA8CO4HPAU8CW4GnLkwrkqSlWvSTQFWdqKovtuXXgcPA2vNssg14rKreqKqXgaPAliRrgKuq6pmqKuBR4M4VdyBJWrYlnRNIsgF4D/D5VvpQki8neTjJ1a22Fnh1aLP5Vlvbls+tS5ImZOwQSPJtwO8DP19Vf8vg0M67gM3ACeA3zg4dsXmdpz5qXzuTzCWZO3Xq1LhTlCQt0VghkORtDALg41X1SYCqeq2qzlTVN4DfBba04fPA+qHN1wHHW33diPqbVNVDVTVbVbMzMzNL6UeStATjXB0U4GPA4ar6zaH6mqFhPwG80Jb3A9uTXJFkI7AJeLaqTgCvJ7m1veddwOMXqA9J0jKMc3XQe4GfBg4meb7Vfgn4YJLNDA7pHAN+FqCqDiXZB7zI4Mqie9uVQQD3AI8AVzK4KsgrgyRpghYNgar6M0Yfz3/yPNvsAfaMqM8BNy9lgpKki2ecTwKSLjEbdj0xkf0eu++OiexXF49fGyFJHTMEJKljhoAkdcwQkKSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLHDAFJ6pghIEkdMwQkqWOGgCR1zL8xrKk3qb+3K70V+ElAkjpmCEhSxwwBSeqYISBJHTMEJKljhoAkdWzREEiyPsmfJDmc5FCSD7f6NUmeTvJSe756aJvdSY4mOZLk9qH6LUkOtnX3J8nFaUuSNI5xPgmcBn6hqv4lcCtwb5IbgV3AgaraBBxor2nrtgM3AVuBB5Jc1t7rQWAnsKk9tl7AXiRJS7RoCFTViar6Ylt+HTgMrAW2AXvbsL3AnW15G/BYVb1RVS8DR4EtSdYAV1XVM1VVwKND20iSJmBJ5wSSbADeA3weuL6qTsAgKIDr2rC1wKtDm8232tq2fG5dkjQhY4dAkm8Dfh/4+ar62/MNHVGr89RH7Wtnkrkkc6dOnRp3ipKkJRorBJK8jUEAfLyqPtnKr7VDPLTnk60+D6wf2nwdcLzV142ov0lVPVRVs1U1OzMzM24vkqQlGufqoAAfAw5X1W8OrdoP7GjLO4DHh+rbk1yRZCODE8DPtkNGrye5tb3nXUPbSJImYJxvEX0v8NPAwSTPt9ovAfcB+5LcDbwCfACgqg4l2Qe8yODKonur6kzb7h7gEeBK4Kn2kCRNyKIhUFV/xujj+QDvW2CbPcCeEfU54OalTFCSdPF4x7AkdcwQkKSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLHDAFJ6pghIEkdMwQkqWOGgCR1zBCQpI4ZApLUMUNAkjpmCEhSxwwBSeqYISBJHTMEJKljhoAkdcwQkKSOGQKS1LFFQyDJw0lOJnlhqParSb6a5Pn2+LGhdbuTHE1yJMntQ/Vbkhxs6+5PkgvfjiRpKcb5JPAIsHVE/SNVtbk9ngRIciOwHbipbfNAksva+AeBncCm9hj1npKkVbRoCFTVZ4Gvjfl+24DHquqNqnoZOApsSbIGuKqqnqmqAh4F7lzupCVJF8ZKzgl8KMmX2+Giq1ttLfDq0Jj5Vlvbls+tS5ImaLkh8CDwLmAzcAL4jVYfdZy/zlMfKcnOJHNJ5k6dOrXMKUqSFrOsEKiq16rqTFV9A/hdYEtbNQ+sHxq6Djje6utG1Bd6/4eqaraqZmdmZpYzRUnSGJYVAu0Y/1k/AZy9cmg/sD3JFUk2MjgB/GxVnQBeT3JruyroLuDxFcxbknQBXL7YgCSfAG4Drk0yD/wKcFuSzQwO6RwDfhagqg4l2Qe8CJwG7q2qM+2t7mFwpdGVwFPtIUmaoEVDoKo+OKL8sfOM3wPsGVGfA25e0uwkSReVdwxLUscMAUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLHDAFJ6pghIEkdMwQkqWOGgCR1zBCQpI4ZApLUMUNAkjpmCEhSxwwBSeqYISBJHTMEJKlji/6heUk6a8OuJyay32P33TGR/fbATwKS1DFDQJI6ZghIUscMAUnqmCEgSR0zBCSpY4uGQJKHk5xM8sJQ7ZokTyd5qT1fPbRud5KjSY4kuX2ofkuSg23d/Uly4duRJC3FOJ8EHgG2nlPbBRyoqk3AgfaaJDcC24Gb2jYPJLmsbfMgsBPY1B7nvqckaZUtGgJV9Vnga+eUtwF72/Je4M6h+mNV9UZVvQwcBbYkWQNcVVXPVFUBjw5tI0makOWeE7i+qk4AtOfrWn0t8OrQuPlWW9uWz61LkiboQp8YHnWcv85TH/0myc4kc0nmTp06dcEmJ0n6p5YbAq+1Qzy055OtPg+sHxq3Djje6utG1EeqqoeqaraqZmdmZpY5RUnSYpYbAvuBHW15B/D4UH17kiuSbGRwAvjZdsjo9SS3tquC7hraRpI0IYt+i2iSTwC3AdcmmQd+BbgP2JfkbuAV4AMAVXUoyT7gReA0cG9VnWlvdQ+DK42uBJ5qD0nSBC0aAlX1wQVWvW+B8XuAPSPqc8DNS5qdJOmi8o5hSeqYISBJHTMEJKljhoAkdcwQkKSOGQKS1DFDQJI6tuh9AtI4Nux6YtJTkLQMfhKQpI4ZApLUMUNAkjpmCEhSxwwBSeqYISBJHTMEJKljhoAkdcwQkKSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOraiEEhyLMnBJM8nmWu1a5I8neSl9nz10PjdSY4mOZLk9pVOXpK0Mhfik8C/rqrNVTXbXu8CDlTVJuBAe02SG4HtwE3AVuCBJJddgP1LkpbpYhwO2gbsbct7gTuH6o9V1RtV9TJwFNhyEfYvSRrTSkOggM8keS7Jzla7vqpOALTn61p9LfDq0LbzrSZJmpDLV7j9e6vqeJLrgKeTfOU8YzOiViMHDgJlJ8ANN9ywwilKkhayok8CVXW8PZ8EPsXg8M5rSdYAtOeTbfg8sH5o83XA8QXe96Gqmq2q2ZmZmZVMUZJ0HssOgSTvSPLtZ5eBHwVeAPYDO9qwHcDjbXk/sD3JFUk2ApuAZ5e7f0nSyq3kcND1wKeSnH2f/1FVf5DkC8C+JHcDrwAfAKiqQ0n2AS8Cp4F7q+rMimYvSVqRZYdAVf0l8O4R9b8G3rfANnuAPcvdpyTpwvKOYUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLHDAFJ6thKv0VUki66DbuemNi+j913x8T2vRr8JCBJHTMEJKljhoAkdcwQkKSOGQKS1DFDQJI6ZghIUscMAUnqmDeLvcVM8qYaSdPHTwKS1DFDQJI6ZghIUscMAUnqmCEgSR0zBCSpY4aAJHXMEJCkjq36zWJJtgK/DVwGfLSq7lvtOUjSuCZ1A+Zq/UWzVQ2BJJcBvwP8G2Ae+EKS/VX14mrO42Lzrl1J02K1DwdtAY5W1V9W1d8DjwHbVnkOkqRmtUNgLfDq0Ov5VpMkTcBqnxPIiFq9aVCyE9jZXv5dkiMXdVbfdC3wV6u0r9ViT9PjrdiXPS1T/tOK3+KfjzNotUNgHlg/9HodcPzcQVX1EPDQak3qrCRzVTW72vu9mOxperwV+7KnS99qHw76ArApycYk/wzYDuxf5TlIkppV/SRQVaeTfAj4QwaXiD5cVYdWcw6SpG9a9fsEqupJ4MnV3u+YVv0Q1Cqwp+nxVuzLni5xqXrTeVlJUif82ghJ6ljXIZDksiR/nuTT7fU1SZ5O8lJ7vnrSc1yKJO9M8ntJvpLkcJIfmPaeAJL8uySHkryQ5BNJvnXa+krycJKTSV4Yqi3YQ5LdSY4mOZLk9snM+vwW6Ok/t//+vpzkU0neObTuku8JRvc1tO7fJ6kk1w7VpqKvhXQdAsCHgcNDr3cBB6pqE3CgvZ4mvw38QVV9H/BuBr1NdU9J1gI/B8xW1c0MLijYzvT19Qiw9ZzayB6S3Migx5vaNg+0r1y51DzCm3t6Gri5qv4V8L+A3TBVPcHovkiynsFX3rwyVJumvkbqNgSSrAPuAD46VN4G7G3Le4E7V3tey5XkKuCHgI8BVNXfV9XfMMU9DbkcuDLJ5cDbGdxbMlV9VdVnga+dU16oh23AY1X1RlW9DBxl8JUrl5RRPVXVZ6rqdHv5OQb3AsGU9AQL/lsBfAT4D/zTG1ynpq+FdBsCwG8x+Af9xlDt+qo6AdCer5vExJbpXwCngP/aDnF9NMk7mO6eqKqvAr/O4LevE8D/rarPMOV9NQv18Fb5epWfAZ5qy1PdU5L3A1+tqi+ds2qq+4JOQyDJjwMnq+q5Sc/lAroc+H7gwap6D/D/uPQPkSyqHSffBmwEvgt4R5KfmuysLrqxvl7lUpbkl4HTwMfPlkYMm4qekrwd+GXgP45aPaI2FX2d1WUIAO8F3p/kGINvMv3hJP8deC3JGoD2fHJyU1yyeWC+qj7fXv8eg1CY5p4AfgR4uapOVdXXgU8CP8j09wUL9zDW16tcqpLsAH4c+Mn65jXo09zTuxj8EvKl9jNjHfDFJN/JdPcFdBoCVbW7qtZV1QYGJ3X+uKp+isFXWOxow3YAj09oiktWVf8HeDXJ97bS+4AXmeKemleAW5O8PUkY9HWY6e8LFu5hP7A9yRVJNgKbgGcnML8la3806heB91fV/x9aNbU9VdXBqrquqja0nxnzwPe3/+emtq9/VFVdP4DbgE+35e9gcJXGS+35mknPb4m9bAbmgC8D/xO4etp7an39GvAV4AXgvwFXTFtfwCcYnNP4OoMfInefrwcGhx/+AjgC/NtJz38JPR1lcIz8+fb4L9PU00J9nbP+GHDttPW10MM7hiWpY10eDpIkDRgCktQxQ0CSOmYISFLHDAFJ6pghIEkdMwQkqWOGgCR17B8AKnXh28yd6wAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "plt.hist(x)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Utilisation d'autres langages" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "%load_ext rpy2.ipython" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAMAAABKCk6nAAAC9FBMVEUAAAABAQECAgIDAwMEBAQFBQUGBgYHBwcJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUWFhYXFxcYGBgZGRkbGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7///+WLN6DAAAXMElEQVR4nO2deWAUVbaH4Y0zvPGJqDg4oujgE0d4M+NbTDqk01kIYUsMssqmLLKp7CAYQBYViCKo7AIjghJkkV2RLYAgSAIigRAEJOyEJSGGrH3/eVUdGDrdTXVX1721nP59f9wOVbdOHfPZldruPdUYIE01oxMAYoFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HE0SD4chowAV+VihK8tONsYDy248IEfxL8toAb3bULLs7OzCnzXgzBpkCz4HOta9R58uE/drvquQKCTYFmwbEjrkvtxT6Jnisg2BRoFvxAueuj5CHPFRBsCjQLfibd9bGpkecKCDYFmgWvfyjmtWH9oh/e5LkCgk2B9rPo60snjJy4vMBrOQSbAg6XSZXkeS6AYF24clF5vWbBRxx1O5yVPmt4roBgHchrmdQu5oRSD82CbSkZk+rnQLAxdNrB2NF4pR6aBd9XwdiGBufdBP/wnovEvgEmCYInSm4Sryv00Cy4wU6pWdzo5B3Bpze5SE4KKEWgBZfghCKFHpoFr6i5TG7rVvdcMaCd322BVgbPZmxtB6Ue2s+ic8/I7ZX5nsshWAeKh9vtvZWO0Pwuky54LoBgU8BNsNdZNASbAs2CL98Cgs2JZsHVf1eJV08INgWaBQ8ZW/mJb7A50Sy4LDHT9QnB5kTcwwYINgXcBHsBwaYAgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiSOurA4EmwJxZXUg2BSIK6sDwaZAXFkdCDYF4srqQLApEFdWB4JNgbiyOhBsCnCZRBxcJhEHl0nEEXCZ9FWsi8ejtWUGuIDLJOLgMok4uEwiDsrqEAdldYiDsjrEQVkd4qCsDnFQVoc4KKtDHLxVSRwIJg4EEweCiQPBxIFga3My9b2fFTtAsKXZEr1qQ8vFSj0g2NJEX2OsJMyp0AOCLU3UZwnx09tcVOgBwZbmqf6Fxe/+Gd9gsjSM376nfYNShR4QbGmiDr01fHdrr+cAbkCwpWkp6ctrrNQDgi3NMduocbY9Sj0g2NqUpG8uVOwAwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMjKw+L35Q7PZvCKbFQXvG5U9bub3DA8G0ePmo1PTLuLMAgsVwuKU9cp4B+21SIjVTV91ZAMFCuGE7yUq7r/LfkTfD1ktNi1N3FkCwEDZNkJrz7fXf8XX72wtbT3FbAMFCWJMqNVdfMGDPZRsWZLv/G4KFkBd5g7Hxc41Og0GwKL4Lf8k+TGnEgV5AsCjOlBidgQtM6U8cTOlPHEzpTxxUPvPBbxVGZ8APTOnvxaHYZrYh5UZnwQtM6e9JiS2XsdRUo9PghYAp/X+a7SKmhcbUDGL/IKkpjTM6DV7wuQ6uyHW7TspOc9G8lYa0DCRzIINgN4456nQ6/p9/qJ3uucKqh+jSiBOMTZxmdBq80CzYMfXQuLrL2Mb/9VxhVcHsSLO4iBQy59GaBT/FmPOBys+qWFawdJ5ldAIc0Sz42VNs/z2n2KWnPVdYWDAlNAteWqvhI4ue7FhvkucKCDYF2s+iz2zPZwenfuu1HIJNAR4XCqL8xA2jU3ABwWLYEPZy3OtmOBWHYCFcshcxNnmm0WkwCBbE6vel5lqS0WkwCBbEd+Ol5mxHo9NgECyIQls2u9llndFpMAgWxbHkaPvnRichA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAsKVxLmjaZKpS4TMItjbvD/qtZMobSj0g2NLY5ZdGolG7kCxRcoPahXRplcPY5UilHhCsF1fXbbrJPWiObeTbth+UekCwTmyNmDzOdox72JIdm39T7ADBOhGWz9gvBoyohWB9qJy3Mkr/HUOwPpRES02ZXf8dQ7BODHinMK/nHP33C8E6UT6r2QvLVW5ztE1UwhaN+4Vg83JFOuvOa5rhv6MSEGxevpwhNfsGawsCweZl9hKpyemhLQgEm5cjiRWMpXyhLQgEG0b+kjnKv3w2L3JgwiCNewlM8GlXq3jP0wsIVuZY2CeLm/9Tuc+NDKUHRQERmOBnXXurpSoyBCuTnMNYWXix/47aCETwgjrVa0j8m7rp/SBYGddty/6HRO8moG+wM+myxHV1kSFYmSb5txuhBHaILtrJCidPUTdtDAQr823TA6feGih8N4EJ7jiEdY3tqs4YBPthf79uX4gvvBOY4Ccqbta86qyvKjIEm4LABNd3rnUwZ13ffVBWx8wEJrhT3KPLWYrPKdxRVsfcBCa4ZNlOxqZd8tUDZXXMDcrqeLNt7PTLRufAjUAE179cvxJfPeiV1Rn96tYvns8xOgteBCJ4X9m+Snz1IFdW50KC1BwxwyR1XBBQVmfpcy7qxGhMzSDSU+TWgPcfxRDQIfoWT9y1W56P25hW/Qafk19ePm7R5L0JRHBm5oTOG/euSfrAV4+MLuxwwz/8/n+8Xtq3qmA2eODeNeGHjc6CF4Edov8h31IrfcZXj/9awBwflJdPtXuusKxgtn7oe2eNzoEbgQl+7LzUnHnEV497y1g9563SOlWwrmBSBCZ4Yq1WXRNrjfbVIyrV2X0LY3P/23MFBJuCAM+is2ZOnHHAZ49fGz/m+Pe/13va68k1BJsCDi/dnVi5YMV+7/oTEGwK8FalGMoX9hl7TrlL1vD+a8QnAsFiaJt6ZEPYCaUe22N2HhowSngiECyE/X2kZl8/pS5N5QesMQVKXXgAwUJY9rHU3Gyq1MV1M/S1n0RnAsFCONJBajYNVeqS9CtjFTb+87J4AMGBcPaM2i0G9173kU1xWMLhsH+uSp6tMmzFCbVDHSDYP7lxHV6K/VXlRjumLCpS7pE3Z6ra19732boltlWeVccTCPZP0gHGfm5pdBYS5WGXGFupbjgaBPulLFZu44WPIvLP4b5yq+5RNQT7xemQ25hyo/Ng7FRXqSmPVrUNBPun7wLGPu9ldBYyTXaw8pEfqdoEgv1TNCwqaoi6U5tASO/aeo7Kw8KFbo7ID9QNd4Fgo1iTdDzvvd7CdwPBRhFXKDXNroneDQQbhZkGgAcFBCvTNouxkrAS0buBYD7kpl9QucXJ8Elz4pYJScYdCObCkMSUpuNVblO0eonqW9zqgWAerB4iNd13Gp2GLyCYB0P3Ss037xidhi8gmAfvrpeaxbOMTsMXEMyDk5Gn2NEItadZugDBXDjQOqrjUZXbLEuIHe/nkTEHINgoPnuloHxhB+G7gWCjiJHvcbwgfK4ICDYK163KvsKHqUKwUXSVLq0Kn/cxwRhfIJhlfZWpx26urPm2yinVRfugcRFeM5twB4IHd/yoZ2fvsXO82dw4dYIt231J+d7vhI9rgGC2TR5f8u7nwvcj1y48YcCrmSEvePI6qTnUX/RuzrkuiFC7UH8WyTcY1wq/jVwiv5qJ2oUGkG/bWrrPJn7SlUETCi51nyt8N16EvGB2fmBsH8WBvHwon92i9Urxu/ECgokDwcSBYOJAMHEgWBA/frxc+CuxgQDBYnjr5bTJjYUPWwgADoJRdcWb7DZSs36E0WkwDoJRdcUXrll2ihKMToNxEIyqK77Y95rUZIgfO+gfVF0RgjNpxultNq9J0g1As2B6VVcCINUWlVSlLsuaSEf0FvcFpTM7Dz+lb1K+0SyYXNWVAJg3rIIdbex2FXSgeSG7FvOLcRndHQFVV35Jc9Hc668yGZrJ8zkMcasyNHar1KyYZlA6inC6DnafF3ffey4imgedlNlpIn95R+66s8D189opRuWjhGbBR1zUPnLEcwXhQ/QU6bt62eb2Ct2OTuWsNFH4xKLBoFlwtTrPStzz7LOeKwgLLu/vaBO5133JrLD2zy8xKh1FNAve+vfRNxmr472CsGDpqtCzEmvFefHFvINC+9/g4jENN4WcYOvA4yQrO7pTbe+lEGwK+JxFL0zyXgbBpgCPC31QKGTi0SJDng9DsBcHo1s0HsRd8enmCbGddRiq4gkEe1IivyT94WTeYZseZGz1q7yj+geCPflxMLs9CThHrr0gtxi6YgIODJCakiaco+a77sxDsAkobZzDnOPUzbodAK12Mfb5G7yj+oeY4DV9hqq9I3wluUGzKk9us1tE297mfl/qQnuHvZ/4SXW8oCV49Os/74n/TtUm+Q/0+GZwzarP5sWUZzCm6AMpwUXy37j8OFXbDJAHZQ9oJSQfM0BKcLarcoa6M5kEeZLYVV4vHJGBlODSsDLGcluo2masTWo6dBKTkAkgJZjNb7ViYbi6s6yKx58fE1v7hsodXTnm8Re18Ij6MpMXj4uf+4WYYJY1fa7a6o0VE1uOUHmXuLRLyx7h29yXTIrsHTFTXZAbycmvROxXt00QEBOsD+PnM1ZgK7yz4Lue0v8o7X5UFaT/OunaySb8OwzBQRBXKjUp6XcWjNgtNesnqQriOhfsle2vm1YgOAhayH+yB2bcWTBevvZO+1hVEIf85e0ofPYXCA6CJb1L2P4otxGVWXF57Jz9tKogU9+qYFuacc7MGwgOhrl2R6dc9wXbmjia7b1bb984UyMdPYXPJgzB1IFg4kAwcSCYONQFl2fs8XgIm7P9ijGpGANxwWftr71p2+22oKzDS2Mc8w3LR3+IC26XydgVm9uCqbMYq0gwxdh7fSAu2HU/sLPbHYhk+fg880uD0jEA6oLl+4HN3B4G9pTrk72t7q0eS0Nc8LRBJc753dwW7G52me2OVP/s1rLQElw0PqZplXHYznmxjnFVTqO3trD3Pue+4ES3qA5V3hHIHxHdfK37gvKP4+KmCy9wJAhagjvNLy/srW7e/Cu2AyynsduU787mK51X265265IytqR0ohmmJQwGUoKvy29IlkWr2mbhp1LzjVt59mPdpSbf/cWuSLmxm3QEvz9ICT4uu1H5VuUU+Wh88PU7C3aNlBqn486CUtd7uAkGvLTOA1KCK54vYCzjJVXbfP+K1IxOu7OgIKKEsY0D3brE/8rYGd6j0fSClGC21TZ6kP28YhfnzmVVZ6Qb22pC277uC1ZEvt0vPt9twWHbmyNth7glqS+0BLMbW/cpjxApShj0cVLVGctyv/GoqnNtc2bVP7jFu3YWc0nPAIgJ9stE+SrqBTNMA6sToSY4SZ5mf7Y55ywTQqgJ7ntQakZuNzoN/Qg1wYfsPxeviLXqbakgMLHgWVH2Xp4zBmrnp1eajsn3340M5hU87/VStq2JRe8fmQfzltWJk0eEdc/x2w8oYt6yOg75yztI/PA74pi3rM6QlYxdDzdFeTgrY96yOoXJbfradmqL4YOSZdN/ULvN2blzz3BPRCfMXFbnbFap1hBeXLdPWd5jqLpttkR+tijKq6qMRQi1sjop8pP8l35WtY39GmMFjcXkIxwBZXWWPueiTozG1ISQKJ8xzFmsZpPK58GuUjoWhNt1sNfUGOb8Br+xR2oG7vLbz50I6SKwPFxMPsLRXlbHUbeDPEy9hucKcwo+Ebb51IxW6m6fzOt4OKuLyilWTINmwbaUjEn1c0wi+FzbqIjhymdmuSO7zlR77ra1T+/NwSdlLJoF31fB2IYG580hOF66Apo+Wv/9mhjNghvIl6qLG500g+AL7eW2ykt35ft3W/TsiBOaBa+ouUxu61b3XGGA4NOd5dZd8Bn762+Gf697IiZC+1l0rusmzxWvIZlGHKLt0n/NV+6zbrc7IKVm1RNgLpj3caE3RXNHfqk8M9yxuKS4Lu6HZK/RhSGHhQQXRM7Z9W6Sn7n/rlUdV+Y1ujDksJDgVPlVuZT1qraZNrDY+Wk3//3oYiHBPeWXXVe/r2ob56dxUeMtOuiEDxYSnCqPyx+9jnNU6lhIcEHEpz9MaaV5/t2K6zySsQwWEsx+mzl0sebSJePDkhqH0GvRlhLMg8+HOVl+pPg5QE1DqAnuII89/HCl0WnoR6gJds0CnLrG6DT0I9QEr+pVxs5HXDM6Df0INcFsRnh0k1B62TrkBDMWWqNhQlBwaAHBxIFg4ugluDCr8G4dNVCcFVr3HYNAJ8EfRvaNVPccKBDSbL2bDAitcybV6CN4V2cnc76cfvfOQfGrXGJu3ELOUYmhj2BX6bf0lOCD+WTJHKk5q25iu5BDH8FTV0nNOnXFG/3ztXzQP/oq56jE0EfwiagL7GK08q7Uk2/LYTeSeR/4iaHTSdbuZo4EdSO+AuHoi/bYr7lHpQWug4kDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxDGx4BUJjlGhPLKXD+YVnNYp37nMaw5boBLzCo6Xh/V2DqFa3WIwr2DX9BpD9mkLAswruO8Wxm6Gh/TofB7oJThzSabK7a/G9hvTWN2MHMAbnQT36j6zR3eV7z86M7cV+O8FlNFH8Oo3pSZlRfDBQLDoI3i0PGnCbqtWSbc0+gie9ZnUfPFR8MFAsOgj+Gr49pvp4V6TwgPx6FT57NzAhAFnVSUG+GDeymeACwIqn1360UWHZK25AQ4IqHy2fbiL2B7aMgNcEFf5bOknQaYEeCKu8hkEmwIBlc9uAcGmQNx1MASbAggmDgQTR5zgjX+LVeRPDzwogHvvFxG15n0iot5/r4ioD9Su8mtuoHwDUYNgf4gpdjNmq4ioi+aKiPr9myKiXmyrpjcEu4DgIIBgCA4CCIbgIIDgIIBg4oK7nhERdZyQabOWeNVW5cGeUSKiXm6vprdAwWJeiS3UXDjLFyXFIqI6RUzAq/IXK1AwMAMQTBwIJg4EEweCiQPBxIFg4kAwcUQJLq5Wo0aNNnxjlg2tLtcF3tDwwfjzvKPyzvfrZ+63Z3PPtTKqqlxFCT5fm3/MxDG/k1Rcr/192agXeUflnG/u/TsrRjl453orqqpcRQk+Wp9/zEwmq0iLlyTX4HdrsTIq53xz0xjLeJR3rreiqspVlOA9f3Y8HJvNO6qsYsJr0g91eIaWowrId1I7AbnKUVXlKkrw4V5Hbo7wGu2iFVnFyGHSD0+qnfHFX1T++W58MldArnJUVbmKPIsu/QPvEcOyion9pB8ezuEcVYZrvosb5AjI1RVVJuBcRQk+d1g6M739m+OGHHB5JGNn/uhjQLqmqLzzXdVIPnnmnWtlVFW5ihK8/vGT5W/9H++o8n9VQe3NZX268I7KOd+rdU/KH5xzvRVVVa7CDtHvPvpQ/EmuEfNq1JAuAC+wb//6YAt+s4Hcjso33/nVpUvVGnmcc70dVU2uuJNFHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBbmQKGG9jNBDsBgRbnZJOf3miY9Hehv0d/0hnbE2jv8Rc+tfHO3X/NgGCLc6yOGfF4J2Z1daz9U+zMw8eZKlJtz+yap2r6AjBFmfHo2tvSkfiWoyVVb80O46xG78vvfUxsxVjGyHY6qTZa75cmFlP+une7En31qtXr9a5Wx8TuzK2F4KtT17M5Mz/cLKb1S4vqqzGeOtjRpL01xiCLc60MU5ntymZ96Sxz/7KLvwpm+3tf/vjQK2zZckQbHEuNX/siTY3Mp8a/HSDnYytbfTUczv+9ZHyyDMfPGF0gvwJLcGVULzcvSsQTBwIJk4oCg4pIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4vw/C6hxe08+0jwAAAAASUVORK5CYII=\n" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%%R\n", "plot(cars)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }